
A Salable Algorithm for Query Minimization

Isaa K. Kunen

zook�s.washington.edu

Dan Suiu

suiu�s.washington.edu

Abstrat

Minimizing a query means �nding an equivalent one with the least number of joins. Although

this problem was oneived over 25 years ago, no salable algorithm exists today for several

reasons. First, the problem is NP-hard even for onjuntive queries, whih seems to prelude

a universally fast algorithm. More importantly, there was little need: historially most queries

were handwritten and already minimal. Today view expansion has beome a entral theme

of many systems. This tends to result in queries that are highly redundant and in need of

minimization. In addition, reent theoretial work on tree-deomposition has provided a new

approah to query ontainment, the major sub-problem in query minimization.

We desribe a query minimization algorithm that sales to onjuntive queries with hundreds

of joins. The algorithm inorporates four tehniques: a fast heuristi for tree-deomposition,

randomization, table-pruning, and inremental reomputation. Our experimental evaluation

shows that eah ontributes signi�antly to the algorithm's performane.

1 Introdution

We onsider the following problem: given a query, �nd an equivalent query with the minimum

number of joins. The queries onsidered are onjuntive queries, whih orrespond to SELECT-

DISTINCT-FROM-WHERE queries in SQL where the onditions in the WHERE lause are limited

to equality prediates. This problem was �rst addressed by Chandra and Merlin in 1977 [8℄ and

an be solved by eliminating redundant joins, one by one, until no more redundant joins remain.

The problem is hard, beause heking whether a join is redundant is NP-omplete (it requires a

query equivalene test).

Given these simple fats, it may be surprising that this problem has reeived little attention so

far in pratie. None of the major relational database systems performs general query minimization,

and to our knowledge no salable algorithm has been desribed so far. There are two reasons for

this. First, SQL queries used to be written primarily by users, and humans tend to write queries

that are already minimal. Seond, the high omplexity of the problem pushed this partiular form

of optimization down on the database vendors' priority list.

Today, however, neither reason is valid. First, most SQL queries are generated automatially

by appliations. An inreasingly ommon situation is that of view expansion. Although this will

sometimes happen inside of a relational engine, an extreme ase an be seen by examining reent

XML publishing systems [12, 23℄. Here, the XML data is de�ned as a large virtual view over

a relational database, with almost every element type assoiated width a relational view. XML

queries expressed, for example, in XQuery are translated into SQL, by expanding these views. The

more element and attribute tags are mentioned in the XML query, the more views end up expanded

in the SQL translation. As shown in [12℄, this may result in highly redundant queries that require

a minimization step. Worse, novel web servie appliations often require several levels of view

expansion resulting in even higher redundany.

1

Seond, there have been reent theoretial advanes in studying and analyzing the omplexity

of the onjuntive query ontainment and equivalene. These results generalize a well-known result

by Yannakakis [29℄ that query ontainment of ayli queries an be deided in PTIME, by relaxing

the ayliity ondition to requiring a �xed value for a ertain parameter. For example, Chekuri and

Rajaraman [11℄ de�ne query width and prove that for every k, ontainment of queries with query

width less than k an be heked in PTIME. Similar results have been shown for other parameters,

suh as tree width [18℄, and hypertree width [14℄.

We desribe here the �rst salable query minimization algorithm, and validate it experimen-

tally for queries with hundreds of joins. Given a query q, we onstrut the assoiated anonial

database instane D, whih is simply the database ontaining the atoms omprising the q. We then

eliminate tuples one by one from D, heking for eah tuple whether q still evaluates to true on

the remaining database. The algorithm inorporates four tehniques. The �rst is a fast heuristi

for tree-deomposition whih, as we show here, orresponds preisely to �nding a query plan with

joins and projetions. The seond tehnique is randomization: we introdue a random hoie in

our tree-deomposition algorithm and run it several times, piking the lowest ost. The third teh-

nique is pruning: after evaluating the query on the database the �rst time, we analyze all tuples

in all intermediate relations and determine whih really ontribute to the output. All other tuples

are removed from the database. Finally, the fourth tehnique is inremental evaluation: sine the

query needs to be evaluated repeatedly after eah tuple deletion, we reompute it using a tehnique

taken from from reursive query evaluation [27, 5℄ and inremental view maintenane [15℄. Eah

tehnique brings signi�ant improvements to the overall query minimization algorithm, as we show

experimentally.

The paper is organized as follows. We motivate the problem in Setion 2, provide some bak-

ground in Setion 3, and present some running examples in Setion 4. In Setion 5 we propose a

lass of query plans and disuss our plan-generation algorithm. Setion 6 deals with several opti-

mizations to the exeution phase of our algorithm. We show salability results in Setion 7. We

present related work in Setion 8, and onlude in Setion 9.

2 Motivation

Consider the relational shema Emp(EmpID, Gender, MngrID) and the following two SQL queries:

q:

SELECT DISTINCT e1.EmpID

FROM Emp AS e1,

Emp AS e2,

Emp AS e3,

Emp AS e4

WHERE

e1.Gender = "female" AND

e1.EmpID = e2.MngrID AND e2.Gender = "female" AND

e2.EmpID = e3.MngrID AND e3.Gender = "female" AND

e4.EmpID = e3.MngrID AND e4.Gender = "female"

q':

SELECT DISTINCT e1.EmpID

FROM Emp AS e1,

Emp AS e2,

Emp AS e3

WHERE

2

e1.Gender = "female" AND

e1.EmpID = e2.MngrID AND e2.Gender = "female" AND

e2.EmpID = e3.MngrID AND e3.Gender = "female"

