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Abstract 

 
We present a new fault exposure and localization 

approach intended to increase the effectiveness of 
regression testing. In particular, we extend traditional 
regression testing, which strongly focuses on black box 
comparisons, to compare internal program states.  These 
value spectra differences allow a more detailed 
comparison of executions of the new and old versions of a 
program.  In particular, our approach checks inside the 
program black box to observe unit behaviors and further 
checks inside the unit black box to observe some internal 
variable values besides the ones propagated outside the 
unit. This approach exposes faults without requiring the 
faults to be propagated to the outputs of the system or 
unit. Two heuristics are proposed to locate regression 
faults based on a fault propagation model. An experiment 
is conducted to assess their effectiveness. The initial 
results show our value-spectra-comparison approach can 
increase the regression fault exposure probability 
effectively and identify the locations of regression faults 
accurately. 
 
1. Introduction 

“From the value of testing perspective, information 
hiding reduces the ability for faults to propagate to an 
observable output and hence reduces the likelihood that 
faults will be revealed during testing” [15]. 

 
Traditional regression testing compares behaviors of a 

new version to the behaviors of an old version in the hope 
of exposing any introduced fault. When the outputs 
produced by two versions are different, regression faults 
are exposed. However, even if a variable value difference 
is caused immediately after a new faulty statement is 
executed, the fault might not be propagated to the 
observable outputs due to the information loss or hiding 
effects. Checking inside the black box has been used to 
expose faults complementing the traditional black box 
output checking approach. Runtime assertion or inferred 
invariant checking is used to validate that certain 

properties inside the black box are satisfied during 
program execution [3][6][9][18]. In the regression testing 
context, comparing structural program spectra inside the 
black box between versions, e.g. path, branch, or 
execution trace spectra, etc., has been investigated [10]. 
The experimental results from this work show that when 
the black box outputs between versions are different, the 
structural program spectra are likely also to be different, 
though unfortunately the reverse is not true. This leads to 
a hypothesis that structural program spectra might not 
sufficiently capture a program’s stable behaviors, which 
are supposed to be kept the same across versions. For 
example, restructuring or refactoring can change a 
program’s structural program spectra but still preserve the 
same meaning [7][8].  

To check relatively stable behaviors inside the black 
box across versions, we propose a new type of program 
spectra called value spectra. Value spectra capture 
internal program states during test executions, which are 
expected to be more stable across versions. Value spectra 
differences are used to expose regression faults and assist 
fault localization. Mapping and filtering mechanisms are 
used to accommodate those changes that might cause 
value spectra differences that do not introduce regression 
faults. The next section discusses value spectra 
differences. Section 3 presents the applications of value 
spectra differences in regression fault exposure and 
localization. Section 4 describes the experiment that is 
conducted to assess our approach. Section 5 discusses 
related work. Finally, Section 6 concludes with a 
discussion. 
 
2. Value Spectra Differences 
 
2.1. Internal Program State Transition 
 

The execution of a program can be considered as a 
sequence of internal program states [22] . Each internal 
program state comprises the program’s variables and their 
values at a particular execution point. Each program 
execution unit, in the granularity of statement, block, code 



fragment, function, or component, receives an internal 
program state and then produces a new one. The program 
execution points can be the entry and exit points of a user 
function execution when the program execution units are 
those code fragments separated by user function call sites. 
Program output statements (usually I/O output operations) 
can appear within any of those program execution units. 
Figure 2 shows the internal program state transition chain 
of a simple C sample in Figure 1 when the internal 
program states are captured in the entry and exit points of 
user functions. 

In an internal program state, those variable values at 
the entry point of a user function execution comprise that 
function’s argument values and global variable values, 
which are captured by a memory snapshot at the function 
entry point. Those variable values at the function exit 
point comprise function return values, parameter passing 
out values, and global variable values, which are visible 
outside the function. At the function exit point, although 
some argument values are not visible externally, they are 
still meaningful with respect to program validation since 
the post-condition specification of that function usually 
involves these values. Therefore, the values of all 
argument variables at the function exit point are also 
captured in the internal program state for that function exit 
point. The variable values in the internal program states at 
the entry and exit points of a function execution form an 
entry-exit variable value pair for that function execution, 
representing the input/output of that function execution for 
our use. 
 
2.2. Value Spectra 
 
A program spectrum characterizes a program’s behavior 
[17]. Several classes of program spectra are proposed in 
literature, including path spectra, branch spectra, data-
dependence spectra, execution trace spectra, and output 
spectra [4][10]. Except for output spectra, which record 
the outputs produced by a program as it executes, these 
spectra are based on execution structure. A new class of 
program spectra, value spectra, is proposed in this 
research. Value spectra track the variable values in 
internal program states, which are exercised as a program 
executes. Output spectra can be viewed as a special kind 
of value spectra, recording the system outputs produced 
by a program as it executes. 

In this research, four distinct types of value spectra are 
proposed: 
•  Program output value spectrum (POV). A 

program output value spectrum records the output 
values produced by a program as it executes. It is the 
same as the earlier output spectrum [10]. 

•  Function value hit spectrum (FVH). For each entry-
exit variable value pair for a function execution, a 

function value hit spectrum indicates whether or not 
that pair is exercised. 

