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ABSTRACT 
A dynamic call graph is the invocation relation that represents a 
specific set of runtime executions of a program. Dynamic call 
graph extraction is a typical application of dynamic analysis to aid 
compiler optimization, performance analysis, program 
understanding, etc. In this paper, we empirically compare the 
results of nine Java dynamic call graph extractors quantitatively 
and qualitatively. We investigate those differences among the 
dynamic call graph extracted by different tools mainly caused by 
different underlying Java program instrumentation techniques and 
other design decisions. A comparison between static call graph 
and dynamic call graph shows software engineering tools for 
program understanding place a different requirement on dynamic 
call graph from compilers or profilers whose main purpose is 
optimization or performance tuning. Dynamic call graphs require 
some complementary static information and an effective 
representation to aid program understanding. Choosing an 
appropriate instrumentation technique, integrating static and 
dynamic information, and providing flexible user manipulation for 
dynamic call graphs can better facilitate program understanding 
task. In this paper, we discuss the study and sketch the design 
considerations for an effective dynamic call graph tool to support 
program understanding.   

1. INTRODUCTION 
A call graph is a binary relation over selected entities in a 
program, such as methods, classes, subsystem, modules, files, etc., 
which represents invocations between those entities. A static call 
graph is the relation describing those invocations that could be 
made from one entity to another in any possible execution of the 
program. Static call graphs are generally expected to be 
conservative: that is, they are not expected to omit any 
invocations that can take place in any execution.  In practice, due 
to computational complexity, static call graphs are imprecise, 
including invocations that are never executed.  A dynamic call 
graph is the relation including invocations over one or more 
actual executions of the program. Ideally a dynamic call graph is 
the subset of the static call graph for the same program. A 
dynamic call graph can be considered as one instance of the 

corresponding static call graph. 

Compilers sometimes compute static call graphs to aid 
optimization. Many software engineering tools extract static call 
graphs to assist program understanding tasks, for example, 
subsystem classification, architecture recovery, architectural 
evolution tracking [15], software reflexion models [9], etc. 
Compared to static call graphs, dynamic call graphs tend to be 
simpler because they focus only on the invocation relation in 
certain executions of the program. In addition, a dynamic call 
graph reflects the connection between the dynamic behavior, 
which exhibits certain behavior of the program, and the program 
structure, which represents the implementation of that exhibited 
behavior. Dynamic call graphs can also be used to evaluate test 
coverage thoroughness and help debugging. Dynamic calls are 
popularly used in profiling tools to provide a framework for 
performance analysis or profile-driven compiler optimizations. 
They are especially useful in tuning the program parallelization 
and tracing the multiple-thread or distributed applications. 

Compilers generally need to compute conservative static call 
graphs to ensure the correctness of optimizations over all possible 
executions. Software engineering tools for program understanding 
may impose a relaxed requirement on static call graphs [10]. For 
example, some false negatives (mistakenly omitted invocations) 
may be acceptable in static call graphs for some tasks. However, 
in some ways, software engineering tools may place a different, 
stricter in some sense, requirement on dynamic call graph than 
compilers or profilers. To better understand the connection 
between the program structure and dynamic behavior inferred by 
dynamic call graphs, the dynamic call graph should be 
supplemented with some static information. In addition, the 
requirement of the dynamic information scope and representation 
for program understanding task is also different from the one for 
compiler optimization or performance tuning. 

Java, an object-oriented (OO) and multithreaded language, has 
been extensively adopted by the community of software 
developers [6]. It shares many language features common to most 
programming languages in use nowadays. To lay a better 
foundation for understanding dynamic call graphs, in this paper 
we empirically compare dynamic call graphs extracted from two 
Java micro-benchmarks by nine dynamic call graph extractors, 
comparing the static call graphs and dynamic call graphs extracted 
from the same program.   

This paper makes four contributions: 

•  It presents, quantitatively and qualitatively, the differences of 
the extracted dynamic call graphs by nine different tools. 
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•  Based on an analysis of the differences among extracted 
dynamic call graphs, it shows the capabilities and limitations 
of different underlying instrumentation techniques adopted 
by dynamic call graph extractors.  

•  Based on an analysis of the differences between static and 
dynamic call graphs, it shows that the integration of static 
and dynamic analysis can attack some problems faced by 
static call graph and dynamic call graph respectively in 
assisting program understanding. 

•  It discusses key design considerations for dynamic call graph 
extractors. 

2. TOOL CATEGORIES 
Dynamic analysis in Java  instruments code by adding instructions 
to the Java source code, to the bytecode or to the Java Virtual 
Machine (JVM). While executing the Java program, these 
instrumented instructions export the required state information, 
such as executed methods, resources consumed on methods, etc. 
Instrumentation for dynamic analysis normally does not affect 
program semantics or change a program’s functional behavior. 
However, it generally induces some performance overhead, 
perturbing the program to some degree. In this section, we take a 
broad look at the instrumentation techniques adopted by various 
Java dynamic analysis tools most of which can extract dynamic 
call graphs or call trees. In Table 1, the first three categories are to 
instrument the application program but the remaining three ones 
are to instrument the runtime environment where the application 
program is running. 

