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Abstrat

Reent algorithms for sparse oding and independent omponent anal-

ysis (ICA) have demonstrated how loalized features an be learned from

natural images. However, these approahes do not take image transfor-

mations into aount. As a result, they produe image odes that are

redundant beause the same feature is learned at multiple loations. We

desribe an algorithm for sparse oding based on a bilinear generative

model of images. By expliitly modeling the interation between image

features and their transformations, the bilinear approah helps redue

redundany in the image ode and provides a basis for transformation-

invariant vision. We present results demonstrating bilinear sparse oding

of natural images. We also explore an extension of the model that an ap-

ture spatial relationships between the independent features of an objet,

thereby providing a new framework for parts-based objet reognition.

1 Introdution

Algorithms for redundany redution and eÆient oding have been the subjet

of onsiderable attention in reent years [6, 3, 4, 7, 9, 5, 11℄. Although the

basi ideas an be traed to the early work of Attneave [1℄ and Barlow [2℄,

reent tehniques suh as independent omponent analysis (ICA) and sparse

oding have helped formalize these ideas and have demonstrated the feasibility

of eÆient oding through redundany redution. These tehniques produe an

eÆient ode by attempting to minimize the dependenies between elements of

the ode by using appropriate onstraints.
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One of the most suessful appliations of ICA and sparse oding has been in

the area of image oding. Olshausen and Field showed that sparse oding of nat-

ural images produes loalized oriented basis �lters that resemble the reeptive

�elds of simple ells in primary visual ortex [6, 7℄. Bell and Sejnowski obtained

similar results using their algorithm for ICA [3℄. However, these approahes do

not take image transformations into aount. As a result, the same oriented fea-

ture is often learned at di�erent loations, yielding a redundant ode. Moreover,

the presene of the same feature at multiple loations prevents more omplex

features from being learned and leads to a ombinatorial explosion when one

attempts to sale the approah to large image pathes or hierarhial networks.

In this paper, we propose an approah to sparse oding that expliitly mod-

els the interation between image features and their transformations. A bilinear

generative model is used to learn both the independent features in an image as

well as their transformations. Our approah extends Tenenbaum and Freeman's

work on bilinear models for learning ontent and style [12℄ by asting the prob-

lem within probabilisti sparse oding framework. Thus, whereas prior work on

bilinear models used global deomposition methods suh as SVD, the approah

presented here emphasizes the extration of loal features by removing higher-

order redundanies through sparseness onstraints. We show that for natural

images, this approah produes loalized oriented �lters that an be translated

by di�erent amounts to aount for image features at arbitrary loations. Our

results demonstrate how an image an be fatored into a set of basi loal fea-

tures and their transformations, providing a basis for transformation-invariant

vision. We onlude by disussing how the approah an be extended to allow

parts-based objet reognition, wherein an objet is modeled as a olletion of

loal features (or \parts") and their relative transformations.

2 Bilinear Generative Models

We begin by onsidering the standard linear generative model used in algorithms

for ICA and sparse oding [3, 7, 9℄:
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where z is a k-dimensional input vetor (e.g. an image), w

i

is a k-dimensional

basis vetor and x

i

is its salar oeÆient. Given the linear generative model

above, the goal of ICA is to learn the basis vetors w

i

suh that the x

i

are as in-

dependent as possible, while the goal in sparse oding is to make the distribution

of x

i

highly kurtoti given Equation 1.

The linear generative model in Equation 1 an be extended to the bilinear

ase by using two independent sets of oeÆients x

i

and y

i

(or equivalently, two

vetors x and y) [12℄:
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The oeÆients x

i

and y

j

jointly modulate a set of basis vetors w

ij

to produe

an input vetor z. For the present study, the oeÆient x

i

an be regarded

as enoding the presene of objet feature i in the image while the y

j

values

determine the image transformation. In the terminology of Tenenbaum and

Freeman [12℄, x desribes the \ontent" of the image while y enodes its \style."

Equation 2 an also be expressed as a linear equation in x for a �xed y:
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Likewise, for a �xed x, one obtains a linear equation in x. Indeed this is the

de�nition of bilinear: given one �xed fator, the model is linear with respet to

the other fator. The power of bilinear models stems from the rih non-linear

interations that an be represented by varying both x and y simultaneously.

3 Learning Sparse Bilinear Models

3.1 Learning Bilinear Models

Our goal is to learn from image data an appropriate set of basis vetors w

ij

that e�etively desribe the interations between the feature vetor x and the

transformation vetor y. A ommonly used approah in unsupervised learning

is to minimize the sum of squared pixel-wise errors over all images:
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where jj � jj denotes the L

2

norm of a vetor. A standard approah to minimizing

suh a funtion is to use gradient desent and alternate between minimization

with respet to fx;yg and minimization with respet to w

ij

. Unfortunately,

the optimization problem as stated is underonstrained: the funtion E

1

has

many loal minima and results from our simulations indiate that onvergene

is diÆult in many ases. There are many di�erent ways to represent an image,

making it diÆult for the method to onverge to a basis set that an generalize

e�etively.