Instead of SQL we will use datalog notation [26℄ throughout the paper, and write the queries

as:

q(x) : � Emp(x; \female";)

Emp(y; \female"; x)

Emp(z; \female"; y)

Emp(y; \female";)

q

0

(x) : � Emp(x; \female";)

Emp(y; \female"; x)

Emp(z; \female"; y)

q and q

0

ompute the same thing: both return women managers who supervise other women

managers, who in turn supervise women. However, q

0

is easier to ompute than q beause it requires

only two joins instead of three. In fat q

0

has the smallest number of joins among all queries that

are equivalent to q and is therefore alled the minimal query. Although today's database systems

perform query minimization in some limited ases, they do not do so in general: when presented

with query q they will optimize and exeute a query with three joins. The reason for the hoie

not to implement a full query minimization algorithm has been twofold: users typially don't write

non-minimal queries like q, and query minimization would add an expensive step to the optimizer.

This deision warrants revisiting in light of the many appliations that have been devised that

rely on view expansion. We begin by onsidering a simple ase of expanding a query written in

terms of virtual views. Assume we have the following view:

v(x; y) : �Emp(x; \female";);Emp(y; \female"; x)

The view omputes all female employees y managed by a female manager x. Now we an answer

the query above by using this view, as:

q

00

(x) : � v(x; y); v(y;)

When the system expands the view de�nition, the result is preisely query q above, with one

redundant join. This is, of ourse, a toy example: in pratie queries may be posed over dozens of

views whih, after expansion, result in many more redundant joins. In some systems there may be

several layers of these rewritings, eah ompounding the redundany.

A speial ase of view expansion is in XML publishing [12, 23℄. The XML doument is de�ned

as a view over a relational database and XML queries are translated into SQL by a proess with

resembles view expansion, and result in highly redundant queries. In fat, our initial motivation

for this work was preisely to minimize queries in SilkRoute [12℄.

We should note that a query that retains dupliates annot be minimized; more preisely, no join

an be eliminated without hanging the query's semantis. A result by Chaudhuri and Vardi [10℄

shows that two queries under bag semantis are equivalent if and only if they have isomorphi

bodies. However, if suh a query ours as a subquery, then we may be able to apply query

minimization even if it retains dupliates. For example the query:

SELECT...

FROM...

WHERE EXISTS (SELECT... FROM... WHERE...)

3

has a subquery whih an be �rst translated into a SELECT-DISTINCT query, and subsequently

minimized.

Most databases ontain some shema onstraints whih an be used to minimize queries. For

example, if we assume that the CEO is her own manager, then using the fat that EmpID is a key

in Emp and MngrID is a foreign key we an minimize the following query:

q(x) : �Emp(x; \female"; y);Emp(y; ;)

to:

q

0

(x) : �Emp(x; \female"; y)

Here q and q

0

are equivalent even under bag semantis, and most relational systems today indeed

rewrite q into q

0

. Query minimization in the presene of onstraints an be done by adding a hase

step to the basi minimization algorithm [2℄. Shema-based minimizations is orthogonal to the

minimization algorithm, and we do no address it in this paper.

3 Bakground and Problem Statement

We de�ne here the problem formally. We are given a onjuntive query, usually written as a datalog

rule with n goals:

q(�x) : � r

1

(�x

1

); : : : ; r

n

(�x

n

)

and are asked to �nd an equivalent query q

0

with a minimum number m of goals:

q

0

(�x

0

) : � r

0

1

(�x

0

1

); : : : ; r

0

m

(�x

0

m

)

suh that q and q

0

are equivalent. q

0

is alled a minimal query: it is known that any other minimal

query is isomorphi to q

0

. In other words, they di�er only by renaming the variables. It suÆes

to onsider only the minimization problem for Boolean queries, i.e., those without head variables.

Minimizing q(�x) an be redued to the problem of minimizing q

0

de�ned as:

q

0

() : � h(�x); r

1

(�x

1

); : : : ; r

n

(�x

n

)

where h is a new prediate symbol. Hene, throughout the paper we will assume that the queries

are Boolean.

There is a standard algorithm for minimizing q. Construt a dereasing sequene of queries,

q

0

= q; q

1

; q

2

; : : :, as follows. At eah step i = 1; 2; : : : hoose a subgoal in q

i�1

suh that, if we

denote by q

i

the query obtained by eliminating this subgoal, then q and q

i

are equivalent. When

no more subgoals an be eliminated stop and return the last query in the sequene.

It an be shown that we arrive at the same result (up to variable renaming) no matter in whih

order we attempt to remove subgoals, that we need only hek the removal of eah subgoal one,

and that the result is indeed the minimal query.

The simple proedure takes at most n steps, but at eah step it needs to hek if two queries

are equivalent, a problem whih is know to be NP-omplete. We fous now on this step.

The standard method for heking equivalene is to �nd a homomorphism from q to q

i

(there

is no need to searh for one from q

i

to q, in our ase). This an be reast in terms of a query

evaluation problem. First, onstrut the anonial database D

i

for q

i

, the database omposed of

the atoms in the body of q

i

. To illustrate this idea, onsider the ase if q

i

were de�ned as follows:

q

i

(x) : � Emp(x; \female"; tmp1)

Emp(y; \female"; x)

Emp(z; \female"; y)

Emp(y; \female"; tmp2)

4

This query is translated into a database with one relation, Emp, and a row in the table for eah

relation, with eah variable onverted to a onstant:

D

i

:

Emp

\x" \female" \tmp1"

\y" \female" \x"

\z" \female" \y"

\y" \female" \tmp2"

