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Abstract

We present a novel framework for dynamic simulation of elasti-
cally deformable solids. Our approach combines classical finite el-
ement methodology with subdivision wavelets to meet the needs of
computer graphics applications. We represent deformations using a
wavelet basis constructed from volumetric Catmull-Clark subdivi-
sion. Catmull-Clark subdivision solids allow the domain of defor-
mation to be tailored to objects of arbitrary topology. The domain
of deformation can correspond to the interior of a subdivision sur-
face or can enclose an arbitrary surface mesh. Within the wavelet
framework we develop the equations of motion for elastic deforma-
tions in the presence of external forces and constraints. We solve
the resulting differential equations using an implicit method, which
lends stability. Our framework allows trade-off between speed and
accuracy. For interactive applications, we accelerate the simula-
tion by adaptively refining the wavelet basis while avoiding visual
“popping” artifacts. Off-line simulations can employ a fine basis
for higher accuracy at the cost of more computation time. By ex-
ploiting the properties of smooth subdivision we can compute less
expensive solutions using a trilinear basis yet produce a smooth re-
sult that meets the constraints.

1 Introduction

Physical simulation of dynamic, deformable bodies has numer-
ous applications in computer graphics, including animation in film,
video games, and surgical simulation. In this paper, we explore
a new framework for simulating the dynamics of elastically de-
formable solids that is appropriate for interactive and off-line sim-
ulations.

Our simulator supports a number of desirable properties:

Physically-based. Because the mechanical behaviors of solids are
derived from differential properties of continuous media, our
framework is based on continuum mechanics.

Dynamics with constraints. For realistic animation, our frame-
work supports dynamics using the Lagrangian formulation.
Constraints, which are necessary to simulate behaviors like
collisions and manipulations, are supported using Lagrange
multipliers.

Support for arbitrarily shaped objects. For objects with interest-
ing shapes, it is important to ensure that the deformation has
the appearance that one would expect. We accomplish this
through the use of parameterization and embedding objects in
custom control lattices.

Support for objects with spatially varying material properties.
Deformable solids can be, for example, firmer in some places
and more gelatinous in others. Our framework accommodates
varying material properties.

Principled decoupling of base geometry and deformations. In
order to simulate complex objects interactively (for example)
it is important that the resolution of the deformation not

be tied to the complexity of the underlying surface. In our
framework, the resolution of the surface and simulation are
decoupled.

Fast, stable solution. The naive solutions for deformable bodies
require many iterations per time step and then must take small
time steps in order to achieve stability. We use an implicit
method that ensures stability at the cost of some artificial
damping.

Speed-accuracy trade-off. While accuracy is often desirable, it is
not always essential. Our framework allows the user to deter-
mine the trade-off between speed and accuracy. Coarse grids
can be used to achieve the fastest simulation. For higher ac-
curacy the coarse grid needs only to be refined using subdivi-
sion.

Adaptation. As a simulation runs, not all of the detail is neces-
sary to achieve the desired accuracy. By using a multireso-
lution basis, our framework can support schemes that adapt
the mesh resolution in order to concentrate the computational
effort where it is likely to have the most impact.

We represent our objects and deformation domains as Catmull-
Clark (or trilinear) subdivision volumes (see Figure 1). The sur-
faces inherit all of the desirable properties of Catmull-Clark sur-
faces (e.g., sharp features and straightforward handling of arbitrary
topologies), while providing a volumetric domain for representing
solid deformations which are explicitly defined both inside the vol-
ume and at every point on the surface. Using the principles of sub-
division, we construct a multiresolution, lazy wavelet basis for fast
computation of solid deformations. We then formulate the equa-
tions of motion for a dynamically deforming elastic solid, in terms
of the wavelet basis. This formulation defines the temporal behav-
ior of the wavelet coefficients in the presence of body forces and
constraint forces. The wavelet framework and equations of motion
are described in Section 3.

Within this framework, we construct a robust dynamic simulator
that employs an implicit solver, permitting us to take large timesteps
without succumbing to instabilities. Our simulation method is
described in Section 4 and a variety of extensions are described
in Section 5. The extensions include realtime simulation, quasi-
linearization of the equations of motion, use of trilinear basis func-
tion, adaptation, and the embedding of complex objects in simple
domains. In section 6 we describe some resulting interactive simu-
lations built on our framework, and we conclude with a discussion
in section 7.