Table 1. Instrumentation categories for tools 

Instrumentation techniques Examples 

Source-level Instrumentation Panorama for Java 1.0.5[13] 

Static Bytecode Instrumentation  Bytecode Instrumenting Tool [3] 

Dynamic Bytecode 
Instrumentation  

Trace release 1 based on Byte 
Code Engineering Library [17]  

Profiler Agent Using Java Virtual 
Machine Profiler Interface 
(JVMPI)  

Intel VTune 5.0 [20] 
Rational Quantify 2001A [14] 
Optimizeit 4.02 [12] 
JProbe 3.0 [7] 
TrueTime 2.1 [18] 
IBM Jinsight 2.1 [16] 

Statically Instrumented JVM IBM Jinsight 2.0 [16] 

Dynamically Instrumented JVM ParaDyn-J [11] 

 

Source-level instrumentation inserts instrumentation code at 
specified locations in a given piece of source code. Bytecode 
instrumentation inserts the instrumentation code by adapting the 
bytecode. Static bytecode instrumentation instruments the 
bytecode before it is loaded or executed in the runtime 
environment. Dynamic bytecode instrumentation instruments the 
bytecode after the class contained in the bytecode is loaded in the 
runtime environment. The Java Virtual Machine Profiler Interface 
(JVMPI) is a two-way method call interface between the Java 
virtual machine and an in-process profiler agent [19]. A profiling 
tool based on JVMPI can obtain a variety of information for a 

comprehensive performance analysis task. Statically instrumented 
JVM approaches instrument the JVM program in order to export 
some state information available while it executes the bytecode. 
The Dynamically Instrumented JVM approach generates and 
inserts instrumentation code into the JVM, or removes it from the 
JVM at runtime. 

3. EMPIRICAL STUDY 
In this empirical study, we gathered nine tools each of which 
extracts a dynamic call graph or method call information from a 
Java program and applied them to two micro-benchmarks. These 
tools represent an exhaustive list of the tools that were available to 
evaluate that met two criteria: the ability to produce or deduce a 
list of dynamic invocation relations, and the ability to run on the 
Intel Pentium platform running the Microsoft Windows 2000 
operating systems. We found that among those tools that can 
extract dynamic call information, most of them are profiler tools 
intended for performance tuning. Furthermore, most commercial 
profiler tools are based on profiler agents that use JVMPI. 

Bytecode Instrumenting Tool’s ProfilerBuilder and ParaDyn-J are 
not maintained or available. Therefore there is no tool based on 
static bytecode instrumentation or dynamically instrumented JVM 
techniques in this empirical study. We studied these two 
techniques based on two related technical papers [3][11]. Among 
these nine tools, six are commercial, and we downloaded their 
trial versions to evaluate.  

These nine tools we used in this empirical study were: 

•  Panorama for Java 1.0.5, a commercial tool family that 
performs both code static analysis and code dynamic analysis 
using source-level instrumentation [13]. 

•  Trace release 1, an on-the-fly runtime method tracing tool 
using Byte Code Engineering Library 4.2.3 [17]. 

•  Intel VTune Performance Analyzer 5.0, a commercial tool 
for performance tuning based on a profiling agent using the 
JVMPI [20]. 

•  Rational Quantify 2001A, a commercial performance 
profiling tool based on a profiling agent using the JVMPI 
[14]. 

•  Optimizeit Profiler 4.02, a commercial profiling tool based 
on a profiling agent using the JVMPI [12]. 

•  JProbe Profiler 3.0, a commercial profiling tool based on a 
profiling agent using the JVMPI [7]. 

•  DevPartner TrueTime profiler 2.1, a commercial 
performance profiler based on a profiling agent using the 
JVMPI [18]. 

•  IBM Jinsight 2.0, a tool for visualizing and analyzing the 
execution of Java programs using instrumented Java VM 
based on IBM JDK 1.1.8 [16]. 

•  IBM Jinsight 2.1, a tool for visualizing and analyzing the 
execution of Java programs using IBM Java 2 environments, 
and provides instrumentation via a profiling agent which 
uses the Java 2 JVMPI interface [16]. 



To provide the same inputs to these tools, we ran two micro-
benchmarks using these tools on Sun’s Java 2 runtime platform, 
except for IBM Jinsight 2.0 and 2.1, which are run on IBM Java 
1.1.8 and 2.0 platforms.  

3.1 Micro-benchmarks 
In this empirical study, we applied the extractors to an OO micro-
benchmark and a multi-threaded micro-benchmark. The OO 
micro-benchmark comprises some typical object-oriented features, 
like inheritance, virtual methods, etc. The Fibonacci micro-
benchmark was chosen to investigate the result for target 
programs with multi-thread and parallelism [5]. The source code 
appears in appendix. To compare dynamic call graphs extracted 
by different tools, we lexically extracted the static call graph from 
the source code without using any further program analysis 
techniques (such as virtual method call resolution, etc). Therefore 
the extracted static call graph is mapped very closely to the source 
code.  