Next, evaluate q onD

i

. If the answer is true, then there exists a homomorphism. Our disussion

leads to the following query minimization algorithm template:

Algorithm: Generi Query Minimization

Input: Query q

Output: Minimal query q

0

Method

Step 1 onstrut a query plan p for q

onstrut q's anonial database D

Step 2 for eah tuple t 2 D do

if q(D � ftg) = true

then D := D � ftg

Step 3 Return the query q

0

orresponding to D

Query minimization uses ore tehniques deployed in a database management system: opti-

mization and query plan generation, followed by query exeution on a database instane. Viewed

this way, one may be tempted to simply use a relational engine to do so. There are however a few

key di�erenes, some making this approah not only ineÆient but even impossible (as we shall see

in more detail). First, the query is relatively large: in appliations that require several levels of

unfoldings the query may have hundreds of joins, even if the minimal query has many fewer. This

rules out traditional optimization methods. By ontrast, the database instane on whih we eval-

uate the query is relatively small, \only" a few hundreds of tuples, but is not persistent, meaning

that we don't have preomputed statistis or indexes. Finally, we need to exeute the same query

repeatedly on several databases that have only small di�erenes, and so spei� optimizations for

this ase need to be onsidered.

4 Running Examples

Here we introdue several lasses of queries whih will be used throughout the paper. Eah query

onsists of a single binary prediate, so we an visualize them as direted graphs, and eah lass is

parameterized by a single variable n.

Augmented path queries (Figure 1a) onsist of a path of length n, with an additional dangling

edge rooted at eah node exept the last. An augmented path query of length n has 2n subgoals.

Ladder queries (Figure 1b) are arranged in a ladder-like on�guration with all edges pointing

from the upper left to the lower right. A ladder query with n rungs ontains 3n� 2 subgoals.

Augmented ladder queries and irular augmented ladder queries (Figure 1) are ladder queries

that have additional, dangling edges attahed to eah node. Cirular queries also loop bak upon

themselves. A linear augmented ladder query ontains 5n� 2 subgoals, and a irular augmented

ladder query ontains 5n subgoals, where n is the number of rungs in the query.

5

(a) (b) (c)

Figure 1: Augmented path, ladder, and augmented irular ladder queries, eah with a highlighted

minimal subquery.

5 The Query Plan

5.1 Join-Projet Plans

Query plans for SELECT-DISTINCT-FROM-WHERE queries onsist of joins, projetions, and du-

pliate elimination. Figure 4 illustrates a query plan for the query in Fig. 3 (a), showing projetion

and join operators|we disuss the dupliate elimination in a moment. We desribe in this setion

a query plan generation algorithm spei�ally designed for the problem of query minimization. As

we shall see, it di�ers signi�antly from traditional query optimization algorithms.

Dupliate Elimination Database optimizers usually postpone dupliate elimination until the

end, beause of their high ost for large tables. In query minimization, however, plans with dupli-

ate elimination at the end are simply impossible to evaluate. For a simple illustration, onsider

an augmented path query of length n. This query has 2

n

possible evaluations on its own anonial

database, and, absent dupliate elimination, eah of these results in an output tuple. Our database

system ould not evaluate this query for n larger than 20 or so. Thus, in the query minimization

algorithm we only onsider plans that automatially perform dupliate elimination after eah op-

eration, and push projetions down as far as possible. We all these join-projet plans. Sine these

plans are exeuted in main memory, we implemented all intermediate relations as hash tables, and

all joins as hash-joins.

Cost metri We hose a very simple funtion for our ost metri: the ost of a plan is de�ned

to be the largest arity (width) of any intermediate relation in that plan. Clearly, a small width

ensures a nie theoretial upper bound on the omplexity of the plan, but is no guarantee that

the plan will run better than others with a larger width. In Figure 2 we show an example of

the orrelation between our simple ost and the atual running time in one partiular example.

We onsidered a single query with 58 subgoals, generated 100 plans for it, and ran our omplete

minimization algorithm, with several optimizations turned on. The plan widths ranged from 4 to

13, and the running times ranged from 0.2 seonds to over 1800 seonds. We see that small width

guaranteed fast running time, but the worst-ase running time grew exponentially with the width.

This positive orrelation supports the hoie of our ost model.

The optimization problem With this justi�ation, an now formally state our optimization

problem: given a onjuntive query, �nd a join-projet plan with the minimum width (ost).

Before disussing our solution, it helps to remember the setting: we need to optimize queries

with hundreds of joins, but then only evaluate them on a database with hundreds of tuples. This

rules out expensive optimization algorithm, like dynami programming, beause the optimization

time would dominate the total running time. Instead, we base our solution on reent graph-

6

0.1

1

10

100

1000

10000

4 6 8 10 12 14
tim

e
(s

)

plan width

0.1

1

10

100

1000

10000

4 6 8 10 12 14
tim

e
(s

)

plan width

Figure 2: Plan widths and minimization times for a query with 58 subgoals. Run times have been

limited to 1800 seonds.

theoretial work on the tree-deomposition problem. We review that work and its relationship to

query optimization next.

5.2 Tree Deompositions and Query Plans

The tree deomposition problem (see, e.g., [6℄) is the following. We are given a graph, G, and are

asked to onstrut a tree T whose nodes are labeled with sets of graph verties, and whih satis�es

the following onditions:

� Eah vertex of the graph appears at some tree node.

� If an edge onnets vertex x and vertex y, then x and y are o-loated at some tree node.

� For eah vertex x, the nodes of the tree whih ontain x form a onneted sub-tree.

