
Checking Inside the Black Box: Regression Fault Exposure and Localization
Based on Value Spectra Differences

Tao Xie David Notkin
Department of Computer Science & Engineering, University of Washington

{taoxie, notkin}@cs.washington.edu

Technical Report UW-CSE-02-12-04
December 2002

Abstract

We present a new fault exposure and localization

approach intended to increase the effectiveness of
regression testing. In particular, we extend traditional
regression testing, which strongly focuses on black box
comparisons, to compare internal program states. These
value spectra differences allow a more detailed
comparison of executions of the new and old versions of a
program. In particular, our approach checks inside the
program black box to observe unit behaviors and further
checks inside the unit black box to observe some internal
variable values besides the ones propagated outside the
unit. This approach exposes faults without requiring the
faults to be propagated to the outputs of the system or
unit. Two heuristics are proposed to locate regression
faults based on a fault propagation model. An experiment
is conducted to assess their effectiveness. The initial
results show our value-spectra-comparison approach can
increase the regression fault exposure probability
effectively and identify the locations of regression faults
accurately.

1. Introduction

“From the value of testing perspective, information
hiding reduces the ability for faults to propagate to an
observable output and hence reduces the likelihood that
faults will be revealed during testing” [15].

Traditional regression testing compares behaviors of a

new version to the behaviors of an old version in the hope
of exposing any introduced fault. When the outputs
produced by two versions are different, regression faults
are exposed. However, even if a variable value difference
is caused immediately after a new faulty statement is
executed, the fault might not be propagated to the
observable outputs due to the information loss or hiding
effects. Checking inside the black box has been used to
expose faults complementing the traditional black box
output checking approach. Runtime assertion or inferred
invariant checking is used to validate that certain

properties inside the black box are satisfied during
program execution [3][6][9][18]. In the regression testing
context, comparing structural program spectra inside the
black box between versions, e.g. path, branch, or
execution trace spectra, etc., has been investigated [10].
The experimental results from this work show that when
the black box outputs between versions are different, the
structural program spectra are likely also to be different,
though unfortunately the reverse is not true. This leads to
a hypothesis that structural program spectra might not
sufficiently capture a program’s stable behaviors, which
are supposed to be kept the same across versions. For
example, restructuring or refactoring can change a
program’s structural program spectra but still preserve the
same meaning [7][8].

To check relatively stable behaviors inside the black
box across versions, we propose a new type of program
spectra called value spectra. Value spectra capture
internal program states during test executions, which are
expected to be more stable across versions. Value spectra
differences are used to expose regression faults and assist
fault localization. Mapping and filtering mechanisms are
used to accommodate those changes that might cause
value spectra differences that do not introduce regression
faults. The next section discusses value spectra
differences. Section 3 presents the applications of value
spectra differences in regression fault exposure and
localization. Section 4 describes the experiment that is
conducted to assess our approach. Section 5 discusses
related work. Finally, Section 6 concludes with a
discussion.

2. Value Spectra Differences

2.1. Internal Program State Transition

The execution of a program can be considered as a
sequence of internal program states [22] . Each internal
program state comprises the program’s variables and their
values at a particular execution point. Each program
execution unit, in the granularity of statement, block, code

fragment, function, or component, receives an internal
program state and then produces a new one. The program
execution points can be the entry and exit points of a user
function execution when the program execution units are
those code fragments separated by user function call sites.
Program output statements (usually I/O output operations)
can appear within any of those program execution units.
Figure 2 shows the internal program state transition chain
of a simple C sample in Figure 1 when the internal
program states are captured in the entry and exit points of
user functions.

In an internal program state, those variable values at
the entry point of a user function execution comprise that
function’s argument values and global variable values,
which are captured by a memory snapshot at the function
entry point. Those variable values at the function exit
point comprise function return values, parameter passing
out values, and global variable values, which are visible
outside the function. At the function exit point, although
some argument values are not visible externally, they are
still meaningful with respect to program validation since
the post-condition specification of that function usually
involves these values. Therefore, the values of all
argument variables at the function exit point are also
captured in the internal program state for that function exit
point. The variable values in the internal program states at
the entry and exit points of a function execution form an
entry-exit variable value pair for that function execution,
representing the input/output of that function execution for
our use.

