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Abstract 
This document describes a proposed approach to compiling high-level language programs to the Rapid configurable 
architecture.  Since the general version of Rapid very broad, this approach should be applicable to a wide range of 
coarse-grained configurable architectures.  The compiler is comprised of a standard compiler front-end and a 
backend scheduler based on a simultaneous place and route formulation of the problem.  This will allow the many 
constraints of a configurable architecture to be solved simultaneously. 

Introduction 
Coarse-grained adaptable architectures have the potential to radically change the way embedded systems platforms 
are built.  This potential has not yet been realized because coarse-grained adaptable architectures have not been 
widely studied or used.  Until there are effective ways to program components based on these architectures, and 
include them in a system architecture, this situation is not likely to change.  This document describes our approach 
to compiling programs in a high-level language to a coarse-grained configurable architecture like Rapid. 

Compiling high-level language programs to FPGA-based architectures is very similar to the high-level synthesis 
problem.  A description of the computation is compiled into a specialized hardware implementation while 
optimizing some objective function based on a combination of cost and performance.  Since FPGAs allow the 
construction of arbitrary hardware structures, there are no constraints on the structure that is synthesized, other than 
the cost and performance constraints.  There is a substantial body of research devoted to this topic, but unfortunately 
it does not translate well to coarse-grained configurable architectures. 

Compiling to a coarse-grained configurable architecture like Rapid presents a more constrained problem because the 
configurable substrate is not a blank slate where all things are possible.  A fixed set of function units is available: the 
compiler must make do with the number and combination when searching for an efficient solution.  Even more 
important, the data interconnection network used to communicate between function units is necessarily limited in 
the interests of cost. 

We view coarse-grained adaptable architectures like Rapid as scaled up version of VLIWs, with architectural 
features that allow them to be efficient.  These features include distributed registers throughout the datapath, a 
limited data interconnect, and a configurable control architecture that takes advantage of the features of large-scale 
parallel computations. 

The problem of compiling to an adaptable architecture is thus similar to the problem of compiling to a traditional 
VLIW architecture: Operations specified in the program must be scheduled to a fixed number of function units, and 
the data operands and results must be transferred between function units via registers.  However, compiling to an 
adaptable architecture is much more difficult: 

1. Adaptable architectures have many more function units, typically an order of magnitude more, than a 
VLIW.  The compiler must discover and expose sufficient parallelism to make efficient use of these 
function units, and the scheduler must schedule them in space and time. 

2. Data communication is much more constrained in an adaptable architecture because a general 
interconnection network like a crossbar or multi-ported register file is far too expensive for so many 
function units. Thus both function units and wires have to be scheduled by the compiler. 

                                                 
1 This research was supported by the National Science Foundation Experimental Systems Program (EIA-9901377). 
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3. Sufficient data bandwidth must be provided to keep all function units operating in parallel.  Instead of 
centralized, multi-ported register files, registers are distributed throughout the datapath to achieve high 
bandwidth, locality of reference and low power. In addition, small memories are distributed throughout the 
datapath, which serve as local data caches that supply data close to where it is used.  The compiler must be 
able to use these registers and memories effectively.  

4. Control in a coarse-grained reconfigurable architecture is typically very constrained and the compiler must 
generate solutions that can be implemented using the given control architecture. 

We propose to develop a compiler for highly parallel coarse-grained adaptable architectures, structured as shown in 
Figure 1.  This compiler will comprise a traditional VLIW compiler front-end that transforms a program written in a 
high-level language like C or Java into a control/dataflow graph, a scheduler that maps the dataflow graphs to the 
adaptable substrate in both time and space, and an optimizer that generates object code in the form required by the 
architecture.  Our research will focus on the very difficult problem of scheduling control/dataflow graphs to a 
substrate with many interconnection and control constraints.  This scheduling problem will be cast as a place-and-
route problem whereby dataflow graphs are placed-and-routed onto a space-time computation substrate comprising 
multiple instances of the datapath graph unrolled in time.  Casting the scheduling problem this way allows many 
difficult and interacting subproblems that arise in the context of an adaptable architecture to be solved 
simultaneously.  These include mapping dataflow operations to datapath function units, assigning busses for data 
transfer, solving control constraints defined by the architecture, generating efficient time-multiplexed solutions for 
large problems, and performing timing optimizations like pipelining and retiming.  By using an architecture-
independent formulation of the problem, the algorithms we develop should be applicable to a range of coarse-
grained architectures, including more traditional clustered VLIWs, which are smaller and less constrained. 

Initially, this compiler will target a generalized version of the Rapid architecture, which is described in some detail 
in a companion document.  The work we have done to date has shown that Rapid can deliver high performance with 
relatively low cost and power for a wide range of kernel computations encountered in embedded systems.  We 
believe that Rapid captures the essential elements of coarse-grained adaptable architectures and thus serves as a 
good initial target.  For example, the control architecture in Rapid can be varied from simple, expensive control, to 
highly optimized, efficient control.  This variation will permit us to experiment with different types of control and 
the compiler algorithms required to take advantage of them.  
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Figure 1 - Proposed tool flow 

This document assumes a familiarity with the Rapid architecture as described in “The Generalized Rapid 
Architecture”.  We begin by describing how programs are written for Rapid and follow this by a description of our 
proposed approach for mapping dataflow graphs defined by such a program onto the adaptable architecture. 
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Programming Rapid 
The Rapid benchmark architecture is currently programmed using a simple assembly-level language called Rapid-C.  
The programmer is responsible for scheduling the computation on a cycle-by-cycle basis by describing when and 
where each operation is performed in the datapath.  Although the pipelined programming model reduces the 
complexity of this specification, it restricts the kinds of programs that can run on Rapid to those that can be easily 
pipelined.  Although this covers most of the kernels of interest, it does restrict the range of algorithms used and 
makes some, like Viterbi, very difficult or impossible to write.  Moreover, the burden of scheduling falls completely 
on the programmer, who becomes more of a hardware designer than a programmer.  Moreover, the backend cannot 
fully optimize the control generation because the programmer has already done the scheduling. 

