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Abstract

One promising approach for adding object-oriented (OO) facilities to functional languages like ML is to generalize
the existing datatype and function constructs to be hierarchical and extensible, so that datatype variants simulate
classes and function cases simulate methods. This approach allows existing datatypes to be easily extended with both
new operations and new variants, resolving a long-standing conflict between the functional and OO styles. However,
previous designs based on this approach have been forced to give up modular typechecking, requiring whole-program
checks to ensure type safety. We describe Extensible ML (EML), an ML-like language that supports hierarchical,
extensible datatypes and functions while preserving purely modular typechecking. To achieve this result, EML’s
type system imposes a few requirements on datatype and function extensibility, but EML is still able to express both
traditional functional and OO idioms. We have formalized a core version of EML and proven the associated type
system sound, and we have developed a prototype interpreter for the language.

∗This technical report is an extended version of the paper of the same name in the 2002 International Conference on Functional Programming,
Pittsburgh, PA, October 4-6, 2002.
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1 Introduction

Many researchers have noted a difference in the extensibility benefits offered by the functional and object-oriented
(OO) styles [26, 8, 23, 10, 18, 14, 28]. Functional languages like ML allow new operations to be easily added to
existing datatypes (by adding new fun declarations), without requiring access to existing code. However, new data
variants cannot be added without a potentially whole-program modification (since existing functions must be modified
in place to handle the new variants). On the other hand, traditional OO approaches allow new data variants to be easily
added to existing class hierarchies (by declaring subclasses with overriding methods), without modifying existing
code. However, adding new operations to existing classes requires access to the source code for those classes (since
methods cannot be added to existing classes without modifying them in place).

There have been several recent research efforts to integrate the benefits of the functional and OO styles in the
context of ML. OCaml [24] adds OO features including class and method definitions to ML. The OO constructs
essentially form their own sub-language which is largely separate from the existing ML datatype and fun constructs.
Adding a set of new constructs has the advantage that existing language constructs are minimally affected by the
extension, retaining their traditional semantics and typing properties. Further, the augmented language addresses the
expressiveness differences of the functional and OO styles in a very simple way, by providing both options. However,
such simplicity comes at a cost to programmers, who are forced to choose up front whether to represent an abstraction
with datatypes or with classes. As described above, this decision impacts the kind of extensibility allowable for the
abstraction. It may be difficult to determine a priori which kind of extensibility will be required, and it is difficult to
change the decision after the fact. Further, it is not possible for the abstraction to enjoy both kinds of extensibility at
once.

An alternative approach is to generalize existing ML constructs to support the OO style. OML [25], for example,
introduces an objtype construct for modeling class hierarchies. This construct can be seen as a generalization of ML
datatypes to be hierarchical and extensible. Therefore, programmers need not decide between datatypes and classes
up front; both are embodied in the objtype construct. However, OML still maintains a distinction between methods
and functions, which have different benefits. New methods may not be added to existing objtypes without modifying
existing code, while ordinary ML functions may be. Methods dynamically dispatch on their associated objtype,
while functions support ML-style pattern matching.

ML≤ [3] integrates the OO style further with existing ML constructs. Like OML, ML≤ generalizes ML datatypes
to be hierarchical and extensible. Further, methods are simulated via function cases that use OO-style dynamic dis-
patching semantics. In this approach, programmers need not choose between two forms of extensibility; a single
language mechanism supports the easy addition of both new operations and new variants to existing datatypes.

However, there are important ways in which ML≤ is not well integrated with existing ML language features.
First, ML≤ does not support ML-style pattern matching. Patterns are essentially restricted to be top-level datatype
constructor tests, which are the analogue of dynamic dispatch tests in OO languages. Other common ML-style patterns
and patterns on sub-components cannot be programmed.

Second, extensible datatypes are of limited utility without extensible functions, which allow existing functions to
be updated with new cases as new data variants are declared. However, ML≤ does not support extensible functions:
all function cases are provided when a function is declared. The authors sketch a source-level language that supports
extensible functions. Unfortunately, this critical generalization of their work causes a loss of modular reasoning: static
typechecking of a program cannot be completed until link-time, when all modules are available. Therefore, important
software engineering benefits are lost, including early detection of errors, libraries that are guaranteed to be typesafe in
any context satisfying their interface requirements, independent development of typesafe modules by separate teams
of programmers, and incremental modification (and subsequent incremental re-typechecking) of code.

The checks that must be delayed to link-time in ML≤ constitute what we call implementation-side typechecking
(ITC), which ensures that each function in the program is completely and unambiguously implemented [7].1 In
traditional functional languages, ITC checks each function for match nonexhaustive and match redundant errors.
Each function can be checked modularly, since a function declaration includes all of its cases and datatypes are not
extensible. In traditional OO languages, ITC checks that each class declares or inherits a most-specific method for each
supported operation. Each class can be checked modularly, since a class declaration includes all of its (non-inherited)
methods and new operations cannot be added to existing classes.

The implicit restrictions in the traditional functional and OO settings that allow for modular ITC do not hold in
1Implementation-side typechecking contrasts with client-side typechecking of functions, which checks that each function application in the

program is type-correct. Client-side typechecking is standard and can be performed modularly.

2



the presence of extensible datatypes and functions. Unlike traditional functional languages, no module is guaranteed
to have access to all of a function’s cases. Unlike traditional OO languages, no module is guaranteed to have access to
all of a datatype variant’s associated functions and function cases. Therefore, ML≤ is forced to perform ITC globally,
when the whole program is available.

In this work, we describe an ML-like language called Extensible ML2 (EML). EML introduces a class construct,
which is a form of hierarchical, extensible datatype in the spirit of the constructs in OML and ML≤. As in ML≤,
methods are simulated by function cases. In addition:

• EML generalizes the OO dispatching semantics in ML≤ to allow arbitrary ML-style patterns. This generalization
provides idioms that are not expressible by either traditional functional or OO languages.

• EML supports extensible functions while preserving purely modular typechecking: each module can be type-
checked given only the interfaces of the modules it statically depends upon (in a sense described later), with no
whole-program checks required. To make per-module implementation-side typechecking sound without neces-
sitating link-time checks, EML’s type system imposes certain requirements via the notion of a function’s owner
position, which serves to coordinate otherwise independent extensions to the function. The owner position gen-
eralizes some of the properties of a method’s receiver in traditional OO languages, shedding new light on how
those languages achieve modular typechecking. Despite the imposed requirements, EML’s classes and functions
are still able to simultaneously express traditional functional and OO extensibility idioms. The requirements are
adapted from our earlier work on Dubious [20, 21], a calculus designed to explore modular typechecking for
OO languages based on multimethods.

The rest of the paper is organized as follows. Section 2 describes EML by example. Section 3 discusses the
challenges for performing modular implementation-side typechecking in EML and presents our solution to these chal-
lenges. Section 4 defines MINI-EML, a core language for EML used to formalize our modular type system. Section 5
describes how the features of EML interact with an ML-style module system, including signature ascription and func-
tors. Section 6 discusses related work, and section 7 concludes. The appendices contain the complete type soundness
proof for MINI-EML.

2 EML by Example

Figure 1 shows an EML implementation of integer sets. Classes, functions, and function cases are declared in ML-style
structs. In our discussion we assume that structs contain only those three kinds of declarations. This assumption
is lifted in section 5, which describes the interaction of EML’s features with an ML-style module system.

2.1 Classes

The Set class in figure 1 is the top of the integer set hierarchy. The ListSet class inherits from Set, implementing
sets via lists. The CListSet class inherits from ListSet, additionally keeping track of the number of elements in the
set. A program’s subclass relation is the reflexive, transitive closure of the declared extends relation. Classes support
only single inheritance. However, like Java [1, 15], EML supports a notion of interface, and a class can implement
multiple interfaces. We ignore interfaces in this paper for simplicity. The Set class is declared abstract, so it may
not be instantiated, while its subclasses ListSet and CListSet are concrete.

Each class declares a record type of its instance variables, using the of clause. Superclass instance variables are
inherited: the representation type of a class C is the representation type (recursively) of its direct superclass (if any)
concatenated with the type in the of clause in C’s declaration. For example, the representation type of CListSet is
{es:int list,count:int}, since ListSet’s representation type is {es:int list}.

Each class declaration also implicitly declares a constructor, similar to constructor declarations in OCaml [24] and
XMOC [12], a core language for Moby [11]. For example, the CListSet constructor expects arguments es of type int
list and c of type int, initializes inherited instance variables via the call ListSet(es) to the superclass constructor,
and initializes the new count instance variable to c. In general, the arguments to the superclass constructor call and
the instance-variable initializers may be arbitrary expressions. It would be straightforward to allow a class to have
multiple constructors by introducing a separate constructor declaration, similar to “makers” in Moby.

Classes can be used to simulate ordinary ML-style datatypes. In particular, an ML datatype of the form
2not to be confused with Extended ML [17]
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structure SetMod = struct
abstract class Set() of {}
class ListSet(es:int list) extends Set()

of {es:int list = es}
class CListSet(es:int list, c:int)

extends ListSet(es) of {count:int = c}

fun add:(int * #Set) → Set
extend fun add (i, s as ListSet {es=es}) =

if (member i es) then s else ListSet(i::es)
extend fun add (i, s as CListSet {es=es,count=c}) =

if (member i es) then s else CListSet(i::es,c+1)

fun size:Set → int
extend fun size (ListSet {es=es}) = length es
extend fun size (CListSet {es= ,count=c}) = c

fun elems:Set → int list
extend fun elems (ListSet {es=es}) = es

end

Figure 1: A hierarchy of integer sets in EML.

datatype DT = C1 of {L11:T11,. . .,L1m:T1m} | · · · | Cr of {Lr1:Tr1,. . .,Lrn:Trn}

is encoded in EML by the following class declarations:

abstract class DT of {}
class C1(I11:T11,. . .,I1m:T1m) extends DT() of {L11:T11=I11,. . .,L1m:T1m=I1m}
· · ·
class Cr(Ir1:Tr1,. . .,Irn:Trn) extends DT() of {Lr1:Tr1=Ir1,. . .,Lrn:Trn=Irn}

Unlike the variants in ordinary ML datatypes, classes are full-fledged types, and other classes may inherit from them.
A concrete class is instantiated by invoking its constructor. For example, the result of ListSet([5,3]) is an

instance of ListSet representing the set {5,3}. Like values of ML datatypes, class instances have no special object
identity or mutable state; refs can be used in a class’s representation type for this purpose.

2.2 Functions and Function Cases

To make functions extensible, we break an ML-style function declaration into two pieces. The fun declaration intro-
duces a function and specifies its type. The size function in figure 1, for example, is declared to accept an instance
of Set or a subclass and to return an integer. The # in the add function’s argument type signifies that the second
argument to add is in the owner position. As a syntactic sugar, the owner position of a function is assumed to be the
entire argument when no # is present in the function’s argument type. A function and its cases must satisfy several re-
quirements with respect to its owner position, to ensure that the function can be modularly checked for exhaustiveness
and unambiguity. These requirements are discussed in section 3. The owner position has no dynamic effect.

The extend fun declaration adds a case to an existing function. The declaration specifies the name of the function
being extended, a pattern guard, and the new case’s body. There are two size function cases in figure 1, handling
ListSets and CListSets, respectively. In a traditional OO language, these size cases would be declared as size
methods in the ListSet and CListSet class declarations. The extend fun declaration is imperative, updating the
set of cases associated with the specified function rather than creating a new function containing the extra case. The
imperative semantics allows extensible functions to faithfully model OO-style methods, which conceptually update a
“generic function” consisting of all methods that dynamically override some particular “top” method. The imperative
semantics is necessary to support common OO idioms. For example, clients of an OO class hierarchy often import only
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structure UnionMod = struct
fun union:(#Set * Set) → Set
extend fun union (s1, s2) = fold add s2 (elems s1)
extend fun union (ListSet {es=e1}, ListSet {es=e2}) =

ListSet(merge(sort(e1), sort(e2)))
end

Figure 2: Adding new functions in EML.

the abstract base class of the hierarchy, with any message sends through that class’s interface dynamically dispatched
to the appropriate methods of (potentially unknown) concrete subclasses.

An ML-style function consisting of n function cases is encoded in EML as a fun declaration followed by n extend
fun declarations. EML functions can be passed to and returned from other functions, like lambdas and ML-style
functions. However, a function’s extensibility is second-class: new cases may only be added to statically known
functions.

Patterns in EML subsume both OO-style dynamic dispatching and ML-style pattern matching. For example, the
second size case in figure 1 is only applicable dynamically if the argument is an instance of CListSet or a subclass,
whose instance variables match the given representation pattern (which in this case is fully general). As usual, the
pattern also binds identifiers for use in the case’s body.

An OO-style “best-match” policy decides which function case to invoke; their order does not matter. Given an
application of function f with argument value v, first the applicable cases of f for v are retrieved. These are the
cases that have a pattern that v matches. Of the applicable cases, the unique case that is more specific than all other
applicable cases is invoked. Intuitively, case c1 is more specific than case c2 if the set of values matching c1’s pattern
is a subset of the set of values matching c2’s pattern. We call the invoked case the most-specific applicable case. If a
function application has no applicable cases, a match nonexhaustive error occurs. If a function application has at least
one applicable case but no most-specific one, a match ambiguous error occurs.

For example, consider the invocation size(CListSet([5,3],2)). Both size cases in figure 1 are applicable to
the argument value, and the second case is invoked because it is the more-specific one. The “best-match” semantics
contrasts with the traditional “first-match” semantics of function cases in ML. The “first-match” semantics does not
generalize naturally to handle extensible datatypes and functions, where typically the more-specific function cases are
written after the less-specific ones, as new data variants are defined.

Implementation-side typechecking ensures that match nonexhaustive and match ambiguous errors cannot occur
at run-time. Each module’s typechecks include ITC for functions whose exhaustiveness and unambiguity may be
affected by the module. These are functions declared in the module, functions with cases declared in the module,
and functions that can accept instances of classes declared in the module. For example, ITC of SetMod in figure 1
checks the three functions declared there. Consider checking the size function for exhaustiveness and unambiguity.
Any ListSet instance will invoke the first size case, and any CListSet instance will invoke the second size case.
The Set class need not have a most-specific applicable case, because Set is declared abstract. Therefore, ITC for
size succeeds. On the other hand, if the first size case were missing, a match nonexhaustive error would be signaled
statically. Alternatively, if another size case with pattern ListSet {es=es} were declared, a match ambiguous error
would be signaled statically.

2.3 Adding New Functions

As with ML datatypes, but unlike traditional classes, EML supports the easy addition of new functions to an existing
class hierarchy. For example, figure 2 adds a function for computing the union of two Sets, without modifying any
code in the SetMod module.3 Two union function cases are provided. The first case is applicable to any pair of Sets.
The second union case provides a more efficient implementation for two ListSets. ITC of UnionMod checks union
for exhaustiveness and unambiguity. Any pair of ListSets and CListSets will invoke the second union case, so the
function’s check succeeds.

3Technically, all references to Set, ListSet, add, and elems in UnionMod should instead be to SetMod.Set, SetMod.ListSet, SetMod.add,
and SetMod.elems. For readability, we omit the full path names in examples when clear from context.
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structure HashSetMod = struct
class HashSet(ht:(int,unit) hashtable)
extends Set() of {ht:(int,unit) hashtable = ht}

extend fun add (i, s as HashSet {ht=ht}) =
if containsKey(i,ht) then s else HashSet(put(i,(),ht))

extend fun size (HashSet {ht=ht}) = numEntries(ht)

extend fun elems (HashSet {ht=ht}) = keyList(ht)
end

Figure 3: Adding new data variants in EML.

structure SortedListSetMod = struct
class SListSet(es:int list) extends ListSet(es) of {}

extend fun add (i, s as SListSet {es=es}) =
if (member i es) then s else
let (lo,hi) = partition (fn j=>j<i) es
in SListSet(lo@(i::hi)) end

extend fun union (SListSet {es=e1}, SListSet {es=e2}) =
SListSet(merge(e1,e2))

fun getMin:SListSet → int
extend fun getMin (SListSet {es=es}) = hd(es)

end

Figure 4: Class hierarchies in EML.

2.4 Adding New Data Variants

Unlike ML datatypes, classes in EML also support the easy addition of new data variants to existing hierarchies,
without modifying existing code. An example is shown in figure 3, which provides a new implementation HashSet
of sets using an existing implementation (not shown) of hash tables. Implementations of add, size, and elems are
provided for the new kind of set. In a traditional OO language, HashSetMod corresponds to the declaration of a new
subclass of Set with some overriding methods. ITC of HashSetMod re-checks add, size, and elems to ensure that
they handle HashSet instances. For example, if the new size case were not declared, a match nonexhaustive error for
size would be signaled statically.

HashSetMod and UnionMod from figure 2 illustrate EML’s support for both OO and functional forms of exten-
sibility in a single class hierarchy. The original Set abstraction is flexibly reused by clients, who add a specialized
implementation (subclass) of the abstraction and also augment the abstraction with client-specific functionality, all
without modifying existing code. HashSetMod and UnionMod are completely independent: either, both, or neither
module could be linked into the final program. In this way, different versions of the Set abstraction may be used in
different programs, depending on the needs of each application.

If both UnionMod and HashSetMod are present in a program, then HashSet implicitly supports the union operation
and inherits any applicable cases. This expressiveness is at the heart of the problem of modular ITC. Because the two
modules are independent, neither is “aware” of the other during its static typechecks. Therefore, neither module’s ITC
ensures that union is completely and unambiguously implemented for HashSets. In this example, union happens to
have a case that handles HashSets (by handling any pair of sets). Without extra requirements, however, things do not
always work out so well, as we show in section 3.

Another example of data-variant extensibility is illustrated in figure 4. A new subclass of ListSet is created,
representing an implementation of sets via sorted lists. SListSet inherits the representation type of ListSet (adding
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abstract class ’a Set() of {}
class ’a ListSet(es:’a list) extends ’a Set()
of {es:’a list = es}

class ’a CListSet(es:’a list, c:int)
extends ’a ListSet(es) of {count:int = c}

fun ’a add: (’a * # ’a Set * (’a → ’a Set → bool)) → ’a Set
extend fun ’a add (i, s as ListSet {es=es}, member) =
if (member i s) then s else ’a ListSet(i::es)

extend fun ’a add (i, s as CListSet {es=es,count=c}, member) =
if (member i s) then s else ’a CListSet(i::es,c+1)

Figure 5: Polymorphic sets in EML.

no new instance variables) as well as the applicable function cases of size and elems. Overriding cases of add
and union are provided, as well as a new operation for accessing the minimum element of a set implemented as a
sorted list. ITC of SortedListSetMod checks add, size, elems, union, and getMin to ensure exhaustiveness and
unambiguity for SListSets.

2.5 Parametric Polymorphism

EML supports a polymorphic type system. Class, function, and function case declarations optionally bind type vari-
ables. References to a polymorphic class or function specify a particular type instantiation. As an example, figure 5
shows some of the declarations for a polymorphic version of the sets in figure 1. Each class in the set hierarchy is
now parameterized by the element type, as is the add function. Each function case is also explicitly parameterized,
allowing its function’s type variables to be renamed for use in the case’s body. References to classes in a case’s pattern
do not contain type parameters. The appropriate type instantiation for such classes can be inferred from the declared
argument type (for example, the reference to CListSet in the second add case’s pattern is implicitly ’a CListSet).

EML’s polymorphic type system is deliberately simple in several ways. First, EML is explicitly typed. Second,
we require that subclasses have the same type variables as their superclasses. This requirement is consistent with
polymorphism in ML, where data variants have the same type variables as their associated datatype. Third, type
parameters are invariant; for example, T1 ListSet is a subtype of T2 Set if and only if T1=T2. Finally, there is no
support for bounded polymorphism, which would, for example, obviate the need to explicitly pass the membership
function to add.

We have chosen to make the polymorphic type system simple because polymorphism is orthogonal to the problems
of modular ITC that we address in this work. Those problems arise from the fact that some related classes, functions,
and function cases are not modularly “aware” of one another; the problems are neither reduced nor exacerbated by
polymorphic types. Therefore, our polymorphic type system could be generalized in standard ways without affecting
our results. For example, we could adopt ML≤’s subtype-constrained polymorphic types [3] and associated decidable
type system. Recent work [2] has presented a simplified account of ML≤’s type system and has additionally shown
how to incorporate a form of type inference.

3 Modular Implementation-side Typechecking

This section focuses on the problem of modular ITC for EML. First we define our notion of modular typechecking.
Next we illustrate the ways in which naive modular ITC is unsound. Finally we describe the requirements we impose
to achieve modular type safety.

3.1 Modular Typechecking

We say that a language’s typechecking scheme is modular if it has two properties. First, each module m can be
typechecked given only the interfaces of other modules (without requiring access to the associated implementations).
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structure ShapeMod = struct
abstract class Shape() of {}
fun intersect:(#Shape * Shape) → bool

end
structure CircleMod = struct
class Circle() extends Shape() of {}
extend fun intersect(Circle , Shape ) = · · ·

end

structure RectMod = struct
class Rect() extends Shape() of {}
extend fun intersect(Shape , Rect ) = · · ·
fun print:Shape → unit
extend fun print(Rect ) = · · ·

end

Figure 6: Challenges for modular implementation-side typechecking.

Second, m can be typechecked given only those interfaces that m statically depends upon. Module m statically depends
upon interface i if either of the following conditions holds:

• Module m refers to a name that is bound in i.

• Module m statically depends upon module interface i′, and i′ refers to a name that is bound in i.

Traditional functional languages can support modular typechecking. For example, each structure in ML could be
typechecked given only its statically depended-upon structure interfaces. A structure’s interface is either an explicitly
ascribed signature or else the structure’s principal signature. Similarly, each class in a standard OO language can be
typechecked given only the statically depended-upon class interfaces. Informally, the interface of a class consists of
its list of superclasses, the types of its visible fields, and the headers, but not bodies, of its visible methods.

A modular typechecking scheme for EML must typecheck each structure given only the interfaces it statically
depends upon. We implicitly use a structure’s principal signature as its interface. The principal signature of an EML

structure includes all of its class and function declarations, as well as the headers (but not the bodies) of all function
case declarations. Explicit signatures provide a richer notion of structure interface, as described in section 5. Classes,
functions, and cases that are declared in m or specified in an interface upon which m statically depends are said to
be available during the typechecking of m. All other classes, functions, and cases are unavailable and may not be
considered during the typechecking of m.