2 Related Work

Early work on deformations focused on non-dynamic techniques.
For example, the introduction of free-form deformations by Seder-
berg et al. [28] allowed objects to be deformed independent of
their structure by embedding them in easily-parameterized do-
mains. Two important extensions were the use of unstructured lat-
tices by MacCracken and Joy [18] and the introduction of dynamics



by Faloutsos et al. [10]. Our framework builds on both of these ex-
tensions, using volumetric Catmull-Clark lattices as in [18], and
embedding objects in dynamic free-form lattices as in [10]. But
unlike [10], where a diagonal stiffness matrix is employed, we sim-
ulate the dynamics of the embedded object.

The use of physically-based deformable models in graphics was
pioneered by Terzopoulos et al. [32]. The original work applied the
Lagrangian equations of motion using a finite difference scheme to
simulate elastic objects with regular parameterizations. This frame-
work was extended to include inelastic behaviors [31], and to han-
dle stiff rotating bodies using linearized equations [33].

Following their introduction, physically-based deformations
were extended in many ways. Platt and Barr [24] introduced bet-
ter constraint handling via Lagrange multipliers. Pentland and
Williams [23] obtained realtime simulations by using only a few
vibration modes. Witkin and Welch [35] introduced the use of low-
order polynomial deformations to achieve fast deformations. Baraff
and Witkin [1] added non-penetration constraints to this framework.
Metaxas and Terzopoulos [21] combined global deformations with
local finite element deformations.

Implicit solvers are enjoying a renaissance in dynamic deforma-
tions. Terzopoulos et al. [32][31] used semi-implicit solvers in their
initial work. Baraff and Witkin [2] used a fully implicit scheme to
greatly improve the speed and stability of cloth simulation. Des-
brun et al. [9] used a semi-implicit scheme to stabilize stiff systems.

Hierarchical methods have also been used to speed up simu-
lations and allow more detail in interactive systems. Terzopou-
los et al. [31] employed a multigrid solver on a rectangular domain.
Debunne et al. [7] created interactive simulations using an adaptive
octtree representation, adaptive in both space and time. To animate
a surface, the surface points are linked to the grid by a weighting
scheme. This framework was later extended to use finite elements
over an unstructured hierarchy of tetrahedral meshes [6].

For some application, dynamic motion has not been deemed nec-
essary, so static and quasi-static methods have been employed [13]
[14] [3] [15] [27]. Since our interest is in realistic motion, we build
on dynamic methods.

As noted in the introduction, we employ a wavelet scheme based
on 3D subdivision. In the last decade, subdivision and wavelets
have enjoyed wide use in computer graphics as a tool for effi-
cient solution of many problems, including, e.g., modeling [11]
and rendering [12]. 3D subdivision was first developed by Mac-
Cracken and Joy [18] as an extension to Catmull-Clark subdivi-
sion surfaces for the purpose of defining free-form deformations of
arbitrary topology. More recently, Weimer and Warren [34] em-
ployed 3D subdivision to solve PDEs associated with fluid flow.
Cirak et al. [5] employed subdivision surfaces to solve thin shell
finite element problems, exploiting the smoothness of subdivision
basis functions to satisfy the integrability requirements of thin shell
elements. McDonnell et al. simulated volumetric subdivision ob-
jects using a mass-spring model [19] and then applied the finite-
element methodology to the problem [20]. Our framework builds
on many of these methods, but differs from each of them signifi-
cantly.

3 Formulation

We have chosen to work within the framework of Catmull-Clark
subdivision volumes as introduced by MacCracken and Joy [18],
which are a generalization of Catmull-Clark subdivision surfaces
[4]. An example of applying volumetric Catmull-Clark subdivision
to a simple cube is shown in Figure 1. Subdividing indefinitely
results in a solid ball that is parameterized by the original cube.
Our framework supports only a subset of all possible Catmull-Clark
control lattices: those that result in hexahedral meshes after one
subdivision step. This restriction is required in order to ensure that

Figure 1: A ball resulting from Catmull-Clark subdivision (on the right) and its
associated parametric domain (on the left), both shown after two levels of subdivision.
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Figure 2: On the left is a visualization of a complex K = K0 in red and two
finer subdivisions in blue and green. In our framework, the complex is actually three
dimensional, but we show the two dimensional case for convenience. Centered at
each vertex of K0 is a Catmull-Clark basis function. After subdividing K0 once, we
introduce new vertices that belong to K1 (in addition to the vertices of K0, as shown
in the key next to the grid). We could place Catmull-Clark basis functions (half as
big in each dimension with respect to the coarser level) at all vertices of K1. Instead,
we trim this overrepresentation by only placing the new functions at the newly created
vertices (shown in blue). The process continues recursively (e.g., new basis functions
at the green vertices). Note that, since only one basis function is centered at each
vertex, the index of that vertex uniquely identifies the basis function. On the right we
see a one dimensional visualization of a slice through the basis functions along the line
from vertex 6 to vertex 8 as the parameter u1 varies. On the top, we see one set of
basis functions. In the middle, we see an overcomplete basis consisting of the next
level scaling functions. On the bottom we see the lazy wavelets formed by discarding
every other basis function.

all objects are parameterized by the control lattice in the obvious
way. It still allows a variety of cell shapes including hexahedra,
tetrahedra and triangular prisms.

