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Abstra
t

Minimizing a query means �nding an equivalent one with the least number of joins. Although

this problem was 
on
eived over 25 years ago, no s
alable algorithm exists today for several

reasons. First, the problem is NP-hard even for 
onjun
tive queries, whi
h seems to pre
lude

a universally fast algorithm. More importantly, there was little need: histori
ally most queries

were handwritten and already minimal. Today view expansion has be
ome a 
entral theme

of many systems. This tends to result in queries that are highly redundant and in need of

minimization. In addition, re
ent theoreti
al work on tree-de
omposition has provided a new

approa
h to query 
ontainment, the major sub-problem in query minimization.

We des
ribe a query minimization algorithm that s
ales to 
onjun
tive queries with hundreds

of joins. The algorithm in
orporates four te
hniques: a fast heuristi
 for tree-de
omposition,

randomization, table-pruning, and in
remental re
omputation. Our experimental evaluation

shows that ea
h 
ontributes signi�
antly to the algorithm's performan
e.

1 Introdu
tion

We 
onsider the following problem: given a query, �nd an equivalent query with the minimum

number of joins. The queries 
onsidered are 
onjun
tive queries, whi
h 
orrespond to SELECT-

DISTINCT-FROM-WHERE queries in SQL where the 
onditions in the WHERE 
lause are limited

to equality predi
ates. This problem was �rst addressed by Chandra and Merlin in 1977 [8℄ and


an be solved by eliminating redundant joins, one by one, until no more redundant joins remain.

The problem is hard, be
ause 
he
king whether a join is redundant is NP-
omplete (it requires a

query equivalen
e test).

Given these simple fa
ts, it may be surprising that this problem has re
eived little attention so

far in pra
ti
e. None of the major relational database systems performs general query minimization,

and to our knowledge no s
alable algorithm has been des
ribed so far. There are two reasons for

this. First, SQL queries used to be written primarily by users, and humans tend to write queries

that are already minimal. Se
ond, the high 
omplexity of the problem pushed this parti
ular form

of optimization down on the database vendors' priority list.

Today, however, neither reason is valid. First, most SQL queries are generated automati
ally

by appli
ations. An in
reasingly 
ommon situation is that of view expansion. Although this will

sometimes happen inside of a relational engine, an extreme 
ase 
an be seen by examining re
ent

XML publishing systems [12, 23℄. Here, the XML data is de�ned as a large virtual view over

a relational database, with almost every element type asso
iated width a relational view. XML

queries expressed, for example, in XQuery are translated into SQL, by expanding these views. The

more element and attribute tags are mentioned in the XML query, the more views end up expanded

in the SQL translation. As shown in [12℄, this may result in highly redundant queries that require

a minimization step. Worse, novel web servi
e appli
ations often require several levels of view

expansion resulting in even higher redundan
y.
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Se
ond, there have been re
ent theoreti
al advan
es in studying and analyzing the 
omplexity

of the 
onjun
tive query 
ontainment and equivalen
e. These results generalize a well-known result

by Yannakakis [29℄ that query 
ontainment of a
y
li
 queries 
an be de
ided in PTIME, by relaxing

the a
y
li
ity 
ondition to requiring a �xed value for a 
ertain parameter. For example, Chekuri and

Rajaraman [11℄ de�ne query width and prove that for every k, 
ontainment of queries with query

width less than k 
an be 
he
ked in PTIME. Similar results have been shown for other parameters,

su
h as tree width [18℄, and hypertree width [14℄.

We des
ribe here the �rst s
alable query minimization algorithm, and validate it experimen-

tally for queries with hundreds of joins. Given a query q, we 
onstru
t the asso
iated 
anoni
al

database instan
e D, whi
h is simply the database 
ontaining the atoms 
omprising the q. We then

eliminate tuples one by one from D, 
he
king for ea
h tuple whether q still evaluates to true on

the remaining database. The algorithm in
orporates four te
hniques. The �rst is a fast heuristi


for tree-de
omposition whi
h, as we show here, 
orresponds pre
isely to �nding a query plan with

joins and proje
tions. The se
ond te
hnique is randomization: we introdu
e a random 
hoi
e in

our tree-de
omposition algorithm and run it several times, pi
king the lowest 
ost. The third te
h-

nique is pruning: after evaluating the query on the database the �rst time, we analyze all tuples

in all intermediate relations and determine whi
h really 
ontribute to the output. All other tuples

are removed from the database. Finally, the fourth te
hnique is in
remental evaluation: sin
e the

query needs to be evaluated repeatedly after ea
h tuple deletion, we re
ompute it using a te
hnique

taken from from re
ursive query evaluation [27, 5℄ and in
remental view maintenan
e [15℄. Ea
h

te
hnique brings signi�
ant improvements to the overall query minimization algorithm, as we show

experimentally.