Our definition of modular typechecking validates the intuition that union of figure 2 and HashSet of figure 3
are not “aware” of one another. Neither UnionMod nor HashSetMod statically depends upon the other’s interface.
Therefore, HashSet is unavailable during modular typechecks on UnionMod and union is unavailable during modular
typechecks on HashSetMod, so neither module’s typechecks ensure that union properly handles HashSets.

3.2 Implementation-side Typechecking and Modularity

Consider ITC for an EML module m. A straightforward approach to modular ITC checks each of m’s available
functions f for exhaustiveness and unambiguity, given all available function cases and classes. We call this approach
naive modular ITC. Unfortunately, naive modular ITC is unsound. The hierarchy of EML classes in figure 6 illustrates
the kinds of problems that can occur. Naive modular ITC in ShapeMod checks intersect for exhaustiveness and
unambiguity. Since ShapeMod doesn’t statically depend upon any interfaces (other than its own), the check succeeds
vacuously: Shape is abstract and so need not have an intersect implementation. Since CircleMod declares a
new intersect case, intersect is again checked during naive modular ITC in CircleMod. CircleMod statically
depends on the interface of ShapeMod but not that of RectMod, so CircleMod’s check does not consider the Rect
class.4 Therefore, the only argument to check from CircleMod is a pair of two Circles. The intersect case in
CircleMod is most-specific for two Circles, so intersect is found to be exhaustive and unambiguous. By similar
reasoning, intersect passes the checks from RectMod, since RectMod does not statically depend on the interface of
CircleMod.

Therefore each module typechecks, with naive modular ITC declaring the intersect function to be both exhaus-
tive and unambiguous. However, intersect has neither of these properties. If intersect is invoked on a pair of a
Rect and a Circle (in that order), a match nonexhaustive error will occur since neither intersect case is applicable.
If intersect is invoked on a pair of a Circle and a Rect (in that order), a match ambiguous error will occur since
both intersect cases apply but neither is more specific than the other.

4Indeed, RectMod may not even have been written when CircleMod is typechecked.
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A final problem concerns the print function in RectMod. Since RectMod does not statically depend on CircleMod’s
interface, RectMod’s naive modular ITC finds print to be exhaustive and unambiguous. However, if a Circle is ever
passed to print, a match nonexhaustive error will result.

3.3 Achieving Modular ITC

As we have seen, naive modular ITC is too permissive, allowing forms of extensibility that are not typesafe. To address
this problem, we augment naive modular ITC with some requirements on EML modules that ensure the soundness of
ITC. A fundamental design goal is that the requirements still allow the use of both functional and OO extensibility
idioms in a single class hierarchy. We are willing to sacrifice other kinds of extensibility allowed by naive modular
ITC to support the traditional functional and OO idioms in a modularly typesafe manner.

Functional languages allow a new function to be added to an existing datatype. Therefore, EML must allow a new
function to be added to an existing class. OO languages allow a new subclass to be added to an existing class, along
with associated overriding methods that have the new subclass as their receiver. To formulate this idiom in EML we
employ a function’s owner position, which generalizes a similar notion in the Dubious language [20]. A function’s
owner position has some properties in common with the receiver position in standard OO languages. Rather than
forcing the owner position to be the “first” argument to a function, it can be specified as an arbitrary (and arbitrarily
nested) position of the argument, via the # in a function’s declared argument type. The type at the owner position in a
function’s argument type must be a class; that class is the function’s owner. For example, Set is the owner of add in
figure 1. To express the OO extensibility idiom in EML, we must allow a new subclass to be added to an existing class
C, along with overriding cases of functions for which C is the owner.

For the purposes of our modular requirements, we partition functions into two categories. A function is called
internal if it is declared in the same module as its owner; otherwise the function is external. An internal function is
guaranteed to be available to all modules that declare subclasses of the function’s owner, while that is not true of an
external function. Therefore, an internal function can be thought of as part of the “initial” interfaces of its owner class
and subclasses, while an external function is a later extension to those interfaces. External functions have no analogue
in traditional OO languages, in which a class’s methods must all be declared with the class. The special properties of
internal functions are exploited in one of our three requirements, which are now discussed in turn.

3.3.1 Completeness Requirement for External Functions

Consider the completeness problem with the print function in RectMod in figure 6. Because new subclasses can be
added to existing classes, some subclasses of a function’s owner may not be available in the function’s module. Indeed,
Circle is not available in print’s module. On the other hand, because print is external, there is no guarantee that
print will be available to all modules declaring subclasses of Shape. Indeed, print is not available to Circle’s
module. Therefore, to modularly ensure that print is complete, we require its module to contain a global default
case. A global default is a case whose pattern is applicable to all type-correct arguments to the function. In general,
we require a module that declares an external function to include a global default case for the function.

Therefore, ITC on RectMod fails, because the global-default requirement is not satisfied for its external function
print. If print had a case with, for example, pattern (Shape {}), then the requirement would be satisfied and the
completeness problem for Circle would be avoided. As another example, the external function union in figure 2
satisfies the requirement because its first case is a global default, thereby handling the unavailable HashSet class of
figure 3 and any other unavailable Set subclasses.

The global-default requirement does not impose an extra burden from the point of view of standard OO languages,
as such languages do not even allow external functions to be declared. However, standard functional languages do
allow external functions, without requiring global default cases. Those languages disallow data-variant extension, so
an external function can be modularly checked against all possible data variants. EML’s modular ITC must allow for
the possibility of unavailable subclasses of a function’s owner, thereby sometimes requiring the declaration of global
default cases that will never be used. Section 5 introduces a mechanism for sealing class hierarchies, which can obviate
the need for global default cases.

3.3.2 Completeness Requirement for Internal Functions

Consider the incompleteness for a pair of one Rect and one Circle in the internal intersect function of figure 6.
One way to solve the problem would be to require a global default case, as we require for external functions. Indeed,
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if ShapeMod contained an intersect case that is applicable to any pair of Shapes, the incompleteness would be
resolved. While requiring global default cases solves the problem, it is unnecessarily burdensome. As mentioned
earlier, an internal function is guaranteed to be available to all modules declaring subclasses of the function’s owner.
Therefore, rather than requiring the function’s module to handle all unknown subclasses, we can require each module
that declares a concrete subclass of the function’s owner to ensure completeness for its subclass. This idea is inspired
by standard OO languages, in which a method in an abstract class may safely remain unimplemented, with each
concrete subclass declaring or inheriting a concrete implementation of the method.

Our requirement is that each module declaring a concrete subclass C of an internal function’s owner must also
declare or inherit a local default case for the function. A local default case of a class C is a case whose pattern accepts
only instances of C and subclasses at the owner position, while every other argument position can be passed any value
of the appropriate type. Local default cases are the EML analogue of traditional OO methods, which dispatch on the
surrounding class at the receiver position and do not dispatch on any other argument position. A class’s local default
cases ensure that the class completely implements all of the functions in its “initial” interface.

Given the local-default requirement, ITC on RectMod fails to typecheck because it does not declare or inherit a
local default intersect case for Rect. (An isomorphic error would occur in CircleMod if the second argument
position in the pair were designated the owner position.) The requirement would be satisfied, for example, if RectMod
had an intersect case with pattern (Rect , Shape ), accepting Rects at the owner position and accepting all
Shapes in the other position. That case resolves the incompleteness for a pair of one Rect and one Circle. A global
default case need not be written: intersect may still be safely left unimplemented for two Shapes. As another
example, the internal add function in figure 1 does not have a global default case. Instead, it has local default cases
for its two concrete subclasses ListSet and CListSet. When HashSet is introduced in figure 3, an associated local
default is also declared, satisfying the requirement and ensuring that add is complete for HashSets.

The local-default requirement does not impose an extra burden from the point of view of standard OO languages.
Whenever a local default case of some internal function f is required for a class C, an OO language would require
C’s declaration to contain an f method, so that C is properly implemented. Therefore, the abstract-class idioms of
traditional OO languages are preserved in EML. However, standard functional languages do allow internal functions,
without requiring local default cases. As above, this is possible because such languages disallow data-variant exten-
sion. EML’s ITC must always assume the possibility of unavailable subclasses of classes in non-owner positions of a
function’s argument type, thereby sometimes requiring the declaration of local default cases that will never be used.
Again, we can use sealing, discussed in section 5, to obviate the need for local default cases.

3.3.3 Ambiguity Requirement

In figure 6 the two intersect cases are ambiguous, but neither CircleMod nor RectMod statically depends upon the
other, so the ambiguity is not modularly detected. We address this problem by restricting EML’s function extensibility
such that cases declared in modules that do not statically depend upon one another are guaranteed to be disjoint: the
cases are not applicable to a common value and hence are not ambiguous. Our restriction generalizes the implicit
restrictions in standard functional and OO languages. First we introduce the concept of a function case’s owner, which
is the class (if any) at the owner position of the case’s pattern. For example, ListSet is the owner of the second union
case in figure 2 because it appears at the owner position, while the first union case has no owner.

In functional languages, each case must be declared in the module that declares the associated function. In OO
languages, each method must be declared inside the method’s receiver. Our requirement is the disjunction of these
conditions: every function case must either be declared in the module that declares the case’s function or in the module
that declares the case’s owner (if any).

RectMod now fails to typecheck because its intersect case does not satisfy our requirement: neither intersect
nor Shape, the case’s owner, is declared in RectMod. (An isomorphic error would occur in CircleMod if the second
argument position in the pair were designated the owner position.) Therefore, RectMod may not extend intersect
in that way. The requirement can be satisfied, for example, by modifying the intersect case’s pattern to (Rect
, Shape ). This modification resolves the ambiguity for a pair of a Circle and a Rect, since the revised case is

no longer applicable. As another example, the add cases in HashSetMod and SortedListSetMod of figures 3 and
4 are never compared for ambiguity, because the two modules do not statically depend upon one another. However,
each case satisfies our requirement by following the traditional OO idiom of implementing an overriding method for a
newly declared subclass. Therefore the two cases are guaranteed to be disjoint.

Since our ambiguity requirement is the disjunction of the implicit requirements in standard functional and OO
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τ ::= α | Ct | τ1 → τ2 | τ1 ∗ · · · ∗ τk

Mt ::= # Ct | τ1 ∗ · · · ∗ τi−1 ∗Mt∗ τi+1 ∗ · · · ∗ τk

E ::= I | Fv | E1 E2 | Ct(E) | (E) | Ct {V = E}
Pat ::= | I as Pat | C {V = Pat} | (Pat)
Ct ::= τ C Fv ::= τ F
C ::= Sn.Cn V ::= Sn.Vn
F ::= Sn.Fn

S ::= structure Sn =
struct depends upon Sn Ood end

Ood ::= <abstract> class α Cn(I : τ)
<<extends Ct(E) >> of {Vn : τ0 = E0}

| fun α Fn : Mt → τ
| extend funMn α F Pat = E

(a) (b)

Figure 7: (a) MINI-EML types, expressions, and patterns; (b) MINI-EML structures and declarations. Metavariable
α ranges over type variable names, I over identifier names, Sn over structure names, Cn over class names, Vn over
instance variable names, Fn over function names, and Mn over case names. D denotes a comma-separated list of
elements (and is independent of any variable named D). Angle brackets (<>) and double angle brackets (<<>>)
denote independent optional pieces of syntax. The notation V = E abbreviates V1 = E1, . . . ,Vk = Ek where V is
V1, . . . ,Vk and E is E1, . . . ,Vk for some k ≥ 0, and similarly for V = Pat, Vn : τ0 = E0, and I : τ.

languages, our requirement does not restrict those programming styles and allows them to coexist. Therefore, we
have achieved our design goal of allowing the functional and OO extensibility idioms in a single class hierarchy
while preserving modular type safety.5 However, other useful kinds of extensibility are disallowed by the ambiguity
requirement. For example, a client of both UnionMod and HashSetMod from figures 2 and 3 may want to implement
union specially for HashSets, so that these independent extensions of the Set abstraction will work well together.
However, the new case would violate our ambiguity requirement, so HashSets are forced to use the default union
case (or HashSetMod must be modified in place to add the new case).

4 Mini-Eml

This section describes MINI-EML, a core language used to formalize the fundamental ideas in EML.

4.1 Syntax

Figure 7a defines the syntax of types, expressions, and patterns in MINI-EML. The syntax is essentially that of EML

as informally presented so far, but we omit standard constructs including base types, conditionals, lambdas, local
variables, references, and exceptions. MINI-EML types include type variables, class types, function types, and tuple
types. The domain Mt represents marked types, which contain a # mark on a single component class type. Expressions
include identifiers, function values, function application, constructor calls, tuples, and instance expressions. The
instance expression Ct {V = E} is not available at the source level, as instances may only be created via a constructor
call Ct(E). Patterns include the wildcard pattern, identifier binding, class patterns, and tuple patterns; a pattern of the
form I, used in some of our earlier examples, is syntactic sugar for (I as ).

The construct {V = E} differs from an ordinary record in two ways. First, the labels are scoped: the name
of the structure in which an instance variable was introduced becomes part of the instance variable’s name. In the
presence of the ability to make instance variables private (see section 5), scoping allows subclasses to introduce a new
instance variable without conflicting with the name of a hidden one in the superclass. Instance variables in EML use
this mechanism implicitly; regular static scoping rules determine which instance variable is referred to. Second, for
simplicity the components of {V = E} are ordered, unlike traditional records.

The notation and semantic style of MINI-EML were influenced by Featherweight Java [16], a core language for
Java. As in that language, we formally represent classes by their names. A class is uniquely represented as Sn.Cn,
where Cn is the name of the class and Sn is the name of the structure that declares Cn. Extensible functions are
represented similarly.

The subset of expressions that are MINI-EML values is described by the following grammar, which includes class
instances, function values, and tuple values:

v ::= Ct {V = v} | Fv | (v)
5In the presence of multiple implementation inheritance, other kinds of ambiguities that elude modular detection can arise, necessitating an extra

requirement [21]. However, multiple interface inheritance, as in Java, cannot cause such ambiguities.
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E −→ E ′

Ct = (τ C)
concrete(C) rep(Ct(E0)) = {V = E1}

Ct(E0) −→ Ct {V = E1}
E-NEW

E −→ E ′

Ct {V0 = v0,V = E,V1 = E1} −→
Ct {V0 = v0,V = E ′

,V1 = E1}

E-REP

E −→ E ′

(v0,E,E1) −→ (v0,E
′
,E1)

E-TUP

E1 −→ E ′
1

E1 E2 −→ E ′
1 E2

E-APP1
E2 −→ E ′

2

v1 E2 −→ v1 E ′
2

E-APP2

most-specific-case-for(Fv,v) = ({(I,v)},E)

Fv v −→ [I 7→ v]E
E-APPRED

concrete(C)

(class α Cn . . .) ∈ ST(Sn)

concrete(Sn.Cn)
CONCRETE

rep(Ct(E0)) = {V = E}

(<<abstract>> class α Cn(I : τ1) <extends Ct(E0) >

of {Vn : τ2 = E2}) ∈ ST(Sn)
< rep(Ct(E0)) = {V = E1} >

rep((τ Sn.Cn)(E)) = [I 7→ E][α 7→ τ]{< V = E1,> Sn.Vn = E2}
REP

most-specific-case-for (Fv,v) = (ρ,E)

(extend funMn α F Pat = E) ∈ ST(Sn)
match(v,Pat) = ρ

∀Sn′ ∈ dom(ST).∀(extend funMn′ α′ F Pat′ . . .) ∈ ST(Sn′).
∀ρ′

.(match(v,Pat′) = ρ′∧Sn.Mn 6= Sn′.Mn′

⇒ Pat ≤ Pat′∧Pat′ 6≤ Pat)

most-specific-case-for ((τ F),v) = (ρ, [α 7→ τ]E)
LOOKUP

(a) (b)

Figure 8: (a) Evaluation rules for expressions. (b) Auxiliary inference rules. The notation (I,v) abbreviates
(I1,v1), . . . ,(Ik,vk); Sn.Vn = E abbreviates Sn.Vn1 = E1, . . . ,Sn.Vnk = Ek.

The syntax of structures and declarations is shown in figure 7b. For convenience in the core language, each
structure explicitly names the other structures (often including itself) whose interfaces it statically depends upon, via
the depends upon Sn clause. ITC for a structure employs only the interfaces of the structures named in the depends
upon clause. The static semantics ensures that the given dependency relation is well-formed, as described below. A
structure consists of a sequence of class, extensible function, and function case declarations. The syntax of the three
declarations is faithful to that of EML, except that cases now contain a case name Mn. This name is used in the
semantics to uniquely identify each function case declaration (see section 4.2).

The class (function, case) names introduced in a given block are assumed to be distinct. The type variables
parameterizing a given OO declaration are assumed to be distinct. The instance variable names introduced in a given
class declaration are assumed to be distinct. The identifiers introduced in a given function case’s pattern are assumed
to be distinct.

Analogous with Featherweight Java, a MINI-EML program is a pair of a structure table and an expression. A
structure table is a finite function from structure names to the associated structure declarations. The semantics assumes
a fixed structure table denoted ST. The structure table ST is accessed by the dynamic and static semantics rules when
information about a given OO declaration is required. The domain of a structure table ST is denoted dom(ST). The
structure table is assumed to satisfy some sanity conditions: (1) ST(Sn) = (structure Sn = struct . . .) for every
Sn ∈ dom(ST); (2) for every structure name Sn appearing anywhere in the program, we have Sn ∈ dom(ST).

4.2 Dynamic Semantics

MINI-EML’s dynamic semantics is defined as a mostly standard small-step operational semantics. The metavariable ρ
ranges over environments, which are finite functions from identifiers to values. We use |D| to denote the length of the
sequence D. The notation [I1 7→ E1, . . . , Ik 7→ Ek]D denotes the expression resulting from the simultaneous substitution
of Ei for each occurrence of Ii in D, for 1 ≤ i ≤ k, and similarly for [α1 7→ τ1, . . . ,αk 7→ τk]D. We use [I 7→ E]D as
a shorthand when I and E have the same length, and similarly for [α 7→ τ]D. In a given inference rule, fragments
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match(v,Pat) = ρ

match(v, ) = {}
E-MATCHWILD

match(v,Pat) = ρ
match(v, I as Pat) = ρ∪{(I,v)}

E-MATCHBIND

C ≤C′ match(v,Pat) = ρ
match(τ C {V = v,V1 = v1},

C′ {V = Pat}) =
�

ρ

E-MATCHCLASS

match(v,Pat) = ρ
match((v),(Pat)) =

�
ρ

E-MATCHTUP

Pat ≤ Pat′

Pat ≤
SPECWILD

Pat1 ≤ Pat2
I as Pat1 ≤ Pat2

SPECBIND1
Pat1 ≤ Pat2

Pat1 ≤ I as Pat2
SPECBIND2

C ≤C′ Pat1 ≤ Pat2
C {V = Pat1,V3 = Pat3} ≤C′ {V = Pat2}

SPECCLASS

Pat1 ≤ Pat2
(Pat1) ≤ (Pat2)

SPECTUP

(a) (b)

Figure 9: (a) Pattern matching. (b) Pattern specificity. The notation match(v,Pat) = ρ abbreviates match(v1,Pat1) = ρ1

· · · match(vk,Patk) = ρk, and similarly for Pat1 ≤ Pat2.

C ≤C′

C ≤C
SUBREF

C1 ≤C2 C2 ≤C3

C1 ≤C3
SUBTRANS

(<abstract> class (α Cn)(I1 : τ1) extends (τ C) . . .) ∈ ST(Sn)

Sn.Cn ≤C
SUBEXT

Figure 10: Subclassing.

enclosed in <> must either be all present or all absent, and similarly for <<>>. We sometimes treat sequences as if
they were sets. For example, Ood ∈ Ood means that Ood is one of the declarations in Ood. We use Ood ∈ ST(Sn) as
shorthand for (ST(Sn) = (structure Sn = struct depends upon Sn Ood end))∧Ood ∈ Ood.

Figure 8a contains the rules for evaluating expressions. For simplicity in the semantics, a constructor call is treated
as syntactic sugar for a particular instance expression, obtained by expanding the constructor’s definition. Rule E-
NEW specifies this semantics, making use of the first two auxiliary rules in figure 8b. CONCRETE checks that the
class to be instantiated was declared without the abstract keyword. REP initializes the fields of the new instance as
directed by the class’s implicit constructor, substituting the actual arguments to the constructor call for the formals.
The semantics uses a type-passing style, so the instance’s type parameters are also substituted for the class’s type
variables. Rule E-REP then evaluates instance expressions. It would be straightforward to instead use a call-by-value
semantics for constructor calls, at the cost of some additional mechanism.

The last rule in figure 8b formalizes function-case lookup, used in E-APPRED. The top line of LOOKUP’s premises
specifies the case to invoke. The second line ensures that the chosen case is applicable: the argument value matches the
case’s pattern. The remaining premise ensures that the chosen case is most-specific: the case is strictly more specific
than any other applicable case. The condition Sn.Mn 6= Sn′.Mn′ uses the case names to ensure that the chosen case is
not compared for specificity with itself.

The rules for pattern matching and specificity are shown in figure 9. The matching rules are straightforward except
for E-MATCHCLASS. The judgment C ≤C′ is defined in figure 10 as the reflexive, transitive closure of the declared
class extends relation. Therefore, an instance of class C matches a class pattern of class C ′ if C subclasses C′ and
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S OK

Sn ` Ood OK in Sn

structure Sn = struct depends upon Sn Ood end OK
STRUCTOK

Sn ` Ood OK in Sn

< Ct = α Sn.Cn > < Γ;α ` Ct(E) OK > α ` τ OK α ` τ0 OK Γ = {(I,τ)} Γ;α ` E0 : τ1
τ1 ≤ τ0 Sn ` Sn.Cn transDependedUpon concrete(Sn.Cn) ⇒ Sn ` funs-have-ldefault-for Sn.Cn

Sn ` <<abstract>> class α Cn(I : τ) <extends Ct(E) > of {Vn : τ0 = E0} OK in Sn
CLASSOK

α ` M̂t OK α ` τ OK owner(Sn.Fn) = Sn′.Cn Sn 6= Sn′ ⇒ Sn ` Sn.Fn has-gdefault

Sn ` fun α Fn : Mt → τ OK in Sn
FUNOK

(fun α′ Fn : Mt → τ) ∈ ST(Sn′) matchType([α′ 7→ α]M̂t,Pat) = (Γ,τ0) Γ;α ` E : τ′

τ′ ≤ [α′ 7→ α]τ Sn ` Sn′.Fn dependedUpon Sn;Sn ` extend funMn α Sn′.Fn Pat = E unambiguous

Sn ` extend funMn α Sn′.Fn Pat = E OK in Sn
CASEOK

Figure 11: Static semantics of structures and OO declarations. The notation Sn ` Ood OK in Sn abbreviates
Sn ` Ood1 OK in Sn · · · Sn ` Oodk OK in Sn; α ` τ OK abbreviates α ` τ1 OK · · · α ` τk OK; (I,τ) abbreviates
(I1,τ1), . . . ,(Ik,τk); Γ;α ` E : τ abbreviates Γ;α ` E1 : τ1 · · · Γ;α ` Ek : τk; τ1 ≤ τ0 abbreviates τ11 ≤ τ01 · · · τ1k ≤ τ0k.

the instance’s representation recursively matches the given representation pattern. This recursive matching is not
supported in traditional OO languages or in ML≤. We allow an instance to have more instance variables than the given
representation pattern, so that subclass instances can match superclass patterns. For example, the value CListSet
{es=[5,3],count=2} matches the pattern in the elems case of figure 1.