3.1 Volumetric Subdivision Wavelets

Subdivision schemes give rise to wavelets [17]. We build a wavelet
basis based on the construction of lazy wavelets found in [30], ex-
cept that our scaling functions are not piecewise-linear. At the
coarsest level are the basis functions that correspond to the orig-
inal vertices in the control lattice. We denote the Catmull-Clark
basis functions by ϕa

0 , where the index a ranges over the vertices of
K0 = K.

While the Catmull-Clark basis functions serve as the scaling
functions for our wavelet framework, we have some latitude in
choosing the wavelets themselves. For simplicity and efficiency
we have chosen to use a lazy wavelet basis (see Figure 2).

In particular, repeated subdivision of K, introduces an increas-
ingly fine sequence of complexes Kk (see Figure 1). Applying
Catmull-Clark subdivision to the complex Kk gives rise to basis
functions at level k. The lazy wavelets at level k are the Catmull-



Clark basis functions ϕa
k on Kk where a ranges over the set of odd

vertices of Kk (vertices introduced when we subdivide Kk−1). No-
tice that the index k is redundant because each vertex a appears at a
unique subdivision level k. We, therefore, drop the index k, writing
ϕa instead of ϕa

k.

3.2 Wavelet Representation of Deformations

The objects that we consider can be described at rest using a lazy
wavelet expansion1:

r(u) =
∑

a

raϕa(u) = raϕa(u) (1)

where ra is a 3-dimensional vector, and r(u) is a homeomorphism
between a complex K and Ω, a subset of R3:

r : K → Ω ⊂ R
3 : u 7→ r(u) (2)

Objects described by simple Catmull-Clark subdivision have trivial
lazy wavelet expansions in which only the coarsest basis functions
have non-zero coefficients 2.

Because r(u) is a homeomorphism, any function of K is also
a function of Ω and vice-versa. In particular, our wavelets ϕa can
be treated as functions of Ω. This is a great convenience because
the equations of motion for elastic bodies are easiest to describe in
Euclidean coordinates. In particular, the displacement of an object
is most naturally thought of as a function of the rest coordinates
of the object. We represent the displacement in wavelet expanded
form:

d(x, t) = qa(t)ϕa(x) (3)

where qa(t) is a time-dependent 3-dimensional vector. Our goal
is to compute the value of the coefficients qa which describe the
displacement of the object as it deforms over time. Finally, the
shape of the object over time is:

p(x, t) = (ra + qa(t))ϕa(x) (4)

Figure 3 illustrates the relationship between the complex K com-
posed of polyhedral cells (such as C) and the configuration of the
object in Euclidean coordinates.

3.3 Equations of Motion

We model the dynamics of the deformable body as a system of sec-
ond order ordinary differential equations that is obtained by apply-
ing the finite element method to the Lagrangian formulation of the
equations of elasticity (see [29][22][25]). We represent the state of
the body at time t as a column vector of generalized coordinates
q = q(t) whose a-th component qa(t) is a 3-dimensional vector.

Due to equation (4), we can express both kinetic energy T and
potential energy V in the form

T = T (q̇) and V = V (q)

where q̇ denotes the time derivative of q. The equations of motion
are then the Euler-Lagrange equations

d

dt

(

∂T (q̇)

∂q̇

)

+
∂V (q)

∂q
+ Q

ext
− µq̇ = 0 (5)

1Throughout this paper, the Einstein summation convention is in force:
whenever a term contains an index as both a subscript and a superscript, the
term implies a summation over the range of that index

2Not all objects described by subdivision correspond to homeomor-
phisms; we limit ourselves to those that do, i.e. natural objects that do not
intersect themselves.
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Figure 3: Visualization of a cell complex, rest shape, and deformed shape. The
complex K consists of three dimensional polyhedral cells (represented figuratively
here as polygons), such as the one highlighted in yellow and labeled C. Each cell has
a three dimensional embedding into the rest shape r and deformed shape p of an object.
Within a cell of the complex, we can address a point in terms of its affine coordinates
(u1, u2, u3) which have corresponding embeddings in the rest and deformed shapes.

where ∂T/∂q̇ and ∂V/∂q denote gradients with respect to q̇ and q,
respectively. The term Qext is a generalized force corresponding to
external body forces, such as gravity. The last term is a generalized
dissipative force, added to simulate the effect of internal damping (a
more physically-based damping force would be straight-forward).