The paper is organized as follows. We motivate the problem in Se
tion 2, provide some ba
k-

ground in Se
tion 3, and present some running examples in Se
tion 4. In Se
tion 5 we propose a


lass of query plans and dis
uss our plan-generation algorithm. Se
tion 6 deals with several opti-

mizations to the exe
ution phase of our algorithm. We show s
alability results in Se
tion 7. We

present related work in Se
tion 8, and 
on
lude in Se
tion 9.

2 Motivation

Consider the relational s
hema Emp(EmpID, Gender, MngrID) and the following two SQL queries:

q:

SELECT DISTINCT e1.EmpID

FROM Emp AS e1,

Emp AS e2,

Emp AS e3,

Emp AS e4

WHERE

e1.Gender = "female" AND

e1.EmpID = e2.MngrID AND e2.Gender = "female" AND

e2.EmpID = e3.MngrID AND e3.Gender = "female" AND

e4.EmpID = e3.MngrID AND e4.Gender = "female"

q':

SELECT DISTINCT e1.EmpID

FROM Emp AS e1,

Emp AS e2,

Emp AS e3

WHERE
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e1.Gender = "female" AND

e1.EmpID = e2.MngrID AND e2.Gender = "female" AND

e2.EmpID = e3.MngrID AND e3.Gender = "female"

Instead of SQL we will use datalog notation [26℄ throughout the paper, and write the queries

as:

q(x) : � Emp(x; \female"; )

Emp(y; \female"; x)

Emp(z; \female"; y)

Emp(y; \female"; )

q

0

(x) : � Emp(x; \female"; )

Emp(y; \female"; x)

Emp(z; \female"; y)

q and q

0


ompute the same thing: both return women managers who supervise other women

managers, who in turn supervise women. However, q

0

is easier to 
ompute than q be
ause it requires

only two joins instead of three. In fa
t q

0

has the smallest number of joins among all queries that

are equivalent to q and is therefore 
alled the minimal query. Although today's database systems

perform query minimization in some limited 
ases, they do not do so in general: when presented

with query q they will optimize and exe
ute a query with three joins. The reason for the 
hoi
e

not to implement a full query minimization algorithm has been twofold: users typi
ally don't write

non-minimal queries like q, and query minimization would add an expensive step to the optimizer.

This de
ision warrants revisiting in light of the many appli
ations that have been devised that

rely on view expansion. We begin by 
onsidering a simple 
ase of expanding a query written in

terms of virtual views. Assume we have the following view:

v(x; y) : �Emp(x; \female"; );Emp(y; \female"; x)

The view 
omputes all female employees y managed by a female manager x. Now we 
an answer

the query above by using this view, as:

q

00

(x) : � v(x; y); v(y; )

When the system expands the view de�nition, the result is pre
isely query q above, with one

redundant join. This is, of 
ourse, a toy example: in pra
ti
e queries may be posed over dozens of

views whi
h, after expansion, result in many more redundant joins. In some systems there may be

several layers of these rewritings, ea
h 
ompounding the redundan
y.

A spe
ial 
ase of view expansion is in XML publishing [12, 23℄. The XML do
ument is de�ned

as a view over a relational database and XML queries are translated into SQL by a pro
ess with

resembles view expansion, and result in highly redundant queries. In fa
t, our initial motivation

for this work was pre
isely to minimize queries in SilkRoute [12℄.

We should note that a query that retains dupli
ates 
annot be minimized; more pre
isely, no join


an be eliminated without 
hanging the query's semanti
s. A result by Chaudhuri and Vardi [10℄

shows that two queries under bag semanti
s are equivalent if and only if they have isomorphi


bodies. However, if su
h a query o

urs as a subquery, then we may be able to apply query

minimization even if it retains dupli
ates. For example the query:

SELECT...

FROM...

WHERE EXISTS (SELECT... FROM... WHERE...)
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has a subquery whi
h 
an be �rst translated into a SELECT-DISTINCT query, and subsequently

minimized.

Most databases 
ontain some s
hema 
onstraints whi
h 
an be used to minimize queries. For

example, if we assume that the CEO is her own manager, then using the fa
t that EmpID is a key

in Emp and MngrID is a foreign key we 
an minimize the following query:

q(x) : �Emp(x; \female"; y);Emp(y; ; )

to:

q

0

(x) : �Emp(x; \female"; y)

Here q and q

0

are equivalent even under bag semanti
s, and most relational systems today indeed

rewrite q into q

0

. Query minimization in the presen
e of 
onstraints 
an be done by adding a 
hase

step to the basi
 minimization algorithm [2℄. S
hema-based minimizations is orthogonal to the

minimization algorithm, and we do no address it in this paper.

3 Ba
kground and Problem Statement

We de�ne here the problem formally. We are given a 
onjun
tive query, usually written as a datalog

rule with n goals:

q(�x) : � r

1

(�x

1

); : : : ; r

n

(�x

n

)

and are asked to �nd an equivalent query q

0

with a minimum number m of goals:

q

0

(�x

0

) : � r

0

1

(�x

0

1

); : : : ; r

0

m

(�x

0

m

)

su
h that q and q

0

are equivalent. q

0

is 
alled a minimal query: it is known that any other minimal

query is isomorphi
 to q

0

. In other words, they di�er only by renaming the variables. It suÆ
es

to 
onsider only the minimization problem for Boolean queries, i.e., those without head variables.