We defined a set of notations for the representation of the static 
call graph. Figure 1 and 2 show the static call graph for the OO 
micro-benchmark and Fibonacci micro-benchmark. In the static 
call graph, a round corner rectangle represents the method whose 
name is marked inside the rectangle. The arrow represents the 
method invocation whose starting method is caller and ending 
method is callee. The vertical arrow beside the method rectangles 
with a number near the arrow represents the repeated method calls 
with times of that number, for instance, the notation for a method 
call A.func() inside a loop statement in Figure 1. The arrow 
pointing to the dotted rectangle enclosing the methods represents 
conditional method calls, which corresponds to the method calls 
inside “if… else…”. More notations would be needed to express 
conditional method calls inside those multiple branching 
statements. However, in this paper we only introduce those 
notations needed to express the micro-benchmarks in this study. 

3.2 Quantitative Results  
To facilitate the comparison, we considered the common dynamic 
calls extracted by more than half of those nine tools as the “true” 
dynamic call graph, which was used as comparison baseline.  
Generally this baseline dynamic call graph consists of all user 
method calls and system method calls, which are sufficient to aid 
the optimization, performance tuning or program understanding.   

The program parameters for these two micro-benchmarks are 1 
and 2 respectively during execution. Figures 3 and 4 show the 
baseline dynamic call graph for the OO micro-benchmark and the 
Fibonacci micro-benchmark respectively. The notations for the 
dynamic call graphs are similar to those for static call graphs. The 
conditional method calls in static call graph have been resolved to 
actual method calls during execution. In the baseline dynamic call 
graph, the dotted round cornered rectangle is used to highlight a 
method callee that is not present in the static call graph but that 
appears in the baseline dynamic call graph. The line with a dot on 
one end connects the static callee name with the corresponding 
dynamic callee name, if they are different. 
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Figure 1. OO micro-benchmark static call graph
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Figure 2. Fibonacci micro-benchmark static call grap
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The comparison between static call graph and baseline dynamic 
call graph shows following results: 

•  Five method calls in the baseline dynamic call graph 
extracted from OO micro-benchmark do not appear in its 
static call graph. Neither do eight method calls extracted 
from the Fibonacci micro-benchmark. 

•  The names of classes that four callees belong to in the static 
call graph are different from those corresponding ones in the 
dynamic call graph for the OO micro-benchmark. So are six 
callees’ class names in the call graph for the Fibonacci 
micro-benchmark. 

The quantitative comparison between baseline dynamic call graph 
and extracted dynamic call graph by nine tools is showed in 
Figure 5 and Figure 6. 

These figures point out that no two tools extracted the same set of 
dynamic method calls for either micro-benchmark. To see the 
detailed differences of those extracted method calls that are not 
present in baseline dynamic call graph, Figures 7 and 8 show the 
method calls by the main method that are not in the baseline 
dynamic call graph. Each bar in these two figures reports the 
number of the method calls whose caller is main method and 
whose callee is specified in the leftmost of the row, extracted by 
the tool whose name is specified in the bottom of the column. 
These two figures show the result that all tools produce different 
set of method calls that are not present in baseline dynamic call 
graph except for Panorama, Trace and Jinsight 2.1. These three 
tools do not extract method calls that are not present in baseline 
dynamic call graph. 

 

 
Panorama Trace VTune QuantifyOptimizeitJProbe TrueTimeJinsight

2.0

8

4

System
Method
Call

User
Method
Call

Other
Method
Call

5

8 8 8 8 8 8 8

4 4 4 4 4

1

8

2

3

6

Other
Method
Call

System
Method
Call
User

Method
Call

4

300

Calls in
Baseline
Dynamic
Call
Graph

Jinsight
2.1  

 Figure 5. Quantitative comparison between baseline  

 

Figure 4. Fibonacci benchmark baseline dynamic call graph
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 Figure 3. OO benchmark baseline dynamic call Graph
the baseline dynamic call graph, OO micro-benchmark’s main 
thod has 12 direct method calls, including eight user method 
ls and four system method calls. Fibonacci micro-benchmark’s 
in method has 13 direct method calls, including two user 
thod calls and 11 system method calls. 

 
dynamic call graph and extracted dynamic call graphs by 

nine tools on OO micro-benchmark 
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3.3 Qualitative Results 
3.3.1 Comparing Static and Dynamic Call Graph 
Comparing the static call graph to baseline dynamic call graph 
qualitatively can provide some insights into the relationship 
between static and dynamic call graph. 

For the static call graph, we call the method call extracted 
lexically from the source code the formal method call and the 
method call extracted dynamically from the program execution as 
the actual method call. There is an “actual method call 
prediction” problem for the static call graph, because in some 
cases the call graph extractor cannot decide exactly which callee 
will be called during runtime because of conditional branches or 
other language features; polymorphism is the most common cause 
of this problem in OO languages such as Java.  Similarly, for 
dynamic call graphs there is a “formal method call backtracking” 
problem, where the dynamic call graph extractor cannot precisely 
recognize the caller in source-level terms; this is often due to 
instrumentation below the source-level. Together, these two 
problems complicate program analysis and understanding. 

Some differences are shown between the static formal method 
calls and dynamic actual method calls in our study: 

•  The actual method callee can be different from the formal 
method call because of inheritance. For example, in the OO 
micro-benchmark call graph, the formal method callee 
C.funcA() becomes the actual method callee A.funcA() at 
runtime, because class C’s funcA is inherited from class A. 
In the Fibonacci micro-benchmark, the formal method callee 
Fibonacci.Start() becomes the actual method callee 
Thread.Start() for a similar reason. 