The derivation of the terms of equation 5 that follows will yield
a system of ODEs to be solved in generalized coordinates.

3.4 Kinetic Energy

The standard definition of the kinetic energy of a moving body is:

T =
1

2

∫

Ω

ρ(x) ṗ · ṗ dΩ =
1

2
Mab

q̇a · q̇b (6)

where ρ(x) is the mass density of the body, and

Mab =

∫

Ω

ρ ϕaϕb dΩ. (7)

Equation (6) yields the formula

d

dt

(

∂T

∂q̇

)

= M q̈ . (8)

We call the matrix M composed of the elements Mab the mass
matrix. We discuss its computation in Section 4.1.

3.5 Potential Energy

The potential energy of an elastic body is based on measuring the
strain or distortion present in the body. Green’s strain tensor is a
common measure that handles large deformations:

eij =
∂di

∂xj
+

∂dj

∂xi
+ δkl

∂dk

∂xi

∂dl

∂xj
(9)

A related concept is that of stress (also a tensor), which mea-
sures the forces present in a continuous body. For linear (stress is
proportional to strain) and isotropic bodies, stress has the following
relation to strain:

τij = 2G

{

ν

1− 2ν
tr(e)δij + eij

}

(10)



where tr(e) = δijeij . The scalar G, called the shear modulus,
determines how easily the body deforms, and the scalar ν, called
Poisson’s ratio, determines how strains in perpendicular directions
relate.

The potential energy V , analogous to computing work as force
times distance, is computed by taking the componentwise product
of the stress and strain tensors:

V = G

∫

Ω

{

ν

1− 2ν
tr2(e) + δijδkleikejl

}

dΩ (11)

By combining equations (3), (9), and (11) we can express the elas-
tic potential V and its derivatives (with respect to q) as polynomial
functions of q. The coefficients of these polynomials are integrals
that can be precomputed. The exact form of these derivatives can
be found in appendix A.1.

3.6 External Forces

We address two specific types of external forces: gravity (Qg) and
constraints (Qc). We add their generalized force contributions to
compute the aggregate generalized force Qext = Qg + Qc.

3.6.1 Gravity

Gravity is an example of a body force that affects all points inside
the body. We treat gravity as a constant acceleration field speci-
fied by the vector g. The gravitational potential energy is then the
integral

Vg =

∫

K

ρg · p =

∫

K

ρϕa
g · qa .

The generalized gravitational force is the gradient

Q
g
a =

∂Vg

∂qa

=

(
∫

K

ρϕa

)

g (12)

The above force can be interpreted as the familiar mg except that
the mass term represents all of the mass associated with a particu-
lar basis function. Generalized forces for other conservative force
fields can be derived similarly.

3.6.2 Constraints

Using Lagrange multipliers, we support standard constraints that
can be described by equations of the form C = 0. For example, we
can constrain a body point P with coordinates u0 to coincide with
the arbitrary point P0 as follows:

0 = C(q) = P − P0 = qaϕa(u0)− P0 (13)

3.7 System of Equations

Collecting together the various terms computed above, substituting
them into the Euler-Lagrange equation (5), and applying Baum-
garte stabilization (see [21]) to our constraints yields the system of
equations

[

M ∂C

∂q

T

∂C

∂q
0

]

[

q̈
λ

]

=

[

µq̇−Qext
−Qe(q)

−αĊ− βC̈

]

(14)

where Qe(q) is the force due to the elastic potential (see appendix
A.1). Due to the non-linearity of Qe our system of equations is not
linear.

4 Simulation

In this section we describe in more detail the computational aspects
of solving equation (14) efficiently.

4.1 Numerical Integration

In order to compute the gravity terms and the mass and stiffness
matrices we precompute the integrals in equations (7), (18), and
(12). The integration is done numerically using the following steps:

1. Subdivide the domain to the desired level for numerical inte-
gration (at least once).

2. Compute the values of all of the basis functions at each of the
vertices.

3. Tetrahedralize the domain. After subdividing at least once,
the domain is composed of only hexahedral cells. We then
divide each of these cells into tetrahedral cells. This step is
performed in order to approximate functions on the domain
as piecewise linear.