This de�nition extends to hypergraphs in a natural way: the tree deomposition of a hyper-

graph is de�ned to be the tree deomposition of its inidene graph. The inidene graph G of a

hypergraph H onsists of the verties of H with an edge onneting verties x and y in G i� there

is a hyperedge in H ontaining both x and y.

The width of suh a tree is de�ned to be m� 1, where m is the maximum number of elements

in a node label. The tree width of a graph is the minimum width of all tree deompositions of the

graph.

We denote by H

q

the hypergraph of a query q, i.e., the hypergraph with verties orresponding

to the variables in q and edges orresponding to the subgoals of q. The tree deomposition and tree

width of a query are de�ned to be the deomposition and width of its orresponding hypergraph.

It has been shown that given a tree deomposition for a query q of width w, one an test whether

r is ontained in q in time O(n

(

w + 1)) for an arbitrary query r.

There have been several re�nements to this bound given by the widths of similar deompositions,

namely query and hypertree deompositions [11, 14℄. Rougly, these deompositions allow edges to

appear in the deomposition and \over" the variables in their bodies. The width of a partiular

node is the number of edges used at the node plus the number of unovered verties. For example,

if a node in a tree deomposition ontained fx; y; zg then we would say the width was 2. If we

were able to use the edge (x; y) to over variables at at this node, then it would over the x and y,

leaving an edge and one unovered variable for a width of 1.

7

In the ase of query deomposition, the edges used must only over variables present at the

nodes, while in hypertree deompositions the edges may introdue variables not present.

If we denote the tree width, query width, and hypertree width of a query q by TW (q), QW (q),

and HW (q), then

kQW (q) � TW (q) � QW (q) � HW (q)

where k is the maximum arity of the prediates in q [11, 14℄. Similar time bounds to that shown

for tree deomposition have been found for both query and hypertree deompositions.

One should note that to ahieve these bounds one needs to �nd a minimal deomposition of the

form in question. There are several negative results on this front. Finding a deomposition of any

of these forms is NP-hard. If we �x a maximum width we are willing to tolerate, then there exist

algorithms for tree and hypertree deompositions that will either return a deomposition of that

width or fail in polynomial time. The time bounds for these algorithms still grow exponentially

in the width and in pratie are not viable even for very small widths [7℄. Query deomposition

remains NP-hard even for a �xed width[14℄.

In our work we onsider a restrited form of tree deomposition of a query. Instead of deompos-

ing the inedene graph, we deompose a bipartite graph in whih the nodes on one side orrespond

to verties from the original hypergraph, the nodes on the other side orrespont to edges in the

original hypergraph, and there are edges onneting a variable node to an edge node i� the vertex

appears in the edge. To obtain a restrited tree deomposition we �nd the tree deomposition of

this graph, but remove the edge labels from the deomposition. (Although we �nd it useful to

retain them as annotation, they are not tehnially part of the deomposition.)

Although formulated soemwhat di�erently, this restrited tree deomposition is not substan-

tially di�erent from a \normal" tree deomposition:

Theorem 5.1 (i) Eah restrited tree deomposition is a tree deomposition, and (ii) if there exists

a minimal tree deompositon of a hypergraph H of width w, then there exists a restrited tree

deomposition of graph H with width w as well.

This restrited tree deomposition an be transofmed into query plan with relative ease. We

illustrate with an example.

Example 5.2 Consider the query q in Figure 3a and its query graph G

q

in Figure 3b. A restrited

tree-deomposition is shown in Figure 3e. We obtain a query plan by applying the following rules

bottom-up: (1) leaf nodes beome base table in the plan, (2) internal nodes ontaining only variables

beome projetions on those variables, and (3) internal nodes ontaining subgoals will be onverted

into a join of arity + 1, where is the number of hildren the join has|this will join the subgoal

at the node with the tables from eah of the hild branhes.

The onversion for the query in Figure 3 appears in Figure 4. Note that the table assoiated with

eah join node has width equal to the width of the orresponding node in the tree-deomposition,

and that the width of the tree orresponds exatly to the width of the resulting query plan. These

plans an be further simpli�ed by eliminating unneessary projetions.

5.3 The Query Plan Generation Algorithm

Our plan generation algorithm for a onjuntive query q is the following. Let G

q

be the query graph.

Step 1: Find a random spanning tree T for G

q

Step 2: Evolve T into a tree deomposition for G

q

, by labeling its nodes with sets of verties

8

from G

q

. Initially, eah node of T is labeled with itself. For every edge (x; g) in G

q

that is not part

of the tree, we add x to the labels of all tree nodes on the unique path from x to g. The result is a

restrited tree deomposition for G

q

, and we ompute its width, w.

Example 5.3 We illustrate the algorithm step-by-step in Figure 3. The steps are:

1. The query q (Figure 3a) is onverted into a query graph G

q

(Figure 3b). The query graph

is a bipartite graph with variables on the left, subgoals on the right, and edges onneting

variables to the subgoals in whih they are mentioned.

2. A spanning tree is generated for the query graph. The tree is re-labeled so that the nodes

arrying a variable are labeled with a set ontaining that variable, and the nodes arrying a

subgoal are labeled with that subgoal and the empty set of variables (Figure 3). The edges

not used in the tree, the residual edges, still need to be aounted for.

3. The residual edges are taken into aount. In our example the only residual edge isw ! p(z; w).

The (unique) shallowest nodes ontaining the variable and the subgoal are loated (indiated

by arrows in Figure 3), the path between the nodes is found, and the variable is inserted

into eah node along this path (Figure 3d).

4. Finally, any leaf nodes laking a subgoal are pruned from the tree, and the variable sets at

nodes ontaining subgoals are augmented to ontain the variables present in those subgoals

(Figure 3e).

