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Abstra
t

Re
ent algorithms for sparse 
oding and independent 
omponent anal-

ysis (ICA) have demonstrated how lo
alized features 
an be learned from

natural images. However, these approa
hes do not take image transfor-

mations into a

ount. As a result, they produ
e image 
odes that are

redundant be
ause the same feature is learned at multiple lo
ations. We

des
ribe an algorithm for sparse 
oding based on a bilinear generative

model of images. By expli
itly modeling the intera
tion between image

features and their transformations, the bilinear approa
h helps redu
e

redundan
y in the image 
ode and provides a basis for transformation-

invariant vision. We present results demonstrating bilinear sparse 
oding

of natural images. We also explore an extension of the model that 
an 
ap-

ture spatial relationships between the independent features of an obje
t,

thereby providing a new framework for parts-based obje
t re
ognition.

1 Introdu
tion

Algorithms for redundan
y redu
tion and eÆ
ient 
oding have been the subje
t

of 
onsiderable attention in re
ent years [6, 3, 4, 7, 9, 5, 11℄. Although the

basi
 ideas 
an be tra
ed to the early work of Attneave [1℄ and Barlow [2℄,

re
ent te
hniques su
h as independent 
omponent analysis (ICA) and sparse


oding have helped formalize these ideas and have demonstrated the feasibility

of eÆ
ient 
oding through redundan
y redu
tion. These te
hniques produ
e an

eÆ
ient 
ode by attempting to minimize the dependen
ies between elements of

the 
ode by using appropriate 
onstraints.

�

To appear in: Advan
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One of the most su

essful appli
ations of ICA and sparse 
oding has been in

the area of image 
oding. Olshausen and Field showed that sparse 
oding of nat-

ural images produ
es lo
alized oriented basis �lters that resemble the re
eptive

�elds of simple 
ells in primary visual 
ortex [6, 7℄. Bell and Sejnowski obtained

similar results using their algorithm for ICA [3℄. However, these approa
hes do

not take image transformations into a

ount. As a result, the same oriented fea-

ture is often learned at di�erent lo
ations, yielding a redundant 
ode. Moreover,

the presen
e of the same feature at multiple lo
ations prevents more 
omplex

features from being learned and leads to a 
ombinatorial explosion when one

attempts to s
ale the approa
h to large image pat
hes or hierar
hi
al networks.

In this paper, we propose an approa
h to sparse 
oding that expli
itly mod-

els the intera
tion between image features and their transformations. A bilinear

generative model is used to learn both the independent features in an image as

well as their transformations. Our approa
h extends Tenenbaum and Freeman's

work on bilinear models for learning 
ontent and style [12℄ by 
asting the prob-

lem within probabilisti
 sparse 
oding framework. Thus, whereas prior work on

bilinear models used global de
omposition methods su
h as SVD, the approa
h

presented here emphasizes the extra
tion of lo
al features by removing higher-

order redundan
ies through sparseness 
onstraints. We show that for natural

images, this approa
h produ
es lo
alized oriented �lters that 
an be translated

by di�erent amounts to a

ount for image features at arbitrary lo
ations. Our

results demonstrate how an image 
an be fa
tored into a set of basi
 lo
al fea-

tures and their transformations, providing a basis for transformation-invariant

vision. We 
on
lude by dis
ussing how the approa
h 
an be extended to allow

parts-based obje
t re
ognition, wherein an obje
t is modeled as a 
olle
tion of

lo
al features (or \parts") and their relative transformations.

2 Bilinear Generative Models

We begin by 
onsidering the standard linear generative model used in algorithms

for ICA and sparse 
oding [3, 7, 9℄:

z =

m

X

i=1

w

i

x

i

(1)

where z is a k-dimensional input ve
tor (e.g. an image), w

i

is a k-dimensional

basis ve
tor and x

i

is its s
alar 
oeÆ
ient. Given the linear generative model

above, the goal of ICA is to learn the basis ve
tors w

i

su
h that the x

i

are as in-

dependent as possible, while the goal in sparse 
oding is to make the distribution

of x

i

highly kurtoti
 given Equation 1.

The linear generative model in Equation 1 
an be extended to the bilinear


ase by using two independent sets of 
oeÆ
ients x

i

and y

i

(or equivalently, two

ve
tors x and y) [12℄:

z = f(x;y) =

m

X

i=1

n

X

j=1

w

ij

x

i

y

j

(2)
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The 
oeÆ
ients x

i

and y

j

jointly modulate a set of basis ve
tors w

ij

to produ
e

an input ve
tor z. For the present study, the 
oeÆ
ient x

i


an be regarded

as en
oding the presen
e of obje
t feature i in the image while the y

j

values

determine the image transformation. In the terminology of Tenenbaum and

Freeman [12℄, x des
ribes the \
ontent" of the image while y en
odes its \style."