•  Function value count spectrum (FVC). For each 
entry-exit variable value pair for a function execution, 
a function value count spectrum indicates the number 
of times that pair is exercised.  

•  Execution-trace value spectrum (ETV).  The 
execution-trace value spectrum records the sequence 
of the entry-exit variable value pairs for the functions 
traversed as a program executes. 

 
/ * s a m p l e . c – S a m p l e C p r o g r a m t o o u t p u t 2
w h e n 0 < m a x < 1 0 , o u t p u t 1 w h e n m a x > = 1 0 ,
a n d o u t p u t 0 w h e n m a x < = 0 , w h e r e m a x i s t h e
m a x i m u m o f t w o i n t e g e r s . I f t h e p r o g r a m
r e c e i v e s f e w e r o r m o r e t h a n t w o i n t e g e r s , i t
o u t p u t s “ W r o n g a r g u m e n t s ! ” m e s s a g e . * /

# i n c l u d e < s t d i o . h >

i n t m a x ( i n t a , i n t b )
{

i f ( a > = b ) {
r e t u r n a ;

} e l s e {
r e t u r n b ;

}
}

i n t m a i n ( i n t a r g c , c h a r * a r g v [ ] )
{

i n t i , j ;
i f ( a r g c ! = 3 ) {

p r i n t f ( “ W r o n g a r g u m e n t s ! ” ) ;
}
i = a t o i ( a r g v [ 1 ] ) ;
j = a t o i ( a r g v [ 2 ] ) ;
i f ( m a x ( i , j ) > 0 ) {

i f ( m a x ( i , j ) < 1 0 ) {
p r i n t f ( “ 2 ” ) ;

} e l s e {
p r i n t f ( “ 1 ” ) ;

}
} e l s e {

p r i n t f ( “ 0 ” ) ;
}
r e t u r n 0 ;

}  
Figure 1. A sample C program  
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Figure 2. Internal program state transition chain of 
the sample C program execution with input “1 7” 

 
FVH, FVC, and ETV reflect the internal program 

states as a program executes. Table 1 shows the value 
spectra for the sample C program execution with input “1 
7”. Profiled entities of value spectra are those entry-exit 
variable value pairs for user function executions. Profiled 
entities of FVH or FVC have no ordering among them but 
those of ETV do have. In the end of each FVC profiled 
entity, a count marker of “* NUM” is used to show that 



profiled entity is exercised NUM times. Returning markers 
of “∨ ” are inserted in ETV profiled entity sequence to 
indicate a call hierarchy [16]. 

Table 1. Value spectra for the sample program with 
input “1 7”  

Spectra Profiled Entities 
FVH Smain3_“1”_“7”|3_“1”_“7”_0, 

Smax1_7|1_7_7 
FVC Smain3_“1”_“7”|3_“1”_“7”_0 * 1, 

Smax1_7|1_7_7 * 2 
ETV Smain3_“1”_“7”|3_“1”_“7”_0, 

Smax1_7|1_7_7, ∨ , Smax1_7|1_7_7, ∨ , ∨  
POV Output 2 

Smain3_“1”_“7”| 3_“1”_“7”_0: 
      main:entry(argc=3,argv[1]=“1”,argv[2]=“7”), 
               exit(argc=3, argv[1]=“1”,argv[2]=“7”,return=0) 
Smax1_7|1_7_7: 
     max:entry(a=1,b=7), 
             exit(a=1,b=7,return=7) 
Spectrum type S1 subsumes spectrum type S2 if and 

only if whenever the S2 spectrum for program P, version 
P’, and input i differ, the S1 spectrum for P, P’, and i 
differ. Spectrum type S1 strictly subsumes spectrum type 
S2 if S1 subsumes S2 and for some program P, version P’, 
and i, the S1 spectrum differs but the S2 spectrum does 
not. Spectrum types S1 and S2 are incomparable if neither 
S1 strictly subsumes S2 nor S2 strictly subsumes S1 [10].  

ETV strictly subsumes FVC and FVC strictly 
subsumes FVH. POV is incomparable with any of ETV, 
FVC, and FVH, since the program output statements 
inside a particular function body might output the variable 
values that are not captured in that function’s entry-exit 
variable value pair. For example, when those printf 
statements in main function body are shuffled, the 
program still has the same spectra of ETV, FVC, or FVH, 
but different POV spectra. On the other hand, the 
executions with different ETV, FVC, or FVH spectra 
might have the same POV spectra. However, when those 
function bodies containing program output statements are 
not modified in version P’, ETV strictly subsumes POV. 
 