Figure 7. Quantitative comparison of callees produced by 
nine tools within main method that are not in the baseline 

dynamic call graph on OO micro-benchmark 

Figure 6. Quantitative comparison between baseline 
dynamic call graph and extracted dynamic call graphs by 

nine tools on Fibonacci micro-benchmark 

Figure 8. Quantitative comparison of callees produced by 
nine tools within main method that are not in the baseline 

dynamic call graph on Fibonacci micro-benchmark 



•  The actual method callee cannot have a corresponding formal 
method callee because of inheritance. For example, in the 
OO micro-benchmark, the actual method callee A.A() by 
B.B() or C.C() does not have a formal method callee in the 
source code. In addition, implicit inheritance also produces 
some system actual method callees, like the actual method 
callee Object.Object() by A.A(). 

•  The actual method callee can be different from the formal 
method callee because of virtual methods. For example, in 
the OO micro-benchmark, formal method callee A.func() 
becomes actual method callee B.func(). 

•  Implicit system actual method callees can not have a 
corresponding formal method callee in the source code. For 
example, in the Fibonacci micro-benchmark, the 
StringBuffer.StringBuffer() does not have a explicit formal 
method callee in the source code.  

•  All tools only show the method name in the dynamic call 
graph with the format of CLASS.METHOD(), without 
providing the complementary format of OBJECT.METHOD 
(). However, in program understanding, sometimes the object 
name for the method call is also helpful. Sometimes 
distinguishing different object method calls is meaningful, 
rather than representing them as the same class method calls. 

3.3.2 Comparing Extracted Method Calls  
Comparing the call graph extracted by each tool to the baseline 
call graph quantitatively provides some insight into the nature of 
the extracted dynamic call graph, but it does not tell us much 
about the detailed similarities and differences and possible 
reasons of these differences. To provide insight into this 
information, we also performed the qualitative analysis on the 
results.  

First we designed a framework to categorize the method calls 
extracted by each tool. Java program execution involves following 
five categories of method calls: 

•  Explicit user method call is a call whose callee is a user 
method and its implementation can be located in the user 
program. This type of method calls in the OO micro-
benchmark include B.func(), A.funcA() and A.funcA(int). 
This type of method call is generally required in program 
understanding and other tasks. 

•  Implicit user method call is a call whose callee is a user 
method and its implementation cannot be located in the user 
program, for instance, the default constructor method in the 
user program. This type of method calls in the OO micro-
benchmark includes A.A(), B.B() and C.C().  This type of 
method call is generally required in program understanding 
and other tasks. 

•  System method call by user method explicitly or implicitly is 
the call whose caller is user method and callee is system 
method. Explicit system method calls in the OO micro-
benchmark include Integer.Integer(String), 
Integer.InitValue(), System.out.printlin(String) and 
System.out.printlin(int). Implicit ones include 
Integer.<clinit>(), String.String(int, int, [char]). When we 
want to analyze the performance impact of the system 

method calls, we may include this type of method calls in the 
dynamic call graph. In program understanding, sometimes 
some system method calls are required to understand the 
program behavior, like Thread.start() and Thread.join(), 
whose class Thread is inherited by a user class in the 
Fibonacci micro-benchmark. But sometimes including some 
unnecessary system method calls can complicate the call 
graph and make users lose focus on other important method 
calls; for example, including too many System.out.println() 
system method calls may make program understanding more 
difficult. 

•  System method call by system method is a call whose caller 
and callee are both system methods. We do not show this 
type of method calls in our study. Occasionally, this type of 
method calls is considered in performance analysis. 
Sometimes this type of method calls is useful in program 
understanding when users want to investigate the behavior of 
some system method calls; for example, some users may be 
interested in the method calls among classes in the 
underlying system framework. 

•  Environment method call is a call made in the runtime 
environment in order to execute the Java program. This type 
of method calls in the OO micro-benchmark include 
ClassLoader.findNative(String), 
ClassLoader.checkPagedAccess(Class, Protection domain), 
ClassLoader.loadClassInternal(String), etc.  This type of 
method call is useful only when the users want to investigate 
the runtime environment behavior or measure the program’s 
actual performance, including the runtime environment 
overhead.  

Although omitting some method calls would compromise the 
accuracy and completeness of the result, it would be misleading to 
believe that extracting more calls is inherently better. The specific 
task of the software engineer will drive the demands on the call 
graph extractors in this (and other) dimensions. 

To facilitate the qualitative analysis of the result, we consider the 
call graphs in terms of false negatives and false positives. False 
negatives are calls that are present in extracted dynamic call 
graph, but which are omitted from the baseline dynamic call 
graph. False positives are calls that are not present in extracted 
dynamic call graph, but which are included in the baseline 
dynamic call graph. 

Our study showed that baseline dynamic call graph includes all 
explicit and implicit user method calls, most system method calls 
by user methods, but no environment method calls. System 
method calls by system methods are not included since we only 
investigated the direct callees of the user methods.   

Some results related with false negatives and false positives in the 
study are: 

•  Only Jinsight 2.1 can extract the same dynamic call graph as 
the baseline one, yielding no false negatives nor false 
positives. 