4. Compute the integrals over each domain tetrahedron using
piecewise linear approximations to the basis functions. Since
at every vertex the rest coordinates are known, we can com-
pute the spatial derivatives of the basis functions directly with-
out using knowledge about the parameterization of the object
by the complex K.

4.2 Solving the ODEs

Once we have precomputed the mass and stiffness terms, we are
prepared to solve the system (14) together with initial values for p
and ṗ (and thus q and q̇). Solution techniques typically start with
known values for q and q̇ and proceed to compute the values of
these variables at a sequence of subsequent points in time.

There are two common classes for solving such systems of dif-
ferential equations. Explicit techniques compute the future state of
the system using information about the state of the system at the
current and previous timesteps. Forward Euler and Runga-Kutta
are examples of such explicit methods. Implicit techniques express
the future state in terms of quantities evaluated at the end of the
timestep, in addition to previously known quantities. Implicit meth-
ods are much more stable for large timesteps than explicit methods
because rather than jumping blindly forward, the conditions at the
future state are taken into consideration. Baraff and Witkin give an
excellent discussion on the use of implicit methods in [2].

We desire a fast stable solution, so we chose to use an implicit
method to solve our system of equations. Applying the method of
[2], adapted to our constrained system, results in the following non-
linear system of equations:
[

M ∂C

∂q

T

∂C

∂q
0

]

[

∆v
λ

]

= h

[

Qall(q0 + h(v0 + h∆v),v0 + ∆v)

−αĊ− βC̈

]

(15)

where Qall = µq̇ − Qext
− Qe. We solve the above system of

equations for ∆v using the Newton-Raphson root-finding method.
The cost of this comes primarily from computing the gradient and
Hessian of the elastic potential V , which are required to compute
the value and gradient of equation (15). In most cases we find it
acceptable to only perform one iteration of Newton-Raphson. This
corresponds to linearization of equation (15) at each timestep (like
Baraff and Witkin did), but should not be confused with the com-
monly used linearization of strain, which is only valid for infinitesi-
mal rotations. Our system handles large rotations nicely. The linear



systems that need to be solved when performing Newton-Raphson
on equation (15) are symmetric but indefinite, so we solve them us-
ing the iterative minres algorithm (using sparse matrices, see [26]).

4.3 Runtime Details

Although the interpretation of our object as a lattice is not needed
by the ODE solver, we still store a complete lattice at the level of
the finest wavelets. This is convenient because of the one-to-one
correspondence between lattice vertices and basis functions. For
each vertex we store the sparse vector of basis values, which allows
us to evaluate functions without using a global wavelet synthesis
step. We perform a wavelet synthesis on the surface of the object
whenever it needs to be displayed. In order for the user to be able
to click on the surface and set a constraint, we store the surface of
the object as a triangle mesh. The triangles refer to the vertices in
the volumetric lattice, which store basis function information. This
allows us to quickly compute the parametric location of the chosen
surface point, select the relevant subset of basis functions, and set
up a constraint at that point as in section 3.6.2.

5 Extensions

Now that our basic framework is in place we describe some ex-
tensions to the framework that improve its performance for in-
teractive applications. These include real-time simulation, quasi-
linearization, the use of trilinear basis functions while maintaining
smoothness, adaptation of the wavelet basis, and support for objects
that are not parameterized by a cell complex.

5.1 Real-time Simulation

In order to have the appearance of realism, it is important that the
simulation be not only fast enough to be interactive, but also to
proceed at a consistent pace. Adaptively changing the basis intro-
duces variation in the amount of time required to compute a sin-
gle timestep. Since our simulator can take large time steps we can
remedy this problem by adjusting the timestep to stay in sync with
actual time. For example, when wavelets are added because a new
constraint is placed, a step of the simulation will take longer due
to the increased number of degrees of freedom in the system. We
compensate by integrating over a longer period of virtual time dur-
ing each timestep.

So why not take arbitrarily large timesteps? First, interactive ap-
plications demand high frame rates. It is best to display a new state
of the system at each video refresh cycle. Second, implicit inte-
gration exacts payment for its improved stability. Large timesteps
result in unrealistic damping. For these reasons we always set the
timestep to the amount of physical time that lapsed during the pre-
vious iteration of simulation and display.

5.2 Quasi-linearization

For complex models in which there are many basis functions the
full nonlinear equations of elasticity are too expensive to solve in-
teractively, because even evaluating the stiffness matrix once per
simulation step is costly. For these cases we support two traditional
approximations. If rotations of the object are not required, and the
deformations are modest, the nonlinear terms of strain (equation
(9)) can be dropped, resulting in a quadratic (instead of quartic)
elastic potential, and thus a constant stiffness matrix. If rotations are
required but deformations are modest the strain can be linearized
about a floating frame of reference that roughly tracks the orienta-
tion of the object (see [33]). If large deformations are required and

significant error is unacceptable, then the full non-linear formula-
tion is necessary.

