Alias Annaations for Program Understanding

UW-CSE-02-11-01

November, 2002

Alias Annotations for Program Understanding
Jonathan Aldrich Valentin Kostadinov Craig Chambers

Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195-2350 USA
+1 206 616-1846

{jonal, valmk, chambers}@cs.washington.edu

Abstract

One of the primary challenges in bulding and evolving large
objed-oriented systems is understanding ali asing between oljeds.
Unexpeded diasing can lead to hbroken invariants, mistaken
asamptions, seaurity holes, and surprising side dfeds, al of
which may leal to software defeds and complicae software
evolution.

This paper presents Aliaskva, a cgabilit y-based alias annaation
system for Java that makes aias patterns explicit in the source
code, enabling developers to reason more dfedively abou the
interadions in a @mplex system. We describe our
implementation, prove the soundress of the aanaation system,
and give a agorithm for automaticdly inferring dias
annaations. Our experience suggests that the aanaation system
is pradicd, that annaation inference is efficient and yields
appropriate axnaations, and that the axndations can express
important invariants of data structures and o software
architedures.

1. Introduction

Understanding and evolving large software systems is one of the
most pressng challenges confronting software enginea's today.
When evolving a cmmplex system in the face of changing
requirements, developers neal to understand howv the system is
organized in order to work effedively. For example, to avoid
introduwcing program defeds, programmers neal to be le to
predict the dfea of making a software dhange. Also, while fixing
defeds, programmers need to be ale to tradk value flow within a
program in order to understand hav an erroneous value was
prodwced. In an oljed-oriented program, al of these tasks
require understanding the data sharing relationships within the
program. These relationships may be very complex—at worst, a
reference ould pdnt to any objed of compatible type—and
current languages do nd provide much help in understanding
them [HLW+92].

Data sharing problems can also compromise the seaurity of a
system. For example, in version 11 o the Java standard library,
the seaurity system function Cl ass. get Si gner s() returned a
pointer to an internal array, rather than a wpy. Clients could then
modify the aray, compromising the seaurity of the “sandbox” that
isolates Jva gplets and pdentially al owing malicious applets to
pose & trusted code. Existing languages provide poar suppat for
preventing seaurity problems that arise from improper data
sharing.

In this paper, we describe and evaluate Aliaskva, a type
annaation system for spedfying data sharing relationshipsin Java
programs. The andations provide atomaticdly chedked

documentation abou data sharing within a program, while
alowing software enginegsto program in much the same style &
before. We have dso applied Aliaskva to spedfy the data
sharing relationships within a software achitedure, as expressed
in the achitedure description language ArchJava[ACNO23)].

AliasJva s annaations cagpture several common forms of sharing
in ohjed-oriented systems. First, objeds are often shared in a
structuraly bounded way: an ohjed might be shared within the
implementation o a subsystem, but not beyondit. In Aliaskva,
objeds that are part of a subsystem’s representation are spedfied
with an owned type axndation; the subsystem can grant trusted
externa objeds the caability to accessits owned state using a
simple form of ownership parameterization. Sewnd, objeds are
sometimes dared in a time-bounded way: an oljed may be
passd as a parameter to a method, which uses the objea for the
duration o the cdl, but does nat store apersistent referenceto the
objed. Aliaskhva spedfies this kind o time-boundcd access
cgpability with a lent type aanaation. Finaly, our type system
a so includes the best-case unique anndation for unshared oljeds
and the worst-case shared annaation for objeds that have no
owning subsystem.

The @ntributions of this paper are the foll owing:

* a c®ability-based type anndation system that combines
uniquenessand ownership-style encgpsulation;

e an implementation in Java axd a discusson d isales
including concurrency, inner classes, iterators, and cests;

» aformalizaion d our type anndation system for a subset of
Java and a proof outline of several key invariants;

» anovel agorithm for inferring ali as annaations; and

» an empiricd evaluation d Aliaslavaonanon-trivial program
and on @t of the Java mlledion classlibrary.

The rest of this paper is organized as follows. The next sedion
introdwces Aliaslva with a series of examples. Sedion 3
formali zes our type system and outlines proofs of key properties.
Sedion 4 describes our annaation inference dgorithm. We
evaluate our system in sedion 5 onaredistic program and onthe
Java mlledionlibraries. Sedion 6 dscussesrelated work, and we
concludein sedion 7.

2. AliasJava

Our type awnaation system is motivated by the desire to
understand the data sharing patterns in very large software
systems. Aliaslva anndates al reference types, describing the
extent to which that reference is ared. The anaations bound
diasing on the heg structurally: unique describes an urshared
reference, owned objeds are assgned an owner that controls who

Alias Annaations for Program Understanding

cl ass LinkedLi st {
private unique Object item
private uni que LinkedList next;

public LinkedLi st (uni que Object o,
uni que LinkedList n) {
item= 0; next = n;

}

public unique ohject getltem() {
unique hject tenp = item
item= null;
return tenp;

}

public uni que LinkedList getNext() {
uni que LinkedLi st tenpNext = next;
next = null;
return tenpNext;

}
}

uni que LinkedList list =

new Li nkedLi st (new Object(), null);
I'i st=new Li nkedLi st (new Object(), list);
uni que Object o = list.getltem();
list = list.getNext();

Figurel. A linked list classwith uni que linksand items

may accessthat objed, and shared indicates the worst case of a
globaly-diased reference We dso provide alent anndation
expressng sharing that is temporaly bounded by the length of a
methodcdl .

In this sdion, we present our annaations as a type system for
Java programs that provides global guarantees abou diasing.
However, adding alias anndations to a large legacy program may
require significant effort. Our anndations can aso be gplied to
verify locd properties within a subsystem, treding the axnaations
at the edge of the subsystem as unchedked asertions. We use this
methoddogy in ou case studies in Sedion 5 A promising
aternative is inferring alias annaations for a dosed subset of the
program automaticdly. Sedion 4 pesents an annaation
inference dgorithm, and we present ealy results from a prototype
implementation.

Subsedion 21 describes the Aliaskva language through a series
of examples. A more predse description o the wre anndation
system is provided by the forma semantics in sedion 3 The
following two subsedions describe the properties guaranteed by
Aliaskva, and hav Aliaskvas design works with the features of
the full Java language. Subsedion 24 shows more examples of
the language in order to ill ustrate its expressveness We discuss
some of the reasoning benefits provided by our annaation system
in subsedion 25.

2.1. Annotationsfor Data Sharing

Unique. When an oljea is first creaed, it is unique—that is,
there is only one referenceto the objed. We andtate atype with
uni que to describe areference that does not have persistent
aliases. Figure 1 ill ustrates uniquenessthrough a linked list class
where dl of the dementsand all of the linksare uni que.

In general, after a uni que variable or field is read, the source
location must be deal (that is, unused by subsequent code)—
otherwise the rea reference would be an alias of the suppaosedly
unique source. A standard intraprocedural live variable analysis

UW-CSE-02-11-01

November, 2002

class Point {

int x; intvy;

Point(int x, int y) { this.x = x; this.y = vy; }
}

cl ass Rectangle {
private owned Point upperlLeft;
private owned Point |owerRight;

publ i ¢ Rectangl e(uni que Point ul,
uni que Point Ir) {
/'l ensure Rectangl e has non-negative area
if (u.x>1lr.x || ul.y >1Ir.y)
throw new ||| egal Argunment Exception();
upper Left = ul;
lowerRight = Ir;

}
public uni que Point getUpperLeft() {

return new Poi nt (upperLeft.x, upperLeft.y);
}

}

Figure 2. A Poi nt classand a Rect angl e classthat stores
itssizeasa pair of points.

is used to verify this criterion for uni que locd variables. When
a uni que field is read by a method, that method must set the
field to another value before exeauting any statement (such as a
method cdl or exception-throwing expresson) that could result in
reading the original value of the field aseaondtime. For example,
in Figure 1, theget | t emmethodsetsthei t emfieldtonul | so
that no aliases are aeaed to the uni que value when the item is
returned.

In Aliaskva, uni que can be onsidered a universa source
uni que values can be asgned to alocation with any other data
sharing annaation. The mnverse is not true, as the other data
sharing annaations do nd guarantee that a value is unique. In
our cagpability model, unique is the strongest capability, since
unique objeds can be asdgned to a variable with any other alias
annaation.

Owned. Figure 2 shows two classes modeling points and
redangles. The redangle dass represents its ape using two
points, one for the upper-left corner of the redangle and ore for
the lower-right corner.

A classlike Rect angl e may neal to maintain invariants over its
state; for example, the mde in Figure 2 ensures that the redangle
does not have anegative size, i.e. the upper left-hand pant is not
below or to the right of the other paint.

Maintaining these invariants depends on the ladk of externa
diases to the Poi nt objeds that are part of the redangle's
representation. It is not sufficient to make the Poi nt fields
privat e, becaise diases to the interna representation could
still be exposed. For example, a naive implementation o the
get Upper Left method coud expose Rectangle’s
representation by returning the internal Poi nt objed rather than
a opy. Theinvariants of Rect angl e could also be violated if
two redangles acddentall y shared the same Poi nt objeds.

Our owned annaation describes a reference that is confined to
the scope of the exclosing objed, unless that objea explicitly
gives ancther objed permisson to accessit. This dlows the
implementer of Rect angl e to rely on the fad that externa

Alias Annotations for Program Understanding

public class Stackdient {
uni que St ack<owned> st =new St ack<owned>();

public void run() {

owned Integer i = new Integer(5);
st. push(i);
owned Integer i2 = (Integer) st.pop();

}
}

public class Stack<el enent> {
private owned Link<el ement, owned> top;

public el ement Object pop() {
if (top == null)
return null;
owned Link<el ement, owned> tenp = top;
top = top.next();
return tenp. menber();

public void push(el ement Object o) {
top = new Li nk<el ement, owned>(o,top);

}

public class Link<elenent, link> {
private link Link<elenment, |ink> nxt;
private el enent Cbject obj;

public Link(el ement Object _obj,
link Link<elenment, link> _nxt) {
obj = _obj; nxt = _nxt;

public el enent Cbject nenber() {
return obj;

public link Link<elenment, |ink> next() {
return nxt;

}
}

Figure 3. A St ack classparameterized by the owner of its
elements, a Li nk classused in the stack’s representation, and
aclient of the stack.

objects can only change or see changes to its representation
through the rectangle’s interface. Owned references may only
flow to owned variables within the scope of the owning object.
If, for example, the get Upper Left method returned an dlias to
the interna point, the compiler would flag the error as a violation
of encapsulation.

Ownership parameters. In our capability model, owned
represents a capability that every object has to access its own
representation. However, an object may need to structure its
representation by putting some of its objects into a container that
is also part of its representation. In this case, we can pass owned
as an alias parameter to the container class, granting that class the
capability to reference the element data that are owned by another
object. Our system also includes ownership parameterization for
methods; an example is shown in section 5.1.

For example, Figure 3 shows a St ackCl i ent class that uses a
St ack to hold integers that are part of its representation. When
the StackC ient creates a Stack, it passes the owned
capability as the Stack’s parameter to give the Stack
permission to access the objects owned by St ackC i ent. The

UW-CSE-02-11-01

November, 2002

class Singleton {
private static shared Singleton val
= new Singl eton();

public static shared Singleton get() {
return val;

}
public void doSonet hing() {
/1 application specific code

}

shared Singleton s = Singleton.get();
s. doSoret hi ng();

Figure 4. A shar ed Singleton objed

code in run shows that Integers owned by the
St ackd i ent can be pushed onto and popped off the stack.

The stack uses alinked list to storeits elements. Referencesto the
links in the list should be confined to enclosing St ack object,
and so the head of the list (that is, the top of the stack) is
annotated owned. Since the linked list is a recursive data
structure, each link is parameterized with a capability to access
not only the elements of the list (owned by the St ackCl i ent in
this example), but also the other links in the list (owned by the
St ack). Therefore, the St ack passes the owned capability as
the second parameter of the linksin the linked list.

Shared. Figure 4 illustrates the Singleton design pattern
[GHJ+94], used to create a single instance of an object that is
used throughout an application. Singleton objects are intended to
be shared throughout a program, and thus cannot be confined by
an owning object. We give references to such objects ashar ed
annotation, representing the fact that these objects may be shared
globally. Unfortunately, little reasoning can be done about
shar ed references, except that they may not aias non-shared
references. However, shared references are essentia for
interoperating with existing run-time libraries, legacy code, and
static fields, al of which may refer to aliases that are not confined
to the scope of any object instance.

Lent. Figure 5 shows a method that could be part of the
Li nkedLi st class from Figure 1. This method checks if an
integer is stored in a linked list that is made up of uni que
Li nkedLi st and | nt eger objects. Thiswould be difficult to
express with the annotations presented so far, because
cont ai ns would have to destroy the linked list while traversing
it in order to avoid creating aliases to the links and elementsin the
list. Instead, the method uses the | ent annotation to create
temporary aliases to the unique objects in the list. These aliases
must be destroyed when the cont ai ns method returns, so that
the uniqueness of the linked list is preserved across cals to
cont ai ns.

As shown in this example, uni que objects can be passed as
| ent parameters to methods; the caled method can pass on the
object asal ent parameter to other methods, but cannot return it
or store it in any field. Thus, the | ent annotation preserves all
the reasoning about the unique object, but adds a large measure of
practical expressiveness. The | ent type can aso be used to
temporarily pass an owned object to an external method for the
duration of a method call, without any risk that the outside
component might keep a reference to that object. Therefore,

Alias Annotations for Program Understanding

bool ean contains(| ent LinkedList head, int i){
for (lent LinkedList list = head; list != nul | ;
list = list.next) {
I ent Integer item = (Integer) list.item;
if (tem.in tValue() ==1)
return true;

return fal se;

}

Figure5. A method that usesal ent referencetotraversea
linked list looking for an integer

| ent can be considered a universal sink: values with any alias
type annotation may be assigned to a | ent location. The
converse is prohibited: | ent values may only be assigned to
other | ent locations. Lent can be thought of a restricted
capability that can be used to access an object, but cannot be used
to store the object in a field. Lent is the default annotation for
method arguments and local variables, and may be omitted.