The judgment Pat ≤ Pat′ means that Pat is at least as specific as Pat′. The pattern specificity semantics generalizes
OO-style “best-match” semantics to support ML-style patterns. Any pattern is at least as specific as the wildcard, and
identifier binding has no effect on specificity. Class pattern specificity (SPECCLASS) follows the ordering induced by
subclassing. Analogous with E-MATCHCLASS, the more-specific pattern may contain extra instance variables. The
natural rule SPECTUP for tuple patterns makes pattern specificity a generalization of the “symmetric” multimethod
specificity semantics in OO languages [5, 6]. When a tuple is used to send multiple arguments to a function, tuple
patterns allow all arguments to be dynamically dispatched upon, and no argument position is more important than
the rest. This contrasts with traditional single dispatch, as in Java, where only a unique receiver argument may be
dispatched upon.

4.3 Static Semantics

Figure 11 contains the rules for typechecking structures and OO declarations. Γ is a type environment, mapping
identifiers to types. The notation M̂t denotes the type τ identical to Mt, but with the # mark removed. Structures are
typechecked (STRUCTOK) by checking each declaration in turn. It is assumed that S OK holds for each structure S in
the range of ST.

The rules for typechecking the three OO declarations are largely straightforward. Rule CLASSOK checks that a
class’s superclass constructor call is well-typed, that all types mentioned in the class declaration are well-formed, and
that the instance-variable initializer expressions have the appropriate types. Rule FUNOK checks that a function’s
declared type is well-formed. Rule CASEOK ensures that the case’s pattern and body are compatible with the associ-
ated function’s declared type. The “transDependedUpon” and “dependedUpon” judgments in CLASSOK and FUNOK
ensure that each structure’s declared dependency relation is well-formed; they are described below. Finally, each rule
enforces one of our three modular requirements, discussed in more detail below: CLASSOK enforces the local-default
requirement (“funs-have-ldefault-for”) if the class is concrete; FUNOK enforces the global-default requirement (“has-
gdefault”) if the function is external; CASEOK performs ambiguity checking (“unambiguous”) for the given case,
which includes enforcement of the ambiguity requirement.
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α ` τ OK

α ∈ α
α ` α OK

TVAROK

(<abstract> class α0 Cn . . .) ∈ ST(Sn)
α ` τ OK |α0| = |τ|

α ` τ Sn.Cn OK
CLASSTYPEOK

α ` τ1 OK α ` τ2 OK

α ` τ1 → τ2 OK
FUNTYPEOK

α ` τ1 OK · · · α ` τk OK

α ` τ1 ∗ · · · ∗ τk OK
TUPTYPEOK

Γ;α ` E : τ

(I,τ) ∈ Γ
Γ;α ` I : τ

T-ID

(fun α0 Fn : Mt → τ) ∈ ST(Sn) α ` τ0 OK

Γ;α ` τ0 Sn.Fn : [α0 7→ τ0](M̂t → τ)
T-FUN

Γ;α ` E1 : τ2 → τ Γ;α ` E2 : τ′2 τ′2 ≤ τ2

Γ;α ` E1 E2 : τ
T-APP

Γ;α ` Ct(E) OK Ct = (τ C) concrete(C)

Γ;α ` Ct(E) : Ct
T-NEW

Γ;α ` E1 : τ1 · · · Γ;α ` Ek : τk

Γ;α ` (E1, . . . ,Ek) : τ1 ∗ · · · ∗ τk
T-TUP

α ` Ct OK Ct = (τ0 C) concrete(C)
repType(Ct) = {V : τ} Γ;α ` E : τ1 τ1 ≤ τ

Γ;α ` Ct {V = E} : Ct
T-REP

Γ;α ` Ct(E) OK

α ` Ct OK Ct = (τ0 Sn.Cn)
(<abstract> class α0 Cn(I : τ) . . .) ∈ ST(Sn)

Γ;α ` E : τ1 τ1 ≤ [α0 7→ τ0]τ
Γ;α ` Ct(E) OK

T-SUPER

τ ≤ τ′

τ ≤ τ
SUBTREF

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
SUBTTRANS

(<abstract> class α Cn(I1 : τ1)
extends Ct . . .) ∈ ST(Sn)

τ Sn.Cn ≤ [α 7→ τ]Ct
SUBTEXT

τ′1 ≤ τ1 τ2 ≤ τ′2
τ1 → τ2 ≤ τ′1 → τ′2

SUBTFUN

τ1 ≤ τ′1 · · · τk ≤ τ′k
τ1 ∗ · · · ∗ τk ≤ τ′1 ∗ · · · ∗ τ′k

SUBTTUP

matchType(τ,Pat) = (Γ,τ′)

matchType(τ, ) = ({},τ)
T-MATCHWILD

matchType(τ,Pat) = (Γ,τ′)
matchType(τ, I as Pat) = (Γ∪{(I,τ′)},τ′)

T-MATCHBIND

C ≤C′ repType(τ C) = {V : τ0}
matchType(τ0,Pat) = (Γ,τ1)

matchType((τ C′),C {V = Pat}) =

(
�

Γ,(τ C))

T-MATCHCLASS

matchType(τ1,Pat1) = (Γ1,τ′1)
· · · matchType(τk,Patk) = (Γk,τ′k)

matchType(τ1 ∗ · · · ∗ τk,(Pat1, . . . ,Patk)) =
(Γ1 ∪ . . .∪Γk,τ′1 ∗ · · · ∗ τ′k)

T-MATCHTUP

repType(Ct) = {V : τ}

(<<abstract>> class α Cn(I : τ1)
<extends Ct(E0) > of {Vn : τ2 = E2}) ∈ ST(Sn)

< repType(Ct) = {V : τ3} >

repType(τ Sn.Cn) =
[α 7→ τ]{< V : τ3,> Sn.Vn : τ2}

REPTYPE

Figure 12: Static semantics of types, expressions, and patterns. The notation matchType(τ0,Pat) = (Γ,τ1) ab-
breviates matchType(τ1,Pat1) = (Γ1,τ′1) · · · matchType(τk,Patk) = (Γk,τ′k). The notation Sn.Vn : τ abbreviates
Sn.Vn1 : τ1, . . . ,Sn.Vnk : τk.
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Figure 12 contains the static semantics of types, expressions, and patterns. The judgment α ` τ OK ensures that τ
refers only to type variables in α and that each class in τ has the correct number of type parameters. The subtyping
relation τ ≤ τ′ is completely standard. The judgment Γ;α ` E : τ ensures that an expression is well-typed in the
context of the type environment and sequence of type variables currently in scope. The associated inference rules are
straightforward and rely on the two helper rules at the bottom of figure 12. The judgment matchType(τ,Pat) = (Γ,τ′)
checks that a pattern is compatible with type τ. The judgment produces a type environment mapping any identifiers in
Pat to their types, used to typecheck the associated case’s body. The type τ′ represents the particular subtype of τ to
which Pat conforms; it is used to give precise types to any identifiers bound to Pat.

Figure 13 contains the well-formedness rules for a structure’s depends upon relation. Rule CLASSTRANSDEP is
used by CLASSOK in figure 11 to ensure that a structure containing a class is declared to depend upon all structures
that declare a (reflexive, transitive) superclass of the class. Rule FUNDEP is used by CASEOK to ensure that a structure
containing a function case is declared to depend upon the structure containing the associated function. In either case,
if Sn is required to declare a dependency on Sn′, then Sn does indeed statically depend upon Sn′ according to the
definition of static dependency given in section 3.1. The declared dependency relation may include more structures
than are statically depended upon, but the soundness proof relies only on the above two properties of the declared
dependency relation, thereby ensuring that modularity is respected.

Figure 14 formalizes the portion of modular ITC that ensures functions are exhaustive, which consists of enforce-
ment of the global-default and local-default requirements. Metavariable Tm ranges over both types and marked types,
and metavariable d ranges over nonnegative integers. Rule GDEFAULT checks that a given function has a global de-
fault case, and LDEFAULT checks that all available functions whose owners are superclasses of a given class C have a
local default case for C. Since a global default case of F is also a local default case of F for C, where C is the owner
of F , the two requirements are able to share the helper rules that perform the checks.

Our strategy in performing the checks is to generate a default pattern representing a valid (global or local) default
for a given function. We then check that the default pattern is at least as specific as the pattern of some available
function case; if so, we say that case covers the default pattern. For example, consider checking in HashSetMod of
figure 3 that size has a local default case for HashSet. We generate the default pattern (HashSet {ht= }). The
check then succeeds since the default pattern is at least as specific as (HashSet {ht=ht}), which is the pattern of
the size case in HashSetMod. Therefore that size case is a valid local default. This strategy is formalized by rule
DEFAULT.

The judgment defaultPat(Tm,C,d) = Pat generates a default pattern of (possibly marked) type Tm. The default
pattern dispatches on C in the marked position of Tm (if any) and accepts any type-correct argument in the other
positions. The integer d represents the nesting depth which the generated pattern should have. It is sound to generate
the default pattern to any depth, but greater depths can make the check more precise. For example, in checking size
above we assumed that the default pattern was (HashSet {ht= }). However, (HashSet ) is also a valid default
pattern, since it dispatches on HashSet in the owner position. If this default pattern were instead used to check size,
an incompleteness error would be signaled statically: the size case in HashSetMod no longer covers the default pattern
and is therefore not seen as an appropriate local default case. Our type system chooses the depth non-deterministically
in rule DEFAULT, and our soundness proof implies that any depth can be safely used. It is straightforward to find an
appropriately precise depth to use — it is the maximum depth of any pattern in an available case of the function being
checked. Our prototype interpreter implements this algorithm for choosing the depth.6

Figure 15 formalizes the portion of modular ITC that ensures functions are unambiguous. The top-level rule
is AMB. That rule enforces the ambiguity requirement, ensuring that the given function case is declared in the same
module as either its associated function or its owner. The ambiguity requirement ensures that the case is not ambiguous
with unavailable cases. AMB then uses STRAMB to check that the given case is unambiguous with available function
cases. STRAMB compares the given case individually with each available function case other than itself. Let Pat and
Pat′ be the patterns of the two cases. If the patterns are disjoint, then they are not ambiguous. Otherwise, the patterns
have a non-empty intersection, formalized by the judgment Pat∩Pat′ = Pat0: values matching both Pat and Pat′ match
Pat0, and no other values match Pat0. The two cases are then unambiguous if there exists a resolving case. A resolving
case covers the intersection Pat0, is at least as specific as both of the original cases, and is strictly more specific than at
least one of them. An important degenerate scenario occurs when one of Pat and Pat′ is more specific than the other.
For example, the two size cases in figure 1 have a non-empty intersection. Since the second case is strictly more
specific than the first, the second case itself is the resolving case.

6Because class patterns allow pattern matching on a class’s representation, which may recursively involve class patterns, it is possible for patterns
to have arbitrary depth. Therefore, there is in general no a priori maximal depth for the patterns of a given function.
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Sn ` Sn.Cn transDependedUpon

(<<abstract>> class (α Cn)(I : τ) <extends (τ0 C)(E) > .. .) ∈ ST(Sn)
Sn ∈ Sn < Sn `C transDependedUpon >

Sn ` Sn.Cn transDependedUpon
CLASSTRANSDEP

Sn ` F dependedUpon

Sn ∈ Sn

Sn ` Sn.Fn dependedUpon
FUNDEP

Figure 13: Well-formedness of the depends-upon relation.

Sn ` F has-gdefault

owner(F) = C Sn ` F has-default-for C

Sn ` F has-gdefault
GDEFAULT

Sn ` funs-have-ldefault-for C

∀F,C′
.[(Sn ` F dependedUpon∧owner(F) = C′∧C ≤C′) ⇒ Sn ` F has-default-for C]

Sn ` funs-have-ldefault-for C
LDEFAULT

Sn ` F has-default-for C

(fun α Fn : Mt → τ) ∈ ST(Sn)
defaultPat(Mt,C,d) = Pat (extend funMn α0 Sn.Fn Pat′ = E) ∈ ST(Sn′) Pat ≤ Pat′ Sn′ ∈ Sn

Sn ` Sn.Fn has-default-for C
DEFAULT

defaultPat(Tm,C,d) = Pat

defaultPat(Tm,C,0) =
DEFZERO

repType(τ C′) = {V : τ0}
defaultPat(τ0,C,d−1) = Pat d > 0

defaultPat((τ C′),C,d) = (C′ {V = Pat})
DEFCLASSTYPE

defaultPat(Tm1,C,d−1) = Pat1
· · ·

defaultPat(Tmk,C,d −1) = Patk d > 0

defaultPat(Tm1 ∗ . . .∗Tmk,C,d) = (Pat1, . . . ,Patk)
DEFTUPTYPE

d > 0

defaultPat(α,C,d) =
DEFTYPEVAR

repType(τ C) = {V : τ0}
defaultPat(τ0,C,d−1) = Pat

d > 0

defaultPat(#(τ C′),C,d) = (C {V = Pat})
DEFOWNERCLASSTYPE

d > 0

defaultPat(τ1 → τ2,C,d) =
DEFFUNTYPE

Figure 14: Exhaustiveness checking. The notation defaultPat(τ0,C,d−1) = Pat abbreviates defaultPat(τ1,C,d−1) =
Pat1 · · · defaultPat(τk,C, d −1) = Patk.
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Sn;Sn ` extend fun . . . unambiguous

(fun α′ Fn : Mt → τ) ∈ ST(Sn′)
owner(Mt,Pat) = Sn′′.Cn Sn = Sn′ ∨Sn = Sn′′ Sn ` extend funMn α Sn′.Fn Pat = Eunambiguous in Sn

Sn;Sn ` extend funMn α Sn′.FnPat = E unambiguous
AMB

Sn ` extend fun . . . unambiguous in Sn

∀Sn′ ∈ Sn.∀(extend funMn′ α1 F Pat′ = E ′) ∈ ST(Sn′).
∀Pat0.[(Pat∩Pat′ = Pat0 ∧Sn.Mn 6= Sn′.Mn′) ⇒

∃Sn′′ ∈ Sn.∃(extend funMn′′ α2 F Pat′′ = E ′′) ∈ ST(Sn′′).
(Pat0 ≤ Pat′′∧Pat′′ ≤ Pat∧Pat′′ ≤ Pat′∧ (Pat 6≤ Pat′′ ∨Pat′ 6≤ Pat′′))]

Sn ` extend funMn α F Pat = E unambiguous in Sn
STRAMB

Pat1 ∩Pat2 = Pat

∩Pat = Pat
PATINTWILD

Pat1 ∩Pat2 = Pat

I as Pat1 ∩Pat2 = Pat
PATINTBIND

C ≤C′ Pat1 ∩Pat2 = Pat

C {V = Pat1,V3 = Pat3}∩C′ {V = Pat2} = C {V = Pat,V3 = Pat3}
PATINTCLASS

Pat1 ∩Pat2 = Pat

(Pat1)∩ (Pat2) = (Pat)
PATINTTUP

Pat2 ∩Pat1 = Pat

Pat1 ∩Pat2 = Pat
PATINTREV

Figure 15: Unambiguity checking. The notation Pat1∩Pat2 = Pat abbreviates Pat′1∩Pat′′1 = Pat1 · · · Pat′k∩Pat′′k = Patk.

owner(F) = C

(fun α Fn : Mt → τ) ∈ ST(Sn)
owner(Mt) = C

owner(Sn.Fn) = C
OWNERFUN

owner(Mt) = C

owner(# τ C) = C
OWNERCLASS

owner(Mt) = C

owner(τ1 ∗ · · · ∗ τi−1 ∗Mt∗ τi+1 ∗ · · · ∗ τk) = C
OWNERTUP

owner(Mt,Pat) = C

owner(Mt,Pat) = C

owner(Mt, I as Pat) = C
OWNERBINDPAT

owner(Mt,Pati) = C

owner(τ1 ∗ · · · ∗ τi−1 ∗Mt∗ τi+1 ∗ · · · ∗ τk,

(Pat1, . . . ,Patk)) = C

OWNERTUPPAT

owner(#Ct,C {V = Pat}) = C
OWNERCLASSPAT

Figure 16: Accessing the owner.
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structure BadMod = struct
class C() of {}
fun f:C → unit
val bad = f(C())
extend fun f (C {}) = ()

end

Figure 17: Value declarations and ITC.

signature ShapeSig = sig
abstract class Shape() of {}
fun bad:Shape → unit
extend fun bad s

end
structure ShapeMod = struct

abstract class Shape() of {}
fun print:Shape → unit
fun bad:Shape → unit
extend fun bad s = print s

end : ShapeSig
structure CircleMod

class Circle() extends Shape() of {}
end

Figure 18: Unsoundnesses with hiding OO declarations.

Finally, figure 16 contains the helper judgments for accessing the class at the owner position of a function, type,
and pattern.

4.4 Type Soundness

We have proven type soundness for MINI-EML. As usual, we prove type preservation and progress theorems. The
notation ` E : T denotes the typechecking of E in the context of the empty type environment and empty sequence of
type variables.

Theorem 4.1 (Type Preservation) If ` E : τ and E −→ E ′, then there exists τ′ such that ` E ′ : τ′ and τ′ ≤ τ.

Theorem 4.2 (Progress) If ` E : τ and E is not a value, then there exists E ′ such that E −→ E ′.
The proofs of these two theorems are provided in appendices A and B, respectively. Proving type preservation is

relatively straightforward, as it is completely independent of ITC. Proving progress requires reasoning about modular
ITC, in order to show that function applications can always make progress. The key lemma says that a most-specific
applicable function case exists for each type-correct application:

Lemma 4.1 If ` Fv : τ2 → τ and ` v : τ′2 and τ′2 ≤ τ2, then there exist ρ and E such that most-specific-case-for(Fv,v)
= (ρ,E).

5 ML-Style Modules

This section discusses how EML’s features can interact with an ML-style module system including structures, signa-
tures, and functors.

5.1 Structures

Thus far we have assumed that EML structures contain only a sequence of class, function, and function case dec-
larations. We would also like to accommodate the ordinary ML declarations, including value, type, exception, and
structure declarations. The latter three kinds of declarations can be straightforwardly incorporated, but special care
is needed to handle value declarations. Figure 17 shows an example of the problems that can occur. ITC on BadMod
will succeed, because function f has an appropriate case for C. However, at run-time a match nonexhaustive error will
occur when the val declaration is executed, because f’s function case will have not yet been declared.

There are several approaches to handling this problem. We could adopt a two-pass style of structure evaluation.
The first pass would evaluate all of the declarations except the value declarations, and the second pass would evaluate
the value declarations. In our example, this semantics ensures that f’s function case is declared before f is invoked.
An alternative approach is to make the unit of modularity used in our ITC requirements more fine-grained than an
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entire structure, with val declarations forming the boundaries of these units. For example, BadMod would consist of
two units, one of which contains the first two declarations and the other containing the last declaration. When ITC is
performed on the first unit, the incompleteness of f for C would result in a static error. Our prototype EML interpreter
uses a variant of this approach. Instead of inferring the modular units, we introduce a new kind of OO declaration
of the form Ood and Ood′ (similar syntactically, but not semantically, to the and construct in ML), which groups a
sequence of class, function, and function case declarations. A group of anded OO declarations is treated as a unit for
the purposes of modular ITC.

5.2 Signature Ascription

Signature ascription provides information hiding in ML. Clients of a structure expression of the form S : Sig, where
Sig is a signature, may only access S’s components via the interface provided in Sig. Signature ascription for EML

provides forms of OO-style encapsulation. For example, classes, functions, and function cases can be hidden from
clients, making them private to their enclosing structure. However, these declarations cannot be hidden arbitrarily,
or else modular ITC would become unsound. Figure 18 shows a simple example of the problems that can occur.
ShapeMod creates the abstract Shape class and two associated functions. ITC in ShapeMod finds print to be exhaustive
and unambiguous, since Shape is abstract. Ascription to the ShapeSig signature hides print. Therefore, print is
not part of ShapeMod’s interface, so print is not available to CircleMod and is therefore not checked again for
exhaustiveness and unambiguity. If a Circle instance is passed to bad, however, print will be invoked, causing a
match nonexhaustive error.

Our example is purposely similar to the print example in figure 6. In that case, the ITC requirements ensure that
the problem is modularly detected. The same solution can be used here: a set of declarations can be safely hidden if
that set could have been written as a separate module that passes modular ITC [21]. The print function in figure 18
does not satisfy this condition. If print were in its own module, the type system would force the existence of a global
default case for print, which is now an external function. If print had such a case, then the function (and that case)
could be safely hidden via signature ascription, and the problem for Circle would be resolved.

Aside from hiding entire declarations, it is useful to hide certain properties of a declaration. Several properties
of classes may be hidden. First, a subset of a class’s instance variables may be hidden. As mentioned in section 4,
instance variables are scoped — the name of the structure declaring an instance variable is implicitly part of the name
of the instance variable. Therefore, there is no conflict if a subclass in a new module creates an instance variable of
the same name as a hidden one in the superclass. A concrete class can also be viewed as an abstract one, thereby
disallowing clients from instantiating the class. Finally, a signature can declare a class C sealed [27], which prevents
classes declared outside of C’s module from directly subclassing C. This construct can be used to faithfully model
ML-style (non-extensible) datatypes. Our modular requirements can be relaxed in the presence of sealed hierarchies.
For example, if an external function’s owner and all available subclasses are sealed, then the function need not have a
global default case, as in ML.

A function may be sealed by ascribing it and all associated cases to an ordinary ML-style value specification.
Clients may still invoke the function but its extensibility is hidden, so clients may not add new cases. Therefore,
function sealing allows us to model ML-style (non-extensible) functions. Function sealing is allowed under the same
circumstances that the function and its cases may be hidden. Finally, a value specification of the form val I : τ may be
replaced by val I : τ′, where τ′ is a supertype of τ.

Several forms of information hiding are not captured by our ascription rules. It would be useful to ascribe a class
declaration to one that specifies only a transitive, rather than direct, superclass. Unfortunately, this flexibility makes
modular ITC unsound. For example, a client of two classes C and C′ can write ambiguous function cases that appear
to be disjoint, and therefore pass static checks, if the fact that C subclasses C′ is hidden from the client. It would
also be useful to ascribe a class declaration to a type declaration, possibly augmented with Modula-3-style partial
revelations [22] to reveal some of the class’s underlying structure.

5.3 Functors

In the presence of EML’s features, functors can provide a great deal of flexibility. Figure 19 illustrates the kinds of
idioms we would like to express. The Colorize functor implements a form of mixin [4, 10, 13], which is a class
parameterized by its superclass. The functor creates a colored version of some unknown subclass APoint of Point.
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structure PointMod = struct
abstract class Point()
fun draw:Point → unit

end
signature APointSig = sig
class APoint(x:int,y:int)

extends Point of {x:int,y:int}
extend fun draw (APoint {x=x,y=y})

end

functor Colorize(M:APointSig) = struct
class ColorPoint(x:int,y:int,color:int)
extends M.APoint(x,y) of {color:int=color}

extend fun draw
(ColorPoint {x=x,y=y,color=color}) = . . .

fun getColor:ColorPoint → int
extend fun getColor
(ColorPoint {x=x,y=y,color=color}) = color

end

Figure 19: Idioms involving EML functors.

An overriding case for the existing draw function is given, in order to draw colored points specially. The functor also
introduces a new function for accessing the color of a colored point, with an associated case.

We would like to perform modular ITC once on a functor body, guaranteeing completeness and unambiguity of
all relevant functions no matter how the functor is instantiated. The major challenge for modular ITC of functors
like Colorize is the fact that the identities of some classes, for example M.APoint, are unknown. Instead we have
only partial information about the relationship between M.APoint and other classes. To address this challenge, we can
generalize the subclass relation in the static semantics to be three-valued, conservatively saying “don’t know” when the
partial class hierarchy information is inconclusive. We then appropriately generalize modular ITC to be conservative
with respect to three-valued subclassing. Consider performing ITC on the body of Colorize. Although the identity
of M.APoint is unknown, its relationship to ColorPoint is known, and this is enough information for modular ITC
on draw to succeed. We have formalized this three-valued semantics in an earlier version of MINI-EML but have not
proven it sound.

The restrictions on signature ascription described earlier limit the expressiveness of our Colorize functor. For
example, the functor can only be instantiated with a class APoint that is a direct subclass of Point, rather than a
transitive one. Also, APoint’s module must contain a draw case with exactly the pattern described in APointSig, and
the module can have no other draw cases for APoint (e.g. a special case to handle the origin). However, we can safely
remove these restrictions if we are willing to move some of the burden of ITC to clients of the functor. For example,
we can allow APoint to be instantiated with a transitive subclass of Point on the condition that the resulting structure
passes modular ITC. In the limit, this approach performs modular ITC once per instantiation of the functor, where the
identities of all classes are known, rather than once on the functor body. However, it is possible that most of ITC could
still be performed on the functor body in isolation, with only a few additional checks performed per instantiation.

6 Related Work

OML [25] and ML≤ [3] were described earlier. Zenger and Odersky [28] describe an extensible datatype mechanism
in the context of an OO language. Extending a datatype has the effect of creating a new datatype that subtypes from
the original one. To ensure exhaustiveness in the presence of datatype extension, all functions on extensible datatypes
must include a global default case, while EML often requires only local defaults. Because Zenger’s functions are
not extensible, if new data variants require overriding function cases, a new function must be created that inherits
the existing function cases and clients must be modified to invoke the new function. Like OML, Zenger’s language
includes both OO-style methods and ML-style functions. Zenger’s language also retains a distinction between datatype
“cases” and regular OO classes. Because Zenger’s language supports subtyping between entire datatypes (rather than
individual variants), it can provide more precise types than EML.

Garrigue shows how to use polymorphic variants, which are variants defined independent of any particular datatype,
to obtain both modular data-variant and function extensibility in ML [14]. However, unlike EML, both kinds of ex-
tensibility require advance planning. When defining a type as a set of polymorphic variants, an extra type parameter
must be used in place of recursive references to the type, to allow for future extension. Similarly, a function must take
an extra parameter function to invoke in place of recursive references. As in Zenger’s language, when a function is
extended any clients that require the new functionality must be modified. Unlike EML, polymorphic variants preserve
ML-style type inference.

Previous work on unifying functional and OO dispatching [9] provides ITC for patterns that are more general than
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those in EML, including conjunctions, disjunctions, and negations of arbitrary predicates. However, the ITC algorithm
requires access to the entire program.

Jiazzi [19], a component system for Java, addresses issues of signature ascription and parameterized modules in
the context of a traditional OO language. Jiazzi disallows hiding abstract methods because of problems analogous to
the one shown in figure 18. Jiazzi also restricts the hiding of a superclass relationship, like EML, but Jiazzi allows such
hiding if the superclass itself is also hidden. EML and Jiazzi each have challenges for information hiding that have no
analogue in the other system: EML’s unique challenges arise from its generalization of OO and functional dispatching
semantics, and Jiazzi’s unique challenges arise from cyclic linking.

EML’s modular requirements are adapted from our previous work on Dubious [20, 21], a multimethod-based OO
calculus supporting modular typechecking. In EML, we have generalized the requirements to fit an ML context and
have also substantially simplified both their informal and formal presentations. The notion of modularity in Dubious
is coarser than EML’s static dependency relation: a Dubious module requires access to more of the program to soundly
perform ITC than does an EML module. Dubious does not consider patterns, polymorphism, or ML-style modules.

7 Conclusions and Future Work

We described Extensible ML, an ML-like language that supports hierarchical, extensible datatypes and functions.
Such constructs allow for the easy addition of both new data variants and new operations to existing abstractions,
resolving a long-standing tension between the functional and object-oriented styles. At the same time, EML retains
completely modular typechecking of function implementations. This contrasts with previous languages based on
extensible datatypes and functions, which require link-time checks to ensure type safety. We have formalized EML in
MINI-EML and proven its type system sound.

There are several directions for future work. We have built a prototype interpreter for the core of EML, and we
plan to pursue case studies to gauge the utility of our modular type system in practice. Currently EML does not allow
aliasing of classes or extensible functions. A general approach to handling aliasing would allow classes and extensible
functions to be less second-class. Finally, more work is needed to integrate EML with ML-style modules, particularly
functors. We will pursue the ideas presented in section 5, formalize this extension in MINI-EML, and implement it in
our interpreter.
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A Type Preservation

A.1 Shared Preliminaries and Lemmas
These preliminaries and lemmas are also used in the progress proof in appendix B.

As in the inference rules, we assume a global structure table ST. We further assume that for each Sn ∈ dom(ST) we have
ST(Sn) OK. The empty sequence is denoted •. The notation ` E : τ is shorthand for {};• ` E : τ.

Lemma A.1 If α ` τ OK, then all type variables in τ are in α.
Proof By (strong) induction on the depth of the derivation of α ` τ OK. Case analysis on the last rule used in the derivation. For
TVAROK, τ has the form α and the premise ensures that α ∈ α. All other cases are easily proven by induction. �

Lemma A.2 If α ` τ OK and |α| = |τ| and α′ ` τ OK, then α′ ` [α 7→ τ]τ OK.
Proof By (strong) induction on the depth of the derivation of α ` τ OK. Case analysis on the last rule used in the derivation. For
TVAROK, τ has the form α and the premise ensures that α ∈ α. Therefore [α 7→ τ]τ is some τ0 in τ. By assumption α′ ` τ0 OK so
the result follows. All other cases are easily proven by induction. �

Lemma A.3 If (τ C) ≤ τ, then τ has the form (τ1 C′).
Proof By (strong) induction on the depth of the derivation of (τ C) ≤ τ. Case analysis of the last rule used in the derivation.

• Case SUBTREF. Then τ = (τ C).

• Case SUBTTRANS. Then (τ C) ≤ τ′ and τ′ ≤ τ. By induction τ′ has the form (τ2 C′′). Then by induction again, τ has the
form (τ1 C′).

• Case SUBTEXT. Then τ has the form [α 7→ τ]Ct, which is also of the form (τ1 C′).

�

Lemma A.4 If (τ C) ≤ (τ1 C′), then τ = τ1.
Proof By (strong) induction on the depth of the derivation of (τ C) ≤ (τ1 C′). Case analysis of the last rule used in the derivation.

• Case SUBTREF. Then (τ C) = (τ1 C′), so τ = τ1.

• Case SUBTTRANS. Then (τ C) ≤ τ and τ ≤ (τ1 C′). By Lemma A.3, τ has the form (τ2 C′′). Then by induction we have
τ = τ2 and τ2 = τ1, so τ = τ1.

• Case SUBTEXT. Then C = Sn.Cn and (τ1 C′) = [α 7→ τ](τ2 C′) and (<abstract> class α Cn(I1 : τ1, . . . , Im : τm) extends
(τ2 C′) . . .) ∈ ST(Sn). By CLASSOK, we have τ2 = α. Therefore (τ1 C′) = [α 7→ τ](α C′) = (τ C′). Therefore τ = τ1.

�

Lemma A.5 If (τ C) ≤ (τ1 C′) then C ≤C′.
Proof By (strong) induction on the depth of the derivation of (τ C) ≤ (τ1 C′). Case analysis of the last rule used in the derivation.

• Case SUBTREF. Then (τ C) = (τ1 C′), so C = C′. Then the result holds by SubRef.

• Case SUBTTRANS. Then (τ C)≤ τ and τ ≤ (τ1 C′). By Lemma A.3 τ has the form (τ2 C′′). Then by induction we have that
C ≤C′′ and C′′ ≤C′. Therefore the result follows by SubTrans.

• Case SUBTEXT. Then C = Sn.Cn and (<abstract> class α Cn(I0 : τ0) extends (τ2 C′) . . .) ∈ ST(Sn). Then the result
follows by SubExt.

�

Lemma A.6 If τ ≤ τ1 ∗ · · · ∗ τk, then τ has the form τ′1 ∗ · · · ∗ τ′k, where for all 1 ≤ i ≤ k we have τ′i ≤ τi.
Proof By (strong) induction on the depth of the derivation of τ ≤ τ1 ∗ · · · ∗ τk. Case analysis of the last rule used in the derivation.

• Case SUBTREF. Then τ = τ1 ∗ · · · ∗ τk. By SubTRef, for all 1 ≤ i ≤ k we have τi ≤ τi, so the result follows.

• Case SUBTTRANS. Then τ ≤ τ′ and τ′ ≤ τ1 ∗ · · · ∗ τk. By induction τ′ has the form τ′′1 ∗ · · · ∗ τ′′k , where for all 1 ≤ i ≤ k
we have τ′′i ≤ τi. Then by induction again, τ has the form τ′1 ∗ · · · ∗ τ′k, where for all 1 ≤ i ≤ k we have τ′i ≤ τ′′i . Then by
SubTTrans, for all 1 ≤ i ≤ k we have τ′i ≤ τi.

• Case SUBTTUP. Then τ has the form τ′1 ∗ · · · ∗ τ′k, where for all 1 ≤ i ≤ k we have τ′i ≤ τi.

�

Lemma A.7 If Sn.Cn ≤ Sn′.Cn′ and α0 ` (τ Sn.Cn) OK then (1) (τ Sn.Cn) ≤ (τ Sn′.Cn′); and (2) α0 ` (τ Sn′.Cn′) OK.
Proof By (strong) induction on the depth of the derivation of Sn.Cn ≤ Sn′.Cn′. Case analysis of the last rule used in the derivation.

• Case SUBREF. Then Sn′.Cn′ = Sn.Cn. Then condition 1 follows from SubTRef, and condition 2 follows by assumption.
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• Case SUBTRANS. Then Sn.Cn ≤ Sn′′.Cn′′ and Sn′′.Cn′′ ≤ Sn′.Cn′. By induction we have (τ Sn.Cn) ≤ (τ Sn′′.Cn′′) and
α0 ` (τ Sn′′.Cn′′) OK. Then by induction again we have (τ Sn′′.Cn′′) ≤ (τ Sn′.Cn′) and α0 ` (τ Sn′.Cn′) OK. Therefore
condition 2 is shown, and condition 1 follows from SubTTrans.

• Case SUBEXT. Then (<abstract> class α Cn(I0 : τ0) extends (τ′ Sn′.Cn′)(E) . . .) ∈ ST(Sn). Then by CLASSOK
we have τ′ = α. Since α0 ` (τ Sn.Cn) OK, by CLASSTYPEOK we have |α| = |τ| and α0 ` τ OK. Therefore by SUB-
TEXT we have (τ Sn.Cn) ≤ [α 7→ τ](α Sn′.Cn′). Since [α 7→ τ](α Sn′.Cn′) = (τ Sn′.Cn′), condition 1 is shown. Also by
CLASSOK α ` (α Sn′.Cn′)(E) OK, so by T-SUPER we have have α ` (α Sn′.Cn′) OK. Therefore by Lemma A.2 we have
α0 ` (τ Sn′.Cn′) OK, so condition 2 is shown.

�

Lemma A.8 If α ` Ct OK then repType(Ct) is well-defined and has the form {V0 : τ0}.
Proof Let Ct = (τ Sn.Cn). We prove this lemma by induction on the length of the longest path in the superclass graph from Sn.Cn
(in other words, the number of non-trivial superclasses of Sn.Cn). By CLASSTYPEOK we have α ` τ OK and (<abstract>
class α0 Cn(I1 : τ1) <<extends Ct′(E) >> of {Vn : τ2 = E2}) ∈ ST(Sn) and |α0| = |τ|. There are two cases to consider.

• The length of the longest path in the superclass graph from Sn.Cn is 0. Then Sn.Cn has no non-trivial superclasses, so the
extends clause in the declaration of Sn.Cn is absent. Then by REPTYPE we have repType(Ct) = [α0 7→ τ]{Sn.Vn : τ2}, so
the result follows.

• The length of the longest path in the superclass graph from Sn.Cn is i > 0. Then Sn.Cn has at least one non-trivial superclass,
so the extends clause in the declaration of Sn.Cn is present. Then by CLASSOK we have α0 ` Ct′(E) OK, so by T-SUPER

we have α0 ` Ct′ OK. Since Ct′ must have the form (τ1 Sn′.Cn′), where the length of the longest path in the superclass
graph from Sn′.Cn′ is i− 1, by induction we have that repType(Ct′) has the form {V0 : τ0}. Then by REPTYPE we have
repType(Ct) = [α0 7→ τ]{V0 : τ0,Sn.Vn : τ2}, so the result follows.

�

Lemma A.9 If α ` Ct OK and Ct ≤ Ct′, then α ` Ct′ OK.
Proof By (strong) induction on the depth of the derivation of Ct ≤ Ct′. Case analysis of the last rule used in the derivation.

• Case SUBTREF. Then Ct = Ct′, so the result follows by assumption.

• Case SUBTTRANS. Then Ct ≤ τ and τ ≤ Ct′. By Lemma A.3 τ has the form Ct′′. Therefore by induction we have
α ` Ct′′ OK, and by induction again we have α ` Ct′ OK.

• Case SUBTEXT. Then Ct = (τ Sn.Cn) and Ct′ = [α0 7→ τ]Ct′′ and (<abstract> class α0 Cn(I0 : τ0) extends Ct′′(E)
. . .) ∈ ST(Sn). By CLASSOK we have α0 ` Ct′′(E) OK, so by T-SUPER we have α0 ` Ct′′ OK. Since α ` Ct OK, by
CLASSTYPEOK we have α ` τ OK. Therefore by Lemma A.2 we have α ` [α0 7→ τ]Ct′′ OK.

�

Lemma A.10 If repType(Ct) = {V : τ} and α ` Ct OK, then α ` τ OK.
Proof By induction on the depth of the derivation of repType(Ct) = τ. Then by RepType Ct = (τ0 Sn.Cn) and {V : τ} = [α0 7→
τ0]{< V1 : τ1,> Sn.Vn : τ2} and (<<abstract>> class α0 Cn(I0 : τ0) <extends Ct′(E) > of {Vn : τ2 = E2}) ∈ ST(Sn) and
< repType(Ct′) = {V1 : τ1}. By CLASSOK we have < α0 ` Ct′(E) OK >, so by T-SUPER we have < α0 ` Ct′ OK >. Then by
induction we have have < α0 ` τ1 OK. Also by CLASSOK we have α0 ` τ2 OK. Since α ` Ct OK, by CLASSTYPEOK we have
that α ` τ0 OK. Therefore by Lemma A.2 we have < α ` [α0 7→ τ0]τ1 OK > and α ` [α0 7→ τ0]τ2 OK, so the result follows. �

Lemma A.11 If repType(Ct) = {V : τ} and |α| = |τ|, then repType([α 7→ τ]Ct) = [α 7→ τ]{V : τ}.
Proof By induction on the depth of the derivation of repType(Ct) = {V : τ}. Then by REPTYPE Ct = (τ0 Sn.Cn) and {V : τ} =
[α0 7→ τ0]{< V1 : τ1,> Sn.Vn : τ2} and (<<abstract>> class α0 Cn(I4 : τ4) <extends Ct′(E) > of {Vn : τ2 = E2}) ∈ ST(Sn)
and < repType(Ct′) = {V1 : τ1} >. Therefore by REPTYPE we have repType([α 7→ τ](τ0 Sn.Cn)) = [α0 7→ [α 7→ τ]τ0]{< V1 : τ1,>

Sn.Vn : τ2}. By CLASSOK we have < α0 `Ct′(E) OK >, so by T-SUPER we have < α0 `Ct′ OK >. Then by Lemma A.10 we have
< α0 ` τ1 OK >, so by Lemma A.1 all type variables τ1 are in α0. Also by CLASSOK we have α0 ` τ2 OK, so by Lemma A.1 all
type variables in τ2 are in α0. Therefore [α0 7→ [α 7→ τ]τ0]{V1 : τ1,Sn.Vn : τ2} is equivalent to [α 7→ τ][α0 7→ τ0]{V1 : τ1,Sn.Vn : τ2},
so the result follows. �

Lemma A.12 If • ` Ct OK and Ct ≤ Ct′ then repType(Ct) has the form {V1 : τ1,V2 : τ2} and repType(Ct′) = {V1 : τ1}.
Proof By induction on the depth of the derivation of Ct ≤ Ct′. Case analysis of the last rule used in the derivation.

• Case SUBTREF. Then Ct = Ct′. Since • `Ct OK, by Lemma A.8 we have that repType(Ct) is well-defined and has the form
{V : τ}. Therefore, repType(Ct′) = {V : τ} as well, so the result follows.

• Case SUBTTRANS. Then Ct ≤ τ and τ ≤ Ct′. By Lemma A.3 τ has the form Ct′′. Then by Lemma A.9 we have • ` Ct′′ OK
and • `Ct′ OK. Therefore by induction we have repType(Ct) = {V1 : τ1,V3 : τ3,V4 : τ4} and repType(Ct′′) = {V1 : τ1,V3 : τ3}.
By induction again we have repType(Ct′) = {V1 : τ1}, so the result is shown.
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• Case SUBTEXT. Then Ct = (τ Sn.Cn) and Ct′ = [α 7→ τ]Ct′′ and (<abstract> class α Cn(I0 : τ0) extends Ct′′(E) of
{Vn : τ2 = E2}) ∈ ST(Sn). Since • ` Ct OK, by Lemma A.8 we have that repType(Ct) is well defined and has the form
{V3 : τ3}. Then by REPTYPE we have {V3 : τ3} = [α 7→ τ]{V1 : τ1,Sn.Vn : τ2} and repType(Ct′′) = {V1 : τ1}. Then by
Lemma A.11 we have repType(Ct′) = [α 7→ τ]{V1 : τ1}, so the result follows.

�

A.2 Simple Lemmas
Lemma A.13 If τ ≤ τ1 → τ2, then τ has the form τ′1 → τ′2, where τ1 ≤ τ′1 and τ′2 ≤ τ2.
Proof By (strong) induction on the depth of the derivation of τ ≤ τ1 → τ2. Case analysis on the last rule used in the derivation.

• Case SUBTREF. Therefore τ = τ1 → τ2, so τ′1 = τ1 and τ′2 = τ2. By SUBTREF we have τ1 ≤ τ′1 and τ′2 ≤ τ2.

• Case SUBTTRANS. Therefore τ ≤ τ′ and τ′ ≤ τ1 → τ2. By induction τ′ has the form τ′′1 → τ′′2 , where τ1 ≤ τ′′1 and τ′′2 ≤ τ2.
Therefore, again by induction τ has the form τ′1 → τ′2, where τ′′1 ≤ τ′1 and τ′2 ≤ τ′′2 . By SUBTTRANS we have τ1 ≤ τ′1 and
τ′2 ≤ τ2.

• Case SUBTFUN. Then τ has the form τ′1 → τ′2, where τ1 ≤ τ′1 and τ′2 ≤ τ2.

�

Lemma A.14 If rep(Ct(E)) = {V1 = E1} and repType(Ct) = {V2 : τ2} then V1 = V2.
Proof By induction on the depth of the derivation of rep(Ct(E)) = {V1 = E1}. By REP we have Ct =(τ Sn.Cn) and (<<abstract>>

class α Cn(I0 : τ0) <extends Ct′(E0) > of {Vn : τ2 = E2}) ∈ ST(Sn) and <rep(Ct′(E0)) = {V3 = E3} > and V1 is equivalent to
< V3,> Sn.Vn. Since repType(Ct) = {V2 : τ2}, by REPTYPE we have <repType(Ct′) = {V4 : τ4} >, so by induction < V3 = V4 >.
Then by REPTYPE V2 is equivalent to < V3,> Sn.Vn. �

A.3 Type Substitution
Lemma A.15 If τ ≤ τ′ and |α| = |τ|, then [α 7→ τ]τ ≤ [α 7→ τ]τ′.
Proof By (strong) induction on the depth of the derivation of τ ≤ τ′. Case analysis of the last rule used in the derivation. The only
interesting case is SUBTEXT.