Analyzing the Algorithm The algorithm is simple, and very fast, but it is not lear how

lose it omes to �nding an optimal width plan. The �rst observation is that, if there exists a

restrited tree-deomposition T of G

q

of width w, then there exists a run of the algorithm that

�nds it: to see this simply remove labels from T until it beomes a spanning tree, and, hene, it

ould have been generated by the algorithm during Step 1. This means that the algorithm always

has a hane to �nd the best query plan. However, it also has a hane to �nd arbitrarily bad

plans, as the following example shows.

Example 5.4 Consider the ladder query with 2 rungs shown in in Figure 5a. Figures 5b and 5

illustrate two possible deompositions of this query. The deomposition in Figure 5b spans using

all of the rungs of the ladder, and indues a plan of width 3, while the one in Figure 5 breaks all

but one of the rungs and indues one of width 4. In fat, a width of 3 is optimal, so it is lear that

our algorithm an miss the optimal deomposition.

This behavior is only exaerbated as the ladder's length is inreased. Regardless of the ladder's

length, it an be shown that the optimal width is 3. If the spanning tree splits all but one of the

rungs, however, the derived width will grow linearly with the number of rungs, and our algorithm

will ahieve near-pessimal performane.

Thus, it is possible to produe arbitrarily poor plans, and the ladder queries are in some sense

the worst ases for the algorithm. For this reason we added the following randomization step to

the algorithm, to redue the hane of making a bad hoie.

Step 3: Randomization Repeat steps 1 and 2 several times and retain the tree deomposition

with the smallest width.

This step results in signi�ant speed-ups on the overall running times. Figure 6 shows the

running times of the entire minimization algorithm without the randomization step. Here we ran

9

p(x,y)

p(x,z)

p(y,w)

x

y

z

w
p(z,w)

q() :− p(x,y), p(x,z), p(y,w), p(z,w).

p(x,y),{}

p(y,w),{}p(x,z),{}

{z,w}

{x,w} {y,w}

p(x,z),{w,x,z}

p(z,w),{z,w}

p(y,w),{w,y}

p(x,y),{w}

{z,w}

p(x,z),{w}

{x,w} {y,w}

p(y,w),{w}

{w}

p(z,w),{w}

{x}

{w}

{y}

{z}

p(z,w),{}

p(x,y),{w,x,y}

(e)

(d)

(c)

(b)

(a)

Figure 3: From Query to Deomposition

p(x,y)

p(y,w)

p(x,z)

p(z,w)

1

�

y;w

�

x;w

1

�

z;w

Figure 4: The Final Exeution Plan|Dupliate eliminations are performed after eah operation.

10

(a)

x0

x2

x4

(c)

p

p

p

p

x1

x3

x5

{x5,x3}

{x3,x1}

{x1}p,{x0,x1}

p,{x2,x3,x1}

p,{x4,x5,x3}

{x0,x1}

{x2,x1,x3}

{x4,x3}

p,{x3,x5}

p,{x1,x3}

(b)

p,{x2,x4,x3}

p.{x0,x2,x1}

p

p

p

p,{x4,x5}

p,{x2,x3}

{x5}

{x1,x3,x5}

p,{x3,x5}p,{x2,x4,x5}

p.{x0,x2,x3,x5}

{x0,x3,x5}

{x4,x5}

p,{x0,x1,x3,x5}

{x2,x3,x5} {x3,x5}

p,{x1,x3,x5}

Figure 5: A 2-Rung Ladder and two Deompositions

11

0.01

0.1

1

10

100

1000

20 40 60 80 100 120
tim

e
(s

)

size (subgoals)

Figure 6: Augmented ladder queries minimized with the baseline implementation

0.01

0.1

1

10

100

1000

20 40 60 80 100 120

tim
e

(s
)

size (subgoals)

Figure 7: Augmented ladder queries minimized with randomization

the algorithm ten times on eah query and reported the running time. Sine we generated a di�erent

(random) query plan at eah run, the running times were spread over a range of more than two

orders of magnitude. Figure 7 shows exatly the same queries, run with the randomization step.

As one an see, the spread dereases signi�antly, onentrating the points on the lower edge of the

urve. In both graphs we did not use the optimizations disussed in the following setion.

All of the results in the remainder of the paper are from experiments with this optimization

turned on.

6 Query Exeution

In this setion we explore our base implementation and several optimizations we have layered on

top of it to further enhane its performane. Our problem is simple: we have a query plan and we

need to evaluate it repeatedly on a sequene of dereasing databases.

To speed this up we make a number of optimizations. Although our basi algorithm is su-

essful beause it is very e�etive at removing dupliates, many optimizations rely on dupliate

information. We an retain the bene�ts of dupliate elimintation while retaining this information

by ollapsing dupliates into a single tuple and keeping a ount of how many times it ours. As

multipliities an grow exponentially we required a bignum implementation to store them whih

12

we obtained from the Gnu Multiple Preision Library.

In the following results, eah method was tried 10 times and the results averaged. Randomiza-

tion was used, hoosing the best plan from 50 randomly reated ones. To ensure a fair omparision,

in eah experiment the plans hosen were the same for eah method. Di�erenes in performane

should therefore be based on the optimizations rather than the partiular plans used.

We make the following optimizations:

Early Terminations: We have two early termination optimizations. First, if at any point

during the exeution of the plan an intermediate result is found to be empty, the end result must

be empty too, and exeution terminates. This holds in our ase beause of the monotoniity of

onjuntive queries.

Seond, sine we are repeatedly exeuting our query on very similar databases, we an expet

that we will often see internal tables that do not hange from iteration to iteration. We ahe the

results of eah join, and if the inputs to that join have not hanged from the previous exeution,

we simply output the ahed value.