2.2. Value Spectra

A program spectrum characterizes a program’s behavior
[17]. Several classes of program spectra are proposed in
literature, including path spectra, branch spectra, data-
dependence spectra, execution trace spectra, and output
spectra [4][10]. Except for output spectra, which record
the outputs produced by a program as it executes, these
spectra are based on execution structure. A new class of
program spectra, value spectra, is proposed in this
research. Value spectra track the variable values in
internal program states, which are exercised as a program
executes. Output spectra can be viewed as a special kind
of value spectra, recording the system outputs produced
by a program as it executes.

In this research, four distinct types of value spectra are
proposed:
• Program output value spectrum (POV). A

program output value spectrum records the output
values produced by a program as it executes. It is the
same as the earlier output spectrum [10].

• Function value hit spectrum (FVH). For each entry-
exit variable value pair for a function execution, a

function value hit spectrum indicates whether or not
that pair is exercised.

• Function value count spectrum (FVC). For each
entry-exit variable value pair for a function execution,
a function value count spectrum indicates the number
of times that pair is exercised.

• Execution-trace value spectrum (ETV). The
execution-trace value spectrum records the sequence
of the entry-exit variable value pairs for the functions
traversed as a program executes.

/ * s a m p l e . c – S a m p l e C p r o g r a m t o o u t p u t 2
w h e n 0 < m a x < 1 0 , o u t p u t 1 w h e n m a x > = 1 0 ,
a n d o u t p u t 0 w h e n m a x < = 0 , w h e r e m a x i s t h e
m a x i m u m o f t w o i n t e g e r s . I f t h e p r o g r a m
r e c e i v e s f e w e r o r m o r e t h a n t w o i n t e g e r s , i t
o u t p u t s “ W r o n g a r g u m e n t s ! ” m e s s a g e . * /

i n c l u d e < s t d i o . h >

i n t m a x (i n t a , i n t b)
{

i f (a > = b) {
r e t u r n a ;

} e l s e {
r e t u r n b ;

}
}

i n t m a i n (i n t a r g c , c h a r * a r g v [])
{

i n t i , j ;
i f (a r g c ! = 3) {

p r i n t f (“ W r o n g a r g u m e n t s ! ”) ;
}
i = a t o i (a r g v [1]) ;
j = a t o i (a r g v [2]) ;
i f (m a x (i , j) > 0) {

i f (m a x (i , j) < 1 0) {
p r i n t f (“ 2 ”) ;

} e l s e {
p r i n t f (“ 1 ”) ;

}
} e l s e {

p r i n t f (“ 0 ”) ;
}
r e t u r n 0 ;

}
Figure 1. A sample C program

 3

“1”

“7”

 3

“1”

“7”

 0

argv[2]

main
entry
state

max
 entry
state

max
 exit
state

main
 exit
state

output
2

argc

argv[1] b 7

1a

7

b

return

7

1a

argv[2]

argc

argv[1]

return

max
 entry
state

max
 exit
state

b 7

1a

7

b

return

7

1a

Figure 2. Internal program state transition chain of
the sample C program execution with input “1 7”

FVH, FVC, and ETV reflect the internal program

states as a program executes. Table 1 shows the value
spectra for the sample C program execution with input “1
7”. Profiled entities of value spectra are those entry-exit
variable value pairs for user function executions. Profiled
entities of FVH or FVC have no ordering among them but
those of ETV do have. In the end of each FVC profiled
entity, a count marker of “* NUM” is used to show that

profiled entity is exercised NUM times. Returning markers
of “∨ ” are inserted in ETV profiled entity sequence to
indicate a call hierarchy [16].

Table 1. Value spectra for the sample program with
input “1 7”

Spectra Profiled Entities
FVH Smain3_“1”_“7”|3_“1”_“7”_0,

Smax1_7|1_7_7
FVC Smain3_“1”_“7”|3_“1”_“7”_0 * 1,

Smax1_7|1_7_7 * 2
ETV Smain3_“1”_“7”|3_“1”_“7”_0,

Smax1_7|1_7_7, ∨ , Smax1_7|1_7_7, ∨ , ∨
POV Output 2

Smain3_“1”_“7”| 3_“1”_“7”_0:
 main:entry(argc=3,argv[1]=“1”,argv[2]=“7”),
 exit(argc=3, argv[1]=“1”,argv[2]=“7”,return=0)
Smax1_7|1_7_7:
 max:entry(a=1,b=7),
 exit(a=1,b=7,return=7)
Spectrum type S1 subsumes spectrum type S2 if and

only if whenever the S2 spectrum for program P, version
P’, and input i differ, the S1 spectrum for P, P’, and i
differ. Spectrum type S1 strictly subsumes spectrum type
S2 if S1 subsumes S2 and for some program P, version P’,
and i, the S1 spectrum differs but the S2 spectrum does
not. Spectrum types S1 and S2 are incomparable if neither
S1 strictly subsumes S2 nor S2 strictly subsumes S1 [10].