A related approah is presented by Tenenbaum and Freeman [12℄. Rather

then using gradient desent, their method estimates the parameters diretly

by omputing the singular value deomposition (SVD) of a matrix A ontain-

ing input data orresponding to eah ontent lass x in every style y. Their

approah an be regarded as an extension of methods based on prinipal om-

ponent analysis (PCA) applied to the bilinear ase. The SVD approah avoids

the diÆulties of onvergene that plague the gradient desent method and is
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muh faster in pratie. Unfortunately, the learned features tend to be global

and non-loalized similar to those obtained from PCA-based methods based on

seond-order statistis. As a result, the method is unsuitable for the problem

of learning loal features of objets and their transformations.

The underonstrained nature of the problem an be remedied by the impos-

ing onstraints on x and y. In partiular, we ould ast the problem within

a probabilisti framework and impose spei� prior distributions on x and y

with higher probabilities for values that ahieve ertain desirable properties.

We fous here on the lass of sparse prior distributions for several reasons: (a)

by foring most of the oeÆients to be zero for any given input, sparse pri-

ors minimize redundany and enourage statistial independene between the

various x

i

and between the various y

j

[7℄, (b) there is growing evidene for

sparse representations in the brain { the distribution of neural responses in vi-

sual ortial areas is highly kurtoti i.e. the ell exhibits little ativity for most

inputs but responds vigorously for a few inputs, ausing a distribution with a

high peak near zero with long tails, () previous approahes based on sparseness

onstraints have obtained enouraging results [7℄, and (d) enforing sparseness

on the x

i

enourages the parts and loal features shared aross objets to be

learned while imposing sparseness on the y

j

allows objet transformations to be

explained in terms of a small set of basi transformations.

3.2 Bilinear Sparse Coding

We assume the following priors for x

i

and y

j

:
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where Z

�

and Z

�

are normalization onstants, � and � are parameters, and S

is a \sparseness funtion." For this study, we used S(a) = log(1 + a

2

).

Within a probabilisti framework, the squared error funtion E

1

summed

over all images an be interpreted as representing the negative log likelihood of

the data given the parameters: � logP (zjw

ij

;x;y) (see, for example, [7℄). The

priors P (x

i

) and P (y

j

) an be used to marginalize this likelihood to obtain the

new likelihood funtion: L(w

ij

) = P (zjw

ij

). The goal then is to �nd the w

ij

that maximize L, or equivalently, minimize the negative log of L. Under ertain

reasonable assumptions (disussed in [7℄), this is equivalent to minimizing the

following optimization funtion over all input images:
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Gradient desent an be used to derive update rules for the omponents x

a

and y

b

of the feature vetor x and transformation vetor y respetively for any
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image z, assuming a �xed basis w

ij
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Given a training set of inputs z

l

, the values for x and y for eah image after

onvergene an be used to update the basis set w

ij

in bath mode aording

to:
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As suggested by Olshausen and Field [7℄, in order to keep the basis vetors from

growing without bound, we adapted the L

2

norm of eah basis vetor in suh a

way that the varianes of the x

i

and y

j

were maintained at a �xed desired level.

4 Results

4.1 Training Paradigm

We tested the algorithms for bilinear sparse oding on natural image data. The

natural images we used are distributed by Olshausen and Field [7℄, along with

the ode for their algorithm. The training set of images onsisted of 10 � 10

pathes randomly extrated from ten 512� 512 soure images. The images are

pre-whitened to equalize large varianes in frequeny, and thus speed onver-

gene. We hoose to use a omplete basis where m = 100 and we let n be at

least as large as the number of transformations (inluding the no-transformation

ase). The sparseness parameters � and � were set to 2:2 and 1:5. In order to

assist onvergene all learning ours in bath mode, where the bath onsisted

of M = 100 image pathes. The step size � for gradient desent using Equa-

tion 11 was set to 0:05. The transformations were hosen to be 2D translations

in the range [�4 : 4℄ pixels in both the axes.

4.2 Bilinear Sparse Coding of Natural Images

Figure 1 shows the results of training on natural image data. A omparison

between the learned features for the linear generative model (Equation 1) and

the bilinear model is provided in Figure 1 (a). Although both show simple,

loalized, and oriented features, the bilinear method is able to model the same

features under di�erent transformations. In this ase, the range [�3; 3℄ horizon-

tal translations were used in the training of the bilinear model. Figure 1 (b)

provides an example of how the bilinear sparse oding model enodes a natural
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image path and the same path after it has been translated. Note that both

the x and y vetors are sparse.

Figure 2 shows how the model an aount for a given loalized feature at

di�erent loations by varying the y vetor. As shown in the last olumn of the

�gure, the translated loal feature is generated by linearly ombining a sparse

set of basis vetors w

ij

.

(a)

Bilinear basisLinear basis

0 1 2 3−1−2−3

ypatch
translated

natural

patch
image

i

3

91

9

j 21 7 8

w
ij basis images

9 913

(b)

x

1 7 82

y

Figure 1: Representing natural images and their transformations with

a sparse bilinear model. (a) A omparison of learned features between a

standard linear model and a bilinear model, both trained with the same sparse-

ness priors. The two rows for the bilinear ase depit the translated objet

features w

y

i

(see Equation 3) for translations of �3; : : : ; 3 pixels. (b) The repre-

sentation of an example natural image path, and of the same path translated

to the left. Note that the bar plot representing the x vetor is indeed sparse,

having only three signi�ant oeÆients. The ode for the style vetors for both

the anonial path, and the translated one is likewise sparse. The w

ij

basis

images are shown for those dimensions whih have non-zero oeÆients for x

i

or y

j

.

6



y(0,3)

y(−2,0)

y(+1,0)

y(−1,+2)

Figure 2: Translating a learned feature to multiple loations. The two

rows of 8 images represent the individual basis vetors w

ij

for two values of

i. The y

j

values for two seleted transformations for eah i are shown as bar

plots. y(a; b) denotes a translation of (a; b) pixels in the Cartesian plane. The

last olumn shows the resulting basis vetors after translation.

4.3 Towards Parts-Based Objet Reognition

The bilinear generative model in Equation 2 uses the same set of transformation

values y

j

for all the features i = 1; : : : ;m. Suh a model is appropriate for global

transformations that apply to an entire image region suh as a shift of p pixels

for an image path or a global illumination hange.

Consider the problem of representing an objet in terms of its onstituent

parts. In this ase, we would like to be able to transform eah part independently

of other parts in order to aount for the loation, orientation, and size of eah

part in the objet image. The standard bilinear model an be extended to

address this need as follows:

z =

m

X

i=1

(

n

X

j=1

w

ij

y

i

j

)x

i

(12)

Note that eah objet feature i now has its own set of transformation values

y

i

j

. The double summation is thus no longer symmetri. Also note that the

standard model (Equation 2) is a speial ase of Equation 12 where y

i

j

= y

j

for

all i.

We have onduted preliminary experiments to test the feasibility of Equa-

tion 12 using a set of objet features learned for the standard bilinear model.

Fig. 3 shows the results. These results suggest that allowing independent trans-

formations for the di�erent features provides a rih substrate for modeling im-

ages and objets in terms of a set of loal features (or parts) and their individual

transformations.
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y(1,0)

y(−2,0)

y(0,1)

y(1,0)

y(1,1)

(a)

57 81x

y(0,1)

y(0,1)
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Figure 3: Modeling independently transformed features. (a) shows the

standard bilinear method of generating a translated feature by ombining basis

vetors w

ij

using the same set of y

j

values for two di�erent features (i = 57

and 81). (b) shows four examples of images generated by allowing di�erent

values of y

j

for the two di�erent features (i = 57 and 81). Note the signi�ant

di�erenes between the resulting images, whih annot be obtained using the

standard bilinear model.

5 Summary and Conlusion

A fundamental problem in vision is to simultaneously reognize objets and their

transformations [8, 10℄. Bilinear generative models provide a tratable way of

addressing this problem by fatoring an image into objet features and trans-

formations using a bilinear equation. Previous approahes used unonstrained

bilinear models and produed global basis vetors for image representation [12℄.

In ontrast, reent researh on image oding has stressed the importane of

loalized, independent features derived from metris that emphasize the higher-

order statistis of inputs [6, 3, 7, 5℄. This paper introdues a new probabilisti

framework for learning bilinear generative models based on the idea of sparse

oding.
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Our results demonstrate that bilinear sparse oding of natural images pro-

dues loalized oriented basis vetors that an simultaneously represent features

in an image and their transformation. We showed how the learned generative

model an be used to translate a basis vetor to di�erent loations, thereby

reduing the need to learn the same basis vetor at multiple loations as in tra-

ditional sparse oding methods. We also proposed an extension of the bilinear

model that allows eah feature to be transformed independently of other fea-

tures. Our preliminary results suggest that suh an approah ould provide a

exible platform for adaptive parts-based objet reognition, wherein objets are

desribed by a set of independent, shared parts and their transformations. The

importane of parts-based methods has long been reognized in objet reogni-

tion in view of their ability to handle a ombinatorially large number of objets

by ombining parts and their transformations. Few methods, if any, exist for

learning representations of objet parts and their transformations diretly from

images. Our ongoing e�orts are therefore foused on deriving eÆient algo-

rithms for parts-based objet reognition based on the ombination of bilinear

models and sparse oding.
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