3. Applying Value Spectra Differences 
 
3.1. Regression Fault Exposure 
 

Among those value spectra that reflect internal 
program states, FVH are most stable during program 
evolution because FVH does not consider structural 
information or function execution counts, which are 
relatively volatile during program evolution. In our 
approach, FVH differences are used to expose regression 
faults. However, two kinds of FVH differences are 
handled specially to accommodate some common fault-
free changes that cause these FVH differences. When 
there is a FVH entry-exit variable value pair in the old 

version but not in the new version, no regression faults are 
reported because of that, since it is common that a 
function execution in the old version might be inlined or 
removed in the new version. Moreover, when there is a 
FVH entry-exit variable value pair in the new version but 
not in the old version and the function for that value pair 
is newly added in the new version, no regression faults are 
reported. Therefore, only when there is a FVH entry-exit 
variable value pair in the new version but not in the old 
version and the function for that value pair exists in the 
old version, are regression faults reported. In the context 
of our approach, FVH differences between the old and the 
new versions refer to this case alone. Moreover, when 
some variables in a variable value pair are pointers, the 
actual data content eventually pointed by them are 
compared rather than the pointers themselves, since all 
pointers can have different values in alternative runs but 
still have the same semantics. Memory graph comparison 
can compare the entire structure among pointers in 
addition to the data pointed by them but might not be 
scalable [23]. 
 
3.2. Fault Propagation 
 

The details of value spectra differences can show how 
internal state transitions in a later version deviate from the 
ones in an earlier version. These differences can provide 
insights into fault propagation in the execution of the later 
version. There are two primary reasons that faults are not 
found by techniques that check for differences in the unit 
or program outputs. The first reason is that immediately 
after the execution of faulty code, environmental values, 
such as variable values in scope or outputs to external I/O 
devices, might be the same as the ones when the correct 
code is executed. The second reason is that even when the 
environmental values are different than the correct ones 
immediately after the execution of the faulty code, which 
is called immediate value infection, this value deviation 
might not be propagated to observable unit or program 
outputs. Our approach may expose faults that are not 
found by traditional techniques due to the second reason. 

Some variable values at certain points after faulty code 
execution might differ from the correct one due to the 
propagation of immediate value infection. This 
phenomenon is called propagated value infection. The 
variables with different values from the correct ones are 
called infected variables. The value infection in the entry 
or exit point of a function execution can cause FVH 
differences being observed in our approach.  

Sometimes an immediate value infection might not be 
propagated to the exit point of a faulty function but might 
be propagated to the entry points of some callees of that 
faulty function. Sometimes an immediate value infection 
might be propagated to the exit point of that faulty 



function, but the scopes of all the infected variables are 
limited in that function, not being visible outside that 
function. Sometimes an immediate value infection is 
propagated outside that faulty function to its call site and 
further to the entry point of some functions executed later. 
If a value infection is finally propagated to program 
outputs, checking the outputs can expose a regression 
fault.  
 
3.3. Fault Localization Heuristics 
 

Those locations of faults can be pinpointed based on 
details of FVH differences according to a fault 
propagation model. In particular, there is an enclosing 
relationship between two variable value pairs if the entry 
point of the former pair is executed before the entry point 
of the latter one but its exit point is executed after the exit 
point of the latter one. If a variable value pair encloses 
another one, the function invocation corresponding to the 
former pair is the ancestor caller of the one corresponding 
to the latter pair. The ordering among variable value pairs 
is sorted based on the execution time of their entry points 
with the earliest first. We have defined two types of FVH 
differences: 
•  Entry-Same-eXit-Diff (ESXD). In a variable value 

pair for a function execution in the new version, the 
entry point variable values are the same as those in a 
pair for the same function execution in the old 
version, but the exit point variable values are 
different. Notice that if a program crash site occurs 
within a function execution in the new version, there 
are no exit point variable values available for that 
function execution in the new version; thus the exit 
point variable values differ from those in the old 
version. 

•  Entry-Diff (ED). In a variable value pair for a 
function execution in the new version, the entry point 
variable values are different from those in any pair for 
the same function execution in the old version. As is 
discussed in Section 3.1, in the new version a variable 
value pair of a newly created function is filtered out, 
not being considered as FVH differences. 

An ESXD’s variable values at the entry point are not 
infected but its variable values at the exit point are 
infected. In contrast, an ED’s variable values at the entry 
point have already been infected. Those variable value 
pairs that do not show FVH differences are usually not 
infected in either their entry or exit points. Our fault 
localization heuristics are described as follows: 
•  Heuristic 1. If the variable value pair for an ED’s 

caller execution is not an ED and neither an ED nor 
an ESXD is present between the variable value pair 
for that ED’s caller execution and that ED, fault 

locations are likely to be those statements executed 
between the ED’s caller and that ED’s call site.  

•  Heuristic 2. If an ESXD encloses neither an ED nor 
another ESXD, fault locations are likely to be those 
statements executed within the ESXD’s function 
body. 

The fault locations are likely to be within those 
statements executed within ESXD or before ED. Above 
two heuristics are to narrow down the candidate scope for 
fault locations based on the fault propagation effect. 