Minimizing q(�x) 
an be redu
ed to the problem of minimizing q

0

de�ned as:

q

0

() : � h(�x); r

1

(�x

1

); : : : ; r

n

(�x

n

)

where h is a new predi
ate symbol. Hen
e, throughout the paper we will assume that the queries

are Boolean.

There is a standard algorithm for minimizing q. Constru
t a de
reasing sequen
e of queries,

q

0

= q; q

1

; q

2

; : : :, as follows. At ea
h step i = 1; 2; : : : 
hoose a subgoal in q

i�1

su
h that, if we

denote by q

i

the query obtained by eliminating this subgoal, then q and q

i

are equivalent. When

no more subgoals 
an be eliminated stop and return the last query in the sequen
e.

It 
an be shown that we arrive at the same result (up to variable renaming) no matter in whi
h

order we attempt to remove subgoals, that we need only 
he
k the removal of ea
h subgoal on
e,

and that the result is indeed the minimal query.

The simple pro
edure takes at most n steps, but at ea
h step it needs to 
he
k if two queries

are equivalent, a problem whi
h is know to be NP-
omplete. We fo
us now on this step.

The standard method for 
he
king equivalen
e is to �nd a homomorphism from q to q

i

(there

is no need to sear
h for one from q

i

to q, in our 
ase). This 
an be re
ast in terms of a query

evaluation problem. First, 
onstru
t the 
anoni
al database D

i

for q

i

, the database 
omposed of

the atoms in the body of q

i

. To illustrate this idea, 
onsider the 
ase if q

i

were de�ned as follows:

q

i

(x) : � Emp(x; \female"; tmp1)

Emp(y; \female"; x)

Emp(z; \female"; y)

Emp(y; \female"; tmp2)
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This query is translated into a database with one relation, Emp, and a row in the table for ea
h

relation, with ea
h variable 
onverted to a 
onstant:

D

i

:

Emp

\x" \female" \tmp1"

\y" \female" \x"

\z" \female" \y"

\y" \female" \tmp2"

Next, evaluate q onD

i

. If the answer is true, then there exists a homomorphism. Our dis
ussion

leads to the following query minimization algorithm template:

Algorithm: Generi
 Query Minimization

Input: Query q

Output: Minimal query q

0

Method

Step 1 
onstru
t a query plan p for q


onstru
t q's 
anoni
al database D

Step 2 for ea
h tuple t 2 D do

if q(D � ftg) = true

then D := D � ftg

Step 3 Return the query q

0


orresponding to D

Query minimization uses 
ore te
hniques deployed in a database management system: opti-

mization and query plan generation, followed by query exe
ution on a database instan
e. Viewed

this way, one may be tempted to simply use a relational engine to do so. There are however a few

key di�eren
es, some making this approa
h not only ineÆ
ient but even impossible (as we shall see

in more detail). First, the query is relatively large: in appli
ations that require several levels of

unfoldings the query may have hundreds of joins, even if the minimal query has many fewer. This

rules out traditional optimization methods. By 
ontrast, the database instan
e on whi
h we eval-

uate the query is relatively small, \only" a few hundreds of tuples, but is not persistent, meaning

that we don't have pre
omputed statisti
s or indexes. Finally, we need to exe
ute the same query

repeatedly on several databases that have only small di�eren
es, and so spe
i�
 optimizations for

this 
ase need to be 
onsidered.

4 Running Examples

Here we introdu
e several 
lasses of queries whi
h will be used throughout the paper. Ea
h query


onsists of a single binary predi
ate, so we 
an visualize them as dire
ted graphs, and ea
h 
lass is

parameterized by a single variable n.

Augmented path queries (Figure 1a) 
onsist of a path of length n, with an additional dangling

edge rooted at ea
h node ex
ept the last. An augmented path query of length n has 2n subgoals.

Ladder queries (Figure 1b) are arranged in a ladder-like 
on�guration with all edges pointing

from the upper left to the lower right. A ladder query with n rungs 
ontains 3n� 2 subgoals.

Augmented ladder queries and 
ir
ular augmented ladder queries (Figure 1
) are ladder queries

that have additional, dangling edges atta
hed to ea
h node. Cir
ular queries also loop ba
k upon

themselves. A linear augmented ladder query 
ontains 5n� 2 subgoals, and a 
ir
ular augmented

ladder query 
ontains 5n subgoals, where n is the number of rungs in the query.
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(a) (b) (c)

Figure 1: Augmented path, ladder, and augmented 
ir
ular ladder queries, ea
h with a highlighted

minimal subquery.