Equation 2 
an also be expressed as a linear equation in x for a �xed y:

z = f(x)

y

=

m

X

i=1

0

�

n

X

j=1

w

ij

y

j

1

A

x

i

=

m

X

i=1

w

y

i

x

i

(3)

Likewise, for a �xed x, one obtains a linear equation in x. Indeed this is the

de�nition of bilinear: given one �xed fa
tor, the model is linear with respe
t to

the other fa
tor. The power of bilinear models stems from the ri
h non-linear

intera
tions that 
an be represented by varying both x and y simultaneously.

3 Learning Sparse Bilinear Models

3.1 Learning Bilinear Models

Our goal is to learn from image data an appropriate set of basis ve
tors w

ij

that e�e
tively des
ribe the intera
tions between the feature ve
tor x and the

transformation ve
tor y. A 
ommonly used approa
h in unsupervised learning

is to minimize the sum of squared pixel-wise errors over all images:

E

1

(w

ij

;x;y) = jjz�

m

X

i=1

n

X

j=1

w

ij

x

i

y

j

jj

2

(4)

= (z�

m
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n

X

j=1

w

ij

x

i
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j

)

T

(z�

m

X

i=1

n

X

j=1

w

ij

x

i

y

j

) (5)

where jj � jj denotes the L

2

norm of a ve
tor. A standard approa
h to minimizing

su
h a fun
tion is to use gradient des
ent and alternate between minimization

with respe
t to fx;yg and minimization with respe
t to w

ij

. Unfortunately,

the optimization problem as stated is under
onstrained: the fun
tion E

1

has

many lo
al minima and results from our simulations indi
ate that 
onvergen
e

is diÆ
ult in many 
ases. There are many di�erent ways to represent an image,

making it diÆ
ult for the method to 
onverge to a basis set that 
an generalize

e�e
tively.

A related approa
h is presented by Tenenbaum and Freeman [12℄. Rather

then using gradient des
ent, their method estimates the parameters dire
tly

by 
omputing the singular value de
omposition (SVD) of a matrix A 
ontain-

ing input data 
orresponding to ea
h 
ontent 
lass x in every style y. Their

approa
h 
an be regarded as an extension of methods based on prin
ipal 
om-

ponent analysis (PCA) applied to the bilinear 
ase. The SVD approa
h avoids

the diÆ
ulties of 
onvergen
e that plague the gradient des
ent method and is
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mu
h faster in pra
ti
e. Unfortunately, the learned features tend to be global

and non-lo
alized similar to those obtained from PCA-based methods based on

se
ond-order statisti
s. As a result, the method is unsuitable for the problem

of learning lo
al features of obje
ts and their transformations.

The under
onstrained nature of the problem 
an be remedied by the impos-

ing 
onstraints on x and y. In parti
ular, we 
ould 
ast the problem within

a probabilisti
 framework and impose spe
i�
 prior distributions on x and y

with higher probabilities for values that a
hieve 
ertain desirable properties.

We fo
us here on the 
lass of sparse prior distributions for several reasons: (a)

by for
ing most of the 
oeÆ
ients to be zero for any given input, sparse pri-

ors minimize redundan
y and en
ourage statisti
al independen
e between the

various x

i

and between the various y

j

[7℄, (b) there is growing eviden
e for

sparse representations in the brain { the distribution of neural responses in vi-

sual 
orti
al areas is highly kurtoti
 i.e. the 
ell exhibits little a
tivity for most

inputs but responds vigorously for a few inputs, 
ausing a distribution with a

high peak near zero with long tails, (
) previous approa
hes based on sparseness


onstraints have obtained en
ouraging results [7℄, and (d) enfor
ing sparseness

on the x

i

en
ourages the parts and lo
al features shared a
ross obje
ts to be

learned while imposing sparseness on the y

j

allows obje
t transformations to be

explained in terms of a small set of basi
 transformations.

3.2 Bilinear Sparse Coding

We assume the following priors for x

i

and y

j

:

P (x

i

) =

1

Z

�

e

��S(x

i

)

(6)

P (y

j

) =

1

Z

�

e

��S(y

j

)

(7)

where Z

�

and Z

�

are normalization 
onstants, � and � are parameters, and S

is a \sparseness fun
tion." For this study, we used S(a) = log(1 + a

2

).

Within a probabilisti
 framework, the squared error fun
tion E

1

summed

over all images 
an be interpreted as representing the negative log likelihood of

the data given the parameters: � logP (zjw

ij

;x;y) (see, for example, [7℄). The

priors P (x

i

) and P (y

j

) 
an be used to marginalize this likelihood to obtain the

new likelihood fun
tion: L(w

ij

) = P (zjw

ij

). The goal then is to �nd the w

ij

that maximize L, or equivalently, minimize the negative log of L. Under 
ertain

reasonable assumptions (dis
ussed in [7℄), this is equivalent to minimizing the

following optimization fun
tion over all input images:

E(w

ij

;x;y) = jjz�

m

X

i=1

n

X

j=1

w

ij

x

i

y

j

jj

2

+ �

m

X

i=1

S(x

i

) + �

n

X

j=1

S(y

j

) (8)

Gradient des
ent 
an be used to derive update rules for the 
omponents x

a

and y

b

of the feature ve
tor x and transformation ve
tor y respe
tively for any
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image z, assuming a �xed basis w

ij

:

dx

a
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= �

1

2

�E

�x

a

=

n

X

q=1

w

T

aq

(z�

m

X

i=1

n

X

j=1

w

ij

x

i

y

j

)y

q

+

�

2

S

0

(x

a

) (9)
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) (10)

Given a training set of inputs z

l

, the values for x and y for ea
h image after


onvergen
e 
an be used to update the basis set w

ij

in bat
h mode a

ording

to:

dw

ab

dt

= �

1

2

�E

�w

ab

=

M

X

l=1

(z

l

�

m

X

i=1

n

X

j=1

w

ij

x

i

y

j

)x

a

y

b

(11)

As suggested by Olshausen and Field [7℄, in order to keep the basis ve
tors from

growing without bound, we adapted the L

2

norm of ea
h basis ve
tor in su
h a

way that the varian
es of the x

i

and y

j

were maintained at a �xed desired level.

4 Results

4.1 Training Paradigm

We tested the algorithms for bilinear sparse 
oding on natural image data. The

natural images we used are distributed by Olshausen and Field [7℄, along with

the 
ode for their algorithm. The training set of images 
onsisted of 10 � 10

pat
hes randomly extra
ted from ten 512� 512 sour
e images. The images are

pre-whitened to equalize large varian
es in frequen
y, and thus speed 
onver-

gen
e. We 
hoose to use a 
omplete basis where m = 100 and we let n be at

least as large as the number of transformations (in
luding the no-transformation


ase). The sparseness parameters � and � were set to 2:2 and 1:5. In order to

assist 
onvergen
e all learning o

urs in bat
h mode, where the bat
h 
onsisted

of M = 100 image pat
hes. The step size � for gradient des
ent using Equa-

tion 11 was set to 0:05. The transformations were 
hosen to be 2D translations

in the range [�4 : 4℄ pixels in both the axes.

4.2 Bilinear Sparse Coding of Natural Images

Figure 1 shows the results of training on natural image data. A 
omparison

between the learned features for the linear generative model (Equation 1) and

the bilinear model is provided in Figure 1 (a). Although both show simple,

lo
alized, and oriented features, the bilinear method is able to model the same

features under di�erent transformations. In this 
ase, the range [�3; 3℄ horizon-

tal translations were used in the training of the bilinear model. Figure 1 (b)

provides an example of how the bilinear sparse 
oding model en
odes a natural
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image pat
h and the same pat
h after it has been translated. Note that both

the x and y ve
tors are sparse.

Figure 2 shows how the model 
an a

ount for a given lo
alized feature at

di�erent lo
ations by varying the y ve
tor. As shown in the last 
olumn of the

�gure, the translated lo
al feature is generated by linearly 
ombining a sparse

set of basis ve
tors w

ij

.

(a)

Bilinear basisLinear basis

0 1 2 3−1−2−3

ypatch
translated

natural

patch
image

i

3

91

9

j 21 7 8

w
ij basis images

9 913

(b)

x

1 7 82

y

Figure 1: Representing natural images and their transformations with

a sparse bilinear model. (a) A 
omparison of learned features between a

standard linear model and a bilinear model, both trained with the same sparse-

ness priors. The two rows for the bilinear 
ase depi
t the translated obje
t

features w

y

i

(see Equation 3) for translations of �3; : : : ; 3 pixels. (b) The repre-

sentation of an example natural image pat
h, and of the same pat
h translated

to the left. Note that the bar plot representing the x ve
tor is indeed sparse,

having only three signi�
ant 
oeÆ
ients. The 
ode for the style ve
tors for both

the 
anoni
al pat
h, and the translated one is likewise sparse. The w

ij

basis

images are shown for those dimensions whi
h have non-zero 
oeÆ
ients for x

i

or y

j

.
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y(0,3)

y(−2,0)

y(+1,0)

y(−1,+2)

Figure 2: Translating a learned feature to multiple lo
ations. The two

rows of 8 images represent the individual basis ve
tors w

ij

for two values of

i. The y

j

values for two sele
ted transformations for ea
h i are shown as bar

plots. y(a; b) denotes a translation of (a; b) pixels in the Cartesian plane. The

last 
olumn shows the resulting basis ve
tors after translation.

4.3 Towards Parts-Based Obje
t Re
ognition

The bilinear generative model in Equation 2 uses the same set of transformation

values y

j

for all the features i = 1; : : : ;m. Su
h a model is appropriate for global

transformations that apply to an entire image region su
h as a shift of p pixels

for an image pat
h or a global illumination 
hange.

Consider the problem of representing an obje
t in terms of its 
onstituent

parts. In this 
ase, we would like to be able to transform ea
h part independently

of other parts in order to a

ount for the lo
ation, orientation, and size of ea
h

part in the obje
t image. The standard bilinear model 
an be extended to

address this need as follows:

z =

m

X

i=1

(

n

X

j=1

w

ij

y

i

j

)x

i

(12)

Note that ea
h obje
t feature i now has its own set of transformation values

y

i

j

. The double summation is thus no longer symmetri
. Also note that the

standard model (Equation 2) is a spe
ial 
ase of Equation 12 where y

i

j

= y

j

for

all i.

We have 
ondu
ted preliminary experiments to test the feasibility of Equa-

tion 12 using a set of obje
t features learned for the standard bilinear model.

Fig. 3 shows the results. These results suggest that allowing independent trans-

formations for the di�erent features provides a ri
h substrate for modeling im-

ages and obje
ts in terms of a set of lo
al features (or parts) and their individual

transformations.
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y(0,1)

y(−2,0)

y(1,1)

y(1,0)

y(−2,0)

y(0,1)

y(1,0)

y(1,1)

(a)

57 81x

y(0,1)

y(0,1)

x81

x57

(b)

Figure 3: Modeling independently transformed features. (a) shows the

standard bilinear method of generating a translated feature by 
ombining basis

ve
tors w

ij

using the same set of y

j

values for two di�erent features (i = 57

and 81). (b) shows four examples of images generated by allowing di�erent

values of y

j

for the two di�erent features (i = 57 and 81). Note the signi�
ant

di�eren
es between the resulting images, whi
h 
annot be obtained using the

standard bilinear model.

5 Summary and Con
lusion

A fundamental problem in vision is to simultaneously re
ognize obje
ts and their

transformations [8, 10℄. Bilinear generative models provide a tra
table way of

addressing this problem by fa
toring an image into obje
t features and trans-

formations using a bilinear equation. Previous approa
hes used un
onstrained

bilinear models and produ
ed global basis ve
tors for image representation [12℄.

In 
ontrast, re
ent resear
h on image 
oding has stressed the importan
e of

lo
alized, independent features derived from metri
s that emphasize the higher-

order statisti
s of inputs [6, 3, 7, 5℄. This paper introdu
es a new probabilisti


framework for learning bilinear generative models based on the idea of sparse


oding.
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Our results demonstrate that bilinear sparse 
oding of natural images pro-

du
es lo
alized oriented basis ve
tors that 
an simultaneously represent features

in an image and their transformation. We showed how the learned generative

model 
an be used to translate a basis ve
tor to di�erent lo
ations, thereby

redu
ing the need to learn the same basis ve
tor at multiple lo
ations as in tra-

ditional sparse 
oding methods. We also proposed an extension of the bilinear

model that allows ea
h feature to be transformed independently of other fea-

tures. Our preliminary results suggest that su
h an approa
h 
ould provide a


exible platform for adaptive parts-based obje
t re
ognition, wherein obje
ts are

des
ribed by a set of independent, shared parts and their transformations. The

importan
e of parts-based methods has long been re
ognized in obje
t re
ogni-

tion in view of their ability to handle a 
ombinatorially large number of obje
ts

by 
ombining parts and their transformations. Few methods, if any, exist for

learning representations of obje
t parts and their transformations dire
tly from

images. Our ongoing e�orts are therefore fo
used on deriving eÆ
ient algo-

rithms for parts-based obje
t re
ognition based on the 
ombination of bilinear

models and sparse 
oding.
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