Figure 3 shows fault propagation call trees for two test 
executions on a faulty version of tot_info program subject 
used in the experiment described in Section 4. In the call 
trees, each node is associated with a function execution 
and parent node calls its children nodes. The execution 
order among function executions is from the top to the 
bottom, with the earliest one in the top. An “ED” or 
“ESXD” in front of a function name denotes FVH 
differences. The names of the faulty functions that are 
located using our heuristics successfully are showed in 
bold font. In the first call tree, the fault is not propagated 
to the exit point of the faulty function so neither 
traditional system nor unit testing can expose that fault. In 
the second fault propagation call tree, the fault is 
propagated through two function boundaries and reaches 
the output statement in main function body, being 
observed by checking program outputs. 

 
main (execution of test t58 on faulty version 9 of tcas program)
  initialize               
      alt_sep_test              
           Non_Crossing_Biased_Climb  
                 Inhibit_Biased_Climb 
                Own_Above_Threat      
      Non_Crossing_Biased_Descend       
                Inhibit_Biased_Climb 
               (ED)Own_Below_Threat 

               (ED)ALIM 
        Own_Above_Threat      
 
main (execution of test t91  on faulty version 9 of tcas program) 
 initialize 
      (ESXD) alt_sep_test 
            Non_Crossing_Biased_Climb 
                 Inhibit_Biased_Climb 
                 Own_Above_Threat 
                 ALIM 
            Own_Below_Threat 
            (ESXD)Non_Crossing_Biased_Descend 
                Inhibit_Biased_Climb 
   Own_Below_Threat 

 
Figure 3. Fault propagation call trees 

 
3.4. Spectra Evolution Accommodations 
 

During program evolution, some program changes 
cause FVH differences without introducing regression 



faults. Examples of this class of changes are summarized 
in Table 2 with respect to FVH differences they cause. 

Table 2. Common Changes in Program Evolution 
Category Exemplary Changes 

FVH-
Insensitive 
Changes 

Changes that do not cause FVH 
differences 

Output-
Insensitive 
Changes 

Changes that make non-output variable 
values different but keep output variable 
values the same in function exit point. 
Adding/removing function call sites Call Site 

Changes Changing input values to function calls 
Adding/removing global variables 
Adding/removing function parameters 
Changing parameter/return types 

Interface 
Syntax 
Changes 

Changing function/parameter names 
Changes of a function to make function 
exit-point variable values different for 
subdomains of inputs and the 
subdomains can be formally specified 

Incremental 
Interface 
Semantics 
Changes 

Same as above except that the 
subdomains cannot be formally specified 

Revolutionary 
Interface 
Semantics 
Changes 

Changes of a function to make function 
exit-point variable values different for all 
inputs. 

The first category comprises those changes that do not 
cause FVH differences, such as removing or inlining 
function calls, switching function call sites while 
preserving the meaning, adding new functions, etc. The 
second category comprises output-insensitive changes. 
These changes do not cause functional behavior 
differences as seen outside a function but cause 
differences of those non-output variable values at exit 
point, such as those values of argument variables. For this 
type of changes, those affected argument variables at exit 
point need to be filtered out manually before FVH is 
compared in our approach. 

The third category comprises call site changes. These 
changes take place inside a function’s body causing FVH 
differences for its callee invocations, but not causing the 
FVH differences in the variable value pair of that 
function. Examples of call site changes include when 
inputs to callee invocations are changed or when a 
function call site is added in a new version and that 
function already existed in the old version. Since these 
may well be symptoms of regression faults, this kind of 
change needs to be identified and filtered out by users. 

The fourth category includes interface syntax changes. 
These changes affect the syntax of function interfaces, 
such as adding or removing function parameters or global 
variables, changing function or parameter names, 
changing parameter or return types, etc. However, these 
changes might not change the semantics of functions, 
which means the values of corresponding variables in 

FVH variable value pairs are still the same when some 
mappings between variable names in the old and new 
versions are specified. 

The fifth category is incremental interface semantics 
changes. These changes cause semantic differences 
between a function in the old and new version for some 
subdomains of inputs. But for those inputs outside these 
subdomains, two versions of function executions still have 
the same variable value pair. Sometimes the subdomains 
can be formally specified using predicates, especially 
when those changes are specifically intended to enable the 
handling of an additional range of input values (such as 
better error checking). But sometimes the subdomains are 
difficult to formally specify, especially when the changes 
are for bug-fixing purposes and the exposure conditions of 
those bugs are not easy to capture (or are not perceived as 
worth specifying by the programmers). When the 
subdomains can be formalized by users, these predicates 
can be used to filter out those variable value pairs in the 
new version whose input variable values satisfy them in 
addition to those subsequently affected variable value 
pairs specified by users. When the subdomains are fault-
inducing inputs and cannot be or are not formalized, they 
can be specified automatically as those fault-inducing 
FVH differences found by using our approach in previous 
regression testing cycle. The old version offers some 
reliable behaviors outside of the known fault-inducing 
input domain, which can be used to protect the program 
from being introduced new incidental errors during bug-
fixing modifications. 

The final category is revolutionary interface semantics 
changes. These changes make the behaviors of a function 
might be different between the old and new versions for 
all inputs. The affected function’s variable value pairs and 
their subsequently affected variable value pairs need to be 
filtered out by users in the new version. 

Mapping and filtering are two main mechanisms to 
handle those program changes that cause FVH differences 
but might not induce regression faults. Although this pre-
processing before FVH comparison might require some 
manual efforts, several mechanisms can facilitate this 
process and reduce the cost. First, function declaration 
differences between the old and new versions attained by 
static analysis can guide the mapping and filtering that are 
related to interface syntax changes and some other 
changes. Second, the execution of a full-function-
coverage or maximal-function-coverage test suite, instead 
of the whole test pool, can be used as trial-and-test pilot 
samples on the new version. Their FVH differences can 
guide the mapping and filtering interactively and 
iteratively, which can be generalized and applied to the 
rest of the test executions. Finally a visualizer (to be 
implemented in future work) could show FVH differences 
visually making user inspection and manipulation easier. 