5 The Query Plan

5.1 Join-Proje
t Plans

Query plans for SELECT-DISTINCT-FROM-WHERE queries 
onsist of joins, proje
tions, and du-

pli
ate elimination. Figure 4 illustrates a query plan for the query in Fig. 3 (a), showing proje
tion

and join operators|we dis
uss the dupli
ate elimination in a moment. We des
ribe in this se
tion

a query plan generation algorithm spe
i�
ally designed for the problem of query minimization. As

we shall see, it di�ers signi�
antly from traditional query optimization algorithms.

Dupli
ate Elimination Database optimizers usually postpone dupli
ate elimination until the

end, be
ause of their high 
ost for large tables. In query minimization, however, plans with dupli-


ate elimination at the end are simply impossible to evaluate. For a simple illustration, 
onsider

an augmented path query of length n. This query has 2

n

possible evaluations on its own 
anoni
al

database, and, absent dupli
ate elimination, ea
h of these results in an output tuple. Our database

system 
ould not evaluate this query for n larger than 20 or so. Thus, in the query minimization

algorithm we only 
onsider plans that automati
ally perform dupli
ate elimination after ea
h op-

eration, and push proje
tions down as far as possible. We 
all these join-proje
t plans. Sin
e these

plans are exe
uted in main memory, we implemented all intermediate relations as hash tables, and

all joins as hash-joins.

Cost metri
 We 
hose a very simple fun
tion for our 
ost metri
: the 
ost of a plan is de�ned

to be the largest arity (width) of any intermediate relation in that plan. Clearly, a small width

ensures a ni
e theoreti
al upper bound on the 
omplexity of the plan, but is no guarantee that

the plan will run better than others with a larger width. In Figure 2 we show an example of

the 
orrelation between our simple 
ost and the a
tual running time in one parti
ular example.

We 
onsidered a single query with 58 subgoals, generated 100 plans for it, and ran our 
omplete

minimization algorithm, with several optimizations turned on. The plan widths ranged from 4 to

13, and the running times ranged from 0.2 se
onds to over 1800 se
onds. We see that small width

guaranteed fast running time, but the worst-
ase running time grew exponentially with the width.

This positive 
orrelation supports the 
hoi
e of our 
ost model.

The optimization problem With this justi�
ation, 
an now formally state our optimization

problem: given a 
onjun
tive query, �nd a join-proje
t plan with the minimum width (
ost).

Before dis
ussing our solution, it helps to remember the setting: we need to optimize queries

with hundreds of joins, but then only evaluate them on a database with hundreds of tuples. This

rules out expensive optimization algorithm, like dynami
 programming, be
ause the optimization

time would dominate the total running time. Instead, we base our solution on re
ent graph-
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Figure 2: Plan widths and minimization times for a query with 58 subgoals. Run times have been

limited to 1800 se
onds.

theoreti
al work on the tree-de
omposition problem. We review that work and its relationship to

query optimization next.

5.2 Tree De
ompositions and Query Plans

The tree de
omposition problem (see, e.g., [6℄) is the following. We are given a graph, G, and are

asked to 
onstru
t a tree T whose nodes are labeled with sets of graph verti
es, and whi
h satis�es

the following 
onditions:

� Ea
h vertex of the graph appears at some tree node.

� If an edge 
onne
ts vertex x and vertex y, then x and y are 
o-lo
ated at some tree node.

� For ea
h vertex x, the nodes of the tree whi
h 
ontain x form a 
onne
ted sub-tree.

This de�nition extends to hypergraphs in a natural way: the tree de
omposition of a hyper-

graph is de�ned to be the tree de
omposition of its in
iden
e graph. The in
iden
e graph G of a

hypergraph H 
onsists of the verti
es of H with an edge 
onne
ting verti
es x and y in G i� there

is a hyperedge in H 
ontaining both x and y.

The width of su
h a tree is de�ned to be m� 1, where m is the maximum number of elements

in a node label. The tree width of a graph is the minimum width of all tree de
ompositions of the

graph.

We denote by H

q

the hypergraph of a query q, i.e., the hypergraph with verti
es 
orresponding

to the variables in q and edges 
orresponding to the subgoals of q. The tree de
omposition and tree

width of a query are de�ned to be the de
omposition and width of its 
orresponding hypergraph.

It has been shown that given a tree de
omposition for a query q of width w, one 
an test whether

r is 
ontained in q in time O(n

(

w + 1)) for an arbitrary query r.

There have been several re�nements to this bound given by the widths of similar de
ompositions,

namely query and hypertree de
ompositions [11, 14℄. Rougly, these de
ompositions allow edges to

appear in the de
omposition and \
over" the variables in their bodies. The width of a parti
ular

node is the number of edges used at the node plus the number of un
overed verti
es. For example,

if a node in a tree de
omposition 
ontained fx; y; zg then we would say the width was 2. If we

were able to use the edge (x; y) to 
over variables at at this node, then it would 
over the x and y,

leaving an edge and one un
overed variable for a width of 1.
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In the 
ase of query de
omposition, the edges used must only 
over variables present at the

nodes, while in hypertree de
ompositions the edges may introdu
e variables not present.