We an determine if a table has hanged in onstant time by making use of a row-ount on eah

table. Making use of the monotoniity property one more, we observe that removal of entries from

the database an only remove rows from the internal tables, and so a table's size hanges if and

only if its entries have hanged.

There is almost no ost to these tests, so we always perform these optimizations.

Table Pruning: Consider a join D = E 1 F . If there are rows in E whih do not join with

any row of F , or vie versa, then they an be removed preemptively. This will yield smaller joins

during future evaluations of the query. We an arry this a step further by pruning in a top down

fashion. One we have pruned D, we an remove not only those rows in E and F whih do not

ontribute to the original D, but all rows whih do not ontribute to the pruned version of D. This

amounts to sequentially performing semi-join redutions down the join tree, with the result that

no tuples are left whih do not ontribute to the �nal output [2℄.

This is implemented by exeuting the query one on the omplete database, and then removing

tuples that do not ontribute to the pruned result of eah join in a top-down fashion. Pruning

an have a signi�ant e�et on minimization time, but it is not entirely free: pruning essentially

requires an additional omplete evaluation of the query.

Notie that pruning is done only one at the beginning of the minimization algorithm, and that

all subsequent iterations bene�t from the redued intermediate tables.

We examine the e�et of pruning using the augmented ladder queries. As we an see from

the results in Figure 8, pruning improves performane by about an order of magnitude, reduing

the time to minimize a 25-rung augmented ladder from 15.3 to 1.2 seonds. This query is very

amenable to pruning. Sine eah edge an only be mapped to a small number of positions in the

ladder, the orresponding tuples will be pruned out of most of the base tables.

Inremental Evaluation: Our next optimization is based on an idea taken from reursive

query proessing (see, e.g., [27, 5℄) and inremental view maintenane [15℄. Assume that we have

an internal table D whih is produed as a join of tables E and F , i.e., D = E 1 F . If E and F

are updated to E

0

and F

0

we an either alulate D

0

as before, or we an ompute the hange in

D, �D, as

�D = (E 1 �F) + (�E 1 F)� (�E 1 �F)

Although this requires three joins instead of the one required for the naive alulation, if �E

and �F are small, then these may indeed be faster alulations.

To examine the additional bene�t of inremental evaluation, we use the example of irular

augmented ladder queries. The results are shown in Figure 9. Note that this is a logarithmi sale,

13

0.01

0.1

1

10

100

1000

20 40 60 80 100 120
tim

e
(s

)

size (subgoals)

naive
naive + prune

Figure 8: Average minimization time for augmented ladder queries

0.01

0.1

1

10

100

1000

20 40 60 80 100 120

tim
e

(s
)

size (subgoals)

naive + prune
inc. + prune

Figure 9: Average minimization time for augmented irular ladder queries

so the improvements are atually several-fold. We �rst see that the times are generally higher than

in the linear ladder ase. This is due in part to the fat that the best-possible plan width is 5

instead of 3 for these queries. Additionally, although pruning will have some e�et, less is possible

due to the symmetry of the query. We �nd, however, that inremental evaluation is e�etive in this

ase.

Combining Optimizations: These tehniques an be used independently or ombined. Note

that eah has its own nihe, however. Pruning works very well in the ase that many rows ontained

in base tables do not ontribute to the result. Inremental evaluation works well in the ase that

many rows only ontribute small amounts to the intermediate tables. These are not ompletely

independent, however: rows that have little intermediate impat may often have no impat on the

output and will therefore be pruned.

To illustrate, onsider the ase of augmented path queries. The results in Figure 10 show that

for this lass of queries inremental evaluation atually slows minimization when ombined with

pruning. In this ase, pruning is very e�etive, leaving very small tables to begin with. The joins are

already very small making them very inexpensive. The naive method therefore has an advantage

in having to only alulate one, versus the three that the inremental method must perform.

It is lear that these optimizations are not always bene�ial. Although pruning only adds an

extra evaluation to the minimization and thus inurs limited overhead, inremental evaluation an

14

0.01

0.1

1

10

0 50 100 150 200 250 300
tim

e
(s

)

size (subgoals)

naive + prune
inc. + prune

Figure 10: Augmented path queries minimized with the naive and inremental pruned approahes

0.1

1

10

100

1000

50 100 150 200 250

tim
e

(s
)

size (subgoals)

Figure 11: Augmented ladder queries minimized using the naive pruned method. Times are limited

to 1800 seonds.

have a substantial ost depending on the struture of a partiular query, and its use must be

onsidered on a ase-by-ase basis.

7 Experiments and Results

In this setion we examine how well our algorithm sales to large instanes of several lasses of

queries.

Our implementation was written in C++ and ompiled with g. All results were taken from a

1.7 GHz Intel Pentium 4 running Linux 2.4.7 with 1GB of main memory.

Tables are represented using hash sets from the Standard Template Library [25℄, and joins are

implemented as hash-joins. Along with eah table a ount of the number of rows present is kept.

This ount is implemented using the arbitrary preision integers from the Gnu Multiple Preision

Library [1℄.

As we saw in the previous setion, our naive evaluation method paired with pruning performed

the best on linear augmented ladder queries. In Figure 11 we show how this method performs as

the size of the query grows into the hundreds of subgoals. In these trials we hose the lowest-width

plan out of 50 generated.