•  Only the dynamic call graphs extracted by Panorama, Trace 
and Truetime produce false positives for both micro-
benchmarks. Only Panorama produces user method call false 
positives, most of which are implicit user method calls, such 



as A.A(), B.B(), C.C() in OO micro-benchmark. All of 
Panorama, Trace and Truetime produce system method call 
false positives. 

•  Only the Panorama, Trace and Jinsight 2.1 do not produce 
false negatives. The other tools produce false negatives, most 
of which are environment method calls. 

•  Although it is reasonable to consider environment method 
calls in some cases of performance analysis, no two tools 
extract the same set of environment method calls; that is, no 
two tools produce the same set of environment method call 
false negatives. 

•  During performance analysis, some false negatives are shown 
to consume a nontrivial portion of the time spent by the 
caller. For example, Thread.exit() consumes 26% of the time 
spent on the main method of the OO micro-benchmark 
produced by Quantify but all other tools do not produce this 
false negative. 

There are two results that are abnormal, representing potential 
bugs in the tools: 

•  In the Fibonacci micro-benchmark, Panorama does not even 
produce Fibonacci.Fibonacci(), which is an explicit user 
method call. 

•  OptimizeIt produces false negatives for the Fibonacci micro-
benchmark. It does not report four method calls related with 
implicit String operations: StringBuffer.StringBuffer( 
), StringBuffer.toString( ), and two calls of 
StringBuffer.append(int). Moreover, it does not report a user 
method call, Fibonacci.getFib( ), which is called to generate 
the parameter value of another method.  

In addition, all tools except for Panorama support thread analysis, 
grouping the method calls of Fibonacci micro-benchmark by 
thread. 

3.3.3 Comparing Method Call Representations 
In this paper, we have used the term call graph to represent the 
invocation relation extracted from a program. Ammons etc. [1] 
described three representations for displaying the dynamic 
invocation relation: dynamic call graphs, dynamic call trees and 
calling context trees. In a dynamic call graph, each method is 
represented by only one vertex and each directed edge represents 
one or more method invocations. Its compactness is gained by 
sacrificing some context information. For example, a call chain 
whose length is beyond two is difficult to be extracted from the 
call graph when one method of that chain, which is neither the 
head nor the tail of that chain, is called by another method besides 
the call made by the caller in that chain. In a dynamic call tree, 
each vertex except for the root vertex, which is usually the main 
method, represents the callee for the corresponding method call.  
If a method is called n times, there are n vertices in the dynamic 
call tree. Its accuracy is gained at the cost of additional storage 
space especially when there are too many repeated method calls, 
for example, method calls inside a loop. There is a modified call 
tree that compacts the same callee with multiple invocations by 
the same caller as one vertex. It trades the ability to distinguish 
different invocations of the same callee for space storage and 
compactness.  In the calling context tree, each vertex represents an 

individual context, which is a method together with the call chain 
that resulted in the invocation to that method. Repeated method 
invocations are represented by the same vertex if their call stacks 
are same. In addition, a back edge represents a recursive call. 
Each vertex encodes a unique call path. It is more compact than 
call tree, but still cannot distinguish different invocations of the 
same callee inside a method.  

The different tools we studied use variants of several of these 
representations: 

•  Panorama represents the method calls as summary report 
text. Trace represents the method calls as trace line text.  

•  Vtune represents the method calls as a local call graph, 
which only displays the selected method, the method’s 
parents (which are that method’s callers), and descendants 
(which are that method’s callees). 

•  Quantify and JProb represent the method calls as a dynamic 
call graph.  

•  OptimizeIt, Jinsight 2.0 and 2.1 represent the method calls as 
a call tree.  

•  TrueTime represents the selected method, the method’s 
parents and the method’s descendants in the form of table. 
Quantify and JProb also provide this table as a 
complementary method call representation. 

•  Vtune, Quantify, OptimizeIt and JProb provide some 
mechanisms to expand or collapse descendants, focus or hide 
the subtree. Jinsight 2.0 and 2.1 provides some mechanisms 
to expand a call tree to a specified depth or to focus the 
subtree. 

Filtering is a good technique to remove false negatives or false 
positives when trying to customize the default extracted dynamic 
call graph to users’ need. Filtering of the method calls can be 
performed before, during or after the execution of program. 
Filtering before execution imposes the filtering on the method call 
collection process. Filtering during execution can dynamically 
turn on or off the data collection on the fly when the program is 
running. This filtering is especially useful when users want to 
extract method calls during certain periods of the program 
execution. Filtering after execution imposes the filtering on the 
display process. The filtering can be inclusion or exclusion 
filtering. Some results of filtering are showed as below:  

•  Panorama and Vtune provide no filtering functionality.  

•  Trace, Quantify, OptimizeIt, and TrueTime provide filtering 
after the program execution, including exclusion and 
inclusion. Trace’s filtering is at the granularity of classes. 
Quantify and OptimizeIt’s filtering is at the class and method 
granularity. TrueTime’s filtering is at the package and class 
granularity. 

•  Jinsight 2.0 and 2.1 provide filtering during program 
execution, including exclusion or inclusion of all traces in 
different time periods. It also provides exclusion filtering 
after execution before loading the trace information at a  
package and class granularity, or by limiting the call stack 
depth. 



•  JProb provides filtering after program execution, including 
exclusion and inclusion, at the class and method granularity.  