Finer-grained control of those change-affected variable 
value pairs is needed to specify the change impact 
boundaries— those function invocations that tightly 
enclose the FVH differences caused by fault-free program 
changes. We believe that while programmers or testers 
perform the mapping and filtering, they might have a 
deeper understanding of the changes made to the code and 
their impact from a dynamic and value-oriented 
perspective in addition to a static and structural 
perspective so that they might have more confidence in 
these code changes. 
 
4. Experiment 
 
4.1. Experiment Instrumentation 
 
4.1.1. Tool prototype. We prototyped this approach to 
determine the practical utility.  The basic idea is to take 
two versions of a program and to identify spectral 
differences between their executions on the same test. The 
Daikon [6] front end is used to instrument program code 
to collect data traces, which is the source from which we 
compute value spectra. We have only prototyped the key 
underlying mechanisms of our approach and users can 
directly edit a configuration file to manage filtering and 
mapping; this activity is supported by the declaration file 
that Daikon produces. Our tool can display value spectra 
differences in fault propagation call trees (as shown in 
Figure 3) and report potential fault locations. The 
scalability of data trace collection and value spectra 
comparison can be addressed by selective instrumentation. 
Only instrumenting the modified functions and those 
functions that are directly called by modified functions to 
collect data trace in the new version can approximate the 
results while reducing costs. But the same execution 
points in the old version still need to be instrumented and 
run to collect comparison data points a priori or posterior. 
 
4.1.2. Subject programs. Seven C programs are used as 
subjects in the experiment. The researchers at Siemens 
Research created these seven programs with faulty 
versions and a pool of test cases [12]; these programs are 
popularly referred as the Siemens programs and are 
broadly used in regression testing empirical studies [10]. 
The researchers constructed the faulty versions by 
manually seeding faults that were as realistic as possible. 
Each faulty version differs from the original program by 
one to five lines of code. The researchers only kept the 
faults that were detected by at least three and at most 350 
test cases in the test pool. Table 3 shows basic information 
about these seven subject programs.  The last column 
contains two numbers. The first number is the number of 
selected faulty versions in this experiment and the second 

number is the total number of faulty versions of each 
program. 

Table 3. Subject programs in the experiment 
Program Function 

Number
LOC 

(Executable
Test pool 

size
Faulty 

versions
print_tokens 18 402 4130 7/7 
print_tokens 19 483 4115 10/10 
replace 21 516 5542 12/31 
schedule 18 299 2650 9/9 
schedule2 16 297 2710 9/9 
tcas 9 138 1608 9/41 
tot_info 7 346 1052 6/23 

 
4.1.3. Test suites and versions. In the experiment, we use 
all the test cases in test pool for each program to reduce 
the potential threats to the validity introduced while 
selecting test cases for the experiment. For those programs 
with more than 10 faulty versions, we only pick those 
faulty versions in order from version 1 to make each 
selected version have at least one faulty function that has 
not yet occurred in previously selected versions. By doing 
so, the detailed results for each selected version can be 
presented in this paper given the limited space. Basically 
we conduct the experiment on base programs and each of 
their selected faulty versions. 

4.2. Experiment Design and Results 
 
4.2.1. Variables and Measures. The independent 
variables in the experiment are the subject programs and 
the selected faulty versions. We run all test cases in the 
test pool on the base version of each subject program to 
collect data trace information. And then we run all test 
cases on the selected faulty version to collect data trace 
information. For each combination of subject program and 
faulty version, the computed dependent variables 
measured in the experiment are as follows: 
•  POV Diff: The numbers of test case executions that 

exhibit POV differences.  
•  FVH Diff: The numbers of test case executions that 

exhibit FVH differences. 
•  Cov: The number of test case executions that cover 

the faulty statements in faulty version. The 
calculation results of POV Diff/Cov or FVH Diff/Cov 
imply the fault exposure probability of those test 
cases that cover the faulty statements by checking 
POV differences or FVH differences. 

•  H1_ok, H1_all, H2_ok, and H2_all: Hn_all is the 
number of test case executions that are eligible to use 
localization heuristic n. Hn_ok is the number of test 
case executions for which applying localization 
heuristic n successfully locates faults. The calculation 



results of Hn_ok/Hn_all imply the success percentage 
of applying heuristic n. 

For those faults that are in global data definition 
portion, we use the executable code that references the 
variables containing the faulty data to approximate the 
fault locations.  
 
4.2.2. Threats to Validity. The threats to external validity 
primarily include the degree to which the subject 
programs, faults, and test cases are representative of true 
practice. This is an inherent issue with the Siemens 
programs, which are small and for which most of the 
faulty versions involve simple, one- or two-line manually 
seeded faults. Moreover, our experiment does not 
incorporate other fault-free changes since all the changes 
made on faulty versions deliberately introduce regression 
faults. These threats could be reduced by more 
experiments on wider types of subjects. 