If we denote the tree width, query width, and hypertree width of a query q by TW (q), QW (q),

and HW (q), then

kQW (q) � TW (q) � QW (q) � HW (q)

where k is the maximum arity of the predi
ates in q [11, 14℄. Similar time bounds to that shown

for tree de
omposition have been found for both query and hypertree de
ompositions.

One should note that to a
hieve these bounds one needs to �nd a minimal de
omposition of the

form in question. There are several negative results on this front. Finding a de
omposition of any

of these forms is NP-hard. If we �x a maximum width we are willing to tolerate, then there exist

algorithms for tree and hypertree de
ompositions that will either return a de
omposition of that

width or fail in polynomial time. The time bounds for these algorithms still grow exponentially

in the width and in pra
ti
e are not viable even for very small widths [7℄. Query de
omposition

remains NP-hard even for a �xed width[14℄.

In our work we 
onsider a restri
ted form of tree de
omposition of a query. Instead of de
ompos-

ing the in
eden
e graph, we de
ompose a bipartite graph in whi
h the nodes on one side 
orrespond

to verti
es from the original hypergraph, the nodes on the other side 
orrespont to edges in the

original hypergraph, and there are edges 
onne
ting a variable node to an edge node i� the vertex

appears in the edge. To obtain a restri
ted tree de
omposition we �nd the tree de
omposition of

this graph, but remove the edge labels from the de
omposition. (Although we �nd it useful to

retain them as annotation, they are not te
hni
ally part of the de
omposition.)

Although formulated soemwhat di�erently, this restri
ted tree de
omposition is not substan-

tially di�erent from a \normal" tree de
omposition:

Theorem 5.1 (i) Ea
h restri
ted tree de
omposition is a tree de
omposition, and (ii) if there exists

a minimal tree de
ompositon of a hypergraph H of width w, then there exists a restri
ted tree

de
omposition of graph H with width w as well.

This restri
ted tree de
omposition 
an be transofmed into query plan with relative ease. We

illustrate with an example.

Example 5.2 Consider the query q in Figure 3a and its query graph G

q

in Figure 3b. A restri
ted

tree-de
omposition is shown in Figure 3e. We obtain a query plan by applying the following rules

bottom-up: (1) leaf nodes be
ome base table in the plan, (2) internal nodes 
ontaining only variables

be
ome proje
tions on those variables, and (3) internal nodes 
ontaining subgoals will be 
onverted

into a join of arity 
+ 1, where 
 is the number of 
hildren the join has|this will join the subgoal

at the node with the tables from ea
h of the 
hild bran
hes.

The 
onversion for the query in Figure 3 appears in Figure 4. Note that the table asso
iated with

ea
h join node has width equal to the width of the 
orresponding node in the tree-de
omposition,

and that the width of the tree 
orresponds exa
tly to the width of the resulting query plan. These

plans 
an be further simpli�ed by eliminating unne
essary proje
tions.

5.3 The Query Plan Generation Algorithm

Our plan generation algorithm for a 
onjun
tive query q is the following. Let G

q

be the query graph.

Step 1: Find a random spanning tree T for G

q

Step 2: Evolve T into a tree de
omposition for G

q

, by labeling its nodes with sets of verti
es
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from G

q

. Initially, ea
h node of T is labeled with itself. For every edge (x; g) in G

q

that is not part

of the tree, we add x to the labels of all tree nodes on the unique path from x to g. The result is a

restri
ted tree de
omposition for G

q

, and we 
ompute its width, w.

Example 5.3 We illustrate the algorithm step-by-step in Figure 3. The steps are:

1. The query q (Figure 3a) is 
onverted into a query graph G

q

(Figure 3b). The query graph

is a bipartite graph with variables on the left, subgoals on the right, and edges 
onne
ting

variables to the subgoals in whi
h they are mentioned.

2. A spanning tree is generated for the query graph. The tree is re-labeled so that the nodes


arrying a variable are labeled with a set 
ontaining that variable, and the nodes 
arrying a

subgoal are labeled with that subgoal and the empty set of variables (Figure 3
). The edges

not used in the tree, the residual edges, still need to be a

ounted for.

3. The residual edges are taken into a

ount. In our example the only residual edge isw  ! p(z; w).

The (unique) shallowest nodes 
ontaining the variable and the subgoal are lo
ated (indi
ated

by arrows in Figure 3
), the path between the nodes is found, and the variable is inserted

into ea
h node along this path (Figure 3d).

4. Finally, any leaf nodes la
king a subgoal are pruned from the tree, and the variable sets at

nodes 
ontaining subgoals are augmented to 
ontain the variables present in those subgoals

(Figure 3e).