Our approach to the large-rotation small-deformation scenario
deserves further comment. Terzopoulos et al. [33] (and similar for-
mulations in the engineering literature, e.g. [29]) integrate a moving
frame of reference into the dynamic equations, adding greatly to the
complexity of the exposition and implementation. The frame of ref-
erence attempts to track the configuration of the object as if it were
a rigid body. Besides the added complexity, another problem is that
over time, due to numerical error, the frame of reference will drift
out of alignment with the deforming body.

Our approach is simple and avoids the drifting problem, while
addressing the fundamental issue, which is to ensure that the defor-
mation is measured with respect to a rest state that has been rotated
to align with the (mildly) deformed body. Instead of tracking a
rotating frame of reference that has complicated (yet irrelevant) be-
havior, we simply choose an appropriate orientation for the unde-
formed object at the beginning of each simulation step. Our choice
of orientations is simple. At the beginning of the simulation we
choose a reference point on the interior of the object. Before each
step we rotate the reference rest shape so that the displacement field
contains no rotational component at the reference point. The dis-
placement field is adjusted to be relative to the rotated rest state.
For small deformations, the appropriate rotation can be obtained by
measuring the curl of the displacement field (which is only accu-
rate for infinitesimal rotations, but is self-correcting over multiple
time steps). This method has the desired effect of reducing the mis-
measure of potential energy due to linearization and rotation, and
eliminating it completely in the presence of only rigid body motion.

5.3 Trilinear Basis

Our framework as described above uses smooth Catmull-Clark ba-
sis functions. This is an advantage for graphics applications be-
cause the deformed state of the object is always smooth. How-
ever, the computation involving smooth basis functions is expensive
(due to overlap between basis functions) and our differential equa-
tions only require the existence of first derivatives. Trilinear basis
functions are an alternative that fits nicely into our framework; they
can be easily generalized to our case where cells are oddly shaped
but subdivide into hexahedra after one subdivision step. But trilin-
ear basis functions produce unappealing non-smooth deformations.
Since the structure of the control lattice provides for smoothing via
subdivision, it is tempting to solve the PDEs using trilinear basis
functions and then smooth the results. But the constraints will not
be met using this approach. In order to meet the constraints we
can use the Catmull-Clark basis function for the constraint com-
putations in equation (13) while using the trilinear basis functions
for the actual simulation. In this manner we can achieve a smooth
deformation that meets the constraints, at the reduced cost (and re-
duced accuracy) of using the trilinear basis. Figure 4 shows a sim-
ple example using this method.

5.4 Adapting the Wavelet Basis

Since our basis is multiresolution, it is possible to adapt the basis so
that detail is added where needed. There are two pertinent questions
regarding adaptation: “how to adapt?” and “when/where to adapt?”

The first question, “how to adapt?”, is easily answered in our
framework. We precompute the mass and stiffness terms for the
entire basis that may potentially be used and store them in sparse
data structures. When a decision is made to add or remove a basis
function, we need only to add or remove terms from the current set
of mass and stiffness matrices (and in the nonlinear case, higher
order terms). This simplicity comes from the fact that we establish
the basis a priori rather than constructing a new basis based on



Figure 4: The deformation in the upper left uses 2 levels of smooth Catmull-Clark
basis functions, requiring about 0.1 seconds of simulation per frame (using linear
strain). The deformation in the upper right uses trilinear basis functions, giving a less
pleasing result due to discontinuities, but using about half the computation time. The
deformation in the lower right uses the trilinear basis for simulation but reconstructs
the result using the Catmull-Clark basis, but the constraint are not met (the two yellow
spheres away from the surface indicate where the surface should be). Finally, the de-
formation in the lower right uses the trilinear basis to compute physical properties but
uses the smooth reconstruction to compute the constraints. Note that the constraints
imposed in the above examples were not all identical, but were roughly equivalent.

an adapted mesh. In our framework it is the basis that is adapted,
not the mesh. We note that the idea of adapting the basis rather
than the geometry is not new (see, e.g.,[11]), and has recently been
generalized by Krysl et al. [16].

For the second question, “when/where to adapt?”, we can look
to prior work by other researchers. Gortler and Cohen [11] adapted
near wavelets having large coefficients. Debunne et al. [6] adapted
in areas of high curvature. We have experimented with these
schemes, in addition to a scheme by which we simply introduce
wavelets that have support overlapping with constraints. In all of
these cases disturbing “popping” artifacts appear because the basis
changes suddenly during the simulation, instantaneously allowing
the simulation more (or less) freedom.