• Case SUBTEXT. Then τ has the form τ0 Sn.Cn and τ′ has the form [α0 7→ τ0]Ct and (<abstract> class α0 Cn(I3 : τ3)
extends Ct(E) . . .) ∈ ST(Sn). Then by SUBTEXT we have ([α 7→ τ]τ0) Sn.Cn ≤ [α0 7→ [α 7→ τ]τ0]Ct. Note that ([α 7→
τ]τ0) Sn.Cn is equivalent to [α 7→ τ](τ0 Sn.Cn). Further, by CLASSOK we have that α0 ` Ct(E) OK, so by T-SUPER also
α0 ` Ct OK. Therefore, by Lemma A.1 all type variables in Ct are in α0. Therefore we have that [α0 7→ [α 7→ τ]τ0]Ct is
equivalent to [α 7→ τ][α0 7→ τ0]Ct. Therefore the result follows.

�

Lemma A.16 If Γ;α ` E : τ and |α| = |τ| and α0 ` τ OK, then [α 7→ τ]Γ;α0 ` [α 7→ τ]E : [α 7→ τ]τ.
Proof By (strong) induction on the depth of the derivation of Γ;α ` E : τ. Case analysis of the last rule used in the derivation.

• Case T-ID. Then E = I and (I,τ) ∈ Γ. Therefore, (I, [α 7→ τ]τ) ∈ [α 7→ τ]Γ. Also, I = [α 7→ τ]I. So by T-ID we have
[α 7→ τ]Γ;α0 ` [α 7→ τ]E : [α 7→ τ]τ.

• Case T-NEW. Then E = Ct(E) and τ = Ct and α ` Ct(E) OK and Ct = (τ1 Sn.Cn) and concrete(Sn.Cn). By T-SUPER

we have α ` Ct OK and (<abstract> class α1 Cn(I0 : τ0) . . .) ∈ ST(Sn) and Γ;α ` E : τ′0 and τ′0 ≤ [α1 7→ τ1]τ0.
By Lemma A.2 we have α0 ` [α 7→ τ]Ct OK. Since Ct = (τ1 Sn.Cn) we have [α 7→ τ]Ct = [α 7→ τ](τ1 Sn.Cn) = ([α 7→

τ]τ1 Sn.Cn), which is of the form (τ2 Sn.Cn). By induction we have [α 7→ τ]Γ;α0 ` [α 7→ τ]E : [α 7→ τ]τ′0. By Lemma A.15

we have [α 7→ τ]τ′0 ≤ [α 7→ τ][α1 7→ τ1]τ0. By CLASSOK we have α1 ` τ0 OK, so by Lemma A.1 all type variables in
each τ0 are in α1. Therefore [α 7→ τ][α1 7→ τ1]τ0 is equivalent to [α1 7→ [α 7→ τ]τ1]τ0. Therefore by T-SUPER we have
[α 7→ τ]Γ;α0 ` [α 7→ τ]E OK, and the result follows by T-NEW.

• Case T-REP. Then E = Ct {V = E} and τ = Ct and α ` Ct OK and Ct = (τ1 Sn.Cn) and concrete(Sn.Cn) repType(Ct)
= {V0 : τ0} and Γ;α ` E : τ′0 and τ′0 ≤ τ0. By Lemma A.2 we have α0 ` [α 7→ τ]Ct OK. Since Ct = (τ1 Sn.Cn) we
have [α 7→ τ]Ct = [α 7→ τ](τ1 Sn.Cn) = ([α 7→ τ]τ1 Sn.Cn), which is of the form (τ2 Sn.Cn). By Lemma A.11 we have
repType([α 7→ τ]Ct) = [α 7→ τ]{V0 : τ0}. By induction we have [α 7→ τ]Γ;α0 ` [α 7→ τ]E : [α 7→ τ]τ′0. By Lemma A.15 we

have [α 7→ τ]τ′0 ≤ [α 7→ τ]τ0. Therefore by T-REP the result follows.

• Case T-FUN. Then E = τ1 Sn.Fn and τ = [α1 7→ τ1](M̂t → τ′) and α ` τ1 OK and (fun α1 Fn : Mt → τ′) ∈ ST(Sn). By
Lemma A.2 we have α0 ` [α 7→ τ]τ1 OK. Therefore by T-FUN we have [α 7→ τ]Γ;α0 ` [α 7→ τ](τ1 Sn.Fn) : [α 7→ τ][α1 7→
τ1](M̂t → τ′). By FUNOK we have α ` M̂t OK and α ` τ′ OK. Therefore by Lemma A.1 we have that all type variables in
M̂t and τ′ are in α. Therefore, [α 7→ τ][α1 7→ τ1](M̂t → τ′) is equivalent to [α1 7→ [α 7→ τ]τ1](M̂t → τ′), so the result follows.
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• Case T-TUP. Then E = (E1, . . . ,Ek) and τ = τ1 ∗ · · · ∗ τk and for all 1 ≤ i ≤ k we have Γ;α ` Ei : τi. Therefore by induction,
for all 1 ≤ i ≤ k we have [α 7→ τ]Γ;α0 ` [α 7→ τ]Ei : [α 7→ τ]τi, and the result follows by T-TUP.

• Case T-APP. Then E = E1 E2 and Γ;α ` E1 : τ2 → τ and Γ;α ` E2 : τ′2 and τ′2 ≤ τ2. By induction we have [α 7→ τ]Γ;α0 `
[α 7→ τ]E1 : [α 7→ τ](τ2 → τ) and [α 7→ τ]Γ;α0 ` [α 7→ τ]E2 : [α 7→ τ]τ′2. By Lemma A.15 we have [α 7→ τ]τ′2 ≤ [α 7→ τ]τ2,
so the result follows by T-APP.

�

Lemma A.17 If matchType(τ,Pat) = (Γ,τ′) and |α| = |τ|, then matchType([α 7→ τ]τ,Pat) = ([α 7→ τ]Γ, [α 7→ τ]τ′).
Proof By (strong) induction on the depth of the derivation of matchType(τ,Pat) = (Γ,τ′). Case analysis of the last rule used in the
derivation.

• Case T-MATCHWILD. Then Pat has the form and Γ = {} and τ′ = τ. Then [α 7→ τ]τ = [α 7→ τ]τ′ and [α 7→ τ]Γ = {}, so
the result follows by T-MATCHWILD.

• Case T-MATCHBIND. Then Pat has the form I as Pat′ and Γ = Γ′∪{(I,τ′)} and matchType(τ,Pat′) = (Γ′,τ′). By induction
we have matchType([α 7→ τ]τ,Pat′) = ([α 7→ τ]Γ′, [α 7→ τ]τ′). Therefore by T-MATCHBIND we have matchType([α 7→
τ]τ,(I as Pat′) = [α 7→ τ]Γ′ ∪{(I, [α 7→ τ]τ′)}, [α 7→ τ]τ′). Since [α 7→ τ]Γ′ ∪{(I, [α 7→ τ]τ′)} is equivalent to [α 7→ τ](Γ′ ∪
{(I,τ′)}), the result follows.

• Case T-MATCHTUP. Then τ = τ1 ∗ · · · ∗ τk and Pat has the form (Pat1, . . . ,Patk) and Γ = Γ1 ∪ . . .∪Γk and τ′ = τ′1 ∗ · · · ∗ τ′k
and for all 1 ≤ i ≤ k we have matchType(τi,Pati) = (Γi,τ′i). By induction, for all 1 ≤ i ≤ k we have matchType([α 7→
τ]τi,Pati) = ([α 7→ τ]Γi, [α 7→ τ]τ′i). Therefore, the result follows by T-MATCHTUP.

• Case T-MATCHCLASS. Then Pat has the form C {V = Pat} and τ = (τ1 C′) and τ′ = (τ1 C) and Γ = � Γ and C ≤ C′ and
repType(τ1 C) = {V : τ} and matchType(τ,Pat) = (Γ,τ′). By Lemma A.11 we have repType([α 7→ τ](τ1 C)) = [α 7→ τ]{V : τ}.
By induction we have matchType([α 7→ τ]τ,Pat) = ([α 7→ τ]Γ, [α 7→ τ]τ′). Therefore the result follows by T-MATCHCLASS.

�

A.4 Type Preservation
Lemma A.18 If ` v : τ′′ and τ′′ ≤ τ and match(v,Pat) = ρ and matchType(τ,Pat) = (Γ,τ′), then (1) τ′′ ≤ τ′; and (2) dom(Γ) =
dom(ρ) and for each (I0,τ0) ∈ Γ, there exists (I0,v0) ∈ ρ such that ` v0 : τ′0, for some τ′0 such that τ′0 ≤ τ0.
Proof By (strong) induction on the length of the derivation of match(v,Pat) = ρ. Case analysis of the last rule used in the derivation:

• Case E-MATCHWILD. Then Pat has the form and ρ = {}. By T-MATCHWILD we have Γ = {} and τ′ = τ. Therefore,
condition 1 follows from the assumption that τ′′ ≤ τ, and condition 2 holds vacuously.

• Case E-MATCHBIND. Then Pat has the form I as Pat′ and ρ = ρ′ ∪{(I,v)} and match(v,Pat′) = ρ′. By T-MATCHBIND

we have Γ = Γ′ ∪{(I,τ′)} and matchType(τ,Pat′) = (Γ′,τ′). By induction we have that τ′′ ≤ τ′ and dom(Γ′) = dom(ρ′)
and for each (I0,τ0) ∈ Γ′, there exists (I0,v0) ∈ ρ′ such that ` v0 : τ′0, where τ′0 ≤ τ0. Therefore, we have τ′′ ≤ τ′ and
dom(Γ′ ∪{(I,τ′)}) = dom(ρ′ ∪{(I,v)}) and for each (I0,τ0) ∈ Γ′ ∪{(I,τ′)}, there exists (I0,v0) ∈ ρ′ ∪{(I,v)} such that
` v0 : τ′0, where τ′0 ≤ τ0.

• Case E-MATCHTUP. Then v = (v1, . . . ,vk) and Pat has the form (Pat1, . . . ,Patk) and ρ = ρ1 ∪ ·· ·∪ρk and for all 1 ≤ i ≤ k
we have match(vi,Pati) = ρi. By T-MATCHTUP we have τ = τ1 ∗ · · · ∗τk and Γ = Γ1 ∪ . . .∪Γk and τ′ = τ′1 · · · ∗τ′k and for all
1 ≤ i ≤ k we have match(τi,Pati) = (Γi,τ′i).
Since we’re given that ` v : τ′′, by T-TUP we have that τ′′ = τ′′1 ∗ · · · ∗ τ′′k and for all 1 ≤ i ≤ k we have ` vi : τ′′i . Since we’re
given that τ′′ ≤ τ, by Lemma A.6 we have τ′′i ≤ τi for all 1 ≤ i ≤ k. Then by induction, for all 1 ≤ i ≤ k we have τ′′i ≤ τ′i.
Then by SUBTTUP we have τ′′1 ∗ · · · ∗ τ′′k ≤ τ′1 ∗ . . .∗ τ′k, proving condition 1. Also by induction, dom(Γi) = dom(ρi) and for
each (I0,τ0) ∈ Γi, there exists (I0,v0) ∈ ρi such that ` v0 : τ′0, where τ′0 ≤ τ0, so condition 2 follows.

• Case E-MATCHCLASS. Then v = ((τ C) {V1 = v1,V2 = v2}) and Pat has the form (C′ {V1 = Pat1) and C ≤C′ and ρ = � ρ1
and match(v1,Pat1) = ρ1. By T-MATCHCLASS we have τ = (τ′ C′′) and τ′ = (τ′ C′) and Γ = � Γ1 and C′ ≤ C′′ and
repType(τ′ C′) = {V1 : τ1} and matchType(τ1,Pat1) = (Γ1,τ′1).
Since ` v : τ′′ and v = ((τ C) {V1 = v1,V2 = v2}), by T-REP we have that τ′′ = (τ C) and • ` (τ C) OK and and repType(τ C)
= {V1 : τ′′1 ,V2 : τ′′2} and ` v1 : τ′′′1 and τ′′′1 ≤ τ′′1 . Since τ′′ ≤ τ, we have (τ C)≤ (τ1 C′′), so by Lemma A.4 we have τ = τ1. Since
C ≤C′ and • ` (τ C) OK, by Lemma A.7 we have (τ C) ≤ (τ C′), and since τ = τ1, condition 1 is shown. By Lemma A.12
we have τ′′1 = τ1. Therefore ` v1 : τ′′′1 and τ′′′1 ≤ τ1 and match(v1,Pat1) = ρ1 and matchType(τ1,Pat1) = (Γ1,τ′1), so by

induction we have that τ′′′1 ≤ τ′1 and dom( � Γ1) = dom( � ρ1) and for each (I0,τ0) ∈ � Γ1, there exists (I0,v0) ∈ � ρ1 such
that ` v0 : τ′0, where τ′0 ≤ τ0.

�
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Lemma A.19 (Substitution) If Γ,α0 ` E : τ and Γ = {(I0,τ0)} and Γ0;α0 ` E0 : τ0
′ and τ′0 ≤ τ0, then Γ0;α0 ` [I0 7→ E0]E : τ′, for

some τ′ such that τ′ ≤ τ.
Proof By (strong) induction on the depth of the derivation of Γ,α0 ` E : τ. Case analysis of the last rule used in the derivation.

• Case T-ID. Then E = I and (I,τ) ∈ Γ, so I = I j and τ = τ j, for some 1 ≤ j ≤ k, where I0 = I1, . . . , Ik and τ0 = τ1, . . . ,τk and
E0 = E1, . . . ,Ek. Therefore [I0 7→ E0]E = E j. Since we’re given that Γ0;α0 ` E j : τ′j and τ′j ≤ τ j, the result is shown.

• Case T-NEW. Then E = Ct(E) and τ = Ct and α0 `Ct(E) OK and Ct = (τ1 Sn.Cn) and concrete(Sn.Cn). Then by T-SUPER

we have α0 ` Ct OK and (<abstract> class α1 Cn(I : τ) . . .) ∈ ST(Sn) and Γ;α0 ` E : τ′ and τ′ ≤ [α1 7→ τ1]τ. Since
[I0 7→ E0]Ct = Ct and [I0 7→ E0]Sn.Cn = Sn.Cn, we have α0 ` [I0 7→ E0]Ct OK and concrete([I0 7→ E0]Sn.Cn). By induction
we have Γ0;α0 ` [I0 7→ E0]E : τ′′ and τ′′ ≤ τ′. Then by SUBTTRANS we have τ′′ ≤ [α1 7→ τ1]τ′. Therefore by T-SUPER we
have Γ0;α0 ` [I0 7→ E0]E OK, so by T-NEW we have Γ0;α0 ` [I0 7→ E0]E : τ. By SUBTREF we have τ ≤ τ, so the result is
shown.

• Case T-REP. Then E = Ct {V = E} and τ = Ct and α0 ` Ct OK and Ct = (τ1 Sn.Cn) and concrete(Sn.Cn) and repType(Ct)
= {V : τ} and Γ;α0 ` E : τ′ and τ′ ≤ τ. Since [I0 7→ E0]Ct = Ct and [I0 7→ E0]Sn.Cn = Sn.Cn, we have α0 ` [I0 7→ E0]Ct OK
and concrete([I0 7→ E0]Sn.Cn) and and repType([I0 7→ E0]Ct) = {V : τ}. By induction we have Γ0;α0 ` [I0 7→ E0]E : τ′′ and
τ′′ ≤ τ′. Then by SUBTTRANS we have τ′′ ≤ τ, so by T-Rep we have Γ0;α0 ` [I0 7→ E0]E : τ. By SUBTREF we have τ ≤ τ,
so the result is shown.

• Case T-FUN. Then since Γ is not used at all in T-Fun and Γ;α0 ` E : τ, also Γ0;α0 ` E : τ. Further, we have E = Fv, so
[I0 7→ E0]E = E. Therefore Γ0;α0 ` [I0 7→ E0]E : τ, and by SUBTREF τ ≤ τ, so the result is shown.

• Case T-TUP. Then E = (E1, . . . ,Ek) and τ = τ1∗· · ·∗τk and for all 1≤ j ≤ k we have Γ;α0 `E j : τ j . Then by induction, for all
1≤ j ≤ k we have Γ0;α0 ` [I0 7→ E0]E j : τ′j and τ′j ≤ τ j. Then by T-TUP we have Γ0;α0 ` [I0 7→ E0](E1, . . . ,Ek) : τ′1 ∗· · ·∗τ′k.
Finally, by SUBTTUP we have τ′1 ∗ · · · ∗ τ′k ≤ τ1 ∗ · · · ∗ τk .

• Case T-APP. Then E = E1 E2 and Γ;α0 ` E1 : τ2 → τ and Γ;α0 ` E2 : τ′2 and τ′2 ≤ τ2. By induction we have Γ0;α0 ` [I0 7→
E0]E1 : τ0 and τ0 ≤ τ2 → τ. Also by induction we have Γ0;α0 ` [I0 7→ E0]E2 : τ′′2 and τ′′2 ≤ τ′2. Then by SUBTTRANS we
have τ′′2 ≤ τ2. By Lemma A.13 τ0 has the form τarg → τres, where τ2 ≤ τarg and τres ≤ τ. Therefore by SUBTTRANS we
have τ′′2 ≤ τarg. Therefore by T-FUN we have Γ0;α0 ` [I0 7→ E0](E ′

1 E ′
2) : τres. We saw above that τres ≤ τ, so the result is

shown.

�

Lemma A.20 If Γ0;α0 ` Ct(E) OK and rep(Ct(E)) = {V0 = E0} and repType(Ct) = {V0 : τ0}, then Γ0;α0 ` E0 : τ′0, for some τ′0
such that τ′0 ≤ τ0.
Proof Since Γ0;α0 ` Ct(E) OK, by T-SUPER we have α0 ` Ct OK and Ct = (τ Sn.Cn) and (<abstract> class α Cn(I1 : τ1)

. . .) ∈ ST(Sn) and Γ0;α0 ` E : τ′1 and τ′1 ≤ [α 7→ τ]τ1. Since α0 ` Ct OK, by CLASSTYPEOK we have α0 ` τ OK and |τ|= |α|. We
prove the lemma by induction on the depth of the derivation of rep(Ct(E)) = {V0 = E0}.

By REP we have (<<abstract>> class α Cn(I1 : τ1) <extends Ct′(E1) > of {Vn : τ2 = E2}) ∈ ST(Sn) and <rep(Ct′(E1))
= {V3 = E3} > and {V0 = E0} is equivalent to [I1 7→ E][α 7→ τ]{< V3 = E3,> Sn.Vn = E2}. Since repType(Ct) = {V0 : τ0}, by
REPTYPE and Lemma A.14 we have that <repType(Ct′) = {V3 : τ3}> and {V0 : τ0} is equivalent to [α 7→ τ]{<V3 : τ3,> Sn.Vn : τ2}.

Let Γ = {(I1,τ1)}. By CLASSOK we have < Γ;α ` Ct′(E1) OK >. Therefore by induction we have < Γ;α ` E3 : τ′3 > and

< τ′3 ≤ τ3 >. Also by CLASSOK we have Γ;α ` E2 : τ′2 and τ′2 ≤ τ2. Then by Lemmas A.16 and A.15 we have < [α 7→ τ]Γ;α0 `

[α 7→ τ]E3 : [α 7→ τ]τ′3 > and < [α 7→ τ]τ′3 ≤ [α 7→ τ]τ3 > and [α 7→ τ]Γ;α0 ` [α 7→ τ]E2 : [α 7→ τ]τ′2 and [α 7→ τ]τ′2 ≤ [α 7→ τ]τ2.

Then by Lemma A.19 we have < Γ0;α0 ` [I1 7→ E][α 7→ τ]E3 : τ′′3 > and < τ′′3 ≤ [α 7→ τ]τ′3 > and Γ0;α0 ` [I1 7→ E][α 7→ τ]E2 : τ′′2
and τ′′2 ≤ [α 7→ τ]τ′2. By SUBTRANS we have < τ′′3 ≤ [α 7→ τ]τ3 > and τ′′2 ≤ [α 7→ τ]τ2. Therefore we have shown Γ0;α0 ` E0 : τ′0
and τ′0 ≤ τ0. �

Theorem 4.1 (Type Preservation) If ` E : τ and E −→ E ′ then ` E ′ : τ′, for some τ′ such that τ′ ≤ τ.
Proof By (strong) induction on the depth of the derivation of E −→ E ′. Case analysis of the last rule used in the derivation.

• Case E-NEW. Then E has the form Ct(E) and E ′ has the form Ct {V0 = E0} and Ct = (τ C) and concrete(C) and rep(Ct(E))
= {V0 = E0}. Since ` E : τ, by T-NEW we have τ = Ct and • `Ct(E) OK. Then by T-SUPER we have • ` Ct OK. Therefore
by Lemmas A.8 and A.14 we have repType(Ct) = {V0 : τ0}. So we have ` Ct(E) OK and rep(Ct(E)) = {V0 = E0} and
repType(Ct) = {V0 : τ0}, so by Lemma A.20 we have ` E0 : τ′0 and τ′0 ≤ τ0. Then by T-REP we have ` Ct {V0 = E0} : Ct,
and by SUBTREF we have Ct ≤ Ct.

• Case E-REP. Then E has the form Ct {V0 = v0,V0 = E0,V1 = E1} and E ′ has the form Ct {V0 = v0,V0 = E ′
0,V1 = E1} and

E0 −→ E ′
0. Since ` E : τ, by T-REP we have τ = Ct and • ` Ct OK and repType(Ct) = {V0 : τ0,V0 : τ0,V1 : τ1} and ` v0 : τ′0

and τ′0 ≤ τ0 and ` E0 : τ′0 and τ′0 ≤ τ0 and ` E1 : τ′1 and τ′1 ≤ τ1. By induction we have ` E ′
0 : τ′′0 , for some τ′′0 such that

τ′′0 ≤ τ′0. Therefore by SUBTTRANS we have that τ′′0 ≤ τ0. Then by T-REP we have ` Ct {V0 = v0,V0 = E ′
0,V1 = E1} : Ct,

and by SUBTREF we have Ct ≤ Ct.
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• Case E-TUP. Then E has the form (v1, . . . ,vi−1,Ei, . . . ,Ek) and E ′ has the form (v1, . . . ,vi−1,E ′
i ,Ei+1, . . . ,Ek) and Ei −→ E ′

i ,
where 1 ≤ i ≤ k. Since ` E : τ, by T-TUP we have that τ has the form τ1 ∗ · · · ∗ τk and ` v j : τ j for all 1 ≤ j < i and
` E j : τ j for all i ≤ j ≤ k. Therefore by induction we have ` E ′

i : τ′i for some τ′i such that τ′i ≤ τi. Then by T-TUP we
have ` (v1, . . . ,vi−1,E ′

i ,Ei+1, . . . ,Ek) : τ1 ∗ · · · ∗ τi−1 ∗ τ′i ∗ τi+1 ∗ · · · ∗ τk. Finally, by SUBTREF we have that τ j ≤ τ j for all
1 ≤ j ≤ k, so by SUBTTUP we have τ1 ∗ · · · ∗ τi−1 ∗ τ′i ∗ τi+1 ∗ · · · ∗ τk ≤ τ1 ∗ · · · ∗ τk .

• Case E-APP1. Then E has the form E1 E2 and E ′ has the form E ′
1 E2 and E1 −→ E ′

1. Since ` E : τ, by (T-App) we have
` E1 : τ2 → τ and ` E2 : τ′2 and τ′2 ≤ τ2. Therefore by induction we have ` E ′

1 : τ′, for some τ′ such that τ′ ≤ τ2 → τ. By
Lemma A.13 τ′ has the form τ′′2 → τ′′, where τ2 ≤ τ′′2 and τ′′ ≤ τ. Therefore by SUBTTRANS we have τ′2 ≤ τ′′2 , so by T-APP

we have ` E ′
1 E2 : τ′′, where τ′′ ≤ τ.

• Case E-APP2. Then E has the form v1 E2 and E ′ has the form v1 E ′
2 and E2 −→ E ′

2. Since ` E : τ, by T-APP we have
` v1 : τ2 → τ and ` E2 : τ′2 and τ′2 ≤ τ2. Therefore by induction we have ` E ′

2 : τ′′2 , for some τ′′2 such that τ′′2 ≤ τ′2. By
SUBTTRANS we have τ′′2 ≤ τ2, so by T-APP we have ` v1 E ′

2 : τ, and by SUBTREF we have τ ≤ τ.

• Case E-APPRED. Then E = (τ F) v and E ′ = [I0 7→ v0]E0 and most-specific-case-for((τ F),v) = ({(I0,v0)},E0). Since
` E : τ, by T-APP we have ` (τ F) : τ2 → τ and ` v : τ′2 and τ′2 ≤ τ2. Then by T-FUN we have and F = Sn.Fn and τ2 → τ =
[α 7→ τ](M̂t → τ0) and (fun α Fn : Mt → τ0) ∈ ST(Sn) and • ` τ OK. Therefore we have τ2 = [α 7→ τ]M̂t and τ = [α 7→ τ]τ0.
By LOOKUP we have E0 = [α0 7→ τ]E ′

0 and (extend funMn α0 F Pat = E ′
0) ∈ ST(Sn′) and match(v,Pat) = {(I0,v0)}. Then

by CASEOK we have α0 ` matchType([α 7→ α0]M̂t,Pat) = (Γ,τ′′) and Γ;α0 ` E ′
0 : τ′0 and τ′0 ≤ [α 7→ α0]τ0.

By Lemma A.16 we have [α0 7→ τ]Γ;• ` [α0 7→ τ]E ′
0 : [α0 7→ τ]τ′0. By Lemma A.15 we have [α0 7→ τ]τ′0 ≤ [α0 7→ τ][α 7→

α0]τ0. By FUNOK we have α ` τ0 OK, so by Lemma A.1 all type variables in τ0 are in α. Therefore [α0 7→ τ][α 7→ α0]τ0
is equivalent to [α 7→ τ]τ0 = τ, so we have [α0 7→ τ]τ′0 ≤ τ.

By Lemma A.17 we have • ` matchType([α0 7→ τ][α 7→ α0]M̂t,Pat) = ([α0 7→ τ]Γ, [α0 7→ τ]τ′′). By FUNOK we have α `
M̂t OK, so by Lemma A.1 all type variables in M̂t are in α. Therefore [α0 7→ τ][α 7→ α0]M̂t is equivalent to [α 7→ τ]M̂t = τ2,
so we have • ` matchType(τ2,Pat) = ([α0 7→ τ]Γ, [α0 7→ τ]τ′′).
By Lemma A.18 we have τ′2 ≤ [α0 7→ τ]τ′′ and dom([α0 7→ τ]Γ) = dom({(I0,v0)}) and for each (Ix,τx) ∈ [α0 7→ τ]Γ, there
exists (Ix,vx) ∈ {(I0,v0)} such that ` vx : τ′x, where τ′x ≤ τx. Then by Lemma A.19 we have ` [I0 7→ v0][α0 7→ τ]E ′

0 : τsub
and τsub ≤ [α0 7→ τ]τ′0. We saw above that [α0 7→ τ]τ′0 ≤ τ, so by SUBTTRANS we have τsub ≤ τ. Therefore we have shown
` E ′ : τsub and τsub ≤ τ.

�

B Progress

B.1 Preliminaries and Simple Lemmas
We say that S ⊆ S′, where S is either a set or a sequence and similarly for S′, if for every element e such that e ∈ S, also e ∈ S′. The
notation Pat < Pat′ is shorthand for (Pat ≤ Pat′∧Pat′ 6≤ pat).

The proof makes use of the following notion of the owner of a value:

owner(Mt,v) = C

owner(Mt,vi) = C

owner(τ1 ∗ · · · ∗ τi−1 ∗Mt∗ τi+1 ∗ · · · ∗ τk,(v1, . . . ,vk)) = C
OWNERTUPVAL

owner(#Ct,(τ C) {V = v}) = C
OWNERINSTANCE

There are several lemmas:

Lemma B.1 If τ ≤ (τ C), then τ has the form (τ1 C′).
Proof By (strong) induction on the depth of the derivation of τ ≤ (τ C). Case analysis of the last rule used in the derivation.

• Case SUBTREF. Then τ = (τ C).

• Case SUBTTRANS. Then τ ≤ τ′ and τ′ ≤ (τ C). By induction τ′ has the form (τ2 C′′). Then by induction again, τ has the
form (τ1 C′).

• Case SUBTEXT. Then τ has the form (τ1Sn.Cn), which is also of the form (τ1 C′).

�

Lemma B.2 If τ1 → τ2 ≤ τ, then τ has the form τ′1 → τ′2.
Proof By (strong) induction on the depth of the derivation of τ1 → τ2 ≤ τ. Case analysis of the last rule used in the derivation.
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• Case SUBTREF. Then τ = τ1 → τ2.

• Case SUBTTRANS. Then τ1 → τ2 ≤ τ′ and τ′ ≤ τ. By induction τ′ has the form τ′′1 → τ′′2 . Then by induction again, τ has the
form τ′1 → τ′2.

• Case SUBTFUN. Then τ has the form τ′1 → τ′2.

�

Lemma B.3 If τ1 ∗ · · · ∗ τk ≤ τ, then τ has the form τ′1 ∗ · · · ∗ τ′k, where for all 1 ≤ i ≤ k we have τi ≤ τ′i.
Proof By (strong) induction on the depth of the derivation of τ1 ∗ · · · ∗ τk ≤ τ. Case analysis of the last rule used in the derivation.

• Case SUBTREF. Then τ = τ1 ∗ · · · ∗ τk. By SUBTREF, for all 1 ≤ i ≤ k we have τi ≤ τi.

• Case SUBTTRANS. Then τ1 ∗ · · · ∗ τk ≤ τ′ and τ′ ≤ τ. By induction τ′ has the form τ′′1 ∗ · · · ∗ τ′′k , where for all 1 ≤ i ≤ k we
have τi ≤ τ′′i . Then by induction again, τ has the form τ′1 ∗ · · · ∗τ′k , where for all 1 ≤ i ≤ k we have τ′′i ≤ τ′i. By SUBTTRANS,
for all 1 ≤ i ≤ k we have τi ≤ τ′i.

• Case SUBTTUP. Then τ has the form τ′1 ∗ · · · ∗ τ′k, where for all 1 ≤ i ≤ k we have τi ≤ τ′i.

�

Lemma B.4 If C1 ≤C2 and C1 ≤C3, then either C2 ≤C3 or C3 ≤C2.
Proof By induction on the depth of the derivation of C1 ≤C2. Case analysis of the last rule used in the derivation.

• Case SUBREF. Then C1 = C2. Since C1 ≤C3, also C2 ≤C3.

• Case SUBTRANS. Then C1 ≤C4 and C4 ≤C2. So we have C1 ≤C4 and C1 ≤C3, and by induction either C4 ≤C3 or C3 ≤C4.

– Case C4 ≤C3. Then we have C4 ≤C2 and C4 ≤C3, so by induction either C2 ≤C3 or C3 ≤C2.

– Case C3 ≤C4. Then we have C3 ≤C4 and C4 ≤C2, so by SUBTRANS C3 ≤C2.

• Case SUBEXT. Then C1 = Sn1.Cn1 and (<abstract> class α Cn1(I0 : τ0) extends τ C2 . . .) ∈ ST(Sn1). Case analysis
of the last rule used in the derivation of C1 ≤C3.

– Case SUBREF. Then C1 = C3. Since C1 ≤C2, also C3 ≤C2.

– Case SUBTRANS. Then C1 ≤ C4 and C4 ≤ C3. Assume WLOG that the derivation of C1 ≤ C4 ends with a use of
SUBEXT. Then (<abstract> class α Cn1(I0 : τ0) extends τ C4 . . .) ∈ ST(Sn1), so C2 = C4. Since C4 ≤C3, also
C2 ≤C3.

– Case SUBEXT. Then (<abstract> class α Cn1(I0 : τ0) extends τ C3 . . .) ∈ ST(Sn1), so C2 = C3. Then by SubRef
C2 ≤C3.

�

Lemma B.5 If C1 ≤C2, then there is a path in the declared inheritance graph from C1 to C2.
Proof By induction on the depth of the derivation of C1 ≤C2. Case analysis of the last rule used in the derivation.

• Case SUBREF. Then C1 = C2, so there is a trivial path in the inheritance graph from C1 to C2.

• Case SUBTRANS. Then C1 ≤C3 and C3 ≤C2. By induction, there is a path in the inheritance graph from C1 to C3 and from
C3 to C2, so the concatenation of these paths is a path from C1 to C2.

• Case SUBEXT. Then C1 = Sn1.Cn1 and <abstract> class α1 Cn1(I0 : τ0) extends τ C2 . . .) ∈ ST(Sn1). Therefore there
is an edge from C1 to C2 in the declared inheritance graph, so there is also a path from C1 to C2.

�

Lemma B.6 If C1 ≤C2 and C2 ≤C1, then C1 = C2.
Proof By Lemma B.5, there is a path in the declared inheritance graph from C1 to C2 and a path from C2 to C1. By assumption,
the declared inheritance graph is acyclic, so it must be the case that C1 = C2. �

Lemma B.7 If match(v,Pat) = ρ and Pat ≤ Pat′, then there exists ρ′ such that match(v,Pat′) = ρ′.
Proof By induction on the depth of the derivation of Pat ≤ Pat′. Case analysis of the last rule used in the derivation:

• Case SPECWILD. Then Pat′ has the form , so by E-MATCHWILD we have match(v, ) = {}.

• Case SPECBIND1.: Then Pat has the form (I as Pat1) and we have Pat1 ≤ Pat′. Since we’re given that match(v, I as Pat1)
= ρ, by E-MATCHBIND we also have that match(v, Pat1) = ρ−{(I,v)}. Therefore by induction there exists ρ′ such that
match(v,Pat′) = ρ′.
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• Case SPECBIND2.: Then Pat′ has the form (I as Pat2) and we have Pat ≤ Pat2. Therefore by induction we have that there
exists ρ′′ such that match(v,Pat2) = ρ′′. Then by E-MATCHBIND we have match(v, I as Pat2) = ρ′′∪{I,v}.

• Case SPECTUP. Then Pat has the form (Pat) and Pat′ has the form (Pat′) and Pat≤Pat′. Since we’re given that match(v,(Pat))
= ρ, by E-MATCHTUP we have that v = (v) and match(v,Pat) = ρ. Therefore by induction we have match(v,Pat′) = ρ′. Then
by E-MATCHTUP we have match((v),(Pat)) = � ρ′.

• Case SPECCLASS. Then Pat has the form (C1 {V = Pat1,V3 = Pat3}) and Pat′ has the form (C2 {V = Pat2}) and C1 ≤C2
and Pat1 ≤ pat2. Since we’re given that match(v,C1 {V = Pat1,V3 = Pat3}) = ρ, by E-MATCHCLASS we have that v =
((τ C0) {V = v,V3 = v3,V4 = v4}) and C0 ≤C1 and match(v, Pat1) = ρ1. Since C0 ≤ C1 and C1 ≤ C2, by SUBTRANS we
have C0 ≤ C2. By induction we have match(v, Pat2) = ρ2. Therefore by E-MATCHCLASS we have match((τ C0) {V =
v,V3 = v3,V4 = v4}), C2 {V = Pat2}) = � ρ2.

�

Lemma B.8 If Sn `C transDependedUpon and C ≤ Sn′.Cn′, then Sn′ ∈ Sn.
Proof By induction on the depth of the derivation of C ≤ Sn′.Cn′. Case analysis of the last rule in the derivation.

• Case SUBREF. Then C = Sn′.Cn′. Since we’re given that Sn ` C transDependedUpon, by CLASSTRANSDEP we have
Sn′ ∈ Sn.

• Case SUBTRANS. Then C ≤ Sn′′.Cn′′ and Sn′′.Cn′′ ≤ Sn′.Cn′. Assume WLOG that the derivation of C ≤ Sn′′.Cn′′ ends with
a use of SUBEXT. Let C = Sn.Cn. Therefore by SUBEXT we have (<abstract> class α Cn(I0 : τ0) extends τ2 Sn′′.Cn′′

. . .)∈ ST(Sn). Since we’re given that Sn`C transDependedUpon, by CLASSTRANSDEP we have Sn` Sn′′.Cn′′ transDependedUpon.
In addition, we showed above that Sn′′.Cn′′ ≤ Sn′.Cn′, so by induction we have Sn′ ∈ Sn.

• Case SUBEXT. Then (<abstract> class α Cn(I0 : τ0) extends τ1 Sn′.Cn′ . . .) ∈ ST(Sn). Since we’re given that Sn `
C transDependedUpon, by CLASSTRANSDEP we have Sn ` Sn′.Cn′ transDependedUpon. Therefore by CLASSTRANSDEP

we have Sn′ ∈ Sn.

�

Lemma B.9 If α ` Ct OK and Ct = (τ Sn.Cn) and (<abstract> class α0 Cn(I0 : τ0) . . .) ∈ ST(Sn) and |E0| = |I0| then
rep(Ct(E0)) is well-defined and has the form {V = E}.
Proof We prove this lemma by induction on the length of the longest path in the superclass graph from Sn.Cn (in other words, the
number of non-trivial superclasses of Sn.Cn). By CLASSTYPEOK we have α ` τ OK and (<<abstract>> class α0 Cn(I0 : τ0)
<extends Ct′(E ′) > of Vn : τ2 = E2}) ∈ ST(Sn) and |α0| = |τ|. There are two cases to consider.

• The length of the longest path in the superclass graph from Sn.Cn is 0. Then Sn.Cn has no non-trivial superclasses, so the
extends clause in the declaration of Sn.Cn is absent. Then by REP we have that rep(Ct(E0)) is well-defined and has the
form {V = E}.

• The length of the longest path in the superclass graph from Sn.Cn is i > 0. Then Sn.Cn has at least one non-trivial superclass,
so the extends clause in the declaration of Sn.Cn is present. Then by CLASSOK we have α0 ` Ct′(E ′) OK, so by T-SUPER

we have α0 ` Ct′ OK and Ct′ = (α1 Sn′.Cn′) and (<abstract> class α0 Cn′(I′0 : τ′0) . . .) ∈ ST(Sn′) and |I′0| = |E ′|. Since
Ct′ must have the form (τ1 Sn′.Cn′), where the length of the longest path in the superclass graph from Sn′.Cn′ is i− 1, by
induction we have that rep(Ct′(E ′)) is well-defined and has the form {V = E}. Then by REP we have that rep(Ct(E0)) is
well-defined and also has the appropriate form.

�

B.2 Completeness
These lemmas prove that all functions are complete.

Lemma B.10 If ` v : τ′ and τ′ ≤ τ and τ = [α 7→ τ]τ0 and defaultPat(τ0,C0,d) = Pat, then there exists ρ such that match(v,Pat) =
ρ.
Proof By strong induction on the depth of the derivation of defaultPat(τ0,C0,d) = Pat. Case analysis of the last rule in the
derivation.

• Case DEFZERO or DEFTYPEVAR or DEFFUNTYPE. Then Pat has the form , so by E-MATCHWILD we have match(v, ) =
{}.

• Case DEFCLASSTYPE. Then τ0 has the form (τ0 C) and Pat has the form (C {V = Pat}) and repType(τ0 C) = {V : τ} and
defaultPat(τ,C0,d−1) = Pat and d > 0. Since τ = [α 7→ τ]τ0, by Lemma A.11 we have repType(τ) = [α 7→ τ]{V : τ}. Further,
τ = [α 7→ τ](τ0 C) = ([α 7→ τ]τ0 C). Since τ′ ≤ τ, by Lemma B.1 τ′ has the form (τ1 C′). Since ` v : τ′, by T-REP v has the
form (τ1 C′) {V1 = v1} and • ` (τ1 C′) OK and repType(τ1 C′) = {V1 : τ1} and ` v1 : τ′1 and τ′1 ≤ τ1.
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Since (τ1 C′)≤ ([α 7→ τ]τ0 C), by Lemma A.5 we have C′ ≤C. Further, by Lemma A.12 we have that {V1 : τ1}= {V : [α 7→

τ]τ,V2 : τ2}. Therefore there is some prefix τ3 of τ′1 such that τ3 ≤ [α 7→ τ]τ. Therefore there is some prefix v3 of v1 such
that ` v3 : τ3 and τ3 ≤ [α 7→ τ]τ and defaultPat(τ,C0,d −1) = Pat. Therefore by induction, match(v3,Pat) = ρ. Therefore by
E-MATCHCLASS we have match((τ1 C′) {V1 = v1}, (C {V = Pat})) = � ρ.

• Case DEFTUPTYPE. Then τ0 has the form τ1 ∗ · · · ∗ τk and Pat has the form (Pat1, . . . ,Patk) and for all 1 ≤ i ≤ k we have
defaultPat(τi,C0,d − 1) = Pati and d > 0. Since τ′ ≤ [α 7→ τ](τ1 ∗ · · · ∗ τk), by Lemma A.6 we have that τ′ has the form
τ′1 ∗ · · · ∗ τ′k, where for all 1 ≤ i ≤ k we have τ′i ≤ [α 7→ τ]τi. Since ` v : τ′, by T-TUP we have that v has the form (v1, . . . ,vk)
and for all 1 ≤ i ≤ k we have ` vi : τ′i. Therefore by induction, for all 1 ≤ i ≤ k we have that there exists some ρi such that
match(vi,Pati) = ρi. Then by E-MATCHTUP we have match(v,Pat) = ρ1 ∪·· ·∪ρk.

�

Lemma B.11 If owner(Mt,v) = C0 and C0 ≤C and ` v : τ′ and τ′ ≤ τ and τ = [α 7→ τ]M̂t and defaultPat(Mt,C,d) = Pat, then there
exists ρ such that match(v,Pat) = ρ.
Proof By strong induction on the depth of the derivation of defaultPat(Mt,C,d) = Pat. Case analysis of the last rule in the derivation.

• Case DEFZERO. Then Pat has the form , so by E-MATCHWILD we have match(v, ) = {}.

• Case DEFOWNERCLASSTYPE. Then Mt has the form #(τ1 C′) and Pat has the form (C {V = Pat}) and repType(τ1 C) =
{V : τ} and defaultPat(τ,C,d−1) = Pat and d > 0. By Lemma A.11 we have repType([α 7→ τ]τ1 C) = [α 7→ τ]{V : τ}. Since
owner(#(τ1 C′),v) = C0, by OWNERINSTANCE we have that v is of the form (τ0 C0) {V1 = v1}.

Since we’re given that ` v : τ′, by T-REP we have that τ′ = (τ0 C0) and • ` (τ0 C0) OK and repType(τ0 C0) = {V2 : τ2}

and ` v1 : τ′2 and τ′2 ≤ τ2. We’re given that τ′ ≤ τ, so that means (τ0 C0) ≤ ([α 7→ τ]τ1 C′), and by Lemma A.4 we have
τ0 = [α 7→ τ]τ1. Since C0 ≤C and • ` (τ0 C0) OK, by Lemma A.7 we have (τ0 C0) ≤ (τ0 C). Therefore by Lemma A.12
we have {V2 : τ2} = {V : [α 7→ τ]τ,V3 : τ3}.

Therefore there is some prefix v3 of v1 and some prefix τ3 of τ′2 such that ` v3 : τ3 and τ3 ≤ [α 7→ τ]τ and defaultPat(τ,C,d−1)
= Pat, so by Lemma B.10, there exists ρ such that match(v3,Pat) = � ρ. Finally, we’re given C0 ≤C, so by E-MATCHCLASS

we have match((τ0 C0) {V1 = v1}, (C {V = Pat})) = � ρ.

• Case DEFTUPTYPE. Then Mt has the form τ1 ∗ · · · ∗ τi−1 ∗Mti ∗ τi+1 ∗ · · · ∗ τk and Pat has the form (Pat1, . . . ,Patk) and for
all 1 ≤ j ≤ k such that j 6= i we have defaultPat(τ j,C,d−1) = Pat j and we have defaultPat(Mti,C,d−1) = Pati. Let τi = M̂ti.
Since τ′ ≤ [α 7→ τ](τ1 ∗ · · · ∗ τk), by Lemma A.6 we have that τ′ has the form τ′1 ∗ · · · ∗ τ′k , where for all 1 ≤ j ≤ k we have
τ′j ≤ [α 7→ τ]τ j. Since ` v : τ′, by T-TUP we have that v has the form (v1, . . . ,vk) and for all 1 ≤ j ≤ k we have ` v j : τ′j.
Therefore by Lemma B.10, for all 1 ≤ j ≤ k such that j 6= i we have that there exists some ρ j such that match(v j,Pat j) = ρ j.
We’re given that owner(Mt,v) = C0, so by OWNERTUPVAL we have owner(Mti,vi) = C0. Therefore by induction we have
that there exists some ρi such that match(vi,Pati) = ρi. Then by E-MATCHTUP we have match(v,Pat) = ρ1 ∪·· ·∪ρk.

�

Lemma B.12 If ` v : τ′2 and τ′2 ≤ τ2 and τ2 = [α 7→ τ]M̂t and (fun α Fn : Mt → τ0) ∈ ST(Sn) and owner(Mt,v) = C0 and C0 ≤C
and Sn ` Sn.Fn has-default-for C, then there exists some Sn′ ∈ Sn, some (extend funMn α1 Sn.Fn Pat = E) ∈ ST(Sn′), and some
environment ρ such that match(v,Pat) = ρ.
Proof Since Sn ` Sn.Fn has-default-for C, by DEFAULT we have defaultPat(Mt,C,d) = Pat′. Therefore we have owner(Mt,v) = C0
and C0 ≤C and ` v : τ′2 and τ′2 ≤ τ2 and τ2 = [α 7→ τ]M̂t and defaultPat(Mt,C,d) = Pat′, so by Lemma B.11 there exists ρ′ such that
match(v,Pat′) = ρ′.

Also by DEFAULT we have (extend funMn α1 Sn.Fn Pat = E) ∈ ST(Sn′) and Pat′ ≤ Pat and Sn′ ∈ Sn. By Lemma B.7 there
exists ρ such that match(v,Pat) = ρ, so the result follows. �

Lemma B.13 If ` v : τ′ and τ′ ≤ τ and τ = [α 7→ τ]M̂t and owner(Mt) = C′, then there exists some class C such that owner(Mt,v) =
C and concrete(C) and C ≤C′.
Proof By induction on the depth of the derivation of ` v : τ′. Case analysis of the last rule used in the derivation.

• Case T-REP. Then v has the form (τ0 C) {V = v} and τ′ = (τ0 C) and concrete(C) and repType(τ0 C) = {V : τ}. Since τ′ ≤ τ,
by Lemma A.3 τ has the form (τ1 C′′). Since τ = [α 7→ τ]M̂t, M̂t has the form (τ2 C′′), and by the grammar for marked types
Mt must be #(τ2 C′′). Then by OWNERINSTANCE we have owner(#(τ2 C′′),(τ0 C) {V = v}) = C. We’re given τ′ ≤ τ, so by
Lemma A.5 we have C ≤C′′. Since owner(Mt) = C′, by OWNERCLASS we have C′ = C′′, so C ≤C′.

• Case T-FUN. Then v has the form (τ1 F) and τ′ has the form τ1 → τ2. Therefore by Lemma B.2 τ has the form τ′1 → τ′2.
Since τ = [α 7→ τ]M̂t, M̂t has the form τ′′1 → τ′′2 , but this contradicts the grammar of marked types. Therefore, T-FUN cannot
be the last rule in the derivation.

• Case T-Tup: Then v has the form (v1, . . . ,vk) and τ′ has the form τ′1 ∗· · · ∗τ′k and for all 1≤ j ≤ k we have ` v j : τ′j. Therefore

by Lemma B.3 τ has the form τ1 ∗ · · · ∗ τk , where for all 1 ≤ j ≤ k we have τ′j ≤ τ j. Since τ = [α 7→ τ]M̂t, M̂t has the form
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τ′′1 ∗ · · · ∗τ′′k , and by the grammar for marked types Mt must have the form τ′′1 ∗ · · · ∗τ′′i−1 ∗Mti ∗τ′′i+1 ∗ · · · ∗τ′′k , where 1 ≤ i ≤ k

and M̂ti = τ′′i . We’re given owner(Mt) = C′, so by OWNERTUP we have owner(Mti) = C′.

Therefore we have ` vi : τ′i and τ′i ≤ τi and τi = [α 7→ τ]M̂ti and owner(Mti) = C′, so by induction there exists C such
that owner(Mti,vi) = C and concrete(C) and C ≤ C′. By OWNERTUPVAL we have owner(τ′′1 ∗ · · · ∗ τ′′i−1 ∗Mti ∗ τ′′i+1 ∗ · · · ∗
τ′′k ,(v1, . . . ,vk)) = C, so the result follows.

�

Lemma B.14 (Completeness) If ` (τ F) : τ2 → τ and ` v : τ′2 and τ′2 ≤ τ2, then there exists some Sn′ ∈ dom(ST), some (extend
funMn α1 F Pat = E) ∈ ST(Sn′), and some environment ρ such that match(v,Pat) = ρ.
Proof Since ` (τ F) : τ2 → τ, by T-FUN we have F = Sn.Fn and (fun α Fn : Mt → τ0) ∈ ST(Sn) and |α| = |τ| and τ2 → τ =
[α 7→ τ](M̂t → τ0). Let ST(Sn) = structure Sn = struct depends upon Sn Ood end. Then by STRUCTOK we have Sn ` (fun α
Fn : Mt → τ0) OK in Sn, so by FUNOK we have that owner(Mt) = Sn′′.Cn. Then by Lemma B.13 there exists some class C such
that owner(Mt,v) = C and concrete(C) and C ≤ Sn′′.Cn. Also by FUNOK we have either Sn ` F has-gdefault or Sn = Sn′′. We
consider these cases separately.

• Case Sn ` F has-gdefault. By GDEFAULT we have owner(F) = C′ and Sn ` F has-default-for C′. By OWNERFUN, C′ =
Sn′′.Cn. Then by Lemma B.12 there exists some Sn′ ∈ Sn, some (extend funMn α1 F Pat = E) ∈ ST(Sn′), and some
environment ρ such that match(v,Pat) = ρ. Since ST(Sn) = structure Sn = struct depends upon Sn Ood end, each
member of Sn is mentioned in the program, so by sanity condition 2 we have Sn ⊆ dom(ST). Therefore Sn′ ∈ dom(ST), and
the result is shown.

• Case Sn = Sn′′. Let C = Sn0.Cn0. Since concrete(C), by CONCRETE we have (class α0 Cn0 . . .) ∈ ST(Sn0). Let ST(Sn0) =
structure Sn = struct Sn0 depends upon Sn0 Ood0 end. Then by STRUCTOK we have Sn0 ` class α0 Cn0 . . . OK in
Sn0, so by CLASSOK we have concrete(C) ⇒ Sn0 ` funs-have-ldefault-for C. Since we have shown that concrete(C) holds,
we have Sn0 ` funs-have-ldefault-for C.

Also by CLASSOK we have Sn0 ` C transDependedUpon. Since C ≤ Sn′′.Cn and Sn′′ = Sn, by Lemma B.8 we have
Sn ∈ Sn0.

Since F = Sn.Fn and Sn ∈ Sn0, by FUNDEP we have Sn0 ` F dependedUpon. Since (fun α Fn : Mt → τ0) ∈ ST(Sn)
and owner(Mt) = Sn.Cn, by OWNERFUN we have owner(F) = Sn.Cn. Also, we showed above that C ≤ Sn.Cn. There-
fore, since Sn0 ` funs-have-ldefault-for C, by LDEFAULT we have Sn0 ` F has-default-for C. By SUBREF C ≤ C, so by
Lemma B.12 there exists some Sn′ ∈ Sn0, some (extend funMn α1 Sn.Fn Pat = E) ∈ ST(Sn′), and some environment ρ such
that match(v,Pat) = ρ. Since ST(Sn0) = structure Sn0 = struct depends upon Sn0 Ood0 end, each member of Sn0 is
mentioned in the program, so by sanity condition (2) we have Sn0 ⊆ dom(ST). Therefore Sn′ ∈ dom(ST), and the result is
shown.

�

B.3 Ambiguity
These lemmas ensure that all functions are unambiguous.

B.3.1 Pattern Specificity and Intersection

Lemma B.15 If Pat ≤ Pat′ and Pat′ ≤ Pat′′ then Pat ≤ Pat′′.
Proof By induction on the depth of the derivation of Pat′ ≤ Pat′′. Case analysis of the last rule used in the derivation.

• Case SPECWILD. Then Pat′′ has the form , and by SPECWILD we have Pat ≤ Pat′′.

• Case SPECBIND1. Then Pat′ has the form (I as Pat′0) and we have Pat′0 ≤ Pat′′. We prove this case by induction on the
number of consecutive uses of rule SPECBIND1 ending the derivation of Pat ≤ (I as Pat′0). Case analysis of the last rule
used in the derivation.

– Case SPECBIND1. Then Pat has the form (I ′ as Pat0) and Pat0 ≤ Pat′. By the inner induction Pat0 ≤ Pat′′, and by
SPECBIND1 Pat ≤ Pat′′.

– Case SPECBIND2. Then Pat ≤ Pat′0. Since also Pat′0 ≤ Pat′′, by the outer induction we have Pat ≤ Pat′′.

• Case SPECBIND2. Then Pat′′ has the form (I as Pat′′0) and we have Pat′ ≤Pat′′0 . By induction Pat≤Pat′′0 , and by SPECBIND2
Pat ≤ Pat′′.

• Case SPECTUP. Then Pat′ has the form (Pat′) and Pat′′ has the form (Pat′′) and Pat′ ≤ Pat′′. We prove this case by induction
on the number of consecutive uses of rule SPECBIND1 ending the derivation of Pat ≤ Pat′. Case analysis of the last rule
used in the derivation.
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– Case SPECBIND1. Then Pat has the form (I as Pat0) and we have Pat0 ≤ Pat′. By the inner induction Pat0 ≤ Pat′′, so
by SPECBIND1 Pat ≤ Pat′′.

– Case SPECTUP. Then Pat has the form (Pat) Pat ≤ Pat′. Therefore by the outer induction, Pat ≤ Pat′′. Therefore by
SPECTUP Pat ≤ Pat′′.

• Case SPECCLASS. Then Pat′ has the form C′ {V1 = Pat′1,V2 = Pat′2} and Pat′′ has the form C′′ {V1 = Pat′′1} and C′ ≤C′′

and Pat′1 ≤ Pat′′1 . We prove this case by induction on the number of consecutive uses of the rule SPECBIND1 ending the
derivation of Pat ≤ Pat′. Case analysis of the last rule used in the derivation.

– Case SPECBIND1. Then Pat has the form (I as Pat0) and we have Pat0 ≤ Pat′. By the inner induction Pat0 ≤ Pat′′, so
by SPECBIND1 Pat ≤ Pat′′.

– Case SPECCLASS. Then Pat has the form C {V1 = Pat1,V2 = Pat2,V3 = Pat3} and C ≤ C′ and Pat1 ≤ Pat′1 and

Pat2 ≤ Pat′2. Since C ≤C′ and C′ ≤C′′, by SUBTRANS we have C ≤C′′. By the outer induction we have Pat1 ≤ Pat′′1 .
Therefore by SPECCLASS Pat ≤ Pat′′.

�

Lemma B.16 If owner(Mt,Pat′) = C′ and owner(Mt,Pat′′) = C′′ and Pat′∩Pat′′ = Pat, then either C′ ≤C′′ or C′′ ≤C′.
Proof By induction on the depth of the derivation of Pat′∩Pat′′ = Pat. Case analysis of the last rule used in the derivation.

• Case PATINTWILD. Then Pat′ has the form . But then it cannot be the case that owner(Mt,Pat′) = C′, because none of the
three associated rules applies to a wildcard pattern.

• Case PATINTBIND. Then Pat′ has the form I as Pat0 and Pat0∩Pat′′ = Pat. Since owner(Mt,Pat′) = C′, by OWNERBINDPAT

we have owner(Mt,Pat0) = C′. Therefore by induction we have that either C′ ≤C′′ or C′′ ≤C′.

• Case PATINTTUP. Then Pat′ has the form (Pat′1, . . . ,Pat′k) and Pat′′ has the form (Pat′′1 , . . . ,Pat′′k ) and for all 1 ≤ j ≤ k we
have Pat′j ∩Pat′′j = Pat j. Since owner(Mt,Pat′) = C′, by OWNERTUPPAT we have Mt = τ1 ∗ · · · ∗ τi−1 ∗Mti ∗ τi+1 ∗ · · · ∗ τk

and owner(Mti,Pat′i) = C′. Since owner(Mt,Pat′′) = C′′, by OWNERTUPPAT we have owner(Mti,Pat′′i ) = C′′. Therefore by
induction we have that either C′ ≤C′′ or C′′ ≤C′.

• Case PATINTCLASS. Then Pat′ has the form (C1 {V = Pat′,V2 = Pat2}) and Pat′′ has the form (C2 {V = Pat′′}) and C1 ≤C2.
Since owner(Mt,Pat′) = C′, by OWNERCLASSPAT C′ = C1. Since owner(Mt,Pat′′) = C′′, by OWNERCLASSPAT C′′ = C2.
Therefore C′ ≤C′′.

• Case PATINTREV. Then Pat′′ ∩Pat′ = Pat, so by induction we have that either C′′ ≤C′ or C′ ≤C′′.

�

Lemma B.17 If ` v : τ and match(v,Pat′) = ρ′ and match(v,Pat′′) = ρ′′ and matchType(τ′,Pat′) = (Γ′,τ′0) and matchType(τ′′,Pat′′)
= (Γ′′,τ′′0), then there exists some Pat such that Pat′∩Pat′′ = Pat.
Proof By induction on the depth of the derivation of match(v,Pat′) = ρ′. Case analysis of the last rule used in the derivation.

• Case E-MATCHWILD. Then Pat′ has the form , so by PATINTWILD we have Pat′∩Pat′′ = Pat′′.

• Case E-MATCHBIND. Then Pat′ has the form I as Pat′0 and match(v,Pat′0) = ρ′
0, for some ρ′

0. Since matchType(τ′,Pat′)
= (Γ′,τ′0), by T-MATCHBIND we have matchType(τ′,Pat′0) = (Γ′

0,τ
′
0). Then by induction there exists some Pat such that

Pat′0 ∩Pat′′ = Pat, so by PATINTBIND we have Pat′ ∩Pat′′ = Pat.

• Case E-MATCHTUP. Then v = (v1, . . . ,vk) and Pat′ has the form (Pat′1, . . . ,Pat′k) and for all 1≤ i≤ k we have match(vi,Pat′i)
= ρ′

i, for some ρ′
i. We prove this case by induction on the number of consecutive uses of E-MATCHBIND ending the

derivation of match(v,Pat′′) = ρ′′. Case analysis of the last rule used in the derivation.

– Case E-MATCHWILD. Then Pat′′ has the form , so by PATINTWILD we have Pat′′∩Pat′ = Pat′, and by PATINTREV

Pat′ ∩Pat′′ = Pat′.

– Case E-MATCHBIND. Then Pat′′ has the form I as Pat′′0 and match(v,Pat′′0) = ρ′′
0 , for some ρ′′

0 . Since matchType(τ′′,Pat′′)
= (Γ′′

,τ′′0), by T-MATCHBIND we have matchType(τ′′,Pat′′0) = (Γ′′
0 ,τ′′0). Then by the inner induction there exists some

Pat such that Pat′ ∩Pat′′0 = Pat. Then by PATINTREV Pat′′0 ∩Pat′ = Pat, by PATINTBIND Pat′′∩Pat′ = Pat, and again
by PATINTREV Pat′∩Pat′′ = Pat.

– Case E-MATCHTUP. Then Pat′′ has the form (Pat′′1 , . . . ,Pat′′k ) and for all 1 ≤ i ≤ k we have match(vi,Pat′′i ) = ρ′′
i , for

some ρ′′
i . Since ` v : τ, by T-TUP we have τ = τ1 ∗ · · · ∗ τk and ` vi : τi for all 1 ≤ i ≤ k. Since matchType(τ′,Pat′) =

(Γ′,τ′0) and matchType(τ′′,Pat′′) = (Γ′′,τ′′0), by T-MATCHTUP we have τ′ = τ′1 ∗ · · · ∗ τ′k and τ′′ = τ′′1 ∗ · · · ∗ τ′′k and for
all 1 ≤ i ≤ k matchType(τ′i,Pat′) = (Γ′

i,τ
′′′
i ) and matchType(τ′′i ,Pat′′) = (Γ′′

i ,τ′′′′i ). Then by the outer induction, for all
1≤ i≤ k there exists Pati such that Pat′i∩Pat′′i = Pati. Then by PATINTTUP there exists Pat such that Pat′∩Pat′′ = Pat.

– Case E-MATCHCLASS. Then v = ((τ C) {V = v}), contradicting our assumption that v = (v1, . . . ,vk).
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• Case E-MATCHCLASS. Then v = ((τ C) {V1 = v1, . . . ,Vk = vk}) and Pat′ has the form (C′ {V1 = Pat′1, . . . ,Vm = Pat′m}) and
C ≤ C′ and m ≤ k and for all 1 ≤ i ≤ m we have match(vi,Pat′i) = ρ′

i for some ρ′
i. We prove this case by induction on the

number of consecutive uses of E-MATCHBIND ending the derivation of match(v,Pat′′) = ρ′′. Case analysis of the last rule
used in the derivation.

– Case E-MATCHWILD. Then Pat′′ has the form , so by PATINTWILD we have Pat′′∩Pat′ = Pat′, and by PATINTREV

Pat′ ∩Pat′′ = Pat′.

– Case E-MATCHBIND. Then Pat′′ has the form I as Pat′′0 and match(v,Pat′′0) = ρ′′
0 , for some ρ′′

0 . Since matchType(τ′′,Pat′′)
= (Γ′′,τ′′0), by T-MATCHBIND we have matchType(τ′′,Pat′′0) = (Γ′′

0 ,τ′′0). Then by the inner induction there exists some
Pat such that Pat′ ∩Pat′′0 = Pat. Then by PATINTREV Pat′′0 ∩Pat′ = Pat, by PATINTBIND Pat′′∩Pat′ = Pat, and again
by PATINTREV Pat′∩Pat′′ = Pat.

– Case E-MATCHTUP. Then v = (v), contradicting our assumption that v = ((τ C) {V1 = v1, . . . ,Vk = vk}).

– Case E-MATCHCLASS. Then Pat′′ has the form (C′′ {V1 = Pat′′1 , . . . ,Vp = Pat′′p}) and C ≤ C′′ and p ≤ k and for all
1 ≤ i≤ p we have match(vi,Pat′′i ) = ρ′′

i for some ρ′′
i . Since ` v : τ, by T-REP we have • ` (τ C) OK and for all 1≤ i≤ k

we have ` vi : τi for some τi. Since C ≤C′ and C ≤C′′, by Lemma A.7 we have • ` (τ C′) OK and • ` (τ C′′) OK.
Since matchType(τ′,Pat′) = (Γ′,τ′0) and matchType(τ′′,Pat′′) = (Γ′′,τ′′0), by T-MATCHCLASS we have repType(τ0 C′)
has the form {V1 : τ′1, . . . ,Vm : τ′m} and repType(τ1 C′′) has the form {V1 : τ′′1 , . . . ,Vp : τ′′p}, for some τ0 and τ1. Therefore
by inspection of REPTYPE, also repType(τ C′) has the form {V1 : τ′′′1 , . . . ,Vm : τ′′′m} and repType(τ C′′) has the form
{V1 : τ′′′′1 , . . . ,Vp : τ′′′′p }. Also by T-MATCHCLASS, for all 1 ≤ i ≤ m we have matchType(τ′i,Pat′) = (Γ′

i,τ
′′′
i ) and for

all 1 ≤ i ≤ p we have matchType(τ′′i ,Pat′′) = (Γ′′
i ,τ′′′′i ). Since C ≤C′ and C ≤C′′, by Lemma B.4 either C′ ≤C′′ or

C′′ ≤C′.

∗ Case C′ ≤C′′. Since • ` (τ C′) OK, by Lemma A.7 we have (τ C′) ≤ (τ C′′). Then by Lemma A.12 we have that
p ≤ m. Then by the outer induction we have that for all 1 ≤ i ≤ p there exists Pati such that Pat′i ∩Pat′′i = Pati.
Then by PATINTCLASS there exists Pat such that Pat′∩Pat′′ = Pat.

∗ Case C′′ ≤C′. Since • ` (τ C′′) OK, by Lemma A.7 we have (τ C′′)≤ (τ C′). Then by Lemma A.12 we have that
m ≤ p. Then by the outer induction we have that for all 1 ≤ i ≤ m there exists Pati such that Pat′i ∩Pat′′i = Pati.
Then by PATINTREV we have that for all 1 ≤ i ≤ m there exists Pati such that Pat′′i ∩Pat′i = Pati. Then by
PATINTCLASS there exists Pat such that Pat′′ ∩Pat′ = Pat, and the result follows by PATINTREV.

�

Lemma B.18 If match(v,Pat′) = ρ′ and match(v,Pat′′) = ρ′′ and Pat′ ∩Pat′′ = Pat, then there exists some ρ such that match(v,Pat)
= ρ.
Proof By induction on the depth of the derivation of Pat′∩Pat′′ = Pat. Case analysis of the last rule used in the derivation.

• Case PATINTWILD. Then Pat is identical to Pat′′, so match(v,Pat) = ρ′′.

• Case PATINTBIND. Then Pat′ has the form I as Pat′0 and Pat′0 ∩Pat′′ = Pat. Since match(v,Pat′) = ρ′, by E-MATCHBIND

there exists some ρ′
0 such that match(v,Pat′0) = ρ′

0. Therefore by induction there exists some ρ such that match(v,Pat) = ρ.

• Case PATINTTUP. Then Pat′ has the form (Pat′) and Pat′′ has the form (Pat′′) and Pat has the form (Pat) and Pat′ ∩
Pat′′ = Pat. Since match(v,Pat′) = ρ′, by E-MATCHTUP v = (v) and match(v,Pat′) = ρ′. Since match(v,Pat′′) = ρ′′, by
E-MATCHTUP match(v,Pat′′) = ρ′′. Therefore by induction match(v,Pat) = ρ. Then by E-MATCHTUP there exists ρ such
that match(v,Pat) = ρ.

• Case PATINTCLASS. Then Pat′ has the form (C′ {V1 = Pat′1, . . . ,Vm = Pat′m}) and Pat′′ has the form (C′′ {V1 = Pat′′1 , . . . ,Vp =
Pat′′p}) and m ≥ p and Pat has the form (C′ {V1 = Pat1, . . . ,Vp = Patp,Vp+1 = Pat′p+1, . . . ,Vm = Pat′m}) and C′ ≤ C′′ and
Pat′i ∩Pat′′i = Pati for all 1 ≤ i ≤ m. Since match(v,Pat′) = ρ′, by E-MATCHCLASS v = ((τ C) {V1 = v1, . . . ,Vk = vk})
and C ≤C′ and k ≥ m and match(vi,Pat′i) = ρ′

i for all 1 ≤ i ≤ m. Since match(v,Pat′′) = ρ′′, by E-MATCHCLASS we have
match(vi,Pat′′i ) = ρ′′

i for all 1 ≤ i ≤ p. Then by induction, there exists ρi such that match(vi,Pati) = ρi, for all 1 ≤ i ≤ p.
Then by E-MATCHCLASS there exists ρ such that match(v,Pat) = ρ.

• Case PATINTREV. Then Pat′′ ∩Pat′ = Pat. Then by induction there exists ρ such that match(v,Pat) = ρ.