Analyzing the Algorithm The algorithm is simple, and very fast, but it is not 
lear how


lose it 
omes to �nding an optimal width plan. The �rst observation is that, if there exists a

restri
ted tree-de
omposition T of G

q

of width w, then there exists a run of the algorithm that

�nds it: to see this simply remove labels from T until it be
omes a spanning tree, and, hen
e, it


ould have been generated by the algorithm during Step 1. This means that the algorithm always

has a 
han
e to �nd the best query plan. However, it also has a 
han
e to �nd arbitrarily bad

plans, as the following example shows.

Example 5.4 Consider the ladder query with 2 rungs shown in in Figure 5a. Figures 5b and 5


illustrate two possible de
ompositions of this query. The de
omposition in Figure 5b spans using

all of the rungs of the ladder, and indu
es a plan of width 3, while the one in Figure 5
 breaks all

but one of the rungs and indu
es one of width 4. In fa
t, a width of 3 is optimal, so it is 
lear that

our algorithm 
an miss the optimal de
omposition.

This behavior is only exa
erbated as the ladder's length is in
reased. Regardless of the ladder's

length, it 
an be shown that the optimal width is 3. If the spanning tree splits all but one of the

rungs, however, the derived width will grow linearly with the number of rungs, and our algorithm

will a
hieve near-pessimal performan
e.

Thus, it is possible to produ
e arbitrarily poor plans, and the ladder queries are in some sense

the worst 
ases for the algorithm. For this reason we added the following randomization step to

the algorithm, to redu
e the 
han
e of making a bad 
hoi
e.

Step 3: Randomization Repeat steps 1 and 2 several times and retain the tree de
omposition

with the smallest width.

This step results in signi�
ant speed-ups on the overall running times. Figure 6 shows the

running times of the entire minimization algorithm without the randomization step. Here we ran

9
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ate eliminations are performed after ea
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Figure 6: Augmented ladder queries minimized with the baseline implementation
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Figure 7: Augmented ladder queries minimized with randomization

the algorithm ten times on ea
h query and reported the running time. Sin
e we generated a di�erent

(random) query plan at ea
h run, the running times were spread over a range of more than two

orders of magnitude. Figure 7 shows exa
tly the same queries, run with the randomization step.

As one 
an see, the spread de
reases signi�
antly, 
on
entrating the points on the lower edge of the


urve. In both graphs we did not use the optimizations dis
ussed in the following se
tion.

All of the results in the remainder of the paper are from experiments with this optimization

turned on.

6 Query Exe
ution

In this se
tion we explore our base implementation and several optimizations we have layered on

top of it to further enhan
e its performan
e. Our problem is simple: we have a query plan and we

need to evaluate it repeatedly on a sequen
e of de
reasing databases.

To speed this up we make a number of optimizations. Although our basi
 algorithm is su
-


essful be
ause it is very e�e
tive at removing dupli
ates, many optimizations rely on dupli
ate

information. We 
an retain the bene�ts of dupli
ate elimintation while retaining this information

by 
ollapsing dupli
ates into a single tuple and keeping a 
ount of how many times it o

urs. As

multipli
ities 
an grow exponentially we required a bignum implementation to store them whi
h

12



we obtained from the Gnu Multiple Pre
ision Library.

In the following results, ea
h method was tried 10 times and the results averaged. Randomiza-

tion was used, 
hoosing the best plan from 50 randomly 
reated ones. To ensure a fair 
omparision,

in ea
h experiment the plans 
hosen were the same for ea
h method. Di�eren
es in performan
e

should therefore be based on the optimizations rather than the parti
ular plans used.

We make the following optimizations:

Early Terminations: We have two early termination optimizations. First, if at any point

during the exe
ution of the plan an intermediate result is found to be empty, the end result must

be empty too, and exe
ution terminates. This holds in our 
ase be
ause of the monotoni
ity of


onjun
tive queries.

Se
ond, sin
e we are repeatedly exe
uting our query on very similar databases, we 
an expe
t

that we will often see internal tables that do not 
hange from iteration to iteration. We 
a
he the

results of ea
h join, and if the inputs to that join have not 
hanged from the previous exe
ution,

we simply output the 
a
hed value.

We 
an determine if a table has 
hanged in 
onstant time by making use of a row-
ount on ea
h

table. Making use of the monotoni
ity property on
e more, we observe that removal of entries from

the database 
an only remove rows from the internal tables, and so a table's size 
hanges if and

only if its entries have 
hanged.

There is almost no 
ost to these tests, so we always perform these optimizations.

Table Pruning: Consider a join D = E 1 F . If there are rows in E whi
h do not join with

any row of F , or vi
e versa, then they 
an be removed preemptively. This will yield smaller joins

during future evaluations of the query. We 
an 
arry this a step further by pruning in a top down

fashion. On
e we have pruned D, we 
an remove not only those rows in E and F whi
h do not


ontribute to the original D, but all rows whi
h do not 
ontribute to the pruned version of D. This

amounts to sequentially performing semi-join redu
tions down the join tree, with the result that

no tuples are left whi
h do not 
ontribute to the �nal output [2℄.

This is implemented by exe
uting the query on
e on the 
omplete database, and then removing

tuples that do not 
ontribute to the pruned result of ea
h join in a top-down fashion. Pruning


an have a signi�
ant e�e
t on minimization time, but it is not entirely free: pruning essentially

requires an additional 
omplete evaluation of the query.

Noti
e that pruning is done only on
e at the beginning of the minimization algorithm, and that

all subsequent iterations bene�t from the redu
ed intermediate tables.

We examine the e�e
t of pruning using the augmented ladder queries. As we 
an see from

the results in Figure 8, pruning improves performan
e by about an order of magnitude, redu
ing

the time to minimize a 25-rung augmented ladder from 15.3 to 1.2 se
onds. This query is very

amenable to pruning. Sin
e ea
h edge 
an only be mapped to a small number of positions in the

ladder, the 
orresponding tuples will be pruned out of most of the base tables.

In
remental Evaluation: Our next optimization is based on an idea taken from re
ursive

query pro
essing (see, e.g., [27, 5℄) and in
remental view maintenan
e [15℄. Assume that we have

an internal table D whi
h is produ
ed as a join of tables E and F , i.e., D = E 1 F . If E and F

are updated to E

0

and F

0

we 
an either 
al
ulate D

0

as before, or we 
an 
ompute the 
hange in

D, �D, as

�D = (E 1 �F ) + (�E 1 F )� (�E 1 �F )

Although this requires three joins instead of the one required for the naive 
al
ulation, if �E

and �F are small, then these may indeed be faster 
al
ulations.

To examine the additional bene�t of in
remental evaluation, we use the example of 
ir
ular

augmented ladder queries. The results are shown in Figure 9. Note that this is a logarithmi
 s
ale,
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Figure 8: Average minimization time for augmented ladder queries
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Figure 9: Average minimization time for augmented 
ir
ular ladder queries

so the improvements are a
tually several-fold. We �rst see that the times are generally higher than

in the linear ladder 
ase. This is due in part to the fa
t that the best-possible plan width is 5

instead of 3 for these queries. Additionally, although pruning will have some e�e
t, less is possible

due to the symmetry of the query. We �nd, however, that in
remental evaluation is e�e
tive in this


ase.

Combining Optimizations: These te
hniques 
an be used independently or 
ombined. Note

that ea
h has its own ni
he, however. Pruning works very well in the 
ase that many rows 
ontained

in base tables do not 
ontribute to the result. In
remental evaluation works well in the 
ase that

many rows only 
ontribute small amounts to the intermediate tables. These are not 
ompletely

independent, however: rows that have little intermediate impa
t may often have no impa
t on the

output and will therefore be pruned.

To illustrate, 
onsider the 
ase of augmented path queries. The results in Figure 10 show that

for this 
lass of queries in
remental evaluation a
tually slows minimization when 
ombined with

pruning. In this 
ase, pruning is very e�e
tive, leaving very small tables to begin with. The joins are

already very small making them very inexpensive. The naive method therefore has an advantage

in having to only 
al
ulate one, versus the three that the in
remental method must perform.

It is 
lear that these optimizations are not always bene�
ial. Although pruning only adds an

extra evaluation to the minimization and thus in
urs limited overhead, in
remental evaluation 
an
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Figure 11: Augmented ladder queries minimized using the naive pruned method. Times are limited

to 1800 se
onds.

have a substantial 
ost depending on the stru
ture of a parti
ular query, and its use must be


onsidered on a 
ase-by-
ase basis.

7 Experiments and Results

In this se
tion we examine how well our algorithm s
ales to large instan
es of several 
lasses of

queries.

Our implementation was written in C++ and 
ompiled with g

. All results were taken from a

1.7 GHz Intel Pentium 4 running Linux 2.4.7 with 1GB of main memory.

Tables are represented using hash sets from the Standard Template Library [25℄, and joins are

implemented as hash-joins. Along with ea
h table a 
ount of the number of rows present is kept.

This 
ount is implemented using the arbitrary pre
ision integers from the Gnu Multiple Pre
ision

Library [1℄.

As we saw in the previous se
tion, our naive evaluation method paired with pruning performed

the best on linear augmented ladder queries. In Figure 11 we show how this method performs as

the size of the query grows into the hundreds of subgoals. In these trials we 
hose the lowest-width

plan out of 50 generated.
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h
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Figure 13: A redundant star query with a 
entral predi
ate of arity 3 and one set of side loops.

The 
entral star is highlighted.

We see that for queries under 200 subgoals in length, the algorithm behaves quite well. For

queries larger than 200 subgoals, however, the algorithm starts to exhibit poor results, as the

probability of splitting rungs in the query grows, yielding larger plan-widths.

Although augmented ladder queries exhibit many qualities that make them useful in di�eren-

tiating between our algorithms, they are not a natural 
lass of queries. Path, star, and snow
ake

queries are more 
ommon 
onstru
t found in a
tual queries.

We found that pruning was very e�e
tive in this 
ase, and the best method was our naive pruned

implementation. In Figure 12 we see that using pruning we 
an s
ale to minimize a 1000-subgoal

query of this form in only 57.5 se
onds.

We also 
onsider the embellished star queries su
h as the one shown in Figure 13. These queries

have a wide 
entral subgoal, with ea
h variable joined to a pair of side goals. This is made made

more 
omplex by adding a number of extra loops between these side goals, ea
h through an extra,

redundant 
opy of the 
entral subgoal with its variables renamed. Su
h queries are often found in

data warehousing appli
ations.

The results in Figure 14 show the minimization times for a star query with a 
entral predi
ate of

arity 20, and between 1 and 20 
omplete sets of side loops. Although all of the methods performed

roughly the same on this 
lass of queries, the in
remental pruned approa
h was somewhat better,

and we have presented these results.

Despite the fa
t that the large 
entral predi
ate indu
es large plan widths (roughly 40), this


lass is very fast to minimize, taking only 27.9 se
onds to minimize an 861-subgoal query. This is

due in part to the fa
t that there are several predi
ates, and these do not 
ontribute rows to ea
h

other in the database. More fundamentally, although the 
entral predi
ate is large, there are not
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Figure 14: Redundant star queries minimized with the in
remental pruned approa
h

many valid valuations for it; just be
ause a table 
ould 
ontain a large number of distin
t rows

does not mean that these a
tually o

ur in the evaluation of a query.

8 Related Work

The problem of query 
ontainment on whi
h our system is based dates to the work of Chandra and

Merlin [8℄.

Subsequent work has 
onsidered 
ontainment for various extensions of 
onjun
tive queries [21, 3℄,

datalog [24, 22, 9℄, queries with order predi
ates [17, 28, 19, 30, 16℄, with 
omplex obje
ts [20℄. with

regular expressions [13℄, and under bag semanti
s [10℄.

In [7℄, Bodlaender shows that given a 
onstant bound on the treewidth, there is a linear-time

algorithm to re
ognize whether a graph has a treewidth less than that bound and produ
e a

de
omposition with that width. This algorithm is, however, exponential in the treewidth, and the


onstant fa
tors are too large for it to be useful in pra
ti
e.

In [11℄, Chekuri and Rajaraman introdu
e the notion of query-de
omposition and its related

notion of width as a a re�nement of tree de
omposition in the 
ontext of query exe
ution.

Gottlob et al., show in [14℄ that unlike treewidth, it is NP-
omplete to re
ognize queries of even

a 
onstant width. They also introdu
e the notion of hypertree-de
omposition and the asso
iated


on
ept of hypertree-width whi
h further re�ne the bound on the work to exe
ute a query.

Re
ently, the minimization problem has been 
onsidered for XPath expressions in [4℄.

9 Con
lusions and Future Work

Although NP-hard in general, the query minimization problem is a
tually an instan
e of the quite

pra
ti
al query optimization/evaluation problem. However, unlike the usual setting, in this 
ase

the query is large, the database is quite small and has no indexes nor statisti
s, and we need to

evaluate the query repeatedly on a sequen
e of de
reasing database instan
es. This makes many of

the traditional optimization methods useless.

We have proposed a fast heuristi
-based query plan generation algorithm, designed spe
i�
ally

for query minimization. Our inspiration 
omes from re
ent theoreti
al work on tree de
omposition:

we generate a random spanning tree in the query graph, and 
onstru
t the plan from that tree.

Next, we have proposed an optimization to this query plan generation, based on randomization:
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we run the (randomized) query plan generation several times, then pi
k the best generated plan.

Our experiments show that randomization results in a dramati
 redu
tion in the variation of the

quality of the generated plans, and, hen
e in the total query minimization time.

Finally, we have proposed a number of run-time optimization that speed up the repeated eval-

uation of the same query plan on a sequen
e of database instan
es. The two major ones are table

pruning, and in
remental evaluation. The �rst eliminates tuples from all intermediate tables that

do not parti
ipate to the end result. In theoreti
al terms, it eliminates partial homomorphisms

that 
annot be 
ompleted to total homomorphisms. Pruning needs to be done only on
e during

the minimization, then all subsequent iterations will bene�t from it. The se
ond is in
remental

evaluation. This is based on previous work on in
remental view maintenan
e, and 
omputes on the


hanges to ea
h intermediate table as the database de
reases.

Put together, these te
hniques allowed us to s
ale the optimization algorithm to queries with

hundreds of joins, for several realisti
 types of queries.

Future resear
h involves improving two di�erent aspe
ts of our work. First, although random-

ization works in many 
ases, it would seem that as many queries grow the proportion of low-width

plans goes down. To �nd these plans we will need a more dire
ted sear
h algorithm

Se
ond, although our tests are en
ouraging, they 
onsist entirely of arti�
ial queries. We would

like to use real redundant queries generated by various appli
ations that use view expansion, pro-

viding a better idea of how our algorithms would be used in pra
ti
e.
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