Other annotations. In designing our annotation system, we
chose to focus on precisely specifying the aliasing relationships
between objects in the system. Using this criterion, we decided
not to include a few annotations that are used in some of the
related work. Although package-based confinement [BV99]
provides a middle ground between our shared and owned
annotations, we chose not to include it because object ownership
is a stronger property and we wanted to keep the system simple.
Read-only annotations [NV P98,MP99,BNR01,BR01] can also
express useful invariants about a system, but they are not aiasing
properties and so were not included in our design. These
annotations could probably be added to our system in a natural
and orthogonal way.

Summary. Table 1 shows the constraints that our type
annotations place on value flow. The various annotations are
listed along the left side and the top of the table. An X indicates
that data can flow from a location with the annotation on the left
to a location with an annotation above. The table shows clearly
that uni que isauniversal source (any variable can be assigned a
uni que vaue), and that | ent is a universal sink (I ent
variables can be assigned a value with any type annotation). The
other type annotations must be kept separate from each other.

2.2. Properties

Aliaslava ensures uniqueness and ownership invariants that
restrict the aliasing patterns that can occur during program
execution. Section 3 proves these invariants for a subset of
AliasJava. Our uniqueness invariant states the obvious fact that
variables and fields with the uni que annotation hold unique
references.

Uniqueness Invariant: At a particular point in dynamic
program execution, if a variable or field that refers to an
object o is annotated uni que, then no other field in the
program refers to o, and all other local variables that
refer to o are annotated | ent .

Our ownership invariant states that ownership annotations are
consistent across program variables and across program
execution.

Ownership Invariant: At a particular point in dynamic
program execution, if a variable or field referring to

UW-CSE-02-11-01

November, 2002

Tablel. Valueflow between alias annotations

To
uni que |owned | « [shared| |ent
uni que X X X X X
owned X X
IS

o o X
“ [Shared X X
I ent X

object 0o has an ownership annotation denoting object
o' , then all other variables or fields that refer to o at any
subsequent point in dynamic program execution, are
either annotated | ent or have an ownership annotation
denoting the same owner 0’ .

Another way to state the ownership invariant is that each non-
uni que, non-shar ed object is owned by exactly one other
object. Only an object’s owner, and the objects that the owner has
delegated a capability to, may store a reference to that object. An
object delegates a capability to access its owned representation
by creating a new object and passing owned as one of the new
object’s dlias parameters, or by calling a method and passing
owned as an dias parameter. Because capabilities can only be
transferred using the static type parameterization mechanism,
AliasJava supports static, source-level human and automated
reasoning about which references might alias an owned object.

2.3. Javalntegration

The Java language has several features that present challenges for
an alias control system. We discuss how AliasJava handles of a
number of these features below.

Subtyping. We extend Java's declared subtyping relation with
our type annotations. When a class is defined, it must provide
values for the alias parameters of the classes and interfaces it
extends and implements; these values can be any of the aias
parameters of the subclass. For example, a class declaration
might look likee class C<a,B,y> extends B<a,p>
implements I<y>. Whenamethod or field is overridden, the
overriding member must declare its parameters and return value
with annotations that exactly match the overridden member, under
the adias parameter mapping induced by the inheritance
declarations.

This. Sincethe current object t hi s isan implicit argument to all
instance methods, its type annotation must be specified. Thisis
done with an annotation that comes immediately after the
argument list. This type may be one of shared, uni que,
| ent, or an ownership parameter. Use of t hi s within the
method must be consistent with its annotation, and a method
cdls, the receiver is treated as another parameter that must follow
therulesfor thet hi s aias annotation. Because the vast mgjority
of methods and constructors have a |l ent annotation for t hi s,
| ent is the default in our system and need not be explicitly
specified.

Constructors. Like methods, constructors must specify an alias
annotation for t hi s. Semantically, we treat a new statement as
an allocation of a uni que object followed by a method call to

Alias Annotations for Program Understanding

the constructor for initidization. If the constructor's this
annotation is | ent , the alocated object will remain uni que; if
the constructor's t hi s annotation is shar ed, the allocated
object will beshar ed, etc. Thus, the alias annotation of a newly
allocated and constructed object will only be uni que in the
common case where the constructor’s t hi s annotationisl| ent .

Inner Classes. Inner classes implicitly import the parameters of
their surrounding class. The inner class can have its own
additional parameters, if necessary. Thus, the qualified type of an
inner class is of the form
Package.EnclosingClass<o..>.InnerClass<B..>. An
inner class can refer to the owned references of the enclosing
class. These values have the type annotation
Encl osi ngCl assNane. owned, while the owned vaues of
the inner class have the annotation owned. Anonymous classes
defined within a function may not access uni que or | ent loca
variables from the function’s scope, because such accesses could
create internal persistent references stored in the inner class
object, which may violate the type system’s invariants.

These specia rules do not apply to static classes defined
within another class. Such classes do not have an implicit pointer
to an object of the enclosing class, and so they follow the same
rules as ordinary classes, with no special access to their enclosing
class.

Static Fields. Static fields are not associated with any particular
object instance, and so they cannot be declared with an owned or
o type annotation (also recall that no field may have a | ent
annotation). Static fields can be uni que if they are read and
written in away consistent with the uni que annotation.

Concurrency. Concurrency is largely orthogonal to this work.
However, in the presence of concurrency, access to unique fields
must be synchronized to prevent two threads from reading a
unique variable simultaneously, creating two aliases of a
supposedly unique value. We can guarantee uniqueness in the
presence of concurrency by ensuring that a uni que value can
flow from an object field into another non-l ent location only
within a block of code synchronized on the object whose field is
being dereferenced (or the field's declaring class, in the case of
static fields). The field that was read must also be set to another
value before the end of the synchronization block.

Casts. Because a class may extend a class that has fewer
parameters, dias parameters may be hidden by subsumption.
Thus the programmer may have a variable o of type Obj ect,
which has no alias parameters, but may want to cast it down to a
Li st type that does have parameters with the expression
(Li st <owned>) 0. In order to preserve soundness, the runtime
system must check both that object o is of type Li st, and aso
that the Li st 'salias parameter is owned.

In our implementation, each parameterized class stores the actual
owner object for each of its parameters. Note that we do not need
to store the owner of each object in the system; our system incurs
a small space overhead only for objects that are parameterized.
This run-time information is assigned at object-creation time.
When a parameter is bound to owned, the creating object t hi s
is recorded to show which object corresponds to the formal
parameter. When a class is created with a parameter «, the run-
time owner for the corresponding parameter of the creating object

UW-CSE-02-11-01

November, 2002

is used to discover which object corresponds to the parameter.
This run-time parameter information is also passed to methods
that have dias parameters.

We cannot add a field to store the ownership parameters for
arrays, sO we use a global hash table to keep track of the
relationship between arrays and their ownership parameters. We
use weak references as the keys in the hash table, so that the
arrays (and their ownership information) can be reclaimed by the
garbage collector when it is otherwise unreachable.

When an object is cast to a parameterized type, the run-time
owner for each of its parameters is checked against the
corresponding owner specified in the cast, and an
Al i asCast Exception is thrown if the check does not
succeed. In this way, Aliaslava supports upcasts and downcasts
in a way that does not violate the semantics of the type
annotations.

Arrays. An array must be given an alias type for each array
dimension. The alias type of the array itself is given by the
overal modifier for the array type, while the modifier for each
dimension of the array is nested in the corresponding brackets.
For example, the variable declaration uni que
Stack<p>[owned] [a] array refersto auni que array of
owned arrays of o stacks that hold objects of dias type g. An
array dereference of the form array[0] would have type
owned Stack<p>[a].

Following Java, we support covariant subtyping for arrays. In
order to preserve type soundness, we must do a run-time alias
check whenever an object is stored into an array, to ensure that the
dynamic alias parameters of the object are compatible with the
dynamic alias parameters of the array. This check uses the same
run time alias annotation information that is used to support sound
casts, as discussed above.

The Java Standard Library. We have chosen to implement our
system on top of the standard Java Virtual Machine (JVM), and so
we did not modify the bytecode of the Java standard library.
Unfortunately, this means that Java's reflection interfaces provide
away to get around the alias type system. This could be remedied
by replacing the existing reflection library with one that
dynamically checksfor violations of our alias type system.

Another issue is that since we did not modify the standard library
bytecode, our runtime system does not record run-time alias
parameter information for parameterized classes and methods
created and called by the standard library code. Thus, the
parameter information for some methods and objects will be
missing at some run-time casts. In our implementation, we aways
alow these casts to succeed, but a number of other choices are
possiblein principle.

Implementation. We have added support for AliasJava to the
ArchJava compiler, which is publicly available at the ArchJava
website [Arc02]. Our implementation is based on the Barat
compiler infrastructure [BS98].

2.4. Examples
In this subsection, we present a number of examples that
demonstrate the expressiveness of our annotation system.

Alias Annotations for Program Understanding

interface Iterator<el ement> {
el enent bj ect next();

}

public class List<elenment> {
private owned Link<el ement, owned> front;
voi d add(el ement oject e) { ... }
uni que lterator<elenment> iterator() {
return new Listlter<el enent, owned>(front);

}
}
class Listlter<element, |ink>
impl ements |terator<el ement> {
private |ink Link<elenment, |ink> cur;

public el ement Object next() {
el enent (bject e = cur.o;
cur = cur.next;
return e;

}
}

Figure6. A Li st classand an iterator over thelist

241 |terators

Iterators are a challenge to many dias control systems. Figure 6
shows how aLi st class can be defined to return an | t er at or
object that can access its internal representation (the links in the
list) without exposing that representation to clients. When the
Li st class creates a Li st |t er, it instantiates the second dias
parameter of Listlter with owned, thereby delegating a
capability to access the list’s representation. The Li stlter is
then returned as an object of type | t er at or , which hides access
to the links in the list. Clients of the | t er at or cannot access
these links through the | t er at or interface, nor can they cast the
Iterator toListlter,becausetheli st hasnot given them
a capability to access its representation.

2.4.2. Uniquenessand Ownership

The combination of the uni que annotation with ownership
annotations is crucial to the expressiveness of our annotation
system; it allows us to express important idioms that neither class
of annotation system could alone. For example, the Lexer class
in Figure 7 accepts an input stream that becomes part of its
representation. The implementation of the Lexer relies on the
state of the | nput Stream and therefore the specification of
Lexer should require that external clients do not modify the state
of the stream after passing it to the lexer.

In AliasJava, the |nput Stream argument to Lexer’s
constructor isuni que, forcing the client to give up its other non-
| ent references to the stream. The | nput Stream is then
captured into the lexer as an owned reference, ensuring that
persistent aliases to the stream cannot escape the lexer’s scope.

2.4.3. Architectural Styles

We have developed ArchJava, an extension to Java that enables
developers to express the software architecture of large object-
oriented software systems [ACNO2a]. The initia version of
ArchJava specified only control flow between architectural
components; communication though data sharing remained
unspecified, reducing the value of the architectura specifications.
Our dias annotation system allows us to extend ArchJava
architectures to include a specification of data sharing between
components. In this subsection, we show how alias annotations

UW-CSE-02-11-01

November, 2002

public class Lexer {
owned | nput Stream stream
Lexer (uni que | nput Streams) {
stream = s;

uni que Token get Token() { ... }
}

void lexerdient() {
uni que | nput Stream stream =
new Fil el nput Stream(file);
uni que Lexer | = new Lexer(strean);
| . get Token();
}

Figure7. A Lexer classthat usesan | nput St r eamas part
of its representation. The | nput St ream is passed to the
constructor asauni que reference.

can express important invariants of two common architectural
styles discussed by Garlan and Shaw [GS93].

Pipe and Filter Architectures. Figure 8 shows a pipe and filter
architecture, in which the architectural components are filters that
accept a stream of data along an input pipe and produce a new
stream of data along an output pipe. The example shows two
component classes, which are used to define architectural
structure in the ArchJava language. The components
communicate with each other through ports. For example, the
Fi | ter component below accepts data on its input port,
processes the data, and sends the new data out its output port. In
addition to ordinary methods, ports may have requires methods
that represent the interface of a connected component.

In this example, the Fi | t er invokes the accept method on its
output port, which will result in invoking the accept method of
the filter at the other end of the pipe. The Pi peAndFi |t er
component class defines an architecture by declaring a set of final
fields that hold its subcomponents, and connecting the ports of
these components with connections. Connections bind the
requires methods in the port of one component to the methods of
the same name implemented in the port of another component.

An important invariant of this architectural style is that the filters
do not share state; they communicate only through the pipes
connecting them. The alias annotations in the system express and
enforce thisinvariant. Becausethe Sour ce, Fi | t er, and Si nk
components have no alias parameters, they cannot directly share
any data® The uni que annotations in the ports express the
invariant that when a data structure is passed from one filter to
another, the first filter gives up al references to the data.

This example also shows the practical importance of combining
uniqueness and ownership in our annotation system. The data
passed between components might not be a simple object, but
could be a complex data structure that includes multiple internal
objects with nontrivia internal aliasing patterns. A type system
with only uniqueness could express passing a unique reference to
a data structure between components, but could not express the
constraint that diasing is alowed within the data structure but not
beyond it. Similarly, a system with only object ownership could

! We are ignoring shar ed annotations, but widespread use of
these is poor practice and could be flagged by the compiler.

Alias Annotations for Program Understanding

conponent class Filter {
public port in {
voi d accept (unique Data d) {
/1 process data and send out
out . accept (process(d));

}
public port out {

requires void accept(unique Data d);
}

private uni que Data process(unique Data d) {...}

}

public conponent class PipeAndFilter {
private final owned Source source =
private final owned Filter filter = ...;
private final owned Sink sink = ...;
connect source.out, filter.in;
connect filter.out, sink.in;

}

Figure 8. A pipe and filter architecture implemented in
ArchJavawith alias annotations.

express the limited scope of aiasing within the passed data
structure, but could not express the architectural invariant that the
first component does not retain any references to the data
structure.

Blackboard Architectures. Figure 9 shows a blackboard
architectural style, where computational components surround a
central data store. The components in a blackboard architecture
communicate exclusively by modifying shared state in the data
store. Component actions are triggered by changes to the data
store made by other components.

In the Ar chi t ect ur e component class, the connections show
the control flow between the computational components and the
data store. These control-flow connections specify that
components mlL and N2 do not call each other's methods directly,
but instead communicate only through method calls to the store—
and this specification is verified by ArchJavas type system
[ACNO2b]. The dias annotations, in turn, describe the data
sharing relationships between the components. A glance at the
Archi tecture code shows that the store, ml, and n®
components all share the same alias parameter.

The interface of the data store shows in more detail how data
structures are shared between different parts of the architecture.
Inits dat a port, the data store defines ar equi r es method that
it calls to notify clients whenever data has changed. This method
passes a change message to the computational components; this
message is | ent, indicating that the clients may not store
persistent referencesto it.

The data store also implements two methods alowing clients to
get data and to update the store. Here, the specification of what
data is requested is a | ent parameter of get Dat a, but the
returned data is annotated with the dat a_owner parameter,
indicating that it is shared persistently between different
componentsin the architecture.

2.5. Reasoning about Data Sharing

One criterion for evaluating the alias annotation system is, does it
help in reasoning about data sharing? In this subsection, we
consider the reasoning benefits of our aias annotation system by

UW-CSE-02-11-01

November, 2002

public conponent class Architecture {
private final owned Bl ackboard<owned>store=...;
private final owned Mdul el<owned> ml R
private final owned Mdul e2<owned> n? R
connect mnil.data, store.data;
connect nR.data, store.data;

}

publ i c conponent cl ass Bl ackboar d<dat a_owner > {
public port data {
requires void notify(lent Message change);

dat a_owner Data getData(lent Spec spec);
voi d updat e(data_owner Data d);

}
}

Figure 9. A blackboard architecture expressed in ArchJava
with alias annotations.

discussing how the annotations can help programmers answer
software maintenance questions that are difficult to answer in
existing Java programs.

What parts of the program might be affected by a change to a
data structure? This question often comes up when the system
must be evolved to meet changing requirements. In general,
answering it requires identifying al parts of the program that
could refer to the changed data. Confronting this task by tracing
through the program manually is tedious and error-prone.

Our alias annotations can give concrete aid in answering this
question. If the reference to the modified data is uni que, only
the parts of the program to which the unique reference flows can
be affected. If the reference to the modified data is owned, the
scope of the change is limited to the current object and its
delegates, while a reference annotated with an alias parameter
indicates the need to look in the enclosing object to understand
sharing patterns. A | ent reference indicates that the current data
structure is part of a different object’s representation, and it
suggests that the caller and callee need to agree on a contract that
specifies any intended modifications to the data. References with
a shar ed annotation are as chalenging to reason about as
ordinary Java references, but we hope these references will berare
in practice.

What components might this component communicate with? It is
important to answer this question when making changesto alarge
software system. The earlier ArchJava language design makes
control flow communication between components explicit in the
connections between components. AliasJava’s annotations
complement ArchJava by making communication through shared
data explicit, as shown in Figures 8 and 9.

How difficult would it be to distribute a system across two
machines? This question might be important if a system must be
scaled beyond the resources of a single machine. Unfortunately,
data sharing between components poses challenges for effectively
distributing legacy applications. Alias annotations in the system’s
architecture can help programmers to anticipate the issues likely
to come up when distributing a program across multiple machines.
For example, if objects annotated | ent or uni que are passed
between components that will be distributed across a network, the
objects can probably be passed by value between the two
distributed components. On the other hand, if the adlias

Alias Annotations for Program Understanding

class C<a, B> extends D<a> {T f; M}

2

M :=TmT x) T{ return e; }

[¢]
1

X —
new C<a>()
e. f

e.f = e, e
(Me
e.me)
error

uni que(x)
uni que(e. f)
A(V)

\% i=null
| V4

T ::=ACp>
| NULL
| ERRR

lent | unique | p
owned | o | £

L > C<Z>(V)
X 2>
>

M ®
Inomnu
=44

J4 0 Locations
a,p O Paraneters

Figure 10. AliasFJ Syntax

annotations in the architecture indicate persistent sharing between
components that will be distributed, either a solution using remote
object references or extensive refactoring of the source code will
be necessary.

3. Formalization

We would like to use forma techniques to prove that the type
system is safe, and preserves the intended aiasing invariants. A
standard technique, exemplified by Featherweight Java [IPW99],
is to formalize a core language that captures the key typing issues
while ignoring complicating language details. We have
formalized Aliaslava as AliasFJ, a core language based on
Featherweight Java (FJ).

3.1. AliasrFJ

Syntax. Figure 10 presents the syntax of AliasF). The
metavariables C, D and E range over class names; A ranges over
alias annotations; p and g range over actua alias parameters; o
and g range over forma alias parameters; T and U range over
types; f and g range over fields; v ranges over vaues, e ranges
over expressions; £ ranges over locations; S ranges over stores;
and Mranges over methods. As a shorthand, we use an overbar to
represent a sequence. We assume a fixed class table CT mapping
classes to their definitions. A program, then, isapair (CT, e) of
aclass table and an expression.

As in Featherweight Java, AliasFJ omits interfaces, inner classes,
and some statement and expression forms. AliasFJ does not have
static fields, so we omit the shar ed aias type, which can be
considered a specia case of parameterization where the owning

UW-CSE-02-11-01

November, 2002

c< C (CLASS- REFLEX)
c<b D<E ((CLASS TRANS)
C< E

CT(Q = cl ass C<a > extends D<E>. ..
C< D

(CLASS- EXTENDS)

C<D
A=unique OB=lent O A=B
AC<pq>< BD<p>

(SUBTYPE- ALI AS)

ERROR < T (SUBTYPE- ERRCR)

NULL < T (SUBTYPE- NULL)

Figure 11. Subtyping Rules

object is the entire program. These changes make our type
soundness proof shorter, but do not materially affect it otherwise.

AliasFJ extends Featherweight Java in several ways. Classes are
parameterized by a list of alias annotations, and extend another
class that has a subsequence of its alias parameters. Because we
want to reason about aliasing, we add mutable fields and field
assignment to FJ. Therefore, a store S maps locations £ to their
contents: the class of the object and the values stored in its fields.
We will write 5[£] to denote the store entry for £, and g ¢, i] to
denote the value in theith field of § €] . Functional store updates
are abbreviated §[£{-C<¢>(v)]. The store also holds the
actual dias parameters for each location, in order to check run-
time casts properly.

Classes define a set of fields f and methods M. Expressions
include variables, object creation expressions, field reads and
writes, casts, and method calls. We aso include an error
expression, representing failed casts and null dereferences.

In the compiler for the full language, a live variable anaysis
identifies the last use of unique variables automatically. AliasFJ
models the results of this analysis explicitly by marking a single
unique read of a variable with a uni que tag. Similarly, the
compiler for the full language performs an analysis to determine
that unique fields are overwritten immediately after being read.
Instead of modeling this analysis formally, AliasFJ provides a
destructive read operation (again, identified by the uni que tag)
that overwritesthe field with nul | after every read.

Values represent irreducible computational results, and include
locations in the store and a distinguished nul | location.
Different references to the same location in the program may have
different alias annotations; for example, there might be some
references to a location annotated | ent and others annotated
uni que. Therefore, values within expressions are tagged with an
alias annotation A.

Types. Ordinary types consist of an alias annotation A and a class
name parameterized with annotations p. We aso include types
representing NULL and ERROR. Annotations may be | ent,
uni que, owned, or a parameter p. Actua dias parameters in
the source text must be parameters o of the enclosing class, or
owned. However, during reduction, these parameters may be
replaced with locations £, indicating the object that corresponds to
that actual alias parameter. Thus, we include locations in the type
syntax so that we can give dias types to expressions in an
executing program.

Alias Annaations for Program Understanding

(Odomain@S) S=S[£ - C</>null)]
S F new C<Z>() - uni qug/), S

(R New

S[4] =C<£>(V) fields(Q) =T f
T=A D
Ag =[l ent/ uni que] [£/ owned] A
SEAUN.f, - A{vV), S

(R- ReAD)

S[=C<i>(v) fields(Q=Tf
T, =uni que C<a>
S=S[/ - C<t>([null/v]v)]
S F uniqug A(%).f) - uniqugv,), S

(R- UNI QUEREAD)

S[4 =C<L>(V) fidd(Q) =T f
S=8[£ - C<t>([V/V]V)]

(R-WRI TE)
SFAW.f=v, e - ¢S

S[4 =D<£>(V) AD<(> < T,

(R- CasT)
SHF(MAYH -AY, S

S[4=C<t>(v,) CT(Q=class C<a>...
mbody(m C) =(x, €) V, . [1 ent/uniquel v
this,, =[1ent/uniquel A
e’ =[v/ uni qug x), uni qug 4/ uni qugt his),
lla, flowned, v,_/x, this,/this] e

SEFA(H.mMv)~€, S

(R- 1 NVK)

Figure 12. AliasFJ Evaluation Rules

Subtyping Rules. AliasFJs subtyping rules are given in Figure
11 Class sibtyping is defined by the reflexive, transitive dosure
of the immediate subclassrelation given by the ext ends clauses
in CT. We require that there ae no cyclesin the induced subtype
relation. The subtyping relationship between ordinary types
follows that of clases. The rule encodes the dias anndation
semantics where uni que is a subtype of any other annaation,
| ent is a supertype of any other annaation, and al other
annaations must match exadly. Also, the dias parameters of the
supertype must be a subsequence of the subtype's parameters.
Finaly, any expresson can have a error or null

subexpresson, and so ERROR and NULL are subtypes of all other
types.

Evaluation Rules. The evaluation relation, defined by the
reductionrulesin Figure 12, hastheformS + e - e’ ,S ,red
“In the mntext of store S, expresson e reduces to expresson e’
in ore step, prodwcing the new store S’ .” We write —* for the
reflexive, transitive dosure of —. Most of the rules are standard;
the interesting feaures are how they manipulate the dias type
system. The R-New rule reduces a new expresson into a unique
referenceto afresh location. The storeis extended at that locaion
to refer to a dasswith the same type and dli as parameters, with all
nul | fields.

There ae two rules for field reads. The R-ReaD rule gplies to
normal reals of afield f; it looks up the recever in the store,
identifiestheith field. The result isthe value & field pasitioni in
the store. The rule derives the annaation for the resulting value

UW-CSE-02-11-01

November, 2002

S F(TYA(null) = A(null), S (R CASTNuLL)
§ Fe- €, 8 (RC- ReAD)
S F[uniquele. f, - €.f, S
Ske -~ e,S (RC- Wi TE1)
Ske.fi=e, e - e.fi=e, €, S
Ske-~ & S (RC- W TE2)
Skv,fi=e, e - v.f =€, e, S
Ske -~ € S (RC- Wk TE3)
Skv,.fi=v, e - v.fi=v, €, S
Ske- e,S: (RC- CasT)
SkFE(Me- (TNe, S
Ske- ¢ S (RC- 1 NvK1)
Steme- €e.me), S
Ste - €,S (RC- |)
SkFv.mv,.Vi.,€,€e,.€)-
V. IT(V]_. Vi e;, e\+l' . en)r S
S F[uniquel A(null).f, - error, S (RE- READNULL)

S kFA(null).f=v, e - error, S (RE- W& TENULL)
S[4 =D<£>(V) AD<[> ¢ T,

(RE- CasTFAI L)
S F(TDA(Y) -error, S

S F A(null).mV) - error, S (RE- | NVKNULL)

Figure 13. AliasFJ Congruenceand Error Rules

from the dias annaation from the type of the ith field of the
recaever. Becaise thisis not a unique field rea, if the field was
annatated with uni que then the resulting value will be aanatated
with | ent. We denote this substitution with
[l ent/uni que] A, meaning that al occurrences of uni que in
A are replaced with | ent . Similarly, if the field was annaated
with owned, the dynamic owner of that field isthe adual recever
£, and so we replace ay owned annaations with £.

The R-UNIQUEREAD rule is smilar, but applies to urique reals.
Here, the result is always a value with a uni que anndation, but
the value of the field that was rea is updated to nul | in the
store. This refleds the “destructive read” semantics, which
models our user-level language's requirement that uni que fields
be updated after unique reals.

The R-WRITE rule is draightforward, updating the ith field of the
recaver objed with the value written to field f ;. Asin Java, the
R-CasT rule dhedks that the cat expresson is a subtype of the
cast type. Note, however, that in AliasFJ this ched also verifies
that the dias parameters match, doing an extrarun-time ced that
isnot present in Java.

The invocation rule uses the mbody helper function (defined in
Figure 16) to determine the wmrred method bog to invoke. The
method invocaion is replacal with the gpropriate method bog.
Severa substitutions are made into the body to reflea the method

Alias Annotations for Program Understanding

T=[I ent/uni que] T'(x)

(T-VAR)
N Fx:T
I,> F uni qug x):F(x) (T-UVAR)
I(£)=C<t> _ (T-Log
Nk A4):AC<L>
= F new C<p>():unique C<p> (T- NEW
rx }—e_:A D<q> _ (T- CasT)
N~ F(AC<p>e:AC<p>
% F error :ERROR (T- ERROR)
r= F null:NULL (T-NuwL)
rs FeAC<p> fidds(Q) =T f
(T=owned ... O eavariable) O e=this
Tz =[l ent/uni que] inst(T,,A C<p>e,) (T-FiED)

rs ke f:T,

rs ke:AC<p> fiddsQ=T f
T =uni que D To =insi(T,A C<p>e,) (T- UFI ELD)
M F uniquge.f):T;

rs Fe:AC<p> rske:T
rzke, T, fields(C)=U f

T, < inst(U,A C<p>e,)

(U=owned ... 0O e, avariable) O

Nz ke f, = e, e:T,

g =this

(T- WFI ELD)

rs ke:T, rs rFe:U
T =A C<p> mtype(m C):-[;hisxjr"TR
U< ingt(TT,e) T< inst(Ty . Teo)
T=inst(Ts, Ty.€)
(owned Omtype(m C) O e, avariable) O e,=this
rs ke, me:T

(T-1NK)

Figure 14. AliasFJ Typechecking

argument and receiver values. First of all, any occurrences of
formal alias parameters o of the enclosing class are replaced with
the actual alias parameters ¢ of the receiver value. Second, the
formal parameters of the method x as well as the variable t hi s
are replaced with the actual values passed in. This substitution
involves some subtlety, however, because if one of the parameters
is annotated uni que, it would not be sound to replace all
occurrences of that parameter with the uni que value. Instead,
only the unique read of the parameter is replaced with the
unchanged argument value; the other non-unique reads are
replaced with a modified argument value where uni que
annotations have been replaced with | ent .

A set of congruence rules, defined in Figure 13, alows reduction
to proceed in the order of evaluation defined by Java. The figure
also defines error rules representing casts that fail and null pointer
dereferences. The rules RC-ReaD and RE-READNULL contain the
notation [uni que], signifying that the rule applies whether or
not the read is unique.

UW-CSE-02-11-01

10

November, 2002

lent ...0T MOKINC
class C<a,B> extends D<a>{Tf; N &K

(T- CLASS)

xT, this:T O FeT T < T
CT(Q =cl ass C<a> extends D...

override(m D, 1}his><'_rﬁT) This =A C<a>

his?

I]xl]{;,thi s} uni qug x) occurs at most once in e

— (T- METH)
TmMT X T, { return e; } Kin C
dom(Z) = dom(S)
0¢0dom(S) . Iz F 94 (T- SToRe)
r ks
CL(O=class C<a >... rFvoT
fidds(Q)=T. f T<[lld T

— (T- STORELCC)
rs F C<e(V)
S[4=C<f>(v) CT(CQ=class C<a>
fields(C) =A D<. .. >
annotation(S, £,i) =[7J E, £ owned] A

(STOREANNCT)

Figure 15. AliasFJ Class, Method, and Store Typing

Typing Rules. Typing judgments, shown in Figure 14, are of the
form ,Z + e:T, read “In the type environment I' and store
typing X, expression e has type T.” The T-VAR and T-UVAR
rules look up the type of a variable in I', replacing uni que
annotations with | ent if the expression is not a unique variable
read. Similarly, the T-Loc rule looks up the type of alocation in
>, leaving its annotation as expressed in the source text.

There are also two typing rules for field reads—the normal rule,
which replaces uni que annotations with | ent , and the unique
read rule, which leaves uni que annotations unchanged. The
rules for field read, field write, and method invocation verify that
an owned value can only be accessed through the receiver t hi s
in the source text (naturally, reduction can replace t hi s with a
location).

Severa of the typing rules use the auxiliary function inst (defined
in Figure 16), which uses the type of the receiver of a method
invocation or field access to convert the formal annotation
variables referenced in the method or field type to the actua
annotation variables used at the call site.

We have made one significant simplification relative to FJ. We
do not distinguish between upcasts, downcasts, and so-called
“stupid casts’ which cast one type to an unrelated one. This
means that our type system does not check for “stupid casts’ in
the origina typing derivation, as Javas type system does.
However, the change shortens our presentation and proofs
considerably, and the stupid casts technique from FJ can be easily
applied to our system to get the same checks that are present in
Java.

Store Typing. Figure 15 shows the rules for well-formed classes,
methods, and stores in AliasFJ. Class and method typing rules
check for well-formed class definitions, and have the form “dass
declaration E is OK,” and “method mis OK in E.” The rules for
class and method typing are similar to thosein FJ. Rule T-CLASS
ensures that subclasses can only extend the list of annotation
parameters from their superclasses, and verifies that | ent does

Alias Annotations for Program Understanding

Field lookup:
fields(Chj ect) = ®

CT(Q=cl ass C<a,B> extends D<a>{T f; M
fieldsD) =T, g

fields(©Q =T, g, Tf

M ethod type lookup:

=

CT(Q=cl ass C<a,B> extends D<a > {T, f;
T m('T' ;) Tnis { return e; }DK/I
mtype(m Q) =Ty s xT - T

CT(©=cl ass C<E,E> ext ends D<E>{T_F f_; M
m isnot definedin M
mtype(m C) = mtype(m D)

M ethod body lookup:

CT(O) =cl ass C<E.E> ext ends D<E>{? f_; M
T m(f ;) Tnis { return e; }DK/I
mbody(m C) =(x, €)

CT(Q=cl ass C<a,B> extends D<a>{T f; M
m isnot definedin M
mbody(m C) = mbody(m D)

Aliastypeinstantiation:

CT(D) =cl ass D<T)>. .. e not a location
ins(T, B D<qg>e)=[qd p T

CT([D) =cl ass D<_p>. ..
inst(T, B D<q>,4)=[d p £/ owned] T

Valid method overriding:

miype(m ©) =T, xT - T, O
UsT 04=T, 0U,.=AG<aB> 0Ty =ACG<a>
override(m C, U o xU- W)

Figure 16. AliasFJ Auxiliary Definitions

not appear in field types. Rule T-METH performs severa checks.
It ensures that the body is well typed in the environment that
assumes the method arguments have their declared types, and an
empty store. Therule aso verifiesthat there is at most one unique
read of each method argument (including t hi s). Finaly, the
override auxiliary function verifies that each overriding method
have the same type signature as the overridden method.

The store typing rules ensure that the form of the store is
consistent with the Java's typing rules. The two clauses of the
store typing rule are the usual well-formedness rules, requiring the
store type X to type every location in S, and verifying that the
types of objects in a field are compatible with the field's type
using the auxiliary rule T-STORELOC. The last rule defines the

UW-CSE-02-11-01

11

November, 2002

annotation convenience function, which is used in stating the
properties of the alias annotation system.

Auxiliary Definitions. Most of the auxiliary definitions shown in
Figure 16 are straightforward and are derived from FJ. The field
lookup rule returns the list of fields in a given class, along with
their types. AliasFJ follows Java's lookup rules for method types
and method bodies. The inst function accepts a type in a method
or field signature as well as the type of the receiver of amethod or
field access, and converts the first type from its original scope to
the scope of the method or field access. It does this by simply
replacing the formal alias parameters in the signature type with
the corresponding actua alias parameters in the receiver type.
Finaly, the last rule checks that overriding methods have the
same type signatures as the methods they override, except that the
classof t hi s may differ.

3.2. Type Soundness

We can show the type soundness of AliasFJ through two standard
theorems, subject reduction and progress. Type soundness
implies that the language’s type system is well behaved. In a
type-safe language like Java, well-typed programs won't halt with
errors due to calling a method on a class that doesn't define that
method.

Theorem [Subject Reduction]: If I,z Fe:T, L2 FSand
Ske-¢€,S,then 0% T<Tsuchthat)2 Fe':T and
N kS.

Before proving the theorem, we define a term substitution lemma,
necessary for the method invocation case in the proof. This
enables us to show that substituting terms in a well-typed
expression preserves the typing:

Lemma [Term Substitution]: If xT, this: T, . O Fe:T,
0,£ Fv:U, 0,5 F £:U,,, U<[#owed 4dT,

Upo < [#/owned, 70l T, ., Vion =L | ent/unique] v,and
this,, =[Ient/unique] this,then

0,5 F[v/uni quex), A{f/uniqugthis), ¢/a, £/owed,
Viow!% this . /this] e:T

for some T <: [#/ owned, #a]T.

The proof is by induction over the structure of e, with a case
analysis on the form of the outermost term:

Case T-VAR: The variable x must be one of thi s or x. But
these variables were replaced with locations that are given a
subtype of the variable types under the alias parameter mapping,
so the case holds.

Case T-UVAR: As with T-VAR, but note that the rules preserve
uniqueness.

Case T-Loc: Thelocation is not affected by the substitution.

Case T-NEw: The substitution could affect the alias parameters of
the new expression, but since the alias parameter substitution is
included in the required subtype relation, the case holds.

Case T-CAsT: Similar to T-NEw.
Cases T-ERROR, T-NuLL: Unaffected by the substitution.

Cases T-FiELD, T-UFELD, T-WFELD: By the induction
hypothesis, the receiver of the field access is a subtype of its

Alias Annotations for Program Understanding

original type under the dias parameter substitution. The
instantiation of the field type with respect to this new receiver
type must therefore also be a subtype of access expression’s
original type, so the cases hold.

Case T-INVK: Similar to T-FIELD. Here the induction hypothesis
is used for the receiver and the method arguments. |

We then prove subject reduction by induction on the derivation of
Sk e-¢€,S with a case andysis on the outermost reduction
rule used (one regular or error reduction rule may apply, in
addition to any number of congruence rules).

Case R-NEW: We extend the store type to give £ the type C<¢>,
preserving the type of the expression. We know that the store will
remain well-typed because we extend the store type's domain just
as the store’'s domain is extended, and because the fields of the
newly allocated object areinitialy null.

Cases R-ReAD, R-UNIQUEREAD: These cases follow from the
original storetyping and the rule T-FIELD.

Case R-WRITE: The expression type is unchanged. We know the
store remains well-typed because T-WFIELD guarantees that the
valueto be stored islega to put into the field.

Case R-Cast: The cast will only succeed if the resulting
expression is a subtype of the cast type, so the case holds.

Case R-INVK: By simultaneous induction over the operation of
mtype and mbody, we can see that the actual method has the type
attributed by mtype. By applying the term-substitution lemmaand
the rule for well-typed methods, we can see that the substituted
method body has a type that is a subtype of the originad method
call expression.

Subject reduction for the error rules follows since these rules
reduce to the error expression, which has a type that is a
subtype of all other types. Subject reduction follows for the
congruence rules by applying the induction hypothesis, and noting
that all of the typing rules hold when a subexpression is replaced
with an expression that is a subtype of the original subexpression.

O

Theorem [Progress]: If O, e:T,then either e isan
irreducible value, or e containsan er r or subexpression, or else
OSsuchthat 0,2 FS,S+Fe-¢€,S.

The proof is by induction on the derivation of 0, + eOT, with
acase anaysis on the last typing rule used:

Cases T-VAR, T-UVAR: Impossible since we have the empty type
environment.

Cases T-Loc, T-NuLL: The expression isan irreducible value.
Case T-New: Reduction R-NEw applies.

Case T-CastT: If the cast expression is not avalue, then either RC-
CAasT applies or there is an er r or subexpression. Otherwise,
either R-CAsT, R-CASTNULL, or RE-CASTFAIL must apply.

Case T-ERROR: The expressioniserror.

Cases T-FIELD, T-UFIELD: If the receiver expression is not a
value, RC-FIELD applies, unless the receiver has an error
subexpression. If the receiver is nul | , RE-READNuULL applies.
Otherwise, the induction hypothesis (together with the definition

UW-CSE-02-11-01

12

November, 2002

of fields) implies that the location £ refers to an object that has the
field being read, and so either R-ReAD or R-UNIQUEREAD applies.

Case T-WFIELD: Similar to T-FIELD.

Case T-INVK: Similar to T-FIELD in the case of a receiver that is
nul | orisnot avaue. In the case of alocation as the receiver,
the induction hypothesis implies that mtype returns a method type
based on the type of the receiver. By simultaneous induction on
the execution of mtype and mbody, we can see that mbody returns
amethod body, and so R-INVK applies. O

3.3. Properties

Type soundness is important, but we would also like to show that
our system has well-defined properties that allow programmers to
reason effectively about aliasing relationships. The first theorem
gives the meaning of uniqueness: a uni que annotation on a
reference implies that no other heap references refer to that
location.

Theorem [Uniqueness]: If 0,0 Fe:Tand O F e -*¢€',S,
then for all £ such that £ occursin S’ or e’ with annotation

uni que, all other occurrencesof £inS’ or e’ have annotation
I ent.

Formally, we say that £ occurs in S with annotation A if there
exists some (', i such that S ¢',i] = £ and annotation(S,¢’,i)=A.
We say that ¢ occurs in e with annotation A if A(£) is a
subexpression of e. Different occurrences are distinguished in the
obvious way—»by a pair (¢,i) for stores, and by textual location
for expressions.

The crux of the proof is showing that the reduction rules obey
three local properties: no duplication of unique references except
with lent annotations, no flow from lent references to references
with other annotations, and that whenever a unique reference
flows to a reference with an ownership annotation, the origina
reference is dead. The proof is by induction on the derivation of
0 Fe-*e,S, with a case analysis on the last reduction rule
used:

Case R-NEW: £ occurs in the resulting expression with annotation
uni que, but there are no other occurrences of £ in the expression
or in the store. The store is unchanged except for the newly
created object £, which cannot be referenced from the store, so the
case holds due to the induction hypothesis.

Case R-ReAD: Assuming the induction hypothesis, the only way
the uniqueness invariant could be violated is if the field was
uni que and its value was copied. However, if the field was
uni que, the value will be annotated | ent , so the property holds
in this case.

Case R-UNIQUEREAD: The induction hypothesis implies that the
field holds the only uni que-annotated reference to the location
being read. Since the rule sets the field value to nul | , the read
location will then be the only uni que-annotated reference to that
location.

Case R-WRITE: If the fidd is annotated uni que, T-WFIELD
ensures that the value was annotated uni que aswell. Since that
value was formerly the only uni que-annotated reference to its
location by the induction hypothesis, and since the original value
is eliminated by the reduction rule, the property holds in this case.

Alias Annotations for Program Understanding

Case R-Cast: Does not affect the property, so it remains true by
the induction hypothesis.

Case R-INvK: The main chalenge here is to show that any
uni que arguments, possibly including t hi s, are not duplicated
when they are substituted into the method body. The crucial
check, in rule T-METH, ensuresthat auni que argument occurs at
most once in the method body with a uni que annotation. The
substitution may copy the uni que argument into this one place,
but al other occurrences of that uni que argument will be
annotated | ent .

The uniqueness property is also preserved the error rules and the
congruence rules by applying the induction hypothesis, and noting
that these rules do not perform any duplication of expressions that
could lead to aviolation of the invariant. O

We have argued in section 2.2 that ownership annotations are
useful because they organize aiased objects into a hierarchical
tree, and a group of objects can be persistently shared only if the
group owner uses parameterization to delegate a capability to
access the group. Intuitively, an object can only refer to an object
if it has a capability to access that object. In order to allow this
kind of reasoning about object ownership, we need the ownership
annotations for an object to be consistent across the program’s
store and execution:

Theorem [Ownership Consistency]: If 0,0 Fe:T and

O Fe-*e,S,thenforal £, suchthat £ occursin S’ or e’
with annotation £', al other occurrencesof £inS’ or e’ have
either annotation | ent or annotation £'.

The proof is by induction on the derivation of O F e -*¢€',S,
with a case analysis on the last reduction rule used. The proof
relies on the uniqueness property to show the base case: when a
location is first given an owner, there is only one reference to that
location. Once thisis established, it is easy to show that the rules
preserve ownership consistency:

Case R-NEw: The newly created location has annotation uni que,
and the store is unchanged except for the newly created object ¢,
which cannot be referenced from the store, so the case holds due
to the induction hypothesis.

Case R-ReaD: This rule annotates the result of the read with the
same annotation that the value had in the store (except replacing
uni que with | ent). Thus, if the origina value had an owner
annotated in the store, it will remain annotated by the same owner.
Thus, the property holds by the induction hypothesis.

Case R-UNIQUEREAD: The read value is uni que, and the
uniqueness invariant implies that there are no owned aliases to it.
Thus, this rule cannot violate the property.

Cases R-WRITE: The rule T-WFIELD ensures that right and left
sides of the assignment have compatible types. If the value is
owned, the field must be owned by the same object, and so the
invariant holds. If the value is uni que, then by the uniqueness
invariant, there are no aliases to it except possibly | ent aliases.
Thus, if auni que value is assigned to an owned field, the field
will be the only non-l ent reference to that location, so the
property holds.

Case R-Cast: Does not affect the property, so it remains true by
the induction hypothesis.

UW-CSE-02-11-01

13

November, 2002

Case R-INvK: The argument is similar to the proof of subject
reduction. We must also consider uni que actuals that are passed
to formals with an ownership annotation; this case is similar to the
analogous situation in R-WRITE. O

Corallary [Ownership Soundness]: If 0,0 F e:T,
Oke-*e,SandsS ke -*e" S, thenforall £, suchthat £
occursin S’ or e’ with annotation £, al occurrencesof £in S”
or e” have either annotation | ent or annotation £'.

The proof is similar. O

4. Annotation Inference

Although AliasJava is intended to give programmers the
flexibility to express a wide variety of data sharing idioms, there
are practical issues that may limit its adoption. In particular,
adding dias annotations to existing programs and libraries may
require significant work.

We have addressed this issue by developing a technique for
inferring the annotations in AliasJava. The inference algorithm
alows developers to easily infer the sharing relationships in
library code or in legacy systems. If desired, programmers can
refine the inferred declarations in order to enforce additional
restrictions on aliasing.

Our inference agorithm begins by inferring | ent annotations,
since this annotation is the most general (a value with any other
annotation can be assigned to | ent) and since it can be inferred
independently from other annotations. We next infer uni que
annotations using an agorithm that depends only on the inferred
| ent annotations. We infer the remaining annotations in a fina
pass.

4.1. Inferring Lent

We infer | ent annotations with a constraint-based a gorithm.
Our agorithm assigns either | ent or non- | ent to each local
variable, expression, and method parameter of reference type, and
to the this reference for each method. Initially, we
optimistically assume that all annotations are | ent. We then
assign non- | ent annotations the base-case expressions that may
not be | ent : values that are returned from a method or assigned
to afield. We aso conservatively assume that the arguments of
native methods arenon- | ent .

Next, our agorithm constructs a directed graph capturing the
value flow between the variables and expressions in the program.
The final annotations can be computed by traversing this graph
backwards from al non- | ent nodes, so that if an expression a
flowsto expression b, and b isnon- | ent, then a must be non-
| ent as well. Intuitively, this represents the constraint that a
| ent value may not be assigned to anon- | ent variable. All
nodes in the graph that are not backwards reachable from non-
| ent nodes can safely be annotated | ent .

4.2. Inferring Unique

Our algorithm for inferring uni que annotations is similar to the
| ent agorithm above. The algorithm assigns either uni que or
non- uni que to each program variable and expression. As
before, we optimistically assume that all annotations are uni que,
except for the arguments and results of native methods.

Alias Annotations for Program Understanding

We divide value flow into two cases: ordinary assignments (x =
y), where both x and y are live after the assignment, and last
assignments (X =jast Y), wherey is dead after the assignment.
We assume that live variable analysis has already annotated all
value flows as ordinary assignment or last assignments.

For each ordinary assignment x = y we require that x is non-
uni que, since it must aias the value y that is not dead. In
addition, if x isnot | ent, then y must aso be non- uni que,
sinceit must alias x after the assignment.

The rule for last assignments X =5t Yy issimple: if y isnon-
uni que, then x must be non- uni que aso. Sincey is dead
after the assignment, if we can prove that y was undiased before
the assignment, we know that x is unaliased after the assignment.
Thus, starting from the non- uni que base cases generated from
ordinary assignments and native methods, we can propagate
non- uni que forward along the directed graph formed by last
assignments. All remaining variables and expressions are
uni que.

The graphs generated for both lent and unique inference are linear
in the size of the source text, and traversing them touches each
edge in the graph a most once. Therefore, our agorithm for
inferring these alias typesis linear in the size of the program.

4.3. Inferring Other Annotations

In order to infer the remaining alias annotations, we adapt a
congtraint-based alias analysis that solves equality, component,
and instantiation constraints over type variables. Type inference
with instantiation constraints was first described in an abstract
form by Henglein [Hen93]. More recent papers describe concrete
worklist-based agorithms, which we have adopted in our work
[FRDO00,0Ca00]. The underlying problem of finding an optimal
solution for a set of component and instantiation constraints is
undecidable [KTU93], and we have no proof that our inference
algorithm terminates. However, in practice our agorithm works
well; neither we nor others working on similar algorithms have
ever encountered an example that causes the algorithm to loop
[Hen93,FRD00,0Ca00].

Our analysis is most similar to that used by O'Callahan in the
Ajax system [OCa0Q]. O'Cadlahan's andysis can infer
polymorphic types for static methods only. While our current
analysis does not infer polymorphic types for methods, the type
system supports them and we believe our analysis could be
extended to infer these types for both static and instance methods.
O'Cadlahan distinguishes different instances of a class based on
their creation site, while our analysis distinguishes instances based
on how they are used in the system. Thus, we are able to
distinguish different objects that are created at the same place but
are used in different ways, but we don't waste effort tracking
objects that are created in different places but are used in the same
way.

We first present a high-level overview of the algorithm in parallel
with an example that illustrates many of the key issues, then give
the formal constraint generation rules and constraint solution
algorithm. We choose as our running example the St ack codein
Figure 3, assuming initially that none of the alias annotations in
that figure is present. Our goal will be to infer the dias
annotations given in Figure 3. The discussion below focuses on
the core of the inference algorithm, which infers the dias
parameters for each class. Later, we will describe how to

UW-CSE-02-11-01

14

November, 2002

integrate the other annotations into the constraint-based

framework.

Analysis Setup. We begin our analysis by creating a unique node
for every variable, method argument or result, class, field, and
expression in the program text. This node is a type variable
representing the alias annotation for the corresponding declaration
or expression. Digtinct type variables indicate distinct alias
parameters of the enclosing class.

Figure 17(a) shows the type variables generated from Figure 3.
For example, the code in the St ack class includes the type
variables Sack, top, pop, temp, and o (we abbreviate the type
variable for a method result by the method name). To simplify the
presentation, we ignore certain anonymous type variables
generated from program expressions.

Our analysis solves three different forms of constraints: equality,
component, and instantiation, which are described in turn below.

Equality Constraints. When a value flows from one variable to
another within a class, we generate an equaity constraint a = b,
indicating that the two corresponding type variables must
represent the same alias annotation. For example, our anaysis
generates the equality constraint top = temp due to the assignment
tenp = topinline6 of thedefinition of St ack. However, we
do not generate equality constraints for vaue flow between
variables in different classes. For example, even though the
method pop returns the result of caling menber, we don't
equate the corresponding pop and member variables, because that
would place unnecessary constraints on other parts of the program
that use Link.nenber. We use ingtantiation constraints
(discussed below) to reason about value flow between classesin a
way that treats different Li nk objects differently. Figure 17(b)
shows the equality constraints generated from Figure 3.

In our implementation, equality constraints are solved via
unification using a union-find data structure. Thus, for the
equality constraint top = temp, we choose top arbitrarily as the
equivalence class representative, and update all references to temp
torefer totop instead. <

The initia equality constraints shown at the top of Figure 17 are
clearly not sufficient for inferring correct aias types. For
example, the argument o of push and the return value of pop
should have the same dlias type, yet just looking at the St ack
class is insufficient to discover this information. Only by
reasoning about how objects are stored within the Li nk class can
we infer the correct aias types for St ack. In our system, this
reasoning is done with component and instantiation constraints.

Component Constraints. A component constraint (0 >, V), read
“visacomponent of o with index m,” means that the type variable
Vv represents member m of object 0. Component constraints allow
us to keep track of the relationship between a particular stack and
the objects and links within that stack, for example. For each
member mof a class C, we generate a component constraint C >,
m. We generalize the notion of member to any type variable
within a class, so that component constraints are also generated
for method arguments, results, and local variables. Figure 17(b)
shows the component constraints generated from Figure 3.

Ingtantiation Constraints. If C is a class, an instantiation
constraint (C <, 0), read “0 is an instance of C with index v,”
means that type variable o represents an object that is an instance
of Cthat is stored in the local variable or field v. Instantiation

Alias Annaations for Program Understanding

(a) Initial variables:
classStadkClient:
classStadk:
classLink:

SackClient, , i, 12
Sack, top, pop, temp, 0
Link, obj, nxt, _obj, _nxt, member, next

(b) Initial constraints:

Equality:
top = temp obj = _obj nxt = _nxt
obj = member next = nxt

Comporent:
SackClient > i SackClient >, 12 SackClient >4 st
Stack > top Stack > pop POP Stack > temp temMp
Sack >, 0 Link > 0bj Link D Nxt
Link >_qy _obj Link > ¢ _nxt Link > remper Member
Link D peq NEXt

Instantiation:
Sack <4 st Link < top Link <iemp temp
Link <nq nxt Link < ¢ _nxt Link <peq Next
04l pop <gi2 next <o top
member <ignp POP _0bj <05 0 _NxXt <p top

(c) After solving initial equality & uniqueness constraints:

StackClient | Stack | 7} Link Ié -
1

S

q > b
Component Constraint a > b

a—-—=-=-=>0
Instantiation Constraint b < a

(d) Final constraint system:

| Stad<CIient| 7|
1

Component Constraint a > b Instantiation Constraintb < a

Figure 17. Constraints generated and solved during inference
of the aliastypesgiven in Figure 3.

constraints alow us to trea different instances of a dass
separately; we group instances by the locd variable or field that
the instanceis gored in. Each instancewill have its own copy of
its locd variables and fields in ou representation—these ae
generated by the propagation rules discussed below. For example,
different instances of Stack can have different adua alias
parameters, so that different stads can hdd oljeds with dfferent
owners. For eat class member mthat has dedared type C, we
generate an instantiation constraint C <, m.

UW-CSE-02-11-01

15

November, 2002

Instantiation constraints are dso used to reason abou the
relationship between type variables in two dfferent classs. For
example, the agument o of push is assgned to the _obj

argument of the anstructor of the link represented by the type
variable top. We encode this relationship with the instantiation
constraint _obj <, 0, indicaing that o is the instance of _obj
inside the top link. Here, the index on the instantiation constraint
shows how the instance is related to its parent. Thus, for ead
member mthat flows to or from a member n of ancther classat a
method cdl or field dereference with recever r , we generate an
instantiation constraint n < m. Figure 17(b) shows the
instantiation constraints generated from Figure 3.

Component and I nstance Uniqueness. In the example program,
values flow from the agument o of push to the obj field of
t op, andfrom the obj field of t op to the result of pop. Thisis
represented by the two instantiation constraints obj <, pop and
obj < 0 (here we @ume that _obj and member have drealy
been urified into obj). The index top common to bah these
constraints indicates that pop and o are the same instance of obj.
Intuitively, pop and o shoud be unified, becaise program values
can flow from o into obj and then bad into pop. We formalize
thisintuition with an instance uniquenessrule:

asy,cla<,d 0 c=d

This rule ensures that two instances of the same type variable that
have the same index will be unified. Once pop and o are unified
into o, i andi2 will both be instances of o with the same index t,
and so they will be unified aswell. An analogous rule is used to
ensure that two comporents of the same type variable with the
sameindex are dso urified:

arpclap,d 0 c=d

Figure 17(c) shows the example system after solving the initia
equality constraints and applying the uniquenessrules.

Congtraint Generation Rules. Figure 18 presents the formal
constraint generation rules for unannaated AliasFJ code. The
rules are syntax-direded, and are based on the forma language
defined in sedion 4 with al aias anndations and parameters
erased. In the rules, the notation [€] denotes the type variable
for the expresson e. A constraint generation rule is of the form
Crke/ X, red “In the ontext of class C and type

environment I', the constraints X are generated as a side dfed for
expresson e” The initial system of constraints is defined as the
union d the cnstraints generated for every classin the system.

The rules for variables and for null generate no constraints. The
field read and write rules constrain the type variable for the read
or written expresson to be an instance of the type variable for the
field in the static dassof the recever, labeling the cnstraint with
the type variable of the recever expresson. The rule for new
constrains the type variable for the aeaed oljed to be an instance
of the type variable for the objed’s class the label is the aeaed
objed’s type variable. A cast constrains the type variable for the
cast expresson to be a instance of the type variable for the cast
class-we do nd model the failure of the cat, sinceour analysisis
flow-insensitive.

The method invocdion rule @nstrains the method invocation
expresson’s variable to be an instance of the methods return
type, and constrains the adual arguments and recever to be
instances of the formal method arguments and t hi s. The field
and method cedaration rules gate that the type variables for the

Alias Annaations for Program Understanding

Crkx/ DO (I-VAR)
Crknull/ 0O (1-NuL)
o ke AD<a> (1-FiED)

CT ke.f/ [flggle.f]

Lo ke A D<a >
Cr ke.f=e; e /

[fdgele] O [e.fl=e]

(I - FI ELDWRI TE)

CT F new D() / [D § pew o) [New D()] (1-Newy
Cr k (Dje / [(D)el=[e] O [DIgqlel (I-CasT)
O Fe;AD<a> mbody(mD) =£xD, e, (-1

CT Fepmie) / [mplSelepmie)]
O [Dlgeled O [xdselel

CT kD f / [Clyylf] O [Dlsy[£] (I-FIELDDECL)

C}—Dn(E;){ return e; } /
[Crylmd O [Dgylmd O [m]=e]
D[C]D[x][x(‘J u [E]%x][x(‘J

(I - METHDECL)

class C extends D{ Cf; M} / [Dgqld (I-CLAss)
Figure 18. Constraint generation rules for parameter
inference

field and for the method arguments and result are comporents of
the surroundng type, and constrain them to be instances of the
variables for their dedared types. Finally, the dassrule states that
the type variable for a dassis an instance of the type variable for
its auperclass

Note that ead class C has its own type variable for ead field f,
dencted f ¢ (and similarly for method arguments and results).
Becaise f ¢ is a comporent of C with a label f that is not
dependent on the dass constraint propagation (discussed below)
will ensure that when D is Cs superclass then fc will be an
instance of fp with label C. This establishes the required
inheritance relationship between the fields of a supertype and the
correspondng fields of a subtype.

Constraint Propagation. If top is an instance of Li nk, as
shown in Figure 17(c), then it ought to have next and obj

comporents. Furthermore, these comporents ought to be fresh,
digtinct from the next and obj comporents of any other Li nk.
This motivates the ammporent propagation rule:

arp,cla<gd O Oe.dye

Applied to top, this rule states that since Link has a cmporent
next (Link e Next) and top is an instance of Link (Link <, top),
then there must exist some variable top_next such that top_next is
a mmporent of top at index next (top t>neq top_next). Intuitively,
this new variable represents the particular “next " link in the t op
field of St ack, potentialy distinct from the next link of any
other Li nk.

Now, anything we infer abou next (for example, if we discover it
is equal to some other type variable) must also apply to top_next,
sincetop_next isjust a speddizaion d next that is a comporent

UW-CSE-02-11-01

16

November, 2002

of the top instance of Link. We encode this intuition with the
constraint that top_next is an instance of next. Then top_next will
be atransitive instance of Link, ensuring that it will gain its own
next and obj comporents. These @nstraints are generated with
the instance propagation rule:

app,cla<s dOd>pe O c<5ie

The premndtion for this rule is the njunction d the
premndtion and the onclusion o the cmporent propagation
rule. Thus, this rule gplies whenever anew componrent constraint
is generated. In the cae of top_next, the rule’'s conclusion simply
states that next <o, top_next.

Avoiding Infinite Propagation. The discusson above suggests
that constraint propagation as presented above may never
terminate. For example, top is a Link, so it must have anext
comporent top_next. But, top_next is transitively a Link also, so
with a cupe of instantiation constraint propagations we discover
that we neal to crede top_next_next, a next comporent of
top_next. There must be away to stop this expansion if the
agorithmisto terminate.

Like O'Calahan and ahers, we gply the extended occurs check
to avoid infinite @nstraint propagation. The extended occurs
chedk rule can be stated as foll ows:

fOL<Sia0<p ... SnRandOL g by > ... >R
thenL=R

Intuitively, this rule states that if one type variable R is both a
trangitive instance and a transitive mmporent of another type
variable L, then we shoud urify L and R to avoid infinite
constraint propagation. In the example, the extended occurs
ched would discover that Link t>peq next O Link <,eq Next. Thus,
our implementation generates the equality constraint next=Link,
which eliminates the source of the loop.

Figure 17(d) shows the final results of the cnstraint-based
agorithm. As described above, next has been urified into Link.
Also, comporent propagation hes resulted in two comporents
ead for top and st. Due to applicaion d the comporent and
instance uniquenessrules, the cmporents of top areitsalf (just as
Link isits own comporent) and o, whil e the ammporents of st arei
and a new nodke, st top. Like top, of which it is an instance,
st_top has two comporents, itself andi.

The example nstraint system has now readed fixpoint with
resped to the cnstraint propagation and uriquenessrules. Link
has two comporents, one of which refers to ancther Link instance
these represent the dias parameters used in Figure 3. Stack also
has two comporents; one of these will turn into St ack’s alias
parameter, and the other will turn into an owned anndation, as
discused below. Finaly, StackClient’s two comporents will
eventually turn into owned and uni que annaations.

Consgtraint Solution Algorithm. Figure 19 pesents our
constraint solution algorithm. The @nstraints are stored in two
data structures. cmap for component constraints, and imap for
instantiation constraints. The data structures are indexed to all ow
quick lookup hesed on the left-hand side, right-hand side, and
index of ead constraint.

We solve the mnstraints using a iterative worklist algorithm. We
initialize the worklist with the initia set of constraints, and then
we ald them one by one to the data structures. For efficiency, the
fetch function returns first equality constraints, then componrent

Alias Annotations for Program Understanding

solve(initial_constraints)
WIlist :=initial_constraints
cmap := [0 // stores comporent constraints: a » €
imap := 0 // storesinstance onstraints; a<,c

UW-CSE-02-11-01

[0 cmap[a][b] = ¢
O imap[a][b] = ¢

November, 2002

dirty ;= O // storesinstance @nstraints that might need propagdion rules appied

while (WIlist not empty O dirty not empty) do
if (Wlist not empty)
add(fetch(Wlist))
elseif (dirty not empty)
propagate(fetch(dirty))

fetch(WIlist) // returns equdliti es, followed by comporent andthen instantiation constraints

add(rep = other)
if (find(rep) = find(other)) return;
ecr(other) :=rep; // perform Tarjan’sunion ogeration

/I kegp the mnstraint maps up-to-date, where the hash table ke have been unified

for all a» ¢ b 0 cmap where a= other or ¢ = other
removea» ¢ b from cmap and add a» ¢ b to Wlist
for all a<c b O imap where a = other or c = other
remove a<c b from imap and add a<. b to Wlist
for all a<c b O dirty where a= other or ¢ = other
remove a<c b from dirty, and add find(a) <ind(¢ find(b) to dirty

add(L » cR)
L :=find(L); c = find(c); R = find(R);
if cmap[L][c] = null
cmap[L][c] :=R
dirty=dirty D{L<b|L<ibOimap}
elseif L » ¢ b O cmap Ofind(b) # R
Wlist=Wlis O{ R=b}

add(L < R)

L :=find(L); I =find(l); R = find(R);

if imap[L][1] = null
imap[L][l] :=R
EOC(L < R) // exended occurs check
dirty=dirty 0{ L< R}

elseif L < b Oimap[L][I] Ofind(b) # R
Wlist=WlisO{ R=b}

propagate(L <| R) /I implements the cnstraint propagaion rules
OL»cv Ocmap

if (cmap[R][c] = null && imap[Vv][I] = null)
w := fresh
Wliss=Wlis O{ R»cw} O{vw}

else
Wlist=WIlissO{v<w|R» cwOcmap}
Wlist=WIliss O{ R» cw|v<wOimap}

EOC(L < R) /I O’ Callaharis extended occurs check
if Dasuchthat a=>* L Oimap and a=>* R [cmap
Wlist=WIlist O { a= R}

Figure 19. Constraint solution algorithm

congtraints, then instantiation constraints; processing equality
congtraints first reduces the number of the constraints in the
system as aggressively as possible.

The add function for equality constraints uses Tarjan’s union-find
algorithm to merge the equated nodes. Because imap, cmap, and
dirty are indexed on the first two elements, we must update these
data structures whenever one node is merged into another node.
For example, if node other is merged into node rep, al of the
component constraints that have other on the left-hand side must

17

be removed from the cmap and added to the worklist, so they can
be added with the rep node on the left-hand side.

The functions for adding component and instantiation constraints
are similar. Ignore for amoment the updates to dirty and the calls
to EOC. These functions check to see if there is dready a
constraint in the cmap or imap that has the same left-hand side
and index as the constraint being added. If there is not, they add
the new constraint to the map. If there is a pre-existing constraint,
the functions add a new equality constraint between the right-

Alias Annotations for Program Understanding

hand sides of the old and new contraints. This implements the
component and instance uniqueness rules.

While it is adding constraints, the solver must also keep the dirty
list up to date. This list holds all of the instantiation constraints
for which the propagation rule needs to be executed. Whenever a
new instantiation constraint is added to imap, it is added to the
dirty list. Likewise, whenever a new component constraint is
added to cmap, al of the instantiation constraints that have the
same left-hand side as the component constraint are dirty, since
the new component needs to be propagated to the instances of the
left-hand side.

When the worklist is empty, aconstraint is removed from the dirty
list and the propagation rule is applied. The propagate function
implements this in a straightforward way. For each component of
the left-hand side of the dirty instantiation constraint, the function
checks whether a corresponding component of the right-hand side
exists. If it does not, a fresh node is created and constraints are
added representing the two propagation rules. If it does exist, but
only one of the two required propagation constraints is there, the
algorithm adds the missing constraint. The top-level solve
function adds any new constraints to the system before proceeding
to propagate the next dirty constraint.

Finally, whenever a new instantiation constraint is added to the
system, the extended occurs check in function EOC is executed.
The EOC function checks whether the newly added constraint
causes one node to be both an instance and a component of
another, and unifies the two nodes if this is the case. The cmap
and imap data structures maintain an efficient backwards index
(from the right-hand side to the left-hand side of a constraint) in
order to implement the EOC check relatively efficiently.
O'Callahan’s thesis discusses more aggressive ways to optimize
this check [OCa00].

Integration With Other Alias Annotations. The algorithm
described above can infer adias parameters for each class in the
system. However, some of the type variables in the example
should actually be given a non-parameter aliastype. For example,
tenp and i 2 could be annotated | ent , and st and i could be
annotated uni que.

We integrate alias parameter inference with inference of other
alias annotations by storing a boolean flag in each node for each
possible non-parameter annotation: | ent , uni que, owned, and
shared. Below, we discuss how each flag is initialized and
propagated as type inference proceeds, and how a fina alias
annotation is computed from the flags at the end.

The owned flag is initialized to true for each variable that is non-
publ i ¢ and is never accessed on a receiver other than t hi s.
These constraints are the two base-case semantic requirements for
owned methods and fields. When two nodes are merged, the
resulting node is owned only if both of the merged nodes were
owned.

The shared flag is initialized to true for each st ati ¢ field and
each argument and result of a stati ¢ or nati ve method, as
these are the base cases for shar ed annotations. Whenever a
shared node is merged with an unshared one, the resulting nodeis
shared. Furthermore, whenever a component constraint is
introduced, if the parent node is shared, then the component node
must be marked shared as well—otherwise, there would be no
way to express its alias annotation in the final system.

UW-CSE-02-11-01

18

November, 2002

The lent and unique flags are initialized with the result of lent and
unique inference, as described above. Lent and unique flags are
not modified or propagated during constraint solution.

Final Alias Annotations. Thefinal alias annotations are assigned
from the constraint graph so as to make the annotations as precise
and flexible as possible. Since | ent is the most general
annotation, al declarations whose node has a lent flag equal to
true are given a |l ent annotation. Unique is the most precise
possible annotation for the remaining declarations, so every
remaining declaration whose node has a true unique flag is
annotated uni que. In order to be sound, we must next make
every unmarked declaration whose equivalence class
representative (ECR) node has a true shared flag shar ed. Next,
we mark the remaining declarations as owned based on their
ECR nodes owned flags. All remaining declarations must be
marked with an alias parameter of the enclosing class; for each
class, the different ECR nodes that are components of that class
are given letter names a, b, ¢, and so forth.

In the stack example, the nodes i2 and temp have true lent flags,
and so these variables are marked | ent (note that thisis a more
optimistic annotation than the one given in Figure 3). The variable
i is marked uni que on a basis of node i's flags. In class
St ack, the ECR node for t op has a true owned flag, while the
ECR node o representing members pop and o is not owned.
Thus, top is annotated owned, while pop and o are annotated
with a fresh alias parameter a. Likewise, nenber and next are
given fresh adlias parametersa and b in class Li nk.

Declarations that have a class type which is parameterized must be
given actual alias parameters that correspond to the formal alias
parameters of the class. Because of the way the constraints were
set up, the declaration’s node wi Il have a component node that is
an instance of each forma parameter of the class, and the
corresponding actual parameter can be computed from this node:
either owned, shared, or a formal alias parameter of the
enclosing class. For example, in class St ack, we need to assign
actual dias parameters to t op, t enp, and the new expression.
These al share the same ECR node, top. But node top has two
component nodes: itself and 0. Node o corresponds to parameter
a of St ack, and o is an instance of obj (which is parameter a of
Li nk), so the a is used as an actua of t op corresponding to the
forma parameter a of Li nk. Node top is owned, and is an
instance of Link (which is parameter b of Li nk), so owned is
used as an actual of t op corresponding to the formal parameter b
of Link. Thus the inferred type of top is owned
Li nk<a, owned>, and similar types are inferred for t enp and
the new expression.

Optimizations. The algorithm described above terminates
efficiently in practice, but yields imprecise results. In particular,
the aggressive merging caused by the EOC function mixes too
many shar ed nodes with nodes that would otherwise be marked
owned or an dlias parameter. In fact, in our experience nearly all
nodes become shar ed. Therefore, we have applied heuristics
that avoid mixing shar ed nodes with unshared nodes.

Our technique tracks which nodes are shar ed online. Thus,
whenever two nodes are merged, the resulting node is marked
shar ed if either source node was shar ed. Similar checks are
done whenever a component or instantiation constraint is added to
the system: if the left-hand side is shar ed, then the right-hand
side becomesshar ed aswell.

Alias Annotations for Program Understanding

We modify the EOC function to keep track of which nodes would
be unified, without actually adding the resulting equality
constraints to the worklist. We then divide the list into shar ed
and unshared nodes, and unify these sets separately (but not with
each other). This avoids much of the imprecision.

Another empirically-determined source of imprecision comes
from merging the nodes representing different classes together.
When one class becomes shared, the classes it is merged with
follow, even if this is not semantically necessary. We sidestep
this problem by checking to see if two or more class nodes are
present in a set of nodes unified by the EOC function. If so, all the
class nodes are removed from the set before unifying it. As a
result, we went from a situation where nearly all class nodes were
unified together, to a situation where a relatively small fraction
were unified.

As aresult of these optimizations, we have reduced the number of
nodes determined to be shared substantially—from nearly 100%
to below 50%. While there are till more shar ed nodes inferred
than we would like, we believe that improvements to the encoding
we use, such as supporting the inference of method alias
parameters, will allow continued improvement in the precision of
our agorithm.

5. Evaluation

A significant deficiency of previous work on specifying object
ownership is that no significant experience has been reported
regarding the usability of these systems in practice. We have
evaluated AliasJava with three experiments. To test our system’s
flexibility on collection library code, we added alias annotations
by hand to the Hasht abl e classfrom the j ava. uti | library.
To determine if meaningful data-sharing relationships between
components can be represented in a software architecture, we
applied our system to Aphyds, the subject of a previous ArchJava
case study [ACNO2a]. Finally, we measured the effectiveness of
annotation inference by comparing inference results to smal
hand-annotated examples, and measured its scalability by running
part of it on over 400 classes from the Java standard library.

5.1. Hashtable

Mativation. Collection class code is a chalenge for dlias
annotation systems, because collection classes and their iterators
often store references to data objects that are logically a part of
application objects. Collection classes were a significant part of
the design motivation for Flexible Alias Protection. Thus,
collection classes are an important test of any alias annotation
system.

We have evaluated AliasJava by annotating Hasht abl e from
the j ava. uti | collection class library (from the JDK 1.2.1).
Hasht abl e is an interesting test case for a number of reasons.
The class must distinguish different alias types for the keys,
values, and possibly the entries in the Hashtabl e.
Hasht abl e is dso one of the more complex pieces of the
library, so it is a relatively chalenging test case. Finaly, we
wanted to test our system on an industrial-strength library with
many features and warts. The Flexible Alias Protection paper
used a simplified version of Hasht abl e asarunning examplein
their paper, so this allows a partial comparison to related work
[NVP9g].

UW-CSE-02-11-01

19

November, 2002

Goals. The goals of our study included answering the following
experimental questions:

e Can the annotation system effectively express the
diasing invariants of collection class code?

e How much effort is required to annotate existing code?

e Can annotations be done locally, without annotating all
trangitively reachable code?

Methodology. The subject of our study was the source code to
java. util . Hashtabl e from the JDK 1.2.1. The origina
source was 934 lines of code, including comments. We added
dias annotations by hand to the Hasht abl e code, attempting to
express the aliasing semantics of the code with the simplest and
most flexible annotations possible.

In this study, we tested a local annotation technique intended to
alow us to verify the alias constraints within the Hasht abl e
code without annotating the entire Java standard library. We
annotated and typechecked Hasht abl e in its entirety, but added
only minimal, unchecked annotations to the parts of the standard
library used by Hashtable. The annotations added to
Hasht abl e are then sound if the annotations we added to the
standard library are conservative.

Results. We were successful at annotating Hasht abl e with
dias types after making one change to the source code (discussed
below). In addition to modifying the code for Hasht abl e,
partial annotations were added to 17 other classes, including
j ava. |l ang. Obj ect, oj ect | nput Stream and
Ohj ect Qut put St r eamfrom the 1/0O library, severa interfaces
and abstract classesinj ava. uti |, and seven exception classes.
In most cases we only had to annotate one or two methods from
each externa class, suggesting that it is practical to annotate only
alocal portion of alarge system.

The study took about 2 hours and 20 minutes of programming
time, not counting occasional interruptions to fix problems with
the compiler. This is a relatively small investment compared to
the time spent developing this library, suggesting that our
annotation system is practical for developing new code. However,
it would still be time-consuming to add alias annotations to a very
large system; a better solution is to infer the annotations
automatically, or add annotations incrementally to just the most
critical parts of the system.

Severa excerpts from the source code highlight lessons learned
from the study. For example, we decided to give Hasht abl e
three parameters. one each for keys, values, and entries:
public class Hasht abl e<key, value, entry>

extends Dictionary<key, val ue>

i npl enents Map <key, value, entry>,

Cl oneabl e,
java.io.Serializable { ...

The choice of three parameters is a balance between flexibility on
the one hand and simplicity and comprehensibility on the other.
For example, we could have reduced the number of parameters by
merging the ent ry and key parameters. On the other hand, we
could have added additional parameters also. For example,
Hasht abl e has methods for returning the sets of keys, values,
and entries. We chose to annotate the key Set method’s return
type as key Set <key>, but we could have added extra alias
parameters to Hashtable to get a type of keyset

Alias Annotations for Program Understanding

Set <key>. However, adding three extra alias parameters to the
hash table to represent the key, value, and entry sets would make
the class harder to understand and use. This example illustrates
that the best alias annotation for a piece of code is not necessarily
the most general.

The private inner Enuner at or class below is part of the
original, unannotated code defining an | t er at or over the keys,
values, and entries of the Hasht abl e:
private class Enunerator inplenents Iterator {
int type; // KEYS or VALUES or ENTRI ES
public Object nextEl enment() {
Entry e = ...,
return type == KEYS ? e.key :
(type VALUES ? e.val ue :
}

}

The same code is used for keys, values, and entries; the value
returned by next El enent is determined by the value of the
t ype flag. Because we wanted to use separate alias parameters
for keys, values, and entries, we could not give this code a static
type asit was. Instead, we converted this code to always return an
entry so that we could give it the alias type entry. We then
defined two wrapper classes that implement Iterator and
extract and return the key and value from the hash table entry
returned by Enumrer at or . next El enent .

€e);

The set of Hasht abl e keys is implemented with a simple
KeySet classthat illustrates how inner classes are handled in our
system:

private class KeySet extends Abstract Set <key> {

public unique lterator<key> iterator() lent {
return new KeyEnunerator(true);

/1 other nethods...

}

In this code, class Keyset can reference the key parameter of
the enclosing Hasht abl e class even though KeySet has no
alias parameters of its own.

Theclass Col | ect i ons contains a set of static methods that are
used by many of theclassesinj ava. util :
public class Collections {
public static unique Set<el emrents>
synchroni zedSet <el ement s>(
uni que Set<el ements> s) {
return new Synchroni zedSet (s);

}

Thesynchr oni zedSet method is used by the Hasht abl e to
synchronize access to its key, value, and entry sets. This method
shows the need for method parameterization in our annotation
system: synchroni zedSet needs to be parameterized by the
owner of the elements in the collection so that it can be used to
synchronize sets with any element parameter.

The comment for the method above states, “In order to guarantee
seria access, it is critical that all access to the backing set is
accomplished through the returned set.” In other words, there
should be no diases to the set passed to this method, because
access through these aliases would not be synchronized. The
original library did not enforce this constraint; however, we used

UW-CSE-02-11-01

20

November, 2002

our aias annotation system to enforce this constraint by
annotating the set argument with uni que.

Problematic Classes. As described above, we annotated a
number of other classes in addition to Hasht abl e; these
annotations were not checked by the compiler, but Hasht abl e
was checked against the asserted annotations. In genera, the
annotations we applied to classes other than Hasht abl e were
what we would expect to have used if our compiler had been
checking those annotations as well. The lone exceptions were
certain methods of hj ect | nput Stream and
Chj ect Qut put St ream Our annotation system expressed the
conceptual semantics of these serialization-related methods (e.g.,
writeObject accepts a |l ent argument and r eadQhj ect
returns a uni que object). However, the actual implementation
of these methods caches object references in order to save and
restore object graphs that contain sharing. Therefore, Aliaslava
would be unable to typecheck the implementations of these
classes against these alias annotations. Although it would be nice
to handle this example in our system, we can easily typecheck
clients of these classes by asserting an alias annotation interface
that expresses the desired semantics; we could also provide an
unsound dias annotation cast to complement our system's
existing, sound cast (which checks alias parameters at run time).

5.2. Aphyds
We wanted to evaluate AliasJava on application code as well as
library code, in order to answer the following experimenta
questions:

e Is the annotation system practical on readlistic
application code?

e Does the annotation system help to encode application-
specific architectural constraints?

Methodology. We performed a case study, adding alias
annotations to the architecture of an existing ArchJava
application. The subject of our study was Aphyds, a pedagogical
circuit layout application written by an electrical engineering
professor for one of his classes. Students are given the program
with several key agorithms omitted, and are asked to code the
agorithms as assignments. The source code is about 12,500 lines
long.

In previous work, we expressed the control-flow architecture of
Aphyds, as drawn by the developer, using the ArchJava language
[ACNO2a]. The intention of this study is to express the data
sharing relationships in the architecture using the alias annotation
system as an addition to ArchJava.

Aphyds has an architecture that follows the model-view design
pattern [GH}H94]. A set of user interface windows forms the
view, and interacting with the model to execute circuit operations
and display circuit elements. The model has an internal
repository-style architecture, with a set of five computational
components surrounding and interacting with a central data store
of circuit elements.

In this study, we focused on the model part of Aphyds. Our goa
was to express the data sharing relationships between the
components in the architecture. Thus, we applied Aliaslavato the
AphydsModel class representing the overall model’s
architecture, as well as the G rcuit repository and the five
computational module classes. These 7 large classes comprise

Alias Annotations for Program Understanding

3550 lines of code, as measured by Unix we (word count). We
typechecked the alias annotations in these classes against
annotations we added to parts of the interfaces of the Java
standard library and the rest of the Aphyds application.

Results. The study took about three hours and 40 minutes—less
than a quarter of the time that it took the same programmer to
express the control-flow architecture of the same part of Aphyds.
The alias annotation system probably required editing more lines
of source text than the earlier, control-flow architecture
annotations. However, the alias annotations did not require
changing any existing source code, just adding annotations. In
contrast, our earlier system required significant source-code
refactoring to make the code conform to the devel oper’s intended
architecture.

We discovered almost immediately that it was quite tedious to
annotate the mgjority of method arguments (including t hi s) and
local variable declarations that have al ent annotation. We have
since made | ent the default annotation for method arguments
and locals.

The annotations in the architecture show the style of sharing in
this repository application. The circuit database has asingle dias
parameter, dat a, that represents the circuit elements in the
database. Since all of the other computational components act on
these circuit elements, they are also parameterized by the same
alias parameter. We did not use the shar ed annotation except
for objects of type Stri ng. Stri ng objects are immutable in
Java, so we did not feel that it was important to track their aliasing
patterns precisely, and making strings shar ed simplified our
annotation task.

The annotations in ports used for communication between
components also show the semantics of the methods used for
inter-component communication. Methods that return computed
data typically take | ent parameters and return results annotated
either uni que or data. In contrast, methods that set data
usually take parameters with data annotations. These
annotations aso showed that the objects shared between
components came from a small set of classes including circuit
elements and data structures that reflect their organization into a
circuit.

5.3. Annotation Inference

We evaluated our annotation inference algorithm in several ways.
First, we applied inference to small examples, and compared the
inferred types with those generated by hand. We then evaluate the
scalahility of inference in time and space using the Java Standard
Library. Finaly, we report our observations on the inferred types
for Javalibrary code.

Inference Benchmarks. We chose as our inference benchmarks a
set of code examples taken from this paper, specifically Figures 1
through 6. These examples do not involve ArchJava code (for
which our annotation inference implementation is not yet
complete). We ran the inference agorithm on versions of the
code that had all annotations stripped out.

Our implementation of annotation inference inferred exactly the
same types as are shown in the figures (up to renaming of
parameters), with the following exceptions. We inferred | ent or
uni que annotations for afew loca variablesthat have owned or
shar ed annotations in the figures (for example, t enp andi 2 in

UW-CSE-02-11-01

21

November, 2002

Figure 3 and s in Figure 4 werel ent , and the pointsin Figure 2
were uni que). In this case, the annotations inferred by the
inference algorithm were in fact more precise than the ones in the
figures.

Scalability. Our inference agorithms for | ent and uni que
scale linearly with program size. We timed the agorithms on the
408 classes in the JDK 1.2.1 standard library that are reachable
from j ava. | ang. Obj ect. As a point of reference, it takes
about 100 seconds for our compiler to parse and typecheck these
classes. Our | ent and uni que inference analyses took 33
seconds and 151 seconds, respectively. Thus inferring these
annotations takes time comparable to parsing and typechecking.

Our current constraint solver implementation has been partly
optimized, but we will continue to improve execution time and
space using techniques developed by O'Calahan and others
[OCa00]. The solver infers alias parameters for the 408 Java
standard library classes in about 30 minutes, using 2 GB of
memory.

Standard Library Inference. We ran our inference algorithm on
the same 408 classes from the Java Standard Library to determine
whether the inferred annotations would be both precise and
understandable.

Our experiment suggests that the inference agorithm is fairly
precise, although some improvement is still needed. Around 50%
of method and constructor parameters were inferred to be either
| ent or uni que, which represent the most precise annotations.
The other annotations were split about equally between shar ed
and alias parameters, with afew owned annotations also.

The maor symptom of imprecision in the inference results
appears to be unnecessary shar ed annotations. We have found
that inference results are very sendtive to the way that the type
system is encoded into constraints, and the way that the extended
occurs check unifies type variables. By experimenting with
different constraint encodings and unification heuristics, we have
been able to reduce shared annotations considerably, and we
believe there is still room for improvement. We hope to eliminate
another major source of imprecision by implementing inference of
static method parameters.

When evaluating the understandability of the inferred annotations,
we discovered that many classes had dozens if not hundreds of
inferred parameters. In a sense, the analysis is too precise,
making distinctions between different dias parameters that are too
fine to be useful to the programmer. Our experience suggests that
additional tools or heuristics will be needed to reduce the number
of parameters for each class to a manageable level.

6. Related Work

Our work builds on a number of existing type systems for
describing alias relationships in object-oriented programs. The
most closdly related work falls into two main categories:
uniqueness type systems for describing unaliased pointers, and
ownership type systems for describing pointers that are confined
to alimited domain. AliasJava combines these lines of research,
supporting both unique references and a flexible form of object
ownership. The synergy of these features alows Aliaslava to
express important idioms that neither class of annotations can
express alone, such as those discussed in section 2.4.

Alias Annotations for Program Understanding

Uniqueness types can be used to declare references that are
unaliased [Min96, CBS98]. Passing a unique object from one
method to another avoids al aliasing problems, since the original
method may not use the object again. Our lent annotation is
similar to Wadler's | et! Construct [Wad90]. Boyland's aias
burying paper [BoyOl] described how to implement unique
pointers without a special destructive read operation, an
innovation adopted by Aliaslava. Alias burying uses an effect
system to enforce a stronger uniqueness invariant than AliasJava
enforces: namely that when aunique field isread, all previous lent
aliasesto that field are dead.

Linear type systems [Wad90] guarantee uniqueness and in
addition can be used to track resource usage. Linear types have
been applied to check protocols defining the order in which
library methods can be called, as in the Vault language [FD02].
Leino et a. have also used uniqueness to specify and check side
effects in a modular way [LHZ02]. A number of research efforts
have used linear types to verify the correctness of explicit memory
management using the concept of a region
[TT94,CWM99,FD02,GMJ+02]. A region represents a group of
objects that are deallocated together. A region type is similar to
an ownership type in that al objects must be accessed through
their region. Although supporting explicit deallocation is not a
goa of AliasJava, our system makes two contributions relative to
region types. First, regions must be tracked linearly to enable
explicit deallocation; AliasJava relaxes this constraint on owning
objects, permitting more flexible aliasing patterns. Second, region
types do not have an encapsulation model like Aliaslavas for
protecting access to the objects in a region; any object that can
name the region can access the objectsinside it.

Ownership types, which describe a limited static or dynamic
scope within which sharing can occur, can aso be used to control
dliasing. Early work such as Idands [Hog91] and Balloons
[AIm97] imposed dtrict rules on sharing objects between
components, significantly limiting expressiveness. A more recent
variation, Confined Types [BV99], dlows programmers to restrict
object references to within a particular package; the system has
been extended to support inference of confined types [GPV01].
Universes [MP99] provides a combination of ownership and
confinement, providing additional flexibility using read-only
references that can cross universe boundaries. More recently,
Clarke et a. and Banerjee et a. have used ownership types to
reason about side effects and representation independence as well
asdiasing [CD02, BNO2].

The ownership annotations in AliasJava are most closely related
to Flexible Alias Protection [NVP98] and its successors
[CPN98,CNPO01,Cla01]. Flexible Alias Protection uses
ownership polymorphism to strike a balance between
guaranteeing aiasing properties and alowing flexible
programming idioms. In Flexible Alias Protection, owned objects
can only be accessed by their owner and its children. However,
this invariant prohibits iterators, which are not owned by a
collection, yet must access its owned state. Clarke et al. address
this issue by introducing a new abstraction caled ownership
contexts: each object has an owning context (the context that
owns it) and a representation context (the context that owns its
representation) [CNPO1, Cla01]. The key property of their system
is a containment invariant, which states that if object 01 refersto
object 02, then the representation context of 01 must be inside the
owning context of 05.

UW-CSE-02-11-01

22

November, 2002

The ownership subset of AliasJava is quite similar to that of
Clarke's thesis [Cla01] in both expressiveness and the properties
enforced. We wanted to enforce an encapsulation property that
relates objects directly, rather than one that relates abstract
ownership contexts. Therefore, we chose to phrase the
encapsulation guarantees of AliasJavain terms of capabilities that
can be passed from one object to another using ownership
parameters. AliasJava’s capability -based encapsulation is dightly
weaker than Clarke's containment invariant because we place no
restrictions on alias parameters, but AliasJava is correspondingly
more flexible. Existing implementations of Flexible Alias
Protection and its successors lack support for language features
such as inheritance [Bok99, Buc00], and thus there has been no
significant experimental validation of the design.

Capabilities for Sharing [BNRO1] describes a general capability-
based aliasing model that can encode a number of other dias-
control systems, including ours, as aspecial case. The capabilities
in their system are fine-grained and are dynamically checked; in
contrast, our type system verifies staticaly (except for casts) that
objects are only accessed through appropriate high-level
capabilities.

Parameterized Race Free Java (PRFJ) uses the concept of object
ownership and uniqueness to develop a type system to guarantee
that a programis free of dataraces [BR0O1] and deadlocks [BR02].
PRFJ was not designed to encapsul ate owned objects. However, a
variant of PRFJ supports a stronger notion of object encapsulation
than AliasJava: owned objects are confined within the owner, its
owned objects, and its inner classes [BR02]. This variant is more
restrictive than AliasJava: an object can delegate a capability to
access its owned state to its other owned objects and to its inner
classes, but not to trusted external classes and methods, even
temporarily. Thus, iterators can only be implemented as inner
classes of the collection they iterate over. Also, objects cannot be
unique if they have non-shared, non-unique ownership
parameters—prohibiting many uses of unique. To our knowledge,
this variant has not been evaluated in practice.

Systems such as Alias Types [WMOO] and Role Anaysis
[KLRO2] specify the shape of alocal object graph in more detail
than our system. The Alias Types proposal uses this information
to safely deallocate objects, while Role Analysisis used to specify
and check properties of data structures. In contrast to these
detailed specifications of alocal dias graph, the goal of Aliaslava
is to provide a lightweight and practica way to constrain global
aiasing within a program.

An dternative to using a type system to limit aliases is to use an
dias analysis-based tool such as Lackwit [0J97] to visualize the
aliases within a program. For answering questions about aliasing,
AliasJava can be more precise than Lackwit, which does not treat
data structures polymorphically. Compared to Lackwit’s
successor Ajax [OCa00], AliasJava allows more parametric
polymorphism on methods, but its treatment of subtype
polymorphism is less precise due to the constraints of AliasJava's
type system. One benefit of expressing dias information in atype
system is that the information is constantly available and
constantly checked for consistency, and so there is no need to run
atool to take advantage of it.

A final area of related work is systems that enforce the secure flow
of information. A representative system is JFlow [Mye99], which
annotates each piece of data with a set of principals that own the

Alias Annaations for Program Understanding

data, and for ead owner, alist of principals that are dlowed to
read the data. The type system verifies that no pincipa can read
a piece of data unless al the data's owners have given rea
permisson to that principal. Aliasdva is more lightweight than
JFlow, becaise our system labels references with a single owner
instead of alist of owners and alist of authorized readers for eath
owner. However, our system only suppats ressoning abou
information flow through data sharing, not other forms of
information flow.

7. Conclusion

This paper described Aliaskva, an annatation system for Java that
places dructura and temporal bounds on diases, enabling
developers to reason more diredly abou diasing in oljed-
oriented systems. Aliasdva is expressve enough to describe a
wide range of important idioms, including colledion classes,
iterators, and severa architedural styles. Our design extends to
the full Java language, including arrays, casts, inheritance, and
inner clases. We formalized a subset of the system, and proved
key invariants of the aanaations. Our dias anndations can be
automaticdly inferred using a novel variant of an existing
instantiation constraint-based agorithm. We have validated the
design of Aliaslva and the inference dgorithm on part of the
Java standard library and on a redistic gplicaion. Our
experience suggests that Aliaskva is flexible enowgh to use on
existing code, that annaation overheal is reasonable, and that the
annaations can expressimportant appli cation constraints.

Acknowledgements

We would like to thank David Notkin, Doug Lea members of the
Cedl group, and the anonymous reviewers for their comments and
suggestions. This work was suppated in part by NSF grants
CCR-9970986 and CCR-0073379 and gifts from Sun
Microsystems and IBM.

References

[ACNO2a] Jonathan Aldrich, Craig Chambers, and David Notkin.
ArchJdava: Conreding Software Architedure to Implementation.
Proc. International Conference on Software Engineaing, Orlando,
Florida, May 2002

[ACNO2H Jonathan Aldrich, Craig Chambers, and David Notkin.
Architedural Reasoning with ArchJava Proc. European
Conference on Objed-Oriented Programming, Maaga, Spain,
June 2002

[AKCO2Z] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias Annaations for Program Understanding.
University of Washington technicd report UW-CSE-02-11-01,
November 2002

[AIMmQ7] Paulo Sérgio Almeida. Baloon Types: Controlling
Sharing of State in Data Types, Proc. European Conference on
Objead-Oriented Programming, Jyvaskyl&, Finland, June 1997

[Arc02] ArchJavaweb site. http://www.archjava.org/

[Bok99] Boris Bokowski. Implementing "Objed Ownership to
Order." Proc. Intercontinental Workshop onAliasing In Objea-
Oriented Systems, Lisbon, Portugal, June 1999

[BNO2] Anindya Banerjee a&ad David A. Naumann.
Representation Independence, Confinement, and Access Control.

UW-CSE-02-11-01

23

November, 2002

Proc. Principles of Programming Languages, Portland, Oregon,
January 20Q2.

[BNRO1] John Boyland, James Noble, and William Retert.
Capahilities for Sharing: A Generdizaion o Uniqueness and
Rea-Only. Proc. European Conference on Objed-Oriented
Programming, Budapest, Hungary, June 2001

[Boy01] JohnBoyland. Alias Burying: Unique Variables Without
Destructive Reals. Software Pradice & Experience 6(31):533
553 May 2001

[BRO1] Chandrasekhar Boyapati and Martin Rinard. A
Parameterized Type System for RaceFree Java Programs. Proc.
Objed-Oriented Programming Systems, Languages and
Applicaions, Tampa, Florida, October 2001

[BROZ] Chandrasekhar Boyapati, Robert Lee and Martin Rinard.
Ownership Types for Safe Programming: Preventing Data Races
and Deallocks. Proc. Objed-Oriented Programming Systems,
Languages and Applicaions, Sedtle, Washington, November
2002

[BS98] Boris Bokowski and André Spiegel. Barat—A Front-End
for Java. Frele Universitét Berlin Technicd Report B-98-09,
Decenber 1998

[BucOQ] Alexander Buckley. Ownership Types Restrict Aliasing.
MEng. Computing Final Yea Projed Report, Imperial Coll ege of
Science, Tecdhndogy and Medicine, London United Kingdom,
June 2000

[BV99] Boris Bokowski and Jan Vitek. Confined Types. Proc.
Objed-Oriented Programming Systems, Languages, and
Applicaions, Denver, Colorado, November 1999

[CBS98] Edwin C. Chan, John T. Boyland, and William L.
Scherlis. Promises: Limited Spedficaions for Anaysis and
Manipulation. Proc. International Conference on Software
Engineaing, Kyoto, Japan, April 1998

[CD02] David Clarke axd Sophia Drossopoudou. Ownership,
Encgpsulation, and the Digointness of Type and Effed. Proc.
Objed-Oriented Programming Systems, Languages and
Applicaions, Sedtle, Washington, November 2002

[Cla01] David Clarke. Objed Ownership & Containment. Ph.D.
Thesis, University of New South Wales, Australia, July 2001

[CNPO1] David G. Clarke, James Noble, and John M. Potter.
Simple Ownership Types for Objed Containment. Proc. European
Conference on Objed-Oriented Programming, Budapest,
Hungary, June 2001.

[CPN98] David G. Clarke, John M. Potter, and James Noble.
Ownership Types for Flexible Alias Protedion. Proc. Objed-
Oriented Programming Systems, Languages and Applications,
Vancouver, Canada, October 1998

[CWM99] Karl Crary, David Walker, and Greg Morrisett. Typed
Memory Management in a Caculus of Capabilities. Proc.
Principles of Programming Languages, San Antonio, Texas,
January 1999

[FDO2] Manuel Fahndich and Robert DelLine. Adoption and
Focus: Pradicd Linea Types for Imperative Programming. Proc.
Programming Language Design and Implementation, Berlin,
Germany, June 2002

Alias Annaations for Program Understanding

[FRDOQ] Manuel Féhndich, Jakob Rehof, and Manuwvir Das.
Scdable Context-Sensitive Flow Analysis using Instantiation
Condtraints. Proc. Programming Language Design and
Implementation, Vancouver, Canada, June 200Q

[GHJ}+94] Erich Gamma, Richard Helm, Ralph Johrson and John
Vlissdes. Design Patterns: Elements of Reusable Objed-Oriented
Software. Realing, Massachusetts: Addison-Wesley, 1994

[GMJ+02] Dan Grosaman, Greg Morrisett, Trevor Jim, Michad
Hicks, Yanling Wang, and James Cheney. Region-Based
Memory Mangagement in Cyclone. Proc. Programming
Language Design and Implementation, Berlin, Germany, June
2002

[GPVO]1] Christian Grothoff, Jens Palsberg, and Jan Vitek.
Encepsulating Objeds with Confined Types. Proc. Objed-
Oriented Programming Languages, Systems, and Applications,
Tampa, Florida, November 2001

[GS93] David Garlan and Mary Shaw. An Introduction to
Software Architedure. In Advances in Software Engineeaing and
Knowledge Engineeaing, | (Ambriola V, Tortora G, Eds.) World
Scientific Publishing Company, 1993

[Hen93 Fritz Henglein. Type Inference with Polymorphic
Reaursion. Trans. Programming Languages and Systems,
15(2):253-289, April 1993

[Hog91] John Hogg. Idlands: Aliasing Protedion in Objed-
Oriented Languages. Proc. Objed-Oriented Programming:
Systems, Languages and Applicaions, Phoenix, Arizona, October
1991

[HLW+92] John Hogg, Doug Lea Alan Wills, Dennis
deChampeaux, and Richard Holt. The Geneva Convention onthe
Treadment of Objed Aliasing. OOPS Messenger, 3(2), April
1992

[IPW99] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Feaherweight Javas A Minimal Core Calculus for Java and GJ.
Proc. Objed-Oriented Programming Systems, Languages, and
Applicaions, Denver, Colorado, November 1999

[KLROZ] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role

Analysis. Proc. Principles of Programming Languages, Portland,
Oregon, January 2002

UW-CSE-02-11-01

24

November, 2002

[KTU93] Assf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. The
Undeddability of the Semi-Unificaion Problem. Information and
Computation, 102(1):83--101, January 1993

[LHZ02] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and
Yunhorg Zhou Using Data Groups to Spedfy and Ched Side
Effeds. Proc. Programming Language Design and
Implementation, Berlin, Germany, June 2002

[Min96 Naftaly Minsky. Towards Alias-Free Pointers. Proc. of
European Conference on Objed Oriented Programming, Linz,
Austria, July 1996

[Mye99] Andrew C. Myers. JFlow: Pradicd Most-Static
Information Flow Control. Proc. Principles of Programming
Languages, San Antonio, Texas, January 1999

[MP99] Peter Muller and Arnd Poetzsch-Heffter. Universes: A
Type System for Controlling Representation Expaosure. In A.
Poetzsch-Heffter and J. Meyer (Hrsg.): Programmiersprachen und
Grundagen der Programmierung, 10. Kolloquum, Informatik
Berichte 263 19992000

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible dias
protedion. Proc. European Conference on Objed-Oriented
Programming, Brussls, Belgium, 1998

[OC&a00] Robert O'Callahan. Generalized Aliasing as a Basis for
Program Analysis Tools. Ph.D. Thesis, pulished as Carnegie
Méellontedhnicd report CMU-CS-01-124, November 2000

[OJ97] Robert O' Cdlahan and Daniel Jadkson. Ladkwit: A
Program Understanding Tool Based on Type Inference Proc.
International Conference on Software Engineeging, Boston,
Massachusetts, May 1997.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementing the
Call-by-Value A-Calculus Using a Stakk of Regions. Proc.
Principles of Programming Languages, Portland, Oregon, January
1994

[Wad9(q Philip Wadler. Linea Types Can Change the World!

Programming Concepts and Methods, (M. Broy and C. Jones,
eds.) North Holland, Amsterdam, April 199Q

[WMOQ] David Walker and Greg Morrisett. Alias Types for
Reaurrsive Data Structures. Proc. International Workshop on
Types in Compilation, Montred, Canada, September 200Q