Our goal is to move the scheduling and optimization into the compiler, allowing programming to be done at a higher  
more abstract level, and enabling better optimization of the object code.  Programs will be written in a high-level 
language, possibly extended with constructs that allow the programmer better control of the generated 
control/dataflow graphs.  A conventional VLIW-style compiler front-end will be used to produce a control/dataflow 
graph for the program, which is passed to the scheduler and optimizer.  Although the focus of the proposed research 
is on this backend, we will investigate ways to perform program transformations in the compiler front-end to make 
the control/dataflow graph more amenable to scheduling.  

A program execution comprises the execution of a sequence of dataflow graphs, as determined by the control flow.  
We rely on the compiler to produce large dataflow graphs that can be mapped efficiently to a large datapath to 
achieve a high degree of parallelism.  The scheduler must perform two related tasks: First, it schedules individual 
dataflow graphs onto the datapath.  Second, it must “stitch” these dataflow graph executions together to implement 
the communication between them.  

The compiler cannot be expected to take arbitrary C programs and produce highly parallel dataflow graphs that can 
be mapped to the reconfigurable datapath.  The programmer must understand the capability and limitations of the 
hardware.  In particular, the programmer must understand the computation model, which relies on keeping the data 
close to the operators, and not global memory, which cannot be accessed efficiently.  The intent is to allow the 
programmer to describe the computation as a set of dataflow graphs described implicitly as a C program.  The 
compiler first transforms the program into a control/dataflow graph that is then scheduled onto the parallel hardware. 
The following program is an example of a kernel computation that can be executed very efficiently on a highly 
parallel reconfigurable datapath.  
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The AStream, BStream and outStream variables refer to streaming input and output ports connected to memory, 
whose address generators are defined elsewhere.  The A and Sum variables refer to values local in the datapath and 
B refers to a set of N memories in the datapath used to store the B matrix.  The first loop nest initializes the B 
memories, one value at a time, from BStream.  The i loop nest does the matrix multiply, producing one row of the 
result matrix at a time.  The body of the r loop is a single dataflow graph when the inner loop is unrolled and can be 
executed in a single cycle if there are sufficient resources in the datapath. 

This program illustrates some of the difficult challenges for the compiler.  Data dependence analysis can determine 
that the c loop at the end that writes one row of results to the output stream can be overlapped with the execution of 
the beginning of the next iteration of the i loop if the Sum variables are renamed.  This doubles the performance, 
assuming that the dataflow graphs of the overlapped computations can be scheduled together, which turns out to be 
straightforward.  Typically, many matrix multiplies are executed in a loop, with different A and B matrices.  An 
analysis of the computation can determine that the initialization of the B matrix for the next matrix multiply can be 
overlapped with the computation of the current matrix multiply if the B matrix is renamed.  This doubles the 
performance yet again without increasing the memory bandwidth. We will explore the data dependence analysis and 
renaming that allows component dataflow graphs in the CDFG to be scheduled in together.  This technique is 
analogous to software pipelining [21], except that entire loops are scheduled instead of instructions. 

This program illustrates the use of language constructs that allow the user to reference datapath resources like I/O 
streams and datapath registers and memories, and shows the programming style that exposes the parallelism of the 
computation as implicit dataflow graphs embedded in a control flow graph.  In this case the programmer has written 
the program to expose the parallelism, but we will also explore conventional loop transformation techniques that can 
extract parallelism from nested loops. A conventional VLIW compiler front-end will be used to transform programs 
into a control/dataflow graph that is passed to the scheduler and optimizer.  This front-end will perform the control 
flow and data dependence analysis that will allow independent dataflow graphs to be scheduled together.  In 
addition, common compiler optimizations like if-conversion and loop transformation will be used to push some of 

#define M 16 
#define N 8 
matmult ( StreamIn AStream, StreamIn BStream, StreamOut outStream) { 
  int r, c; 
  int i; 
  // Datapath registers and memories 
  Register int A; 
  Register int Sum[N]; 
  Register int B[M][N];  // N datapath memories of length M 
 
  // Initialize the internal B array 
  for (r=0; r<M; r++) { 
    for (c=0; c<N; c++) { 
      B[r][c] = BStream++; 
    } 
  } 
  for (i=0; i<N; i++) { 
    for (c=0; c<N; c++) { 
      Sum[c] = 0; 
    } 
    for (r=0; r<M; r++) { 
      A = AStream++; 
      for (c=0; c<N; c++) { 
  Sum[c] += A * B[r][c]; 
      } 
    } 
    // Write back results 
    for (c=0; c<N; c++) { 
      outStream++ = Sum[c]; 
    } 
  } 
} 
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the control flow into the dataflow graphs and to generate dataflow graphs that match the underlying computation 
substrate. 

Program Dataflow Graphs 
The dataflow graphs produced by the compiler front end must be scheduled onto the reconfigurable datapath.  As 
described in the architecture overview, this scheduling must satisfy the data dependence constraints in the dataflow 
graph, the function unit and data interconnect constraints of the datapath, and the constraints of the control 
architecture.  The scheduling problem is formulated as a traditional place-and-route problem, where the dataflow 
graph is place and routed onto an execution graph that represents the execution resources of the datapath in both 
space and time.  Solving the resulting place-and-route problem solves the problem of assigning operators to function 
units to maximize parallelism, and the problem of transferring data values in the tightly constrained data 
interconnect network.  In addition, the place-and-route solution automatically performs register assignment, 
pipelines the dataflow graph, and determines how to use memories to time-multiplex hardware resources over a 
large dataflow graph. 

+ +
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(a) (b)  
Figure 2 – (a) A simple dataflow circuit for adding all subsequences of 3 numbers in the input stream.  
(b) The dataflow graph is a single execution of this circuit. 

Figure 2 (a) shows a dataflow circuit representation of a simple computation that computes the sum of all input 
subsequences of length 3.  The dataflow graph in Figure 2 (b) represents a single execution of this dataflow circuit.  
A dataflow graph is a DAG comprised of nodes that perform combinational operations and edges that describe the 
flow of data between the nodes.  There are no registers in a dataflow graph.  The dataflow graph inputs (live ins) 
flow are operated on by operators in the dataflow graph to produce a set of outputs (live outs).  These inputs are 
outputs are stored in registers that provide storage for values that are produced by one dataflow graph and consumed 
by another.  These registers may be temporary registers in the datapath used to forward results from one dataflow 
graph to the next, locations in local memory that provide longer term storage, or registers associated with input and 
output ports. 

The Rapid Datapath Graph 
The Rapid datapath is represented by a circuit graph comprised of function units, memories, registers, multiplexers 
and the wires that connect them. This graph represents only the datapath of the Rapid array; the control is 
represented separately and is determined as a side effect of the process of scheduling the computation to the array.  
This control is optimized and generated by later steps in the mapping process.  Figure 3 gives the graph for a simple 
datapath that has just two function units and some registers, with two input ports at the left and two output ports at 
the right.  The interconnect multiplexers are shown as circles with the line in the circle aligned with the shared 
multiplexer output: Only one circle on this line can be connected at a time.  This datapath, with an assignment of 
values to the control signals, implements a specific computation that is performed during a single clock cycle.  
Dynamically controlled connections can change from one clock cycle to the next, while statically configured 
connections remain the same for the entire computation. For these examples, we will assume all multiplexers are 
dynamic. 
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+ +

 
Figure 3 - Example of a simple datapath graph 

Registers in the datapath graph are split to indicate that the datapath graph is a combinational circuit during one 
clock cycle.  At the beginning of a clock cycle, the register outputs are valid and flow through the dataflow graph 
implemented by the connections.  The outputs are then latched into the registers at the end of the clock cycle.  The 
red arrows show that the values written to the registers are forwarded to a new instance of the datapath graph in the 
next clock cycle, which is a copy of the datapath graph with a (typically) different set of connections. 

Scheduling Dataflow Graphs 
A dataflow graph is executed by the datapath over several cycles by setting the connections such that the dataflow 
graph is embedded in the datapath graph, and is thus directly executed by the datapath.  Such an embedding for the 
dataflow graph of Figure 2 (b) in the datapath graph of Figure 3 is shown in Figure 4 on the next page.  The datapath 
has been copied three times since it takes 3 clock cycles to execute the dataflow graph, with the first cycle at the top.  
Note that the register inputs from one clock cycle feed into the registers outputs of the next clock cycle. The 
execution of the datapath thus forms a large computational substrate in space and time.  Scheduling is performed by 
mapping dataflow graphs to this space/time substrate. 

The bold blue lines show how the dataflow graph has been mapped to the unrolled datapath graph.  The value of 
X[i] and Aout are added in the first clock cycle, but the result value is forwarded via the pipeline register to the next 
clock cycle, which adds the value of Bout to it, and forwards the result to the next clock cycle via a second pipeline 
register and thence to the output. The labels show where the Aout and Bout inputs have been forwarded through 
registers from some previous dataflow graph, and how the outputs Ain and Bin have been forwarded to some next 
dataflow graph  The assumption is that the previously executed dataflow graph has deposited the appropriate values 
into these registers, and the next dataflow graph will take the values from these registers. 

Note that the graph shown in blue is entirely combinational.  The pipeline registers that are inserted on the result 
path are not part of the dataflow graph, but are inserted only to allow the dataflow graph to span more than one clock 
cycle.  In this case, the pipelining is enforced by the pipeline register on the function unit outputs.  In the more 
general case, the function unit output may have the option of passing to the input of another function unit without a 
pipeline register.  In this case, the scheduler must decide whether or not to insert a pipeline register. 

Since the circuit graph is configurable, it may contain paths whose delay exceeds the clock cycle.  That is, since 
components may be composed differently within a single clock cycle, it may be possible to configure a path that has 
too much delay.  Although this is not possible in this example because each function unit has an associated pipeline 
register, in general the place and route scheduler must ensure that all paths meet the clock cycle constraint. 
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Figure 4 - The dataflow graph of Figure 2 mapped to the datapath over three cycles 

Dataflow graphs are not executed in isolation, but get their inputs from a previous dataflow graph and send their 
results to a next dataflow graph.  When a dataflow graph is executed in a loop, it forwards data to the next 
invocation of itself, as shown in Figure 2.  A second iteration of this dataflow graph is shown in Figure 5 with bold 
purple lines.  The communication of the outputs of the first iteration to the inputs of the second iteration is shown 
using bold red lines.   

An indefinite number of executions of the dataflow graph can be executed on successive clock cycles, with each 
dataflow graph overlapping its neighbors.  This can be represented, as in iterative modulo scheduling, by folding the 
datapath graph back on itself.  In this case, an execution of the dataflow graph starts on every cycle; that is, the 
iteration interval is one.  Thus only one copy of the datapath graph is required, as shown in Figure 6, where values 
forwarded across the bottom wrap back to the top of the datapath graph.  When the datapath graph is folded back on 
itself, different parts of the mapped dataflow graph correspond to different iterations.  This is shown in Figure 6 
using different colors as well as time superscripts.  The blue part corresponds to the iteration starting on this cycle, 
the purple part corresponds to the iteration that started on the previous cycle, and the green part started 2 cycles 
before.  The bold red lines show where values are forwarded from one dataflow graph to the next. 

A dataflow graph is scheduled to the datapath by constructing a sufficiently large substrate by unrolling the datapath 
graph.  If the dataflow graph is executed in a loop, then this substrate is wrapped by connecting the outputs at the 
bottom back to the inputs at the top.  The simultaneous place and route algorithm is then used to map the given 
dataflow graph to this substrate.  If the problem cannot be solved, then the size of the substrate is increased by 
adding another copy of the datapath graph, and a new attempt is made. 
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Figure 5 - The dataflow graph of Figure 2 mapped to the datapath over three cycles 
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Figure 6 – One copy of the datapath graph with register edges wrapped to form three clock cycles 

An Aside on Timing Notation 
It is important to be precise about the meaning of names, especially with respect to the meaning of subscripts.  A 
name can refer to a data value in the application, the value in a register, or the register or wire itself.  For example, X 
could refer to a value in an array from the application, or to an input or output of the dataflow graph, or to a specific 
register or wire in the datapath.  Complicating the situation is the fact that a dataflow graph may be executed many 
times and we need to distinguish each execution, and particularly the values in each execution from each other. 

We will name inputs, outputs and internal signals of a dataflow with simple names, possibly subscripted where 
signals are related.  If a dataflow graph is executed multiple times, for example, in a loop, we will use a superscript 
on the signal name to denote the iteration number of the DFG.  Thus, A and Xi refer to signals in the dataflow graph.  
The value of these signals is determined by how the registers supplying those signals were written.  We don’t really 
care what these values are – what we care about is relationship between signals in the dataflow graph and between 
dataflow graphs.  The names At and Xt

i refer to the signals A and Xi  at time t, that is, during the t’th iteration of the 
dataflow graph.  We use subscripted names for signals that are assigned to each other from one dataflow graph to the 
next.  The value of Xi at time t becomes the value of Xi-1 at time t+1.  More succinctly, Xt

i  = Xt+1
i-1 and thus it is 

easy to check whether two signals have the same value – the values are equal if their subscript + superscript add to 
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the same number.  When a dataflow graph is mapped to the datapath graph, possibly duplicated and wrapped from 
bottom to top, the signal names are used to annotate the wires and register inputs and outputs of the datapath graph.  
In so doing, the superscripts denote which iteration each part of the mapped dataflow graph belongs to.  If a signal is 
forwarded from the bottom of the datapath graph back to the top, the superscript is decremented, since this signal is 
now being used in the previous iteration of the dataflow graph, that is, the DFG that began at the previous time.  
Again, when a signal from one iteration is forwarded to another iteration, the identity Xt

i  = Xt+1
i-1 is used to 

transform the name from one iteration space to another.  (If subscripts are not used to denote time-related signals, 
the identities can be written from the relationships between values in the dataflow graph.)  Dataflow graph operators 
can similarly be annotated with a time superscript to denote which iteration they belong to. 

Time-Multiplexing 
Many configurable architectures are constrained in the size of the dataflow graphs that can be implemented.  If a 
circuit dataflow graph is too large to fit, then it must be redesigned so that it does.  Some architectures have been 
designed that support the concept of “virtualized” hardware, where pages of hardware resources are instantiated by 
quickly swapping configurations.  However, the ability to change a large number of configuration bits is very 
expensive in both area and power, and mapping to such architectures is difficult.   The Rapid architecture support 
time-multiplexing via the memories included in the datapath.  As a dataflow graph is executed over many cycles, the 
temporary values are stored in memories used as a fixed-length buffer.  If the dataflow graph is uniform, then an 
efficient time-multiplexing solution can be found so that each cycle repeats the same (or almost the same) 
instruction using different data stored in the memories.  That is, each execution of the datapath implements a section 
of the dataflow graph, and since the dataflow graph is regular, each section is executed using the same, or very 
similar, instructions. 

 

Figure 7 – Datapath representation of a memory module used as a fixed-length buffer  

Using several cycles to execute a dataflow graph requires storage for the values which are not being used, but must 
be held for the next iteration.  This storage can be provided by datapath registers, if only a few are needed.  In 
general, especially for large dataflow graphs, this is insufficient, and storage in the form of a fixed-size buffer, 
which we call a CLSR (Configurable Length Shift Register), is a more efficient way to provide this.  A CLSR of 
size N is just a shift register that holds N values and shifts each time it is read/written.  A CLSR is implemented 
efficiently in the datapath using a memory along with a single address pointer used for both read and write 
(implemented as write after read).  This pointer is incremented modulo the size of the buffer on each read/write. This 
representation is shown in Figure 7 for a buffer with three entries.  The memory imposes an underlying constraint 
that all of the feedback muxes are set the same, to either hold or to shift, and this constraint must be included as part 
of the scheduling problem. In general, the size of the buffer may not be known and an additional multiplexer must 
be included to give the scheduler the ability to select the appropriate buffer size.  It may be the case that a value 
needs to be shifted into the buffer before a value needs to be shifted out, or equivalently that a value needs to be 
shifted out before one is ready to be shifted in.  This case can be handled easily by using a datapath register in 
addition to the memory implementing the buffer to absorb this extra value.  It is also possible to use memories that 
have separate read and write addresses. 

Figure 8 gives a dataflow graph that has an initiation interval of three clock cycles for a datapath with only two 
adders.  We will add to our previous datapath a buffer of size 2 that will allow three-way time-multiplexing.  Figure 
9 shows three copies of this new datapath graph that forms the substrate for a loop with an initiation interval of three 
clock cycles.  The bold blue and red lines show how the dataflow graph of Figure 8 is mapped to this datapath 
substrate. The dataflow graph is mapped over 7 cycles, even though a new execution is started every 3 cycles.  The 
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left three additions of the dataflow graph are implemented vertically in the left part of the datapath in the first three 
cycles, shown in blue, and the rightmost three additions are implemented in the right half in the next three cycles, 
shown in purple, with the output written on the 7th cycle, shown in green.  The forwarding of values from one 
dataflow graph to the next is shown in red.  Note that the two halves of the datapath operate almost identically, 
which greatly reduces the control complexity by allowing control signals to be shared between the two halves.  Note 
also that the constraints on buffer controls are satisfied by this schedule. 
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Figure 8 - This dataflow graph adds 7 values and requires three clock cycles. 
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Figure 9 – The dataflow graph of Figure 8 mapped to three copies of datapath graph using a loop initiation 

interval of size three. 
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Figure 10 – The dataflow graph of Figure 8 modified to decrease the latency. 
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Figure 11 – The dataflow graph of Figure 10 mapped to the unrolled datapath substrate. 

This is an example where changing the dataflow graph is necessary to achieve a different mapping to the datapath 
graph.  The dataflow graph of Figure 8 has been rearranged in Figure 10 by changing the order in which the 
additions are performed.  The result of mapping this revised dataflow graph is shown in Figure 11.  The programmer 
can do this by writing the code differently, or the compiler can make the change assuming that the transformation 
does not change what the dataflow graph computes.  The programmer must allow the compiler to make these 
changes since transformations based on arithmetic identities may change the result of the computation because 
operators are applied in a different order. 

Other dataflow graph transformations can result in different and possibly better mappings.  For example, if the order 
of adds is reversed in this example, an even more efficient solution can be found.  It may be possible for the 
compiler to generate several different possible dataflow graphs, using the scheduler to determine which are feasible 
and of those, which are most efficient. 

Mapping to Function Units 
In many cases, a function unit can perform different operations as determined by its control values.  For example, an 
ALU can perform a variety of arithmetic and logical functions.  When placement is performed, an operator can be 
mapped to any function unit that includes it as one of its allowable functions.  The placement then assigns a value to 
the function unit control signals.  One way to include this information in the place and route scheduler is to replace 
the ALU with an array of the functions that it can perform, with extra multiplexers that allow the implementation to 
choose exactly one.  This construction has been used in Pathfinder to allow architecture independent descriptions of 
FPGA implementation. 

Function units can also be pipelined.  For example, multipliers are often pipelined to achieve higher throughput.  
This can be modeled easily by placing an extra register on the output of the multiplier in the dataflow graph that 
enforces the extra clock cycle. 
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Mapping to Memories 
Memories are used in a variety of ways.  Most commonly, they are used as CLSRs, which can be represented in the 
datapath graph as already described.  They can also be used as lookup tables, that is for random reads, in which case 
an address is presented and data is returned.  In this case, the memory is represented as a register, which has an 
address as input, and data as output.  Memory writes are not so easily represented.  In this case the memory operator 
has two inputs, data and address, and has a data dependence edge to all subsequent reads or writes such that the 
resulting partial order on operators forces the correct ordering on memory operations.  These data dependence edges 
are not part of the datapath graph, but are virtual edges used only to maintain correct ordering of memory operations.   

Memories can also be addressed through a function that permutes the address bits to generate address sequences 
useful for dataflow graphs found in Viterbi and FFT computations.  This does not change how the dataflow graphs 
map to the memories, however, since the address transformation is not part of the dataflow graph. 

Predicated Execution 
Predicated execution is used to move control operations in the control flow graph into the dataflow graph, thereby 
avoiding control hazards and increasing the size of the dataflow graphs mapped to the datapath.  The compiler 
performs this transformation via if-conversion.  The resulting dataflow graph is augmented with edges that are not 
data, but control.  For example, the status result of an ALU may be used to control a multiplexer or modify the 
opcode of a function unit.  There are different ways predicated execution can be handled.  One way is to explicitly 
include predicated operators in the dataflow graph along with a way to map these operators to the datapath 
operators.  While this makes mapping straightforward, the knowledge required to understand how predicated 
operators are mapped to the datapath may be extensive and difficult to specify and maintain.  It may also be possible 
to handle predicated execution via a superposition technique.  For example, if predication chooses between an add 
and a subtract, then both operators are instantiated, but may be superimposed on the same function unit if the 
function unit supports both operators.  This allows multiple different types of mappings within the place and route 
process.  If two function units are used, then their outputs must at some point be merged, which can also be seen as 
superposition, with a multiplexer used to perform the superposition.  The construction described for mapping 
function units can be used to achieve this. 

Stitching Data Flow Graphs 
Thus far, we have only described scheduling single dataflow graphs in isolation, with the possibility that the 
dataflow graph is executed in a loop, with loop-carried dependencies solved as part of the place and route 
scheduling.  A dataflow graph typically communicates with other dataflow graphs, getting inputs from previous 
dataflow graphs and sending outputs to succeeding dataflow graphs.  This scheduling is done independently for each 
dataflow graph in the control/dataflow graph, but then the separate dataflow graph executions must be “stitched” 
together so the results of one are transferred to the next.  If the communicating dataflow graphs are executed 
sequentially, then they can be stitched together by scheduling them together so that the communication is performed. 
This can be done by concatenating the substrates for each dataflow graph, and solving the I/O constraints between 
the two using place and route.  In the absence of control flow, the dataflow graphs can overlap in time as long as the 
data dependence constraints between them are satisfied, as illustrated in Figure 5.  Where control flow separates two 
dataflow graphs, that is, where the successor relationship is determined at runtime, the dataflow graphs cannot be 
overlapped unless operations executed speculatively do not affect the computation no matter which path is taken. 

Of course, by transitivity, this leads to the situation where all the dataflow graphs must be scheduled together, which 
is intractable for large problems.  One possibility is to schedule the dataflow graphs one at a time, in order of 
importance, with previously scheduled dataflow graphs providing input/output constraints to the following 
schedules.  For example, a loop would be scheduled first since it is executed many times, followed by the scheduling 
of the initialization dataflow graph.  This may lead to expanded schedules for the less important dataflow graphs, 
that is, schedules that are longer than necessary, but it does partition the problem into tractable subproblems. 

This does not address the problem of control that is not sequential.  For example, if a branch is executed, then values 
may be forwarded to two different dataflow graphs at the branch point, and may be received from two different 
dataflow graphs at the merge point.  In additions, if values are forwarded to dataflow graphs that are not adjacent in 
the control flow, then the communication must be added to the intervening dataflow graphs and scheduled 
concurrently. 
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Scheduling for Optimized Control  
In the forgoing description, we have shown that the scheduling problem for the Rapid configurable architecture can 
be formulated as a place and route problem that assigns dataflow graph operations and edges to an unrolled datapath 
graph function units and wires in both time and space.  Representing the problem this way allows many difficult 
problems to be solved simultaneously.  It is clear that the problem of scheduling operations and routing data values 
can be solved using a place and route solution even where time multiplexing is required.  But the place and route 
based scheduling must solve more than just data dependence and interconnection constraints.  It must find a solution 
that allows the control to be generated successfully.  Soft control is optimized after the scheduler has decided on a 
schedule, and how well this optimization does depends on the schedule.  Thus the scheduler must have as part of its 
cost function an evaluation of how amenable the schedule is to soft control optimization.  The components of this 
evaluation must include the different control optimizations that are possible, as described below.  Note that the 
scheduler must solve the constraints defined by hard control, just like it solves the interconnection constraints.  Hard 
control is configurable control and must be set to the same value for the entire computation, while soft control can 
be changed from cycle to cycle.  Thus even though the scheduler can decide how to set the hard control, that 
decision must be the same for every cycle, that is either 0 or 1 (along with don’t cares).  Depending on the number 
of hard control signals and the flexibility of the interconnect network, this constraint may be more or less difficult to 
solve.  However, it is a hard constraint, just like the routing constraints – either the solution passes or fails. 

The following discussion assumes that the reader is thoroughly familiar with the Rapid control architecture 
described in the document “The Generalized Rapid Architecture Definition”.  The figure that describes how control 
is generated in the Rapid datapath is reproduced here as Figure 12. 

...

...Instruction

Control Status

LUT
B

LUT
A

 
Figure 12 – Components of the Rapid control path. 

The Control Matrix 
The result of scheduling is a control matrix, which contains an entry for every soft control signal in the datapath for 
every point in time.  This matrix is illustrated in Figure 13.  Each column corresponds to a control signal, or group of 
control signals in the case of symbolic control.  Each row corresponds to a clock cycle.  The control flow graph, 
illustrated using arrows to the left of the matrix, is overlaid on this control matrix and determines in what order the 
different rows are executed.  The usual way to implement control is to store this matrix in instruction memory and 
issue a different instruction on each cycle.  This is exactly what we want to accomplish, but we do not want to store 
the entire matrix or deliver a very long instruction, which might be >1000 bits every clock cycle. The Rapid control 
architecture takes advantage of the redundancy in this matrix to reduce the instruction size by two orders of 
magnitude, thereby reducing the size of instruction memory and the number of bits that must be delivered every 
cycle.   
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Control Signals
1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 0 0 x x x i3 x x x x 0
1 1 1 0 x x x i0 0 x x x 0
1 1 1 0 x x i0 x 1 x 0 x 1
0 1 0 0 x x i0 x 1 0 1 1 f1
1 1 1 0 x 1 i1 x 0 0 1 0 f1
1 1 1 0 x 1 i1 x 1 0 0 s1 f1
0 1 0 0 x 0 i0 i1 1 1 1 x 0
1 1 1 0 x x i1 i2 0 1 1 x 0
1 1 1 0 x 1 i0 i1 1 1 0 s1 0
1 1 1 0 x 1 i1 i2 1 1 1 x x
0 1 0 0 x x x i3 1 1 1 0 x
1 1 1 0 x 1 x i0 0 1 1 0 x
1 1 1 0 x 1 x x 1 1 0 1 x
0 1 0 0 x 0 x x 1 0 1 1 x
1 1 1 0 x x x x 0 0 1 0 x
1 1 1 0 x x x x 1 0 0 s1 x
1 1 1 0 x 1 i0 i1 1 0 1 s1 x
0 1 0 0 x 0 i2 i3 1 0 1 0 f1
1 1 1 0 x 1 i0 i1 0 1 1 0 f1
1 1 1 0 x x i0 i1 1 1 0 0 f1
1 1 1 0 x x i2 i3 1 1 1 0 0
0 1 0 0 x x i2 i3 1 1 1 0 0
1 1 1 0 x 1 x i0 0 1 1 1 1
0 1 0 0 x 0 x i1 1 0 0 1 1
1 1 1 0 x x x x 0 0 1 0 0
1 1 1 0 x x x x 1 0 0 0 0
1 1 1 0 x 1 x x 1 0 1 0 0

 
Figure 13 - Example control matrix 

Entries in the control matrix are one of the following values: 

• 0/1 : The control signal is set to 0 or 1.  

• i# : This refers to an input of a multiplexer as a symbolic value.  A LUT is used to map a selected set of 
instruction bits to this value.  For multiplexers without a mapping LUTs, this control is 0 or 1. 

• s# : This refers to a specific status bit generated in the datapath.  This bit must be routed to the control 
signal on this cycle. 

• f# : This refers to a control register in the control path used to implement a FSM. 

• X : The control signal has no effect on this cycle and can be set to any value.  It is possible for a symbolic 
value to be a partial don’t care.  This happens when an input has been routed to more than one input.  In 
this case the symbolic value will appear as (i1 + i3), for example.  We will ignore this possibility, at least 
initially. 

The goal of optimization is to compress this matrix to reduce both the size of instruction memory and the number of 
bits that must be delivered every cycle.  The amount of compression possible depends on the amount of redundancy 
in the matrix.  We have found that for computations typical of embedded applications, such as signal and image 
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processing algorithms, there is a substantial amount of redundancy in the control matrix.  Most programs are 
relatively short, but contain nested loops that iterate many times, perhaps even indefinitely for certain streaming 
filter computations.  This means that the control matrix is very wide but not very deep.  This also means that the 
chance of finding repeated rows in the matrix that can be thought of as “macro-instructions” is fairly low.  This may 
happen if an inner loop is unrolled, but this case can be handled via an instruction count attached to each datapath 
instruction that repeats the instruction a given number of cycles.  This count can also be used to replace loop control 
for inner loops comprising a single instruction.  This simple row compression can be performed first and does not 
affect column compression.   

We will focus instead on compressing the matrix by deleting redundant or unnecessary columns.  We will rely on a 
scheduler that makes the matrix as redundant as possible, leading to substantial optimization.  Our goal is to reduce 
the number of unique columns in the matrix to the number of available instruction bits.  Each instruction bit can then 
be used to drive a separate column.  Once this goal has been reached, further optimization is unnecessary.  If a 
program is too complex or the scheduler cannot produce a control matrix that can be sufficiently optimized, the 
compilation fails and the user must find a different way to write the computation. 

Don’t Care Analysis 
In a large reconfigurable datapath, full utilization of resources is not possible.  In particular, more busses are 
provided than are used on any particular clock cycle.  Unused datapath resources appear in the control matrix as 
don’t care control signal values.  These X’s are valuable, because they increase the amount of redundancy in the 
control matrix and allow greater optimization.  The scheduler must therefore perform a complete don’t care analysis 
based on the schedule it generates.  In addition, a partial analysis is necessary during scheduling in order to generate 
good schedules.  This section describes how to generate X’s in the control matrix based on an analysis of the 
resources the program uses on each clock cycle.  

0
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X

X

X

C

C
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Figure 14 – Space-time datapath fragment from illustrating combinational and sequential don’t care analysis 

Don’t care signals in the control matrix are all those signals that cannot affect the result of the program. Don’t cares 
are classified as either combinational or sequential, and both are illustrated in Figure 14.  Combinational don’t care 
control signals do not affect the result of any value that persists past the end of the current clock cycle, that is, any 
value that is written to a register or affects any state element such as memory or the input and output ports.  That is, 
any value that cannot reach one of the red arrows in  Figure 14 that forwards values in one cycle to the next, is a 
don’t care.  In the second cycle of  Figure 14, multiplexer input 0 is labeled C (care) because it can reach the input of 
the register.  Input 1 is labeled X (don’t care) because it cannot affect any register value.  Combinational don’t care 
analysis marks the circuit graph backwards from the inputs of all the state elements, discovering those values and 
elements that are used.  A depth-first search backwards through the datapath graph is used to mark all reachable 
function units or multiplexers from these inputs.  All unmarked units are not used in the current clock cycle and their 
control values can be set to X. 

Sequential don’t care control signals are those that do not affect any value used on the subsequent clock cycle.  If a 
register value is not used in a clock cycle, and the register is loaded with a new value, then the value written to the 
register on the previous cycle is a don’t care, and does not participate in the combinational don’t care marking in that 
cycle.  This situation is shown in  Figure 14 where the don’t care data value on input 1 of the multiplexer in Cycle 2 
propagates back to the previous cycle, causing the multiplexer input 1 to be an X instead of a care value.  Note that 
combinational don’t care analysis will determine that input 0 is a don’t care data value as well. 
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Don’t care analysis thus proceeds as follows: combinational don’t care analysis is performed on the last instruction 
of the program under the assumption that all output data values are cares, but that no other data values are.  (This 
assumes that after the program completes, all register values are discarded.)  This marking is then propagated back 
through the register arrows to the previous instruction.  Any state elements for which the arrows cannot be 
specifically analyzed, for example, memories, are marked as cares.  The marking process continues in this way until 
the entire control matrix has been marked.  All unmarked entries are don’t cares. 

Control flow complicates the analysis somewhat.  Where following a red arrow backwards encounters a control flow 
fan in (e.g. a branch to the following instruction), then both source instructions are marked.  If a control flow fanout 
is encountered (e.g. the previous instruction is a branch), then the instruction is marked, possibly adding to marks 
already present.  That is, a data value is marked as a care if either following instruction marks it.  The search 
backward through the program is therefore done in breadth-first order. 

Control Matrix Optimizations 
The most important optimization is the division of soft control into static and dynamic control.  Static control is the 
soft control which does not need to be changed during the computation and thus does not need to be generated on 
the fly by the control path.  The static control comprises all those signals that are constant, that is, either 0/X, or 1/X.  
The first optimization is to remove all constant columns from the control matrix.  These control signals can be soft-
configured and do not require any instruction bits.  The control optimization cannot increase the amount of static 
control since this is determined by decisions made by the scheduler.  Thus the scheduler must have as part of its cost 
function the number of static control signals and use this to find more efficient schedules.  An example of 
scheduling to increase static control is to use different ALUs for different operators.  That is, only adds would be 
mapped to one ALU and only subtracts mapped to a second ALU.  The result is that the controls of both ALUs are 
static, and there is a good chance that the input multiplexer controls are static as well.  This is the reverse of the 
optimization performed by synthesis algorithms, which attempt instead to reduce the number of function units at the 
expense of increased control.  

Control Signal Sharing 
A key feature of the Rapid architecture is the ability to drive an arbitrary number of control signals using a single 
instruction bit.  The next optimization discovers control signals that can share the same instruction bit.  Two control 
signals can share the same instruction bit if they are equivalent, that is, if they are either the same for all instructions, 
or different for all instructions, ignoring cases where either signal is an X.  (This optimization is presented first even 
though it is performed after pipelined signals have been discovered, symbolic control signals assigned and control 
functions have been decomposed.) 

Determining which signals are equivalent is complicated by the fact that the equivalency property is not transitive.  
That is, signal A may be equivalent to either signal B or signal C, but not both at the same time, because some X 
value in A must be 0 in one case and 1 in the other.  This means that B and C are not equivalent and two instruction 
bits are required, not just one.  While it is easy to determine whether any two signals are equivalent, it is difficult 
(NP-hard) to determine how to partition the signals into sets of equivalent signals to minimize the number of sets.  
The equivalence relation defines a graph with an edge between any two signals that are equivalent.  The problem of 
finding the minimum number of equivalent sets is that of finding the minimum number of cliques that cover the 
graph.   

An efficient approximation algorithm can be defined based on the notion of dominance.  Control signal A dominates 
signal B if there is no X in A corresponding to a 0 or 1 in B.  That is, A and B can be made identical by assigning 
values to X’s only in signal B.  Dominance is a useful property because it establishes a hierarchy on the signals, 
which can be used to partition the control signals.  If signal A dominates B and C, then A, B and C can be made 
identical by some assignment of X’s in B and C.  The dominance property defines a DAG on the control signals, 
where there is an edge from signal A to signal B if A dominates B.  (Where A dominates B and B dominates A, the 
two signals can be collapsed into a single signal.)  The problem of minimizing the number of sets of equivalent 
signals then becomes the problem of finding those signals with no in-edges.  These then define the set of trees that 
completely cover the DAG, where each tree is a set of equivalent signals.  An approximation algorithm based on 
clique covering of the equivalence graph will probably give a better result, but it will depend on what the control 
matrix looks like in practice. 
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The operation of checking whether two signals are equivalent must be fast.  This can be done using the following 
bit-vector representation for each signal.  Let S be the vector for signal S defined by the column in the control 
matrix.  Then ONES is a bit vector where ONES[i] = 1 if S[i] = 1, and 0 otherwise, and ZEROS is a bit vector where 
ZEROS[i] = 1 if S[i] = 0, and 0 otherwise, and DCS the bit vector where DCS[i] = 1 if S[i] = X and 0 otherwise.  The 
following equation can be used to perform the equivalence test: 

))()(())()((, ABBAABBA DCZERODCZERODCONEDCONEifBA ¬∧=¬∧∧¬∧=¬∧≡ The 
X’s in A that must be assigned to 1 is given by AB DCONE ∧ , and AB DCZERO ∧ gives the X’s that must be 
assigned to 0.  These operations can be performed very efficiently using the bit vector representation. 

To include control sharing as part of the scheduler cost function, it must keep an estimate of the number of unique 
(non-equivalent) signals, which is difficult because of the X values that keep equivalency from being transitive.  
Finding a fast way to keep track of the number of equivalent signals, or even an estimate, will be necessary to 
include this in the place and route cost function. 

Control Signal Pipelining 
When a dataflow graph is mapped to the datapath, it is usually pipelined in some fashion.  This means that the 
dataflow graph starts in one cycle, and continues execution on successive cycles.  This means that the control signals 
for the dataflow graph are skewed in time, so that control signals that occur later are simply delayed versions of an 
earlier control signal.  This is illustrated in the control matrix of Figure 13 in the signals of column 3, 7 and 9.  A 
limited amount of pipelining can be inserted on the control signals in the control path to skew control signals with 
respect to each other.  Columns can thus be shifted earlier in time if that creates new opportunities for control signal 
sharing. 

A column shift can only be performed if it satisfies the control flow.  That is, when a control value in the control 
vector is shifted earlier, it must be shifted to all instructions that branch to the current instruction.  This means that 
all instructions that follow an instruction must have the same control value or an X.  When a column is shifted 
earlier in time, X’s are inserted at the end of the vector, and values are shifted out of the beginning of the vector.  
The X’s reflect that no control signals are needed after the last instruction, but values shifted out the beginning of the 
vector are lost. If these values are X’s, or the default reset value, then the shift if legal.  Otherwise it is not, since the 
lost value cannot be generated.  (It may be possible to insert a prolog to the program that allows these values to be 
generated.) 

It is not clear how best to optimize the sharing of control signals via pipelining.  The following is a greedy algorithm 
that attempts to increase the number of equivalent signals in the hopes that a smaller cover can be found.  First, the 
equivalence graph is found which contains an edge between two signals if they are equivalent.  We then process the 
connected components one at a time, starting with the smallest connected components, which are single signals that 
are not equivalent to any other signals.  For each connected component, shift all the signals by the amount that adds 
the most edges to the graph.  As edges are added, the connected components must be resorted by size.  The 
algorithm then proceeds through all the connected components of the equivalence graph.  Note that if no edges are 
added to the equivalence graph, then the size of the connected component does not change and will not be processed 
again, unless an edge is added to it from another connected component.  That is, the algorithm is greedy, not 
iterative.  Note that decreasing the number of connected components does not necessarily decrease the number of 
non-equivalent control signals. 

It is crucial to include the effect of control signal pipelining in the scheduler cost function because it can have a very 
large effect on the control complexity.  One possible way to include the effect of pipelining without paying for a 
complete recomputation for each scheduling decision is to recompute the exact value every once in a while and then 
estimate how the cost changes until a new recomputation is triggered. 

Symbolic Signal Assignment 
Symbolic values in the control matrix must be assigned constant values, which are generated by the control path and 
mapped to the final value used in the datapath.  These values can be assigned arbitrarily to maximize the amount of 
static and shared signal optimization. 
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Control Signal FSMs 
There are LUTs in the control path which can be used to implement simple FSMs.  A typical use of such an FSM is 
to allow a control value to shift from one signal to another under the control of a pair of instruction bits.  If 16 
signals are operated in the way, it would require 16 different instruction bits instead of just two.  Recognizing where 
this control is possible is not trivial and is probably cannot be a part of the place and route cost function. 

Summary 
The amount of compression possible depends on the amount of redundancy in the control matrix, which depends on 
the details of the schedule.  Thus the scheduler must incorporate an understanding of the effect of decisions on the 
ability of the control optimizer to minimize the instruction size.  We have described the different control 
optimizations that are possible and described some initial algorithms for performing these optimizations.  However, 
the scheduler must have some knowledge of the cost of schedules that it produces in terms of the amount of 
optimization that can be performed on the associate control matrices.  This knowledge will be built into the objective 
function used by the scheduler.  Exactly how to include this knowledge in an efficient way is the topic of  further 
research. 

Related Work 

Considerable research has been done in the area of high-level synthesis, which is concerned with compiling high-
level algorithmic descriptions to hardware implementations [10, 25, 26].  The key problems in this area are resource 
allocation and scheduling.  However, traditional high-level synthesis is free to construct an arbitrary hardware 
implementation, while an adaptable architecture presents a fixed substrate with a fixed set of function units and 
connections.  Although the problems have similar characteristics and we hope to leverage results from this area, 
solutions do not apply directly.  (Since FPGAs present a blank slate that can be used to implement arbitrary 
hardware structures, high-level synthesis has been applied in the context of fine-grained FGPA architectures. [5, 6, 
17] ) 

Compiling to a coarse-grained architecture is very much like compiling to VLIW architectures, since both represent 
fixed architectures that constrain how the mapping is done.  In fact, we intend to leverage VLIW compiler 
techniques [30, , taking particular advantage of predicated execution to push control flow into the dataflow graphs.  
However, adaptable architectures have many more parallel function units, a much more constrained interconnection 
network, contain special resources like embedded memories, and make use of optimized control structures to reduce 
cost and power consumption.  These features make the scheduling problem much more difficult, although ideas like 
iterative modulo scheduling and software pipelining do apply. 

Some of the research on high-level languages for FGPA design has focused on structural languages that allow the 
designer tight control of the generated architecture [3, 4].  Other languages have been defined that provide constructs 
that facilitate compiling to hardware, which we intend to do as well.  

Many researchers have proposed adding function units based on FPGAs to traditional processor architectures [2, 31, 
34, 36].  These function units are configured to execute a sets of instructions in the program that are executed 
frequently, which corresponds to adding special instructions to the ISA.  However, only relatively small parts of the 
program are implemented this way, and the whole issue of control is finessed. 

The place and route problem has been studied extensively.  In the context of FPGA architectures, which is most 
relevant here, simulated annealing is the algorithm of choice for placement, and negotiated routing algorithms like 
Pathfinder [7, 11, 13] are the algorithms of choice for routing.  Not much work has been done on simultaneous place 
and route [28], largely because it is prohibitively expensive for large problems like FGPA place and route.  We 
expect it to be applicable to scheduling coarse-grained architectures because the problem size is much, much 
smaller. 

Simulated annealing, which is used by almost all placement tools, was proposed by Devadas [37] as a means to 
optimize scheduling in the context of high-level synthesis.  However, only cost and power constraints are included 
in the objective function since routing is not an issue for high-level synthesis. 
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