15

0

10

20

30

40

50

60

0 200 400 600 800 1000
tim

e
(s

)

size (subgoals)

naive + prune

Figure 12: Augmented path queries minimized with the naive pruned approah

e(y,m)d(x,l)

p(x,y,z)

b(y,j)a(x,i)

p(_,_,z’) p(_y’_)

d(x’,l)

a(x’,i)

p(x’,_,_)

b(y’,j)c(z’,k)

e(y’,m)f(z’,n)

c(z,k)

f(z,n)

Figure 13: A redundant star query with a entral prediate of arity 3 and one set of side loops.

The entral star is highlighted.

We see that for queries under 200 subgoals in length, the algorithm behaves quite well. For

queries larger than 200 subgoals, however, the algorithm starts to exhibit poor results, as the

probability of splitting rungs in the query grows, yielding larger plan-widths.

Although augmented ladder queries exhibit many qualities that make them useful in di�eren-

tiating between our algorithms, they are not a natural lass of queries. Path, star, and snowake

queries are more ommon onstrut found in atual queries.

We found that pruning was very e�etive in this ase, and the best method was our naive pruned

implementation. In Figure 12 we see that using pruning we an sale to minimize a 1000-subgoal

query of this form in only 57.5 seonds.

We also onsider the embellished star queries suh as the one shown in Figure 13. These queries

have a wide entral subgoal, with eah variable joined to a pair of side goals. This is made made

more omplex by adding a number of extra loops between these side goals, eah through an extra,

redundant opy of the entral subgoal with its variables renamed. Suh queries are often found in

data warehousing appliations.

The results in Figure 14 show the minimization times for a star query with a entral prediate of

arity 20, and between 1 and 20 omplete sets of side loops. Although all of the methods performed

roughly the same on this lass of queries, the inremental pruned approah was somewhat better,

and we have presented these results.

Despite the fat that the large entral prediate indues large plan widths (roughly 40), this

lass is very fast to minimize, taking only 27.9 seonds to minimize an 861-subgoal query. This is

due in part to the fat that there are several prediates, and these do not ontribute rows to eah

other in the database. More fundamentally, although the entral prediate is large, there are not

16

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900
tim

e
(s

)

size (subgoals)

Figure 14: Redundant star queries minimized with the inremental pruned approah

many valid valuations for it; just beause a table ould ontain a large number of distint rows

does not mean that these atually our in the evaluation of a query.

8 Related Work

The problem of query ontainment on whih our system is based dates to the work of Chandra and

Merlin [8℄.

Subsequent work has onsidered ontainment for various extensions of onjuntive queries [21, 3℄,

datalog [24, 22, 9℄, queries with order prediates [17, 28, 19, 30, 16℄, with omplex objets [20℄. with

regular expressions [13℄, and under bag semantis [10℄.

In [7℄, Bodlaender shows that given a onstant bound on the treewidth, there is a linear-time

algorithm to reognize whether a graph has a treewidth less than that bound and produe a

deomposition with that width. This algorithm is, however, exponential in the treewidth, and the

onstant fators are too large for it to be useful in pratie.

In [11℄, Chekuri and Rajaraman introdue the notion of query-deomposition and its related

notion of width as a a re�nement of tree deomposition in the ontext of query exeution.

Gottlob et al., show in [14℄ that unlike treewidth, it is NP-omplete to reognize queries of even

a onstant width. They also introdue the notion of hypertree-deomposition and the assoiated

onept of hypertree-width whih further re�ne the bound on the work to exeute a query.

Reently, the minimization problem has been onsidered for XPath expressions in [4℄.

9 Conlusions and Future Work

Although NP-hard in general, the query minimization problem is atually an instane of the quite

pratial query optimization/evaluation problem. However, unlike the usual setting, in this ase

the query is large, the database is quite small and has no indexes nor statistis, and we need to

evaluate the query repeatedly on a sequene of dereasing database instanes. This makes many of

the traditional optimization methods useless.

We have proposed a fast heuristi-based query plan generation algorithm, designed spei�ally

for query minimization. Our inspiration omes from reent theoretial work on tree deomposition:

we generate a random spanning tree in the query graph, and onstrut the plan from that tree.

Next, we have proposed an optimization to this query plan generation, based on randomization:

17

we run the (randomized) query plan generation several times, then pik the best generated plan.

Our experiments show that randomization results in a dramati redution in the variation of the

quality of the generated plans, and, hene in the total query minimization time.

Finally, we have proposed a number of run-time optimization that speed up the repeated eval-

uation of the same query plan on a sequene of database instanes. The two major ones are table

pruning, and inremental evaluation. The �rst eliminates tuples from all intermediate tables that

do not partiipate to the end result. In theoretial terms, it eliminates partial homomorphisms

that annot be ompleted to total homomorphisms. Pruning needs to be done only one during

the minimization, then all subsequent iterations will bene�t from it. The seond is inremental

evaluation. This is based on previous work on inremental view maintenane, and omputes on the

hanges to eah intermediate table as the database dereases.

Put together, these tehniques allowed us to sale the optimization algorithm to queries with

hundreds of joins, for several realisti types of queries.

Future researh involves improving two di�erent aspets of our work. First, although random-

ization works in many ases, it would seem that as many queries grow the proportion of low-width

plans goes down. To �nd these plans we will need a more direted searh algorithm

Seond, although our tests are enouraging, they onsist entirely of arti�ial queries. We would

like to use real redundant queries generated by various appliations that use view expansion, pro-

viding a better idea of how our algorithms would be used in pratie.

Referenes

[1℄ Gnu multiple preision library. http://www.swox.om/gmp/.

[2℄ Serge Abiteboul, Rihard Hull, and Vitor Vianu. Foundations of Databases. Addison Wesley

Publishing Co, 1995.