Some other results of method call representation features are 
shown below: 

•  No tools present the time order of the callees inside certain 
methods, except for Trace tool. For example, in the OO 
micro-benchmark, the tools generally do not report which 
one of A.funcA() or A.funcA(int) is executed first. 

•  VTune, Quantify, JProb and TrueTime can highlight the 
associated source code of a selected user method if its source 
code is available. 

4. DESIGN CONSIDERATIONS 

4.1 Instrumentation 
Source-level instrumentation provides high flexibility for users to 
specify what program point to instrument and what to instrument 
at those points. Besides a dynamic call graph, it is capable of 
supporting some other complex dynamic analysis tasks, such as 
Daikon’s likely invariant detection [4]. It maps the dynamic 
information directly to the high-level source code. It generally 
needs a static analysis front-end to assist instrumentation. 
However, such instrumentation cannot be done without access to 
source code. Non-user callees including system library callees can 
not be extracted because system library methods can not be 
instrumented in the absence of their source code. Even implicit 
user method calls cannot be extracted, since the callees’ 
implementation may not be located in source code. 
Similar to source-level instrumentation, bytecode instrumentation 
also provides good flexibility for users. At the same time, it does 
not require that the source code be available. Bytecode contains 
more symbolic data than the executable image, keeping object-
oriented information about the class, such as the names and type 
signatures of all the classes, methods, fields, and constant values. 
However, it loses access to some other useful information, such as 
local variable names, parameter names and precise source-level 
statement constructs, like loop constructs, which are available in 
the source code. Therefore the dynamic information cannot be 
represented in terms of the above lost entity names. If the 
complete set of classes can be determined statically and their 
bytecodes are available offline, a static bytecode instrumentor can 
instrument the transitive closure of all classes offline and produce 
a new set of instrumented bytecodes, including system method 
callees. It does not need to modify the JVM. But sometimes the 
complete set of classes cannot be determined statically and it can 
not extract the implicit user method calls. Dynamic bytecode 
instrumentation does not require a priori knowledge of the set of 
classes loaded and saves some of the space needed to store 
statically instrumented. This approach can solve the problems 
encountered by static bytecode instrumentation. But online 
instrumentation needs to modify the JVM and imposes extra 
runtime overhead during loading phase.  
The Java Virtual Machine Profiler Interface (JVMPI) provides 
hooks into the JVM that can be used without modifying the user 
program or the JVM itself.  A profiler agent instructs the virtual 
machine to send it the relevant JVMPI events, such as method 
enter and exit, and processes the event data into profiling 
information. Most call graph based Java profilers adopt this 

approach. However, the tools using this approach are limited by 
the events provided by JVMPI. It cannot perform some complex 
dynamic analyses that can be performed by using source-level 
instrumentation or bytecode instrumentation. 
JVMPI supports two kinds of profiling: statistical CPU sampling 
and code instrumentation [19]. In statistical CPU sampling, the 
executed application has to be interrupted periodically to record 
which methods are currently being executed. The accuracy of the 
result is largely affected by the sampling frequency. Moreover it 
cannot record the number of method calls. For example, when 
using sampling mode with one millisecond frequency, which is 
the minimum value in Optimizeit, no method calls are extracted 
inside bench.main() of OO micro-benchmark and only 
Thread.join(), StringBuffer.append(int) and 
StringBuffer.append(string) are extracted inside Fibonacci.main( ) 
in the Fibonacci micro-benchmark. In code instrumentation, 
JVMPI allows the profiler agent to instrument every class file 
before it is loaded by the virtual machine, which is similar to 
dynamic bytecode instrumentation. This mode may cause larger 
overhead and distort the performance result, but it usually does 
not miss the method calls. 
An instrumented JVM can provide more flexibility to users but 
the development effort of this approach is much higher than using 
JVMPI. In addition, the evolution of a supported JVM, or 
supporting more JVMs, can induce a high maintenance cost. 
Among those tools that adopt this approach, Javiz [8] intends to 
use JVMPI to remove its dependence on a modified JVM. But its 
tracing of client/server activity still needs to be done by modifying 
the RMI library implementation, since JVMPI does not provide 
this functionality. Jinsight 2.0’s subsequent version 2.1 supplies a 
profiling agent using the JVMPI for Java 2 instead of using an 
instrumented JVM. 
Dynamic instrumentation inserts and deletes instrumentation in 
Java method code and JVM code at any point during execution. It 
can dynamically change the instrumentation with high flexibility 
when necessary. 

4.2 Instrumentation Design Considerations 
Instrumentation involves two issues: what program point to 
instrument and what to instrument at those points. Tool designers 
must consider how these issues can be addressed by a candidate 
instrumentation technique before choosing it. 

4.2.1 Instrumentation Place 
Tool designers should make sure the selected instrumentation 
approach provides users enough flexibility to instrument the 
required program points. In source-level instrumentation, 
instrumentation points are limited in the program points between 
source-level statements. Bytecode instrumentation allows the 
instrumented program points to be between the bytecode 
instructions, which can be inside a source-level statement. In 
runtime environment instrumentation, tool designers should make 
sure whether the required dynamic information can be extracted at 
a given point of the JVM. Source-level instrumentation is not 
appropriate for extracting dynamic call graphs since the system 
method or implicit user method’s entry and exit points are not 
available in the source code level. Neither is static bytecode 
instrumentation, since it cannot extract the implicit user method 
calls. Dynamic bytecode instrumentation and runtime 



environment instrumentation are good candidate techniques for 
dynamic call graph extraction. 

4.2.2 Instrumentation Content 
Generally the instrumentation instructions export the required 
dynamic information to analysis tools indirectly or directly. The 
dynamic information is generally reported in terms of source-level 
program entity names, which is generally understandable to users. 
In source-level instrumentation, there are no problems in mapping 
the dynamic information to source-level program entity names. In 
bytecode instrumentation and runtime environment 
instrumentation, there are no problems in mapping the dynamic 
information to some program entities, such as class, method and 
field, etc., but it may be difficult to map it to some other program 
entities, like the name of local variable or parameters, source-level 
data constructs or control constructs, if there is no debugging 
information produced by compiler available to help compute these 
mappings. For dynamic call graph extraction, generally all of the 
above instrumentation techniques fulfill the requirement of 
exporting dynamic information in terms of class and method name. 

4.2.3 Online vs. Offline Analysis 
When the raw dynamic information is extracted from the 
instrumented points, the tool can process it online to save the I/O 
overhead to output the raw data. The online analysis results can be 
used by later executed instrumented codes or even add or remove 
the later instrumentation points online by using dynamic 
instrumentation technique if this approach is adopted. Moreover, 
when only the real time data is required and historical raw data do 
not need to be stored, online analysis can also save the space to be 
used to store those raw or intermediate data.  In offline analysis, 
the raw data are exported without being analyzed at runtime, 
saving the process time but introducing the I/O overhead. The 
tradeoff between process time and I/O exporting time need to be 
considered in practice. 

4.2.4 Performance Issues 
Any type of instrumentation will perturb the application program 
to some degree. If the task is performance-critical, such as 
performance tuning or parallelism tracing, performance issues 
need to be considered when choosing the instrumentation 
technique. Many factors may affect the amount of overhead so an 
empirical comparison study needs to be done to provide some 
decision support information. 

4.3 Scalability Considerations 
Scalability problems appears to be more serious for dynamic 
analysis tools than for static analysis tools in some sense. Even in 
our limited study, the size of the trace file generated by running 
small micro-benchmarks is still relatively large. Theoretically its 
size is O(METHOD NUMBER *  EXECUTION TIMES), 
because during each execution, the methods may be called 
multiple times, even infinite times if the methods are inside an 
infinite loop. In static call graph extraction, or other static 
analyses, the time complexity is generally the major factor to 
make it unscalable (or highly imprecise). However, for dynamic 
call graph extraction or other dynamic analyses, the space 
complexity is generally more of a concern. There are some design 
decisions to be made to attack this problem.  

The first one is trace information filtering. The filtering can be 
imposed in method, class, file, package or directory granularity. 
But the more fine-grained the instrumentation granularity is, the 
more burden imposed on users. Filtering before or during program 
execution can reduce the runtime instrumentation overhead and 
the size of trace file. If filtering is changed, the program will have 
to be run again, imposing the new filter on the next execution. 
However, filtering after execution can allow user to change the 
filtering requirement without rerunning the program. Because we 
get the complete trace information during one execution, we only 
need to specify and impose a new filtering before loading or 
representing the dynamic information. 
The second approach is to represent the trace information by 
loading on demand and caching frequently used traces. 
Persistently caching frequently used representations that are small 
but relatively expensive to compute can be effective [2]. 

4.4 Usability Considerations 
There are many issues related to usability. One of them is to 
provide users with a way to easily manipulate information in the 
call graph. The key principle is to provide both coarse-grained 
and fine-grained manipulation of the information. The coarse-
grained one is for the novice users, without imposing much 
burden. The fine-grained one is for experienced users, who want 
to gain more control of the information and can tolerate relatively 
complicated manipulation of the information. During tool design, 
the designer might not make an arbitrary decision between these 
two approaches. Providing both granularities of manipulation to 
users will attract both types of users, leaving the choice to future 
users; this is not especially easy, however. In dynamic call graph 
extraction, the tool shall provide the basic information to users, 
for example, without time order or object method call, clustering 
all invocations of the same callee inside the caller to one node, 
etc. It is reasonable to do so in order to control the complexity of 
the dynamic call graph to be manageable. But if users want to, the 
tool shall let them choose to show the detailed information to 
assist the program understanding, like time order, object method 
call associated source code, etc. In addition, it is good to provide 
expanding or collapsing, subtree focusing or hiding, for users to 
control the complexity of the focused information. 
Incremental manipulation is a good feature for users. The tool 
shall provide certain functionality to let user save their 
manipulation results or the browsing history on the information. 
Then they can load them later and continue to work on them. 
Jinsight’s slicing and workspace techniques are good in this 
dimension [16]. In addition, a static call graph shall be shown 
together with the dynamic call graph to attack the “actual method 
call prediction” and “formal method call backtracking” problems. 
For example, it is good to provide users to view the formal 
method calls that have no corresponding actual method calls, etc.  

5. DISCUSSION 
A lot of research work has been done to use the static analysis 
techniques to address the “actual method call prediction” 
problem; to some extent, for example, pointer alias analysis, 
virtual method call resolution, etc. However, the “formal method 
call backtracking” problem has not been paid much direct 
attention by researchers, tool designers and practitioners. Static 
information is generally ignored in dynamic analysis tasks, which 



makes program understanding difficult. The integration of static 
analysis and dynamic analysis can attack these problems. 
A dynamic call graph extractor can resolve the “actual method call 
prediction” problem that frustrates the static call graph extractor, 
such as method pointers, virtual methods, etc. A dynamic call 
graph extractor also narrows down the scope complexity of user 
concerns by only collecting the information related with certain 
execution. 
When we map the dynamic call graphs on the static call graph, the 
invocation relations in dynamic call graphs should be a subset of 
the invocation relations in the static call graph. With the 
integration of the static and dynamic call graph, we can analyze 
code coverage at the method level. Program profiles only show 
the times the callee is called and the accumulative time spent on 
it. However, by integrating static and dynamic call graphs, we can 
show those potential callees in the static call graph that have not 
been called during the past executions but can possibly be called 
in future executions. 
Generally dynamic analysis captures the dynamic behaviors of the 
run time entities, which are named in the low level binary code or 
machine language space. Sometimes this low level information is 
hard for users to understand. For example, an object created in 
runtime is identified as the object ID in running environment, 
losing the high level object name’s label. In addition, because of 
some languages features, like inherited methods, virtual methods, 
etc, the dynamic call information only shows the original class 
this callee method belongs to, losing the formal name information 
of the class that this callee is attached to in the high level source 
code. The integration of static analysis and dynamic analysis can 
address these issues. For example, the static information produced 
by the compiler can be used to find out the entity mapping 
between the low-level code and high-level code, attacking the first 
problem. Other static information can also assist in attacking the 
second problem. 

6. CONCLUSIONS 
Our empirical study shows that the extracted Java dynamic call 
graphs by nine tools are quite different because of the underlying 
instrumentation techniques and other design decisions made by 
tool designers. 
Our study also shows the differences between static call graphs 
and dynamic call graphs. To analyze these differences, we 
propose the concepts of static formal method calls and dynamic 
actual method calls. The static call graph has the “actual method 
call predication” problem caused by many factors, including the 
branching statements and dynamic binding OO features. The 
dynamic call graph has the “formal method call backtracking” 
problem mainly caused by the differences between high-level 
program space and low level byte code space. The integration of 
static analysis and dynamic analysis can attack these two 
problems. 
By analyzing the differences between the dynamic call graphs 
extracted by nine tools quantitatively and qualitatively, we found 
that few tools under study can extract the satisfactory set of 
method calls and related information to aid program 
understanding. And these tools can be improved in different 
aspects to support program understanding. Finally we enumerated 
some design considerations for dynamic call graph extractors, 
including instrumentation, scalability and usability considerations. 

Although this paper only considers the Java dynamic call graph 
extraction, many of the observations on the design decisions still 
apply to other Java dynamic analysis tools. 
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Appendix A: OO Micro-benchmark: 

 
class A {  
  int  count = 0; 
  public void func()  {   
     count = count +1;   
  } 
   
  public void funcA() {  
    count = count + 2;  
   } 
 
  public void funcA(int i)  {    
   count = count + i;   
  } 
} 
 
class B extends A { 
  public void func()  {  
     count = count + 10;  
   } 
} 
 
class C extends A { 
  public void func()  { 
    count = count + 100;   
 } 
} 
 

public class bench 
{ 
  public static void main (String arg[]) 
  { 
 A a; 
 B b; 
 C   c;  
 
 int n = new Integer(arg[0]).intValue(); 
 a = new A(); 
 b = new B(); 
 c = new C(); 
 if (n != 0) 
        a = b; 
 a.func(); 
 if (n != 0) 
        b.func(); 
 else 
          c.func(); 
 for (int i =0; i < n; i++) 
        a.func();  
  c.funcA(); 

c.funcA(n); 
System.out.println("a.count ="); 
System.out.println(a.count); 

 } 
}

 
Appendix B:  Fibonacci Micro-benchmark: 
 public class Fibonacci extends Thread 
{ 
   int fib; 
   Fibonacci(int n) {   
         fib = n; 
   } 
    /*  Called by start() */ 
   public void run()    { 
         if (fib == 0 || fib == 1) 

fib = 1; 
         else { 
            Fibonacci thread1 = new Fibonacci(fib-1); 
            Fibonacci thread2 = new Fibonacci(fib-2); 
            thread1.start(); 
            thread2.start(); 
            try  { 

thread1.join(); 
                 thread2.join(); 

fib = thread1.getFib() + thread2.getFib(); 
            } 
            catch( InterruptedException e) { 

e.printStackTrace(); 
             } 
         } 
   } 

  public final int getFib()  { 
          return fib; 
  } 

 
     
 
 public static void main(String arg[])  { 
          Fibonacci fib; 
          int n = new Integer(arg[0]).intValue(); 
 
          fib = new Fibonacci(n); 
          fib.start(); 
          try  { 
               fib.join();  
               System.out.println("The Fibonacci for " +
                                n + " is: "+ fib.getFib());  
         } 
         catch( InterruptedException e) { 
 e.printStackTrace(); 
         } 
    } 
 } 
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