We address the popping problem by gradually introducing and
removing basis functions. We begin by simulating the degrees-of-
freedom (DOFs) that correspond to the finest active wavelets us-
ing simple harmonic oscillator dynamics (“simple DOFs”). As we
adapt the basis we maintain the property that the DOFs that are
being simulated using the full dynamic model (“full DOFs”) are
“protected” by a layer of simple DOFs. If the magnitude of a sim-
ple DOF is above a user-specified threshold, it is upgraded to a full
DOF and its children (finer wavelets sharing its support) are acti-
vated as simple DOFs. Likewise, if a simple DOF has low magni-
tude and is not part of the protective layer it is disabled.

We distinguish two types of transition: the introduction or re-
moval of an simple DOF, and the transition between a simple DOF
and a full DOF. When an simple DOF is introduced or disabled
it first passes through a transition state for a fixed length of sim-
ulation time, parameterized by βa ∈ [0..1]. During this time the
stiffness coefficient ka is replaced by βaka + (1 − βa)k∞, where
k∞ represents a very large stiffness. Thus when an simple DOF
is introduced it is initially not affected by constraints but over the
transition interval it becomes more pliant. Likewise, when a simple
DOF is disabled the transition to k∞ pulls it toward zero.

Transitions between full DOFs and simple DOFs are more com-
plicated because we must interpolate between two physical models.
In this case we also parameterize the transition by βa. If a DOF

Figure 5: Two deformations of an embedded dragon. Yellow spheres represent
constraints and red spheres represent active control points. In the top row the dragon
is embedded in a regular grid and in the bottom row the dragon is embedded in a
custom control lattice. The left images show the rest state, the center images show
the deformed lattice and object, and the right images show only the deformed object.
Notice that the bottom example has fewer control vertices but produces a much more
realistic deformation that respects the cracks and crevices in the dragon.

is in transition, we divide it into qfull
a = βaqa and qsimple

a =
(1 − βa)qa. We then combine the full non-linear mass and stiff-
ness terms computed using qfull

a with the simple DOF mass and
stiffness terms computed using qsimple

a . The results of this scheme
can be seen in the accompanying videos.

5.5 Simulating Embedded Objects

Until now we have only considered objects that are exactly param-
eterized by a cell complex. This is an unfortunate restriction be-
cause volumetric parameterization is very difficult; but it is also an
unnecessary restriction. Our framework can be generalized to han-
dle situations in which the object is embedded in a control lattice,
similar to the free-form deformation (FFD) of MacCracken and Joy
[18] combined with the dynamic FFD of Faloutsos et al. [10]. The
primary difference between our method and the method of Falout-
sos et al. is that they use a diagonal stiffness matrix to describe the
dynamics of the system. By following the methodology of the finite
element method and Lagrangian dynamics, we can ensure that the
motion of the object truly conforms to the shape and constitution of
the embedded object. We simply need to make sure that the kinetic
and potential energies used in the Euler-Lagrange equation 5 corre-
spond to the embedded object. This is accomplished by computing
the integrals in equations (7) and (18) only over the interior of the
object. We approximate these integrals by subdividing the control
lattice finely and then discarding all tetrahedra that fall completely
outside the object. Two examples of deforming an embedded ob-
ject appear in Figure 5, one using a regular grid and one using a
custom control lattice. The example using a custom control lattice
produces a much more realistic deformation than the example using
a regular grid because the custom lattice is able to avoid incorrectly
correlating distant parts of the object.

6 Results

In order to test various features of our framework, we implemented
a number of interactive dynamic simulations. We show the realtime
interaction with the each of these simulations in the accompanying
videos. In this section, we describe the setup and the implementa-
tion details for each example.

Sharp Features. DeRose and Kass [8] added rules for sharp
features to the Catmull-Clark subdivision framework. Since the



Figure 6: Upon releasing the constraints (represented as blue spheres in the first
frame), a chain-like object dynamically oscillates and eventually returns to its rest
shape.

Figure 7: A collection of frames from the dynamic interaction with the duck con-
strained with the non-penetrating floor and wall constraints.

boundaries of Catmull-Clark volumes are Catmull-Clark surfaces,
we can easily include sharp features in our framework. 3 Figure
Figure 6 shows a simulation involving an object with sharp surface
features.

Virtual Environments. We have implemented a rudimentary
collision detection scheme to demonstrate the feasibility of placing
our objects in a virtual environment. We use surface constraints
to stop vertices on the model from passing through walls in the
environment. In Figure 7 a duck is being tossed about in a box.

Varying Material Properties. Another feature of our system is
the ability to vary material properties both spatially and temporally.
Material properties are incorporated during the computation of the
stiffness and mass matrices. During the quadrature phase, the val-
ues for ν, G, and ρ need not be constant. In addition, because our
basis is hierarchical, material properties are smoothly factored into
the the mass and stiffness matrices at all levels. For a particular
generalized coordinate, the material properties at all points in the
support of its associated basis function are factored in when com-
puting the mass and stiffness matrices. As a result, when we use
a subset of the basis for simulation, the material properties of the
entire object are still being taken into consideration.

As a convenient way to specify material properties over the en-
tire body, we make use of the subdivision basis. We simply specify
the material properties at the coarse vertices and use the subdivi-
sion rules to generate material property values at each fine vertex,

3We are not sure what the limitations are of adding sharp features to the
surfaces of Catmull-Clark solids, but it works well in practice.

Figure 8: A cucumber-like object a with longitudinally varying shear modulus G.
The cucumber is being shaken by the firmer bottom, while the top deforms drastically.

which can then be used when the stiffness and mass matrices are
constructed. The object in Figure 8 varies in G along its length.
When the middle is grabbed and shaken, one end wobbles like soft
rubber while the other remains almost rigid.

We also allow G to be scaled at runtime, which does not require
any re-computation because it simply scales the entire stiffness ma-
trix. G is arguably the most intuitive physical property of linear
elastic bodies because it corresponds to how easily an object de-
forms.

For the examples shown, which ran interactively, we typically
used a three-level basis. Precomputation required about 10 minutes
per model. Simulation times averaged about 10ms per simulation
step using only the base mesh, but were longer depending on the
extent of adaptation required.

7 Conclusion

In this paper we present a framework for the simulation of elasti-
cally deformable solids. We represent solid objects and their defor-
mations using a subdivision wavelet basis which provides a speed-
accuracy trade-off and support for objects of arbitrary topology.
The wavelet representation allows us to adaptively refine the basis,
which we do in a way that mitigates popping artifacts. Our frame-
work also supports complex objects embedded in a coarse control
lattice, without sacrificing the dynamics of the underlying object. In
this framework, we have been able to simulate elastic deformable
models of moderate complexity and having spatially varying mate-
rial properties at interactive rates. Our framework also supports the
use of trilinear basis functions, which produce faster simulations,
and we can smooth the results while maintaining constraints.

There are many directions for future work. Because interactive
simulations are easier to experiment with, our examples involve rel-
atively simple simulations. We plan to apply this framework to
more complex scenarios in the future. Another area of future work
is to discover uses for sharp internal features. Real objects do have
sharp internal discontinuities, such as at the boundaries of bones.
We have also not addressed the problem of self collision, which is
important for more general simulations.

Another interesting issue is whether more sophisticated wavelet
bases could be useful in this framework. We have experimented
with using lifted wavelets, but in our current framework the benefits
are unclear and the costs are significant (due to increased density of
the mass and stiffness matrices). The choice of basis would prob-
ably be much more critical if we were using a hierarchical solver
such as multigrid, another area for future work. A major improve-
ment over the current framework would be to implement an adap-
tive hierarchical solver with provable error bounds.

Finally, there are a number of theoretical issues regarding the
appropriateness of volumetric subdivision schemes for simulation
that should be explored.

A Appendix

A.1 Derivatives of Elastic Potential

In order to solve the system of equations in (14) we require the
gradient and Hessian of the elastic potential given in equation (11):
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where I is a 3× 3 identity matrix and
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Note that Aab
i is a 3×3 matrix, Cabc

i is a 3-dimensional vector, and
Bab and Dabcd

i are scalar quantities.
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new paradigm for thin-shell finite-element analysis. International-Journal-for-
Numerical-Methods-in-Engineering, 47(12):2039–72, April 2000.

[6] Gilles Debunne, Mathieu Desbrun, , Marie-Paule Cani, and Alan H. Barr. Dy-
namic real-time deformations using space & time adaptive sampling. Proceed-
ings of SIGGRAPH 2001, 2001.

[7] Gilles Debunne, Mathieu Desbrun, Alan Barr, and Marie-Paule Cani. Interac-
tive multiresolution animation of deformable models. Computer Animation and
Simulation ’99, September 1999. ISBN 3-211-83392-7. Held in Milano, Italy.

[8] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character
animation. Computer Graphics, 32(Annual Conference Series):85–94, August
1998.
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