[3℄ Alfred Aho, Yehoshua Sagiv, and Je�rey D. Ullman. Equivalene of relational expressions.

SIAM Journal of Computing, (8)2:218{246, 1979.

[4℄ S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava. Minimization of tree pattern

queries. In Proeedings of ACM SIGMOD Conferene on Management of Data, pages 497{

508, 2001.

[5℄ F. Banilhon and R. Ramakrishnan. An amateur's introdution to reursive query proessing

strategies. In Proeedings of ACM SIGMOD Conferene on Management of Data, May 1986.

[6℄ Hans L. Bodlaender. A tourist guide through treewidth. Ata Cybernetia, 11:1{21, 1993.

[7℄ Hans L. Bodlaender. A linear time algorithm for �nding tree-deompositions of small treewidth.

SIAM Journal on Computing, 25:1305{1317, 1996.

[8℄ Ashok Chandra and Philip Merlin. Optimal implementation of onjuntive queries in relational

data bases. In Proeedings of 9th ACM Symposium on Thoery of Computing, pages 77{90,

Boulder, Colorado, May 1977.

[9℄ Surajit Chaudhuri and Moshe Vardi. On the equivalene of reursive and nonreursive datalog

programs. In The Proeedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium

on Priniples of Database Systems, San Diego, CA., pages 55{66, 1992.

18

[10℄ Surajit Chaudhuri and Moshe Y. Vardi. Optimization of real onjuntive queries. In Proeed-

ings of 12th ACM Symposium on Priniples of Database Systems, pages 59{70, Washington,

D. C., May 1993.

[11℄ Chandra Chekuri and Anand Rajaraman. Conjuntive query ontainment revisited. In Foto N.

Afrati and Phokion Kolaitis, editors, Database Theory - ICDT '97, 6th International Con-

ferene, Delphi, Greee, January 8-10, 1997, Proeedings, volume 1186 of Leture Notes in

Computer Siene, pages 56{70. Springer, 1997.

[12℄ M. Fernandez, D. Suiu, and W. Tan. SilkRoute: trading between relations and XML. In

Proeedings of the WWW9, pages 723{746, Amsterdam, 2000.

[13℄ Daniela Floresu, Alon Levy, and Dan Suiu. Query ontainment for onjuntive queries with

regular expressions. In Proeedings of the ACM SIGACT-SIGMOD Symposium on Priniples

of Database Systems, pages 139{148, 1998.

[14℄ G. Gottlob, N. Leone, and F. Sarello. Hypertree deompositions and tratable queries. In

PODS, pages 21{32, 1999.

[15℄ Timothy GriÆn and Leonid Libkin. Inremental mainenane of views with dupliates. In

International Conferene on Management of Data, pages 328{339, San Jose, California, June

1995.

[16℄ Ashish Gupta, Yehoshua Sagiv, Je�rey D. Ullman, and Jennifer Widom. Constraint heking

with partial information. In Proeedings of the Thirteenth Symposium on Priniples of Database

Systems (PODS), pages 45{55, 1994.

[17℄ A. Klug. On onjuntive queries ontaining inequalities. Journal of the ACM, pages 35(1):

146{160, 1988.

[18℄ P. Kolaitis and M. Vardi. Conjuntive-query ontainment and onstraint satisfation. In Pro-

eedings of ACM SIGACT-SIGMOD-SIGART Symposium on Priniples of Database Systems,

1998.

[19℄ Alon Y. Levy and Yehoshua Sagiv. Queries independent of updates. In Proeedings of the 19th

VLDB Conferene, Dublin, Ireland, pages 171{181, 1993.

[20℄ Alon Y. Levy and Dan Suiu. Deiding ontainment for queries with omplex objets and

aggregations. In Proeedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on

Priniples of Database Systems, Tuson, Arizona., 1997.

[21℄ Y. Sagiv and M. Yannakakis. Equivalene among relational expressions with the union and

di�erene operators. Journal of the ACM, 27(4):633{655, 1981.

[22℄ Yehoshua Sagiv. Optimizing datalog programs. In Jak Minker, editor, Foundations of De-

dutive Databases and Logi Programming, pages 659{698. Morgan Kaufmann, Los Altos, CA,

1988.

[23℄ J. Shanmugasundaram, , J. Kiernana, E. Shekita, C. Fan, and J. Funderburk. Querying XML

views of relational data. In Proeedings of VLDB, pages 261{270, Rome, Italy, September

2001.

19

[24℄ Oded Shmueli. Equivalene of datalog queries is undeidable. Journal of Logi Programming,

15:231{241, 1993.

[25℄ A. Stepanov and M. Lee. The standard template library. Tehnial Report HPL-94-34, Hewlett-

Pakard Laboratories, April 1994.

[26℄ Je�rey D. Ullman. Priniple of Database Systems. Pitman, 2nd edition, 1982.

[27℄ Je�rey D. Ullman. Priniples of Database and Knowledgebase Systems II: The New Tehnolo-

gies. Computer Siene Press, Rokvill, MD 20850, 1989.

[28℄ Ron van der Meyden. The omplexity of querying inde�nite data about linearly ordered

domains. In The Proeedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium

on Priniples of Database Systems, San Diego, CA., pages 331{345, 1992.

[29℄ M. Yannakakis. Algorithms for ayli database shemes. In Proeedings of the 7th Conferene

on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA), Zaniolo and Delobel(eds),

1981.

[30℄ X. Zhang and M. Z. Ozsoyoglu. On eÆient reasoning with impliation onstraints. In Pro-

eedings of the International Conferene on Dedutive and Objet-Oriented Databases, pages

236{252, 1993.

20