ETV strictly subsumes FVC and FVC strictly
subsumes FVH. POV is incomparable with any of ETV,
FVC, and FVH, since the program output statements
inside a particular function body might output the variable
values that are not captured in that function’s entry-exit
variable value pair. For example, when those printf
statements in main function body are shuffled, the
program still has the same spectra of ETV, FVC, or FVH,
but different POV spectra. On the other hand, the
executions with different ETV, FVC, or FVH spectra
might have the same POV spectra. However, when those
function bodies containing program output statements are
not modified in version P’, ETV strictly subsumes POV.

3. Applying Value Spectra Differences

3.1. Regression Fault Exposure

Among those value spectra that reflect internal
program states, FVH are most stable during program
evolution because FVH does not consider structural
information or function execution counts, which are
relatively volatile during program evolution. In our
approach, FVH differences are used to expose regression
faults. However, two kinds of FVH differences are
handled specially to accommodate some common fault-
free changes that cause these FVH differences. When
there is a FVH entry-exit variable value pair in the old

version but not in the new version, no regression faults are
reported because of that, since it is common that a
function execution in the old version might be inlined or
removed in the new version. Moreover, when there is a
FVH entry-exit variable value pair in the new version but
not in the old version and the function for that value pair
is newly added in the new version, no regression faults are
reported. Therefore, only when there is a FVH entry-exit
variable value pair in the new version but not in the old
version and the function for that value pair exists in the
old version, are regression faults reported. In the context
of our approach, FVH differences between the old and the
new versions refer to this case alone. Moreover, when
some variables in a variable value pair are pointers, the
actual data content eventually pointed by them are
compared rather than the pointers themselves, since all
pointers can have different values in alternative runs but
still have the same semantics. Memory graph comparison
can compare the entire structure among pointers in
addition to the data pointed by them but might not be
scalable [23].

3.2. Fault Propagation

The details of value spectra differences can show how
internal state transitions in a later version deviate from the
ones in an earlier version. These differences can provide
insights into fault propagation in the execution of the later
version. There are two primary reasons that faults are not
found by techniques that check for differences in the unit
or program outputs. The first reason is that immediately
after the execution of faulty code, environmental values,
such as variable values in scope or outputs to external I/O
devices, might be the same as the ones when the correct
code is executed. The second reason is that even when the
environmental values are different than the correct ones
immediately after the execution of the faulty code, which
is called immediate value infection, this value deviation
might not be propagated to observable unit or program
outputs. Our approach may expose faults that are not
found by traditional techniques due to the second reason.

Some variable values at certain points after faulty code
execution might differ from the correct one due to the
propagation of immediate value infection. This
phenomenon is called propagated value infection. The
variables with different values from the correct ones are
called infected variables. The value infection in the entry
or exit point of a function execution can cause FVH
differences being observed in our approach.

Sometimes an immediate value infection might not be
propagated to the exit point of a faulty function but might
be propagated to the entry points of some callees of that
faulty function. Sometimes an immediate value infection
might be propagated to the exit point of that faulty

function, but the scopes of all the infected variables are
limited in that function, not being visible outside that
function. Sometimes an immediate value infection is
propagated outside that faulty function to its call site and
further to the entry point of some functions executed later.
If a value infection is finally propagated to program
outputs, checking the outputs can expose a regression
fault.

3.3. Fault Localization Heuristics

Those locations of faults can be pinpointed based on
details of FVH differences according to a fault
propagation model. In particular, there is an enclosing
relationship between two variable value pairs if the entry
point of the former pair is executed before the entry point
of the latter one but its exit point is executed after the exit
point of the latter one. If a variable value pair encloses
another one, the function invocation corresponding to the
former pair is the ancestor caller of the one corresponding
to the latter pair. The ordering among variable value pairs
is sorted based on the execution time of their entry points
with the earliest first. We have defined two types of FVH
differences:
• Entry-Same-eXit-Diff (ESXD). In a variable value

pair for a function execution in the new version, the
entry point variable values are the same as those in a
pair for the same function execution in the old
version, but the exit point variable values are
different. Notice that if a program crash site occurs
within a function execution in the new version, there
are no exit point variable values available for that
function execution in the new version; thus the exit
point variable values differ from those in the old
version.

• Entry-Diff (ED). