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Abstract

A large number of human psychophysical results have been successfully explained

in recent years using Bayesian models. However, the neural implementation of such

models remains largely unclear. In this paper, we show that a network architecture

commonly used to model the cerebral cortex can implement Bayesian inference for an

arbitrary Markov model. We illustrate the suggested approach using a visual motion

detection task. Our simulation results show that the model network exhibits direc-

tion selectivity and correctly computes the posterior probabilities for motion direction.

When used to solve the well-known random dots motion discrimination task, the model

generates responses that mimic the activities of evidence-accumulating neurons in cor-

tical areas LIP and FEF. In addition, the model predicts reaction time distributions that

are similar to those obtained in human psychophysical experiments that manipulate the

prior probabilities of targets and task urgency.
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1 Introduction

Bayesian models of perception have proved extremely useful in explaining re-

sults from a range of human psychophysical experiments [Knill and Richards, 1996,

Rao et al., 2002]. These psychophysical tasks range from inferring 3D structure from

2D images and judging depth from multiple cues to perception of motion and color

(see [Bloj et al., 1999, Weiss et al., 2002] and chapters by Mamassian et al. and Jacobs

in [Rao et al., 2002]). The strength of the Bayesian approach lies in its ability to quan-

titatively model the interaction between prior knowledge and sensory evidence. Bayes

rule prescribes how prior probabilities and stimulus likelihoods should be combined,

allowing the responses of subjects to be interpreted in terms of the resulting posterior

distributions.

Additional support for Bayesian models (also known as “ideal observer” mod-

els) comes from recent neurophysiological and psychophysical studies on visual de-

cision making. Carpenter and colleagues have shown that the reaction time dis-

tribution of human subjects making eye movements to one of two targets is well-

explained by a model computing the log likelihood ratio of one target over the other

[Carpenter and Williams, 1995]. In another study, the saccadic response time distribu-

tion of monkeys could be predicted from the time taken by neural activity in area FEF

to reach a fixed threshold [Hanes and Schall, 1996], suggesting that these neurons are

involved in accumulating evidence (interpreted as log likelihoods) over time. Similar

activity has also been reported in the primate area LIP [Shadlen and Newsome, 2001].

A mathematical model based on log likelihood ratios was found to be consistent with

the observed neurophysiological results [Gold and Shadlen, 2001].

Given the growing evidence for Bayesian models in perception and decision
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making, an important question is how such models could be implemented within the

recurrent networks of the primate brain. Previous models of probabilistic inference in

cortical networks have been based on the concept of neural tuning curves or kernel

functions and have focused on the estimation of static quantities such as stimulus

location [Anderson and Van Essen, 1994, Zemel et al., 1998, Deneve et al., 1999,

Pouget et al., 2000]. Other models have relied on mean-field approximations or vari-

ous forms of Gibbs sampling for perceptual inference [Hinton and Sejnowski, 1986,

Dayan et al., 1995, Dayan and Hinton, 1996, Hinton and Ghahramani, 1997,

Rao and Ballard, 1997, Rao, 1999, Rao and Ballard, 1999, Hinton and Brown, 2002].

We describe a new approach to Bayesian computation in a cortical network model.

We specify how the feedforward and recurrent connections in the network may be se-

lected to perform Bayesian inference for an arbitrary hidden Markov model. The ap-

proach is illustrated using a visual motion detection task. The direction selective model

neurons are shown to correctly compute the log posterior probability of stimulus loca-

tion and direction. When used in a random dots motion discrimination task, the model

produces responses that are qualitatively similar to the responses of “evidence accumu-

lating” neurons in primate brain areas LIP and FEF.

2 Modeling Cortical Networks

We begin by considering a commonly used architecture for modeling cortical response

properties, namely, a recurrent network with firing-rate dynamics (see, for example,

[Dayan and Abbott, 2001]). Let u denote the vector of input firing rates to the network

and let v represent the output firing rates of the recurrently connected neurons in the

network. LetW represent the feedforward synaptic weight matrix andM the recurrent
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weight matrix. The following equation describes the dynamics of the network:

�
dv

dt
= �v +Wu+Mv (1)

The equation can be rewritten in a discrete form as follows:

vi(t+ 1) = vi(t) + �(�vi(t) +wiu(t) +
X
j

mijvj(t)) (2)

i.e. vi(t+ 1) = �wiu(t) +
X
j

m0

ijvj(t) (3)

where � is the integration rate, m0

ii = 1 + �(mii � 1) and for i 6= j, m0

ij = �mij . How

can Bayesian computation be achieved using the dynamics given by Equation 3? To

answer this question, we consider Bayesian inference in a simple Markov model.

3 Bayesian Computation in a Cortical Network

Let �(t) represent the hidden state of a Markov model at time t with transition probabil-

ities given by P (�(t) = �ij�(t� 1) = �j) for i, j = 1 : : :N . Let I(t) be the observable

output governed by the probabilities P (I(t)j�(t)). Then, the posterior probability of

being in state �i at time t is given by Bayes rule:

P (�(t) = �ijI(t); : : : ; I(1)) = kP (I(t)j�(t) = �i)P (�(t) = �ijI(t� 1); : : : ; I(1)) (4)

where k is a normalization constant. The equation can be made recursive with respect

to the posterior probabilities as follows:

P (�tijI(t); : : : ; I(1)) = kP (I(t)j�ti)
X
j

P (�tij�
t�1

j )P (�t�1

j jI(t� 1); : : : ; I(1)) (5)

where we have written “�(t) = �i” as �ti for notational convenience. This equation can

be written in the log domain as:

logP (�tijI(t); : : : ; I(1)) = logP (I(t)j�ti) + log k +

log
�X

j

P (�tij�
t�1

j )P (�t�1

j jI(t� 1); : : : ; I(1))
�

(6)
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A recurrent network governed by Equation 3 can implement Equation 6 if:

vi(t+ 1) = logP (�tijI(t); : : : ; I(1)) (7)

�wiu(t) = F(�i)I(t) = logP (I(t)j�ti) (8)

X
j

m0

ijvj(t) = log
�X

j

P (�tij�
t�1

j )P (�t�1

j jI(t� 1); : : : ; I(1))
�

(9)

with the normalization term log k being added after each update. In the above, we have

assumed that the log likelihoods are given by a linear filterF(�i) (= �wi). For example,

F(�i) could represent a spatially localized Gaussian or Gabor filter when the inputs I(t)

are images.

A more challenging problem is to pick the recurrent weights m0

ij such that Equa-

tion 9 holds true. This amounts to approximating a log sum with a sum of logs. We find

the weights m0

ij by generating a set of random probabilities xj(t) for t = 1; : : : ;M and

solving the system of equations given by:

X
j

m0

ij log xj(t) = log
�X

j

P (�tij�
t�1

j )xj(t)
�

(10)

for all i and t. A solution can be computed using the standard pseudoinverse method

to produce an appropriate set of recurrent weights m0

ij for any given set of transition

probabilities P (�tij�
t�1

j ) (see, for example, Figures 1 and 2).

4 An Example Task: Detecting Visual Motion

We illustrate the proposed approach using the example of visual motion detection. A

prominent property of visual cortical cells is selectivity to the direction of visual mo-

tion. In this section, we interpret the activity of such cells as representing the log

posterior of motion direction at a spatial location given a series of input images.

For simplicity, we focus on the case of 1-D motion in an image consisting of P

pixels with two possible motion directions: leftward (L) or rightward (R). Let the state
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�ij represent motion at a spatial location i in direction j 2 fL;Rg. Consider a network

of N neurons, each representing a particular state �ij (Figure 1A). The feedforward

weights are Gaussians i.e. F(�iR) = F(�iL) = F(�i) = Gaussian centered at location i

with a standard deviation �. Figure 1B depicts the feedforward weights for a network

of 30 neurons, 15 encoding leftward and 15 encoding rightward motion.

To detect motion, the transition probabilities P (�ijj�kl) must be selected to reflect

both the direction of motion and speed of the moving stimulus. For the present study,

the transition probabilities for rightward motion from the state �kR (i.e. P (�iRj�kR))

were set according to a Gaussian centered at location k + x, where x is a parameter

determined by stimulus speed. The transition probabilities for leftward motion from

the state �kL were likewise set to Gaussian values centered at k � x. The transition

probabilities from states near the two boundaries (i = 1 and i = P ) were chosen to

be uniformly random values. Figure 1C shows the matrix of transition probabilities.

Given these transition probabilities, the recurrent weights m0

ij can be computed using

Equation 10 (see Figure 1D). Figure 2 shows that the log sum in Equation 10 can indeed

be approximated quite accurately by a sum of logs using the weights m 0

ij .

5 Results

5.1 Bayesian Estimation of Motion

Figure 3 shows the output of the network in the middle of a sequence of input images

depicting a bar moving either leftward or rightward. As shown in the figure, for a left-

ward moving bar at position i, the highest network output is for the neuron representing

location i and direction L, while for a rightward moving bar, the neuron representing

location i and direction R has the highest output. The outputs are plotted as the log pos-

teriors plus a constant offset to allow interpretation as nonnegative firing rates. Note that
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Figure 1: Recurrent Network for Motion Detection. (A) depicts a recurrent network of neurons,
shown for clarity as two chains selective for leftward and rightward motion respectively. The feedforward
synaptic weights for neuron i (in the leftward or rightward chain) are determined byF(� i). The recurrent
weights reflect the transition probabilities P (�iRj�kR) and P (�iLj�jL). (B) Feedforward weights F(�i)
for neurons i = 1; : : : ; 15 (rightward chain). The feedforward weights for neurons i = 15; : : : ; 30
(leftward chain) are identical. (C) Transition probabilities P (�(t) = � ij�(t� 1) = �j) for i = 1; : : : ; 30.
Probability values are proportional to pixel brightness. (D) Recurrent weights m 0

ij computed from the
transition probabilities in (C) using Equation 10.
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and left sides of Equation 10 for random test data x j(t) (different from the training xj(t)) using the
transition probabilities and weights shown in Figures 1C and 1D respectively. The solid line represents
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Figure 3: Network Output for a Moving Stimulus. (Left Panel) The three plots depict the log like-
lihood, log posterior, and posterior probability for a rightward moving bar when it arrives at the central
image location. The outputs of the 30 neurons in the network are given by the middle graph. Constant
offsets have been added to the log likelihood and log posteriors to allow interpretation as nonnegative
firing rates. Note that the log likelihoods are the same for the left and right selective neurons (the first
15 and last 15 neurons respectively, as dictated by the recurrent weights in Figure 1D) but their outputs
correctly reflect the direction of motion due to recurrent interactions. (Right Panel) The same three plots
for a leftward moving bar as it reaches the central location.

8



even though the log likelihoods are the same for leftward and rightward moving inputs,

the asymmetric recurrent weights (which represent the transition probabilities) allow

the network to distinguish between leftward and rightward moving stimuli. The plot of

posteriors in Figure 3 shows that the network correctly computes posterior probabilities

close to 1 for the states �iL and �iR for leftward and rightward motion respectively at

location i.

5.2 The Random Dots Task

To establish a connection to behavioral data, we consider the well-known random dots

motion discrimination task (see, for example, [Shadlen and Newsome, 2001]). The

stimulus consists of an image sequence showing a group of moving dots, a fixed frac-

tion of which is randomly selected at each frame and moved in a fixed direction (for

example, either left or right). The rest of the dots are moved in random directions. The

fraction of dots moving in the same direction is called the coherence of the stimulus.

Figure 4A depicts the stimulus for two different levels of coherence. The task is to de-

cide the direction of motion of the coherently moving dots for a given input sequence.

A wealth of data exists on the psychophysical performance of humans and monkeys as

well as the neural responses in brain areas such as MT and LIP in monkeys performing

the task (see [Shadlen and Newsome, 2001] and references therein). Our goal is to ex-

plore the extent to which the proposed model can explain the existing data for this task

and make testable predictions.

The motion detection network in the previous section can be used to decide the

direction of coherent motion by computing the posterior probabilities for left and right

motion given the input images. These probabilities can be computed by marginalizing

the posterior distribution computed by the neurons for left (L) and right (R) motion over
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all spatial positions i:

P (LjI(t); : : : ; I(1)) =
X
i

P (�iLjI(t); : : : ; I(1)) (11)

P (RjI(t); : : : ; I(1)) =
X
i

P (�iRjI(t); : : : ; I(1)) (12)

Note that the log of these marginal probabilities can also be computed directly from

the log posteriors (i.e. outputs of the neurons) using the log sum approximation method

described in Section 3. The log posterior ratio r(t) of leftward over rightward motion

can be used to decide the direction of motion:

r(t) = logP (LjI(t); : : : ; I(1))� logP (RjI(t); : : : ; I(1)) (13)

= log
P (LjI(t); : : : ; I(1))

P (RjI(t); : : : ; I(1))
(14)

If r(t) > 0, the evidence seen so far favors leftward motion and vice versa for r(t) <

0. The instantaneous ratio r(t) is susceptible to rapid fluctuations due to the noisy

stimulus. We therefore use the following decision variable dL(t) to track the running

average of the log posterior ratio of L over R:

dL(t + 1) = dL(t) + �(r(t)� dL(t)) (15)

and likewise for dR(t). We assume that these variables are computed by a separate set of

“decision neurons” that receive inputs from the motion detection network. The output

of the model is “L” if dL(t) > c and “R” if dR(t) > c, where c is a threshold parameter

that depends on task constraints (for example, accuracy versus speed requirements)

[Reddi and Carpenter, 2000].

Figures 4B and 4C show the responses of the two decision neurons over time for two

different directions of motion and two levels of coherence. Besides correctly computing

the direction of coherent motion in each case, the model also responds faster when the
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Figure 4: Output of Decision Neurons in the Model. (A) Depiction of the random dots task. Two dif-
ferent levels of motion coherence (50% and 100%) are shown. A 1-D version of this stimulus was used
in the model simulations. (B) & (C) Outputs dL(t) and dR(t) of model decision neurons for two different
directions of motion. The decision threshold is labeled “c”. (D) Outputs of decision neurons for three
different levels of motion coherence. Note the increase in rate of evidence accumulation at higher co-
herencies. For a fixed decision threshold, the model predicts faster reaction times for higher coherencies
(dotted arrows). (E) Responses of a neuron in area FEF for a monkey performing an eye movement task
(based on [Hanes and Schall, 1996, Schall and Hanes, 1998]). Faster reaction times were associated with
a more rapid rise to a fixed threshold (shown as three different colored activity profiles). (F) Averaged
firing rate of 104 neurons in area LIP for the random dots task (from [Shadlen and Newsome, 2001]).
Solid and dashed curves represent trials in which the monkey judged motion direction toward and away
from the receptive field of the neuron, respectively. The slope and magnitude of the response are both af-
fected by motion coherence (see different colored activity profiles) in a manner that resembles the model
responses shown in (D). Unlike our simulations and the FEF task in (E), the monkey in this case was
trained to wait through a delay period before responding, causing the LIP responses to plateau rather
than terminate after reaching a decision threshold.
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stimulus has higher coherence. This phenomenon can be appreciated more clearly in

Figure 4D, which predicts progressively shorter reaction times for increasingly coherent

stimuli (dotted arrows).

5.3 Comparison to Neurophysiological Data

The relationship between faster rates of evidence accumulation and shorter reac-

tion times has received experimental support from a number of studies. Figure 4E

shows the responses of a neuron in the frontal eye fields (FEF) for fast, medium,

and slow responses to a visual target [Schall and Hanes, 1998]. Schall and collab-

orators have shown that the distribution of monkey response times can be repro-

duced using the time taken by neural activity in FEF to reach a fixed threshold

[Hanes and Schall, 1996]. A similar rise-to-threshold model by Carpenter and col-

leagues has received strong support in human psychophysical experiments that manip-

ulate the prior probabilities of targets [Carpenter and Williams, 1995] and the urgency

of the task [Reddi and Carpenter, 2000] (see next section).

In the case of the random dots task, Shadlen and collaborators have shown that in

primates, one of the cortical areas involved in making the decision regarding coherent

motion direction is area LIP. The activities of many neurons in this area progressively

increase during the motion viewing period, with faster rates of rise for more coherent

stimuli (see Figure 4F). This behavior is similar to the responses of “decision neurons”

in the model (Figure 4B–4D), suggesting that the outputs of the recorded LIP neurons

could be interpreted as representing the log posterior ratio of one task alternative over

another (see [Carpenter and Williams, 1995, Gold and Shadlen, 2001] for related sug-

gestions).
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6 Model Predictions

The strength of a Bayesian model lies in its ability to predict the effects of varying prior

knowledge or various types of biases in a given task. We explored the consequences

of varying two types of biases in the motion discrimination task: (a) changing the

prior probability of a particular motion direction (L or R) and (b) lowering the decision

threshold to favor speed instead of accuracy.

Changing the prior probability for a particular motion direction amounts to initial-

izing the decision neuron activities dL and dR to the appropriate log prior ratios:

dL(0) = logP (L)� logP (R) (16)

dR(0) = logP (R)� logP (L) (17)

where P (L) and P (R) denote the prior probabilities of left and right motion directions

respectively. Note that for the equiprobable case, these variables get initialized to 0 as

in the simulations presented thus far. We examined the distribution of reaction times

obtained as a result of assuming a slightly higher prior probability for L compared to

R (0:51 versus 0:49). Figure 5A compares this distribution to the distribution obtained

for the unbiased (equiprobable) case (both distributions are restricted to trials where

the direction of motion was L). The model predicts that the entire distribution for a

particular task choice should shift leftwards (towards shorter reaction times) when the

subject assumes a higher prior for that particular choice.

Similarly, when time is at a premium, a subject may opt to lower the decision

threshold to reach decisions quickly, albeit at the risk of making some incorrect deci-

sions. Such an urgency constraint was simulated in the model by lowering the decision

threshold to half the original value, keeping the stimulus coherency constant (60% in

this case). As shown in Figure 5B, the model again predicts a leftward shift of the entire
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Figure 5: Reaction Time Distributions as a Function of Prior Probability and Urgency. (A) The
left panel shows the distribution of reaction times for the motion discrimination task obtained from model
simulations when leftward and rightward motion are equiprobable. The right panel shows the distribution
for the case where leftward motion is more probable than rightward motion (0:51 versus 0:49). Note the
leftward shift of the distribution towards shorter reaction times. Both distributions here were restricted
to leftward motion trials only. (B) The right panel shows the result of halving the decision threshold,
simulating an urgency constraint that favors speed over accuracy. Compared to the non-urgent case
(left panel), the reaction time distribution again exhibits a leftward shift towards faster (but potentially
inaccurate) responses.
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reaction time histogram, corresponding to faster (but sometimes inaccurate) responses.

Although these predictions are yet be tested in the context of the motion discrim-

ination task (see [Mazurek et al., 2001] for some preliminary results), psychophysical

experiments by Carpenter and colleagues [Carpenter and Williams, 1995] lend some

support to the model’s predictions. In these experiments, a human subject was required

to make an eye movement to a dim target that appeared randomly to the left or right

of a fixation point after a random delay of 0.5–1.5 seconds. The latency distributions

of the eye movements were recorded as a function of different prior probabilities for

one of the targets. For convenience, these distributions were plotted as cumulative his-

tograms on a reciprobit scale: the X-axis was 1/latency while the Y-axis used a probit

scale. Thus, the skewed latency histograms map to straight lines in the reciprobit plots.

Figure 6A shows how a shift in the latency histogram results in a swiveling of the re-

ciprobit plot. Figure 6B shows the reciprobit plots of response latencies for a subject

as a function of target prior probabilities. As predicted by the model for the motion

discrimination task (Figure 5A), the response latency histogram shifts leftwards for in-

creasing prior probabilities, resulting in a leftward rotation of the reciprobit plots. The

faster response time distributions in the lower part of the plot have been attributed to

“express saccades” which cannot be accounted for by the present model.

In a second set of experiments [Reddi and Carpenter, 2000], Reddi and Carpenter

examined the effects of imposing urgency constraints on the eye movement task. They

asked subjects to respond as rapidly as possible and to worry less about the accuracy

of their response. As shown in Figure 6C, the reciprobit plot swivels to the left for

the urgency condition, indicating that the latency histogram has shifted leftwards as

suggested by the model simulation results in Figure 5B. Furthermore, in a remarkable

follow-up experiment, Reddi and Carpenter showed that this leftward shift in the his-
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Figure 6: Effects of Changing Prior Probability and Task Urgency in an Eye Movement Task
(based on [Carpenter and Williams, 1995, Reddi and Carpenter, 2000]). (A) illustrates the effect of a
rightward shift in the reaction time distribution (from (a) to (b)) on the corresponding reciprobit plot
(right panel; see text for details). (B) Response latency distributions for a subject in the eye movement
task (plotted on a reciprobit scale) as a function of target prior probabilities. Note the leftward rotation
for higher priors. (C) Response latency distributions for a subject in the eye movement task, when the
subject was instructed to respond as fast as possible (white circles) or as accurately as possibly (dark
circles). Note the leftward swiveling of the distribution for the urgency condition (corresponding to a
lowering of the decision threshold in the model).
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togram due to urgency could be countered by a corresponding rightward shift due to

lower prior probability for one of the targets, resulting in no overall shift in the latency

histogram [Reddi and Carpenter, 2000]. This provides strong evidence for a rise-to-

threshold model of decision making, where the threshold is chosen according to the

constraints of the task at hand.

7 Summary and Conclusions

We have shown that a recurrent network of leaky integrator neurons can approximate

Bayesian inference for an arbitrary Markov model. Such networks have previously

been used to model a variety of cortical response properties [Dayan and Abbott, 2001].

Our results suggest a new interpretation of neural firing rates in such networks as rep-

resenting log posterior probabilities. Using the example of visual motion detection,

we showed how such networks can exhibit direction selectivity and compute the log

posterior probability of motion direction given a sequence of input images. We also

showed how these outputs could be used to decide the direction of coherent motion in

the random dots task. The activity of the “decision neurons” in the model resemble the

activity of evidence-accumulating neurons in LIP and FEF, two cortical areas known

to be involved in visual decision making. The model correctly predicts reaction times

as a function of stimulus coherence, and produces reaction time distributions that are

qualitatively similar to those obtained in eye movement experiments that manipulate

prior probabilities of targets and task urgency.

Although the results obtained thus far are encouraging, several important ques-

tions remain. For example, how can the feedforward and recurrent weights

be learned directly from input data? We intend to explore this question using

biologically-plausible approximations to the expectation-maximization (EM) algorithm
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[Dempster et al., 1977]. A related question is how the suggested framework could be

extended to allow hierarchical Bayesian inference in multi-layer cortical networks.

Previous models of hierarchical inference and learning in cortical circuits should

prove useful in addressing this question [Dayan et al., 1995, Dayan and Hinton, 1996,

Hinton and Ghahramani, 1997, Rao and Ballard, 1997, Rao and Ballard, 1999]. A fi-

nal question of interest is how the rewards associated with various choices available

in a task influence the decision neurons in the model. We expect ideas from reinforce-

ment learning and Bayesian decision theory as well as recent neurophysiological results

in the monkey [Platt and Glimcher, 1999] to be helpful in guiding our research in this

direction.
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