The threats to internal validity are instrumentation 
effects that can bias our results. Faults in our prototype 
and Daikon front end might cause such effects. To reduce 
these threats, we manually inspected the FVH differences 
and FVH spectra on a dozen of traces for each program 
subject. The programs to be selected, the tests to be run, 
or the versions to be selected might cause the 
instrumentation effects. To control these effects, we apply 
our approach to each subject program and each test case. 
But for those programs with more than 10 faulty versions, 
we selected versions based on faulty function coverage 
simply to control the scale of the experiment. 

One threat to construct validity is that our experiment 
makes use of the data trace collected during execution, 
assuming that these precisely capture the internal program 
states for each execution point. However, in practice the 
collected data traces leave out some information for 
engineering considerations. In next section, some related 
reasons that cause such imprecision are discussed. 
 
4.2.3. Data and Analysis. Table 4-10 presents the results 
of the experiment for each subject. The first column 
shows the version number and the second one shows the 
abbreviations of faulty function names. When faults are in 
global data definitions (e.g. global variable value 
initializations in a header file), “decl” is showed instead. 
When faults are distributed among multiple functions, 
multiple functions are listed. The table cells of POV Diff 
and FVH Diff are shaded if FVH Diff is not greater than 
POV Diff. In the last two columns, Hn_ok and Hn_all is 
separated by a “/” mark. The table cells of Hn_ok/Hn_all 
are shaded if Hn_ok/Hn_all is less than one. Table 11 lists 
the statistical summary of the experiment results showing 
the overall success percentage of applying heuristics and 
fault exposure probability by checking POV differences or 
FVH differences. 

Examining the results, it is observed that our approach 
increases the regression fault exposure probability about a 
factor of two compared to only checking program outputs. 
Both of our heuristics are effective in locating the faults 
and heuristic 1 is relatively more effective than heuristic 
2. False positives are those reported faults that are 
indicated by spectra differences but are actually not faults. 
Although we do not quantitatively measure the percentage 
of false positives, while inspecting the reported locations 
of faults, we observed that when faulty functions are 
successfully reported for one test execution, usually there 
are few false positives reported at the same time. 

For those versions whose faults are distributed in 
multiple functions, some test cases can expose all those 
faults in one test run, but some others can expose parts of 
them in one run. For those faults that lie in global data 
definitions, the reported fault locations are distributed in 
multiple places that reference those common faulty data. 
This might direct users’ attention to the actual fault 
locations in the global data definitions. 

For a few versions and tests, our fault localization 
heuristics could not precisely locate the faults. We 
inspected these traces carefully and identified some key 
reasons. For example, we faced some standard problems 
with floating point precision, unable to distinguish some 
minor floating point differences at the exit point of faulty 
functions (e.g. tot_info version 12). As another example, 
the traces capture the complete content for basic pointer-
based data but only capture partial content for those 
complex pointer-based data structures such as linked list 
(e.g. some schedule and schedule2 versions). In addition, 
the traces do not capture the external file stream pointed at 
by file descriptors (e.g. some print_tokens and 
print_tokens2 versions). Since our value spectra 
comparison does not compare the structure among 
pointers, the pointer differences caused by faults are not 
detected when the contents pointed by the correct and 
wrong pointers are the same (e.g. some replace versions). 
Our approach identifies and utilizes FVH differences that 
do not consider the sequence order among variable value 
pairs. For some print_tokens versions, sometimes one 
infected variable value pair is not identified as ED 
because the variable value pair after infection is also 
present elsewhere in the old version when that 
corresponding function is executed multiple times in a test 
run. Although some locations other than the actual faulty 
functions are reported for these central reasons, we 
observe that most of the time they enclose the actual faulty 
functions quite tightly.  

Table 4. print_tokens (test pool size: 4130) 
V Faulty 

Functions 
POV 
Diff 

FVH 
Diff 

Cov H1_ok/
H1_all 

H2_ok/
H2_all 

1 get_token 6 425 2648 425/425  

2 get_token 48 480 1594 480/480  

3 get_token 38 38 38 38/38  



4 decl 28 28 4070 25/26 3/3 

5 get_token 150 1365 1400 1365/1365 10/10 

6 decl 186 324 4070 138/172 198/215 

7 numeric_cas 28 28 385 28/28  

Table 5. print_tokens2 (test pool size: 4115) 
V Faulty 

Functions 
POV 
Diff 

FVH 
Diff 

Cov H1_ok/
H1_all 

H2_ok/
H2_all 

1 get_token 240 249 3081  33/249 

2 get_token 249 249 249 249/249  

3 get_token 33 758 759 758/758  

4 get_token 332 1431 3938 1431/1431 4/398 

5 is_str_constant 173 173 173  173/173 

6 is_num_constant 518 517 701  517/517 
7 is_token_end 207 291 1429  291/291 

8 is_token_end 256 256 3503  256/256 

9 is_token_end 56 60 1429  60/60 

10 is_str_constant 173 173 935  173/173 

Table 6. replace (test pool size: 5542) 
V Faulty 

Functions 
POV 
Diff 

FVH 
Diff 

Cov H1_ok/
H1_all 

H2_ok/
H2_all 

1 dodash 68 295 2862 295/295 0//38 

3 subline 130 142 4176 142/142  

6 locate 96 317 1745  317/317 

7  in_set_2 83 88 1367  88/88 

12  decl 309 5519 5519 5519/5519 0/88 

14  omatch 137 303 1012 5/5 303/303 

15  makepat 60 5009 5009  5009/5009 

17  esc 24 52 52  52/52 

19  getline 3 4204 4657 0/27 4177/4177 

21  getline, etc. 3 5519 5519 5519/5519 33/38 

22 getccl 19 1820 2890 1791/1820 0/18 

27 in_pat_set 263 263 3913  263/263 

Table 7. schedule (test pool size:2650) 
V Faulty 

Functions 
POV 
Diff 

FVH 
Diff 

Cov H1_ok/
H1_all 

H2_ok/
H2_all 

1 find_nth 4 7 1824  7/7 

2 unblock_pro 210 1387 1592 1386/1387 2/17 

3 upgrade_pro 159 305 1358 305/305 1/15 

4 upgrade_pro 294 622 1775 93/566 182/225 

5 upgrade_pro 37 41 1317 41/41  

6 find_nth 4 7 1824  7/7 

7 upgrade_pro   
 unblock_pro 27 18 1831 18/18  

8 upgrade_pro 31 51 1342 13/51 3/6 

9 main 23 23 2627 23/23  

Table 8. schedule2 (test pool size: 2710) 
V Faulty 

Functions 
POV 
Diff 

FVH 
Diff 

Cov H1_ok/
H1_all 

H2_ok/
H2_all 

1 upgrad_prio 65 311 1867 311/311 0/21 

2 get_process 31 36 2667  36/36 

3 get_process 34 133 2667  133/133 

4 get_command 2 67 2580  67/67 

5 new_job 32 64 2660  64/64 

6 get_command 7 2575 2580  2575/2575 

7 get_process 31 74 2667  74/74 

8 put_end 60 97 2610  97/97 

9 finish 0 0 2290   

10 enqueue 46 97 2660 97/97 0/58 

Table 9. tcas (test pool size: 1608) 
V Faulty 

Functions 
POV 
Diff 

FVH 
Diff 

Cov H1_ok/
H1_all 

H2_ok/
H2_all 

1 Non_Crossing_BC 132 131 478  131/131 

2 Inhibit_Biased_C 69 539 886  539/539 

3 alt_sep_test 23 108 1578 108/108  

6 Own_Below_Th 12 14 601  14/14 

7 initialize 36 1578 1578 8/8 1570/1570 

9 Non_Crossing_BD 9 34 886 27/27 7/7 

10 Own_Below_Th 
Own_Above_Th 14 16 886  16/16 

13 decl 4 29 1578 29/29  

37 ALIM 97 373 564  373/373 

Table 10. tot_info (test pool size: 1052) 
V Faulty 

Functions 
POV 
Diff 

FVH 
Diff 

Cov H1_ok/
H1_all 

H2_ok/
H2_all 

1 InfoTbl 158 158 158  158/158 

2 main 10 10 963 10/10  

4 gcf 33 61 668  61/61 

6 decl 46 46 1052 1/1 45/45 

8 gser 199 199 253  199/199 

12 LGamma 33 301 738  272/301 

Table 11. Statistical Summary of Experiment Results  
Items Data Items Data 

Mean(H1_ok/H1_all)   100% Stdev (H1_ok/H1_all) 25.7% 

Mean(H2_ok/H2_all) 100% Stdev (H2_ok/H2_all) 37.6% 

Mean(POV Diff/Cov) 3.5% Stdev (POV Diff/Cov) 26.9% 

Mean(FVH Diff/Cov) 10.3% Stdev (FVH Diff/Cov) 39.1% 

 
5. Related Work 
 

Our approach is related to several different threads of 
research. Statistical summary of structural coverage 
information of a group of passing and failing tests on a 
faulty version is also used to guide fault localization 
[2][13]. These approaches can be ineffective when Cov is 
much greater than POV Diff in the faulty version or when 
execution information is provided for only a few tests. 
These approaches observe a set of passing and failing tests 
executions on a new version to locate faults in statement 
granularity; in contrast, our approach observes a single 
test execution on both the old and new versions to locate 
faults in function or code fragment granularity. Moreover, 
the infected variable values together with reported fault 
locations in our approach can better aid actual fault 
location determination and debugging process. Our 



approach can complement existing structural approaches 
to improve fault localization effectiveness. 

A dynamic slice of a program is the set of statements 
that actually affect the value of a selected variable at a 
specific location after the program is executed against a 
given test or tests [1]. It is used in locating the faulty 
statement given the infected variable values. Our approach 
complements this dynamic slicing approach since the 
results of our approach, the infected variable values, can 
provide inputs to the dynamic slicing approach. 

Fault propagation has been broadly investigated in 
testing literature. The RELAY model is intended to 
understand how a fault may or may not cause a failure on 
execution of some test datum [20]. PIE (propagation, 
infection, and execution) analysis is used to assess the 
probability that under a given input distribution, if a fault 
exists in a code component, it will result in a failure [21]. 
This approach focuses on the estimation and analysis of 
fault exposure probability with the goal of generating or 
selecting test cases that propagate the faults to outputs. 
However, our approach focuses on regression testing fault 
exposure and localization by proactively exposing the 
faults even before they are (or even if they are not) 
propagated to outputs. Our approach can also offer an 
empirical way to study the fault propagation behaviors to 
complement existing analytic approaches. 

Mutation testing is a specific form of fault injection 
that consists of creating different versions of a program by 
making small syntactic changes. Weak mutation testing 
requires that a test case causes a mutated version to 
compute a different value than original version does on at 
least one execution of mutated version in contrast to the 
strong mutation testing that requires mutated and original 
versions to produce different output [11].  The difference 
between our approach and traditional output-checking 
fault exposure approach is analogous to weak and strong 
mutation testing. Both weak mutation testing and our 
approach do not require the faults to be propagated to 
outputs. Weak mutation testing observes the exposure of 
hypothesized and seeded faults by a test for estimation 
purpose but our approach is observing the exposure of 
actual faults by a test for regression fault exposure and 
localization purpose. Moreover, weak mutation testing is 
primarily a unit testing technique, but our approach can be 
either system or unit testing technique by checking the 
internal behaviors inside a system or unit. 

Runtime assertion checking [3][18] and dynamically 
inferred invariant detection [6][9] also check inside the 
black box. But these approaches do not focus on value 
infection caused by regression faults. Some regression 
faults might cause variable values to be different from the 
correct ones but still meet the assertions or invariants. Our 
approach can expose those faults that are exposed by these 
approaches when those violated assertions or invariants 
are defined in function entry or exit points. Again because 

of a different focus, assertion or invariant violations are 
less effective than our approach in locating faults since the 
infected variable values might be propagated across 
functions through certain number of assertions or 
invariants without violating them before they reach the 
points where an assertion or invariant is violated. The 
assertion or invariant violation locations might not be 
close to the fault locations. 

The HERCULES deployment framework is proposed 
for upgrading components while keeping multiple 
versions of a component running [5]. The specific 
subdomain that a new version of a component correctly 
addresses is formally specified. For each invocation of the 
component, multiple versions of the component are run in 
parallel and the results from the version whose specified 
domain contains this invocation’s parameters are selected. 
Handling of incremental interface semantics changes 
whose subdomain can be formally specified in our 
approach is similar to the HERCULES approach. 
However the HERCULES approach cannot handle the 
revolutionary interface semantics changes or the 
incremental interface semantics changes whose subdomain 
cannot be formally specified, which are common for bug-
fixing and some other evolutions. 

The relative debugging technique allows users to 
define a series of assertions between a reference program 
and a suspect program [19]. These assertions specify key 
data structures that must be equivalent at specific 
locations in two programs. According to these assertions, 
a relative debugger automatically compares the data 
structures and reports any differences while both versions 
are executed concurrently. It mainly aims at those data-
centric scientific programs that are ported to, or rewritten 
for, another computer platform, e.g. a sequential language 
program being ported to a parallel language. Our 
approach can be applied in a broader scope of evolutions 
for more kinds of programs. Our approach is more 
effective in fault localization based on a fault propagation 
model and provides higher quality assurance and finer-
grained controls over changes by checking value spectra 
instead of only checking user-specified data structures at 
user-specified locations. 

Delta debugging algorithm isolates the relevant 
variables and values by systematically narrowing the 
internal program state differences between a passing and a 
failing test execution on a faulty version [22]. Our 
approach makes use of the internal program state 
differences between the test executions of the same test on 
an old version and a new version to expose regression 
faults and locate their locations. In their approach, the 
internal program states at only a few user-specified 
locations are captured by using memory graph [23], which 
are more accurate and complete than those captured by 
instrumenting source code with Daikon front-end in our 
approach. However, using memory graph in more than a 



few locations is not scalable. Their approach can assist in 
debugging those faults besides regression ones, which are 
mainly targeted by our approach. However, their approach 
may require a large number of additional test runs and the 
symptoms for those test run failures be easily identified, 
e.g. program crash.   
 
6. Concluding Remarks 
 

We have developed a technique to augment and 
complement existing regression testing and to improve 
fault localization through comparing internal values across 
program versions.  Checking inside the black box can 
improve testing effectiveness by increasing fault exposure 
probability in contrast to just checking the outputs of the 
black box. In regression system testing, our approach not 
only checks the input/outputs of the modified units inside 
the system black box, as traditional unit testing does, but 
also checks the internal variable values of the modified 
units in addition to the behaviors of their callees inside the 
unit black box. Our approach can expose faults without 
requiring them to be propagated outside the faulty 
function or across function boundaries to reach outputs. 
Our approach has other potential applications as well. For 
example, when the outputs of the system under regression 
testing are not convenient to check automatically, e.g. 
GUI outputs, our approach can be used to check internal 
program states other than the system outputs   these then 
act as proxies for the actual outputs. Moreover, the change 
impact boundaries in our approach can be used in 
dynamic impact analysis a posterior after changes are 
made complementing the existing dynamic impact 
analysis a priori before changes are made [14]. Finally our 
approach can be easily adapted to use in a component-
based system or object-oriented system.  

Programmers are reluctant to make changes to their 
code in the fear of breaking the existing code. Our 
approach can alleviate this fear by enabling them to 
understand and control the consequences of their changes 
in a fine-grained way. Therefore changes are exploited to 
improve the reliability and dependability during program 
evolution.  
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