�

B.3.2 Ambiguity

Lemma B.19 If owner(Mt,Pat) = Sn.Cn and α ` matchType(τ,Pat) = (Γ,τ′), then there exists some (<abstract> class α0
Cn. . .) ∈ ST(Sn).
Proof By induction on the depth of the derivation of owner(Mt,Pat) = Sn.Cn. Case analysis of the last rule used in the derivation.
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• Case OWNERBINDPAT. Then Pat has the form I as Pat′ and owner(Mt,Pat′) = Sn.Cn. Since α`matchType(τ,Pat) = (Γ,τ′),
by T-MATCHBIND we have that there exists some Γ′ such that α ` matchType(τ,Pat′) = (Γ′

,τ′). Therefore by induction
there exists some (<abstract> class α0 Cn. . .) ∈ ST(Sn).

• Case OWNERTUPPAT. Then Pat has the form (Pat1, . . . ,Patk) and Mt = τ1∗· · ·∗τi−1∗Mti∗τi+1∗· · ·∗τk and owner(Mti,Pati)
= Sn.Cn. Since α`matchType(τ,Pat)= (Γ,τ′), by T-MATCHTUP there exist some τi, Γi, and τ′i such that α`matchType(τi,Pati) =
(Γi,τ′i). Therefore by induction there exists some (<abstract> class α0 Cn. . .) ∈ ST(Sn).

• Case OWNERCLASSPAT. Then Pat has the form Sn.Cn {V = Pat}. Since α`matchType(τ,Pat) = (Γ,τ′), by T-MATCHCLASS

we have τ = (τ C′) and repType(τ C) = {V : τ1}. Then by REP there exists some (<abstract> class α0 Cn. . .) ∈ ST(Sn).

�
The following lemma says that the modular ambiguity checks for a function case are enough to ensure global unambiguity of

the function case.

Lemma B.20 (Unambiguity) If (extend funMn α F Pat = E) ∈ ST(Sn), then dom(ST) ` extend funMn α F Pat = E unambiguous
in Sn.
Proof Suppose not. Then we have (extend funMn α F Pat = E) ∈ Ood, but it is not the case that dom(ST) ` extend funMn α F
Pat = E unambiguous in Sn. Then by STRAMB we have that there exists some Sn′ ∈ dom(ST), some (extend funMn′ α1 F Pat′ = E ′)∈
ST(Sn′), and some Pat0 such that Pat∩Pat′ = Pat0 ∧Sn.Mn 6= Sn′.Mn′ ∧¬∃Sn′′ ∈ dom(ST).∃(extend funMn′′ α2 F Pat′′ = E ′′) ∈
ST(Sn′′).(Pat0 ≤ Pat′′ ∧Pat′′ ≤ Pat∧Pat′′ ≤ Pat′∧ (Pat 6≤ Pat′′ ∨Pat′ 6≤ Pat′′)).

Let ST(Sn) be (structure Sn = struct depends upon Sn Ood end). Since (extend funMn α F Pat = E) ∈ ST(Sn), by
STRUCTOK we have Sn ` (extend funMn α F Pat = E) OK in Sn, so by CASEOK we have Sn;Sn ` extend funMn α F Pat = E
unambiguous. Let ST(Sn′) = (structure Sn′ = struct depends upon Sn′ Ood′ end). Since (structure Sn′ = struct depends

upon Sn′ Ood′ end) = ST(Sn′) and (extend funMn′ α1 F Pat′ = E ′) ∈ ST(Sn′), by STRUCTOK we have Sn′ ` (extend funMn′ α1

F Pat′ = E ′) OK in Sn, so by CASEOK we have Sn′;Sn′ ` extend funMn′ α1 F Pat′ = E ′ unambiguous.
We divide the proof into several cases.

• Case Sn′ ∈ Sn. Since Sn;Sn ` extend funMn α F Pat = E unambiguous, by AMB we have Sn ` extend funMn α F Pat = E
unambiguous in Sn. Since Sn′ ∈ Sn and we saw above that (extend funMn′ α1 F Pat′ = E ′) ∈ ST(Sn′) and Pat∩Pat′ = Pat0
and Sn.Mn 6= Sn′.Mn′, by STRAMB we have ∃Sn′′ ∈ Sn.∃ (extend funMn′′ α2 F Pat′′ = E ′′) ∈ ST(Sn′′).(Pat0 ≤ Pat′′ ∧
Pat′′ ≤ Pat∧Pat′′ ≤ Pat′ ∧ (Pat 6≤ Pat′′ ∨Pat′ 6≤ Pat′′)). Since (structure = struct Sn depends upon Sn Ood end) =
ST(Sn), each structure name in Sn appears in the program, so by sanity condition 2 we have Sn ⊆ dom(ST). Therefore
we have ∃Sn′′ ∈ dom(ST).∃(extend funMn′′ α2 F Pat′′ = E ′′) ∈ ST(Sn′′).(Pat0 ≤ Pat′′ ∧Pat′′ ≤ Pat∧Pat′′ ≤ Pat′ ∧ (Pat 6≤
Pat′′ ∨Pat′ 6≤ Pat′′)), and we have a contradiction.

• Case Sn ∈ Sn′. Since Sn′;Sn′ ` extend funMn′ α1 F Pat′ = E ′ unambiguous, by AMB we have Sn′ ` extend funMn′ α1
F Pat′ = E ′ unambiguous in Sn′. By assumption Sn ∈ Sn′, and we’re given that (extend funMn α F Pat = E) ∈ ST(Sn).
We’re also given Pat∩ Pat′ = Pat0, so by PATINTREV also Pat′ ∩ Pat = Pat0. Finally, we’re given Sn.Mn 6= Sn′.Mn′.
Therefore by STRAMB we have ∃Sn′′ ∈ Sn′.∃(extend funMn′′ α2 F Pat′′ = E ′′) ∈ ST(Sn′′).(Pat0 ≤ Pat′′ ∧Pat′′ ≤ Pat′ ∧

Pat′′ ≤ Pat∧ (Pat 6≤ Pat′′ ∨ Pat′ 6≤ Pat′′)). Since (structure = struct Sn′ depends upon Sn′ Ood′ end) = ST(Sn′),
each structure name in Sn′ appears in the program, so by sanity condition 2 we have Sn′ ⊆ dom(ST). Therefore we have
∃Sn′′ ∈ dom(ST).∃(extend funMn′′ α2 F Pat′′ = E ′′) ∈ ST(Sn′′).(Pat0 ≤ Pat′′ ∧Pat′′ ≤ Pat∧Pat′′ ≤ Pat′ ∧ (Pat 6≤ Pat′′ ∨
Pat′ 6≤ Pat′′)), and we have a contradiction.

• Case Sn′ 6∈ Sn and Sn 6∈ Sn′. Since Sn;Sn ` extend funMn α F Pat = E unambiguous, by AMB we have F = Sn1.Fn and
(fun α3 Fn : Mt → τ) ∈ ST(Sn1) and owner(Mt,Pat) = Sn2.Cn and Sn = Sn1 ∨Sn = Sn2. Since Sn′;Sn′ ` extend funMn′ α1
F Pat′ = E ′ unambiguous, by AMB we have owner(Mt,Pat′) = Sn3.Cn′ and Sn′ = Sn1 ∨Sn′ = Sn3. We have three sub-cases.

– Case Sn′ = Sn1. Since Sn ` (extend funMn α F Pat = E) OK in Sn, by CASEOK we have Sn ` F dependedUpon, so
by FUNDEP we have Sn1 ∈ Sn. Therefore we’ve shown Sn′ ∈ Sn, so we have a contradiction.

– Case Sn = Sn1. Since Sn′ ` (extend funMn′ α1 F Pat′ = E ′) OK in Sn′, by CASEOK we have Sn′ ` F dependedUpon,
so by FUNDEP we have Sn1 ∈ Sn′. Therefore we’ve shown Sn ∈ Sn′, so we have a contradiction.

– Case Sn′ 6= Sn1 and Sn 6= Sn1. Since Sn = Sn1 ∨Sn = Sn2, we have Sn = Sn2. Since Sn′ = Sn1 ∨Sn′ = Sn3, we have
Sn′ = Sn3. Since owner(Mt,Pat) = Sn2.Cn and owner(Mt,Pat′) = Sn3.Cn′ and Pat∩Pat′ = Pat0, by Lemma B.16 we
have that either Sn2.Cn ≤ Sn3.Cn′ or Sn3.Cn′ ≤ Sn2.Cn. Equivalently, either Sn.Cn ≤ Sn′.Cn′ or Sn′.Cn′ ≤ Sn.Cn.
There are two subcases.

∗ Case Sn.Cn ≤ Sn′.Cn′. Since Sn ` (extend funMn α F Pat = E) OK in Sn, by CASEOK we have α0 `
match(τ0,Pat) = (Γ0,τ′0), for some α0,τ0,Pat,Γ0, and τ′0. Since owner(Mt,Pat) = Sn.Cn, by Lemma B.19 there
exists some (<abstract> class α4 Cn. . .) ∈ ST(Sn). Therefore by STRUCTOK we have Sn ` (<abstract>
class α4 Cn. . .) OK in Sn, so by CLASSOK we have Sn ` Sn.Cn transDependedUpon. Since Sn.Cn ≤ Sn′.Cn′,
by Lemma B.8 we have Sn′ ∈ Sn, which is a contradiction.
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∗ Case Sn′.Cn′ ≤ Sn.Cn. Since Sn′ ` (extend funMn′ α1 F Pat′ = E ′) OK in Sn′, by CASEOK we have α0 `
match(τ0,Pat′) = (Γ0,τ′0), for some α0,τ0,Pat,Γ0, and τ′0. Since owner(Mt,Pat′) = Sn′.Cn′, by Lemma B.19

there exists some (<abstract> class α4 Cn′ . . .)∈ ST(Sn′). Therefore by STRUCTOK we have Sn′ ` (<abstract>

class α4 Cn′ . . .) OK in Sn′, so by CLASSOK we have Sn′ ` Sn′.Cn′ transDependedUpon. Since Sn′.Cn′ ≤
Sn.Cn, by Lemma B.8 we have Sn ∈ Sn′, which is a contradiction.

�
The following lemma says that if a value has at least one applicable function case then it has a most-specific applicable case.

The lemma thereby validates our static notion of unambiguity by showing that it is sufficient to imply the success of function-case
lookup.

Lemma B.21 If ` v : τ and Sn ∈ dom(ST) and (extend funMn α F Pat = E) ∈ ST(Sn) and match(v,Pat) = ρ, then there exists
some Sn′ ∈ dom(ST), some (extend funMn′ α1 F Pat′ = E ′) ∈ ST(Sn′), and some ρ′ such that match(v,Pat′) = ρ′ and ∀Sn′′ ∈
dom(ST).∀(extend funMn′′ α2 F Pat′′ = E ′′) ∈ ST(Sn′′). ∀ρ′′

.((match(v,Pat′′) = ρ′′∧Sn′.Mn′ 6= Sn′′.Mn′′) ⇒ Pat′ < Pat′′).
Proof By (strong) induction on the number of function cases of the form (extend funMn0 α0 F Pat0 = E0) such that (extend
funMn0 α0 F Pat0 = E0) ∈ ST(Sn0) for some structure Sn0 ∈ dom(ST), and match(v,Pat0) = ρ0 for some ρ0, and Pat 6< Pat0.

• Case there are zero function cases of the form (extend funMn0 α0 F Pat0 = E0) such that (extend funMn0 α0 F Pat0 = E0)
∈ ST(Sn0) for some structure Sn0 ∈ dom(ST), and match(v,Pat0) = ρ0 for some ρ0, and Pat 6< Pat0.

We’re given that Sn ∈ dom(ST) and (extend funMn α F Pat = E) ∈ ST(Sn) and match(v,Pat) = ρ. Further, since it cannot
both be the case that Pat ≤ Pat and Pat 6≤ Pat, we have Pat 6< Pat. Therefore, we have found a function case that contradicts
the initial assumption of this case.

• Case there is exactly one function case of the form (extend funMn0 α0 F Pat0 = E0) such that (extend funMn0 α0 F
Pat0 = E0) ∈ ST(Sn0) for some structure Sn0 ∈ dom(ST), and match(v,Pat0) = ρ0 for some ρ0, and Pat 6< Pat0.

As we saw in the previous case, (extend funMn α F Pat = E) ∈ ST(Sn) and match(v,Pat) = ρ and Pat 6< Pat, so Sn.Mn is
the single case satisfying all the conditions. Therefore it follows that ∀Sn′′ ∈ dom(ST).∀(extend funMn′′ α2 F Pat′′ = E ′′) ∈
ST(Sn′′).∀ρ′′.((match(v,Pat′′) = ρ′′∧Sn.Mn 6= Sn′′.Mn′′) ⇒ Pat < Pat′′). Then the result follows.

• There are k > 1 function cases of the form (extend funMn0 α0 F Pat0 = E0) such that (extend funMn0 α0 F Pat0 = E0)
∈ ST(Sn0) for some structure Sn0 ∈ dom(ST), and match(v,Pat0) = ρ0 for some ρ0, and Pat 6< Pat0. Let (extend funMn1 α3
F Pat1 = E1) be one such function case, so (extend funMn1 α3 F Pat1 = E1) ∈ ST(Sn1) for some structure Sn1 ∈ dom(ST),
and match(v,Pat1) = ρ1 for some ρ1, and Pat 6< Pat1. Since k > 1, at least one of the function cases satisfying the conditions
is not Sn.Mn, so assume WLOG that Sn.Mn 6= Sn1.Mn1.

Since (extend funMn α F Pat = E) ∈ ST(Sn) and (extend funMn1 α3 F Pat1 = E1) ∈ ST(Sn1) and Sn ∈ dom(ST) and
Sn1 ∈ dom(ST), by CASEOK we have matchType(τ0,Pat) = (Γ0,τ′0) and matchType(τ1,Pat1) = (Γ1,τ′1). We’re given that
` v : τ. Finally, we saw above that match(v,Pat) = ρ and match(v,Pat1) = ρ1. Therefore by Lemma B.17 there exists some
Patint such that Pat∩Pat1 = Patint . We’re given that (extend funMn α F Pat = E) ∈ ST(Sn), so by Lemma B.20 we have
dom(ST) ` extend funMn α F Pat = E unambiguous in Sn. Therefore by STRAMB there exists some Sn2 ∈ dom(ST) and
some (extend funMn2 α4 F Pat2 = E2) ∈ ST(Sn2) such that Patint ≤ Pat2 and Pat2 ≤ Pat and Pat2 ≤ Pat1 and (Pat 6≤ Pat2
or Pat1 6≤ Pat2). Since match(v,Pat) = ρ and match(v,Pat1) = ρ1 and Pat∩Pat1 = Patint , by Lemma B.18 there exists some
ρint such that match(v,Patint ) = ρint . Then since Patint ≤ Pat2, by Lemma B.7 there exists ρ2 such that match(v,Pat2) = ρ2.

So we have shown there exists some Sn2 ∈ dom(ST) and some (extend funMn2 α4 F Pat2 = E2) ∈ ST(Sn2) and some ρ2
such that match(v,Pat2) = ρ2. Suppose there are l function cases of the form (extend funMn0 α0 F Pat0 = E0) such that
(extend funMn0 α0 F Pat0 = E0) ∈ ST(Sn0) for some structure Sn0 ∈ dom(ST), and match(v,Pat0) = ρ0 for some ρ0, and
Pat2 6< Pat0. To finish this case, we will show that l < k, so that the result follows by induction with respect to Sn2.

Consider some structure Sn0 ∈ dom(ST), some (extend funMn0 α0 F Pat0 = E0) ∈ ST(Sn0), and some ρ0 such that
match(v,Pat0) = ρ0 and Pat2 6< Pat0. I claim that also Pat 6< Pat0. Since Pat2 6< Pat0, we have that (Pat2 6≤ Pat0 or
Pat0 ≤ Pat2), so we consider these cases in turn.

– Case Pat2 6≤ Pat0. Then I claim that Pat 6≤ Pat0, so also Pat 6< Pat0. Suppose not, so Pat ≤ Pat0. Since Pat2 ≤ Pat, by
Lemma B.15 we have Pat2 ≤ Pat0, contradicting the assumption of this case.

– Case Pat0 ≤ Pat2. We showed above that Pat2 ≤ Pat, so by Lemma B.15 Pat0 ≤ Pat, so Pat 6< Pat0.

Therefore we have shown that every function case of the appropriate form with respect to Sn2.Mn2 is also of the appropriate
form with respect to Sn.Mn, so l ≤ k.

To finish the proof, we show that there exists a function case of the appropriate form w.r.t. Sn.Mn that is not of the appropriate
form w.r.t. Sn2.Mn2. In particular, we showed in the first case above that Sn.Mn is of the appropriate form w.r.t. itself, since
Pat 6< Pat. To show that Sn.Mn is not of the appropriate form w.r.t Sn2.Mn2, we must show that Pat2 < Pat. We showed
above that Pat2 ≤ Pat, so we simply need to prove that Pat 6≤ Pat2. We showed above that either Pat 6≤ Pat2 or Pat1 6≤ Pat2,
so we consider each case.
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– Case Pat 6≤ Pat2. Then Pat 6≤ Pat2.

– Case Pat1 6≤ Pat2 and Pat ≤ Pat2. We’re given above that Pat 6< Pat1, so either Pat 6≤ Pat1 or Pat1 ≤ Pat. We saw
above that Pat2 ≤ Pat1, so since we assume Pat ≤ Pat2, by Lemma B.15 we have Pat ≤ Pat1. Therefore Pat1 ≤ Pat.
Again since we assume Pat ≤ Pat2, by Lemma B.15 we have Pat1 ≤ Pat2, contradicting the assumption of this case.

�

Lemma 4.1 If ` (τ F) : τ2 → τ and ` v : τ′2 and τ′2 ≤ τ2 then there exist ρ0 and E0 such that most-specific-case-for ((τ F),v) =
(ρ0,E0).
Proof By Lemma B.14, there exists some Sn ∈ dom(ST), some (extend funMn α F Pat = E) ∈ ST(Sn), and some environment
ρ such that match(v,Pat) = ρ. Then by Lemma B.21 there exists some Sn′ ∈ dom(ST), some (extend funMn′ α1 F Pat′ = E ′)
∈ ST(Sn′), and some ρ′ such that match(v,Pat′) = ρ′ and ∀Sn′′ ∈ dom(ST).∀(extend funMn′′ α2 F Pat′′ = E ′′) ∈ ST(Sn′′).∀ρ′′.

((match(v,Pat′′) = ρ′′∧Sn′.Mn′ 6= Sn′′.Mn′′)⇒ Pat′ ≤ Pat′′∧Pat′′ 6≤ Pat′). Since ` (τ F) : τ2 → τ, by T-FUN we have F = Sn0.Fn0
and (fun α0 Fn0 : Mt0 → τ0) and |α0| = |τ|. Since (extend funMn′ α1 F Pat′ = E ′) ∈ ST(Sn′), by CASEOK we have |α1| = |α0|.
Therefore we have |α1| = |τ|, so by LOOKUP there exists some ρ0 and E0 such that most-specific-case-for ((τ F),v) = (ρ0,E0). �

B.4 Progress
Theorem 4.2 (Progress): If ` E : τ and E is not a value, then there exists an E ′ such that E −→ E ′.
Proof By (strong) induction on the depth of the derivation of ` E : τ. Case analysis of the last rule used in the derivation.

• Case T-ID. Then E = I and (I,τ) ∈ {}, so we have a contradiction. Therefore this rule could not be the last rule used in the
derivation.

• Case T-NEW. Then E = Ct(E) and Ct = (τ Sn.Cn) and • ` Ct(E) OK and concrete(Sn.Cn). Then by T-SUPER also • `
(τ Sn.Cn) OK and and (<abstract> class α0 Cn(I0 : τ0) . . .) ∈ ST(Sn) and |I0|= |E|. Therefore by Lemma B.9 rep(Ct(E)
is well-defined and has the form {V1 = E1}. Then by E-NEW we have E −→ Ct {V1 = E1}.

• Case T-REP. Then E = Ct {V1 = E1, . . . ,Vk = Ek} and for all 1 ≤ i ≤ k we have ` Ei : τi for some τi. We have two subcases:

– For all 1 ≤ i ≤ k, Ei is a value. Then E is a value, contradicting our assumption.

– There exists some j such that 1 ≤ j ≤ k and E j is not a value. WLOG, let j be the smallest integer satisfying
this condition, so for all 1 ≤ q < j we have that Eq is a value. By induction, there exists an E ′

j such that E j −→

E ′
j. Therefore by E-REP we have Ct {V1 = E1, . . . ,Vk = Ek} −→ Ct {V1 = E1, . . . ,V j−1 = E j−1,V j = E ′

j,V j+1 =
E j+1, . . . ,Vk = Ek}.

• Case T-FUN. Then E = τ Sn.Fn. Then E is a value, contradicting our assumption.

• Case T-TUP. Then E = (E1, . . . ,Ek) and τ = τ1 ∗ · · · ∗ τk and for all 1 ≤ i ≤ k we have ` Ei : τi. We have two subcases:

– For all 1 ≤ i ≤ k, Ei is a value. Then E is a value, contradicting our assumption.

– There exists some j such that 1 ≤ j ≤ k and E j is not a value. WLOG, let j be the smallest integer satisfying this
condition, so for all 1 ≤ q < j we have that Eq is a value. By induction, there exists an E ′

j such that E j −→ E ′
j.

Therefore by E-TUP we have (E1, . . . ,Ek) −→ (E1, . . . ,E j−1,E ′
j,E j+1, . . . ,Ek).

• Case T-APP. Then E = E1 E2 and ` E1 : τ2 → τ and ` E2 : τ′2 and τ′2 ≤ τ2. We have three subcases:

– E1 is not a value. Then by induction, there exists an E ′
1 such that E1 −→ E ′

1. Therefore by E-APP1 we have E1 E2 −→
E ′

1 E2.

– E1 is a value, but E2 is not a value. Then by induction, there exists an E ′
2 such that E2 −→ E ′

2. Therefore by E-APP2
we have E1 E2 −→ E1 E ′

2.

– Both E1 and E2 are values. Since ` E1 : τ2 → τ and E1 is a value, the last rule in the derivation of ` E1 : τ2 → τ
must be T-FUN, so E1 has the form Fv. Therefore by Lemma 4.1 we have that there exist ρ0 and E0 such that
most-specific-case-for (Fv,E2) = (ρ0,E0). Let ρ0 = {(I,v)}. Then by E-APPRED we have Fv E2 −→ [I 7→ v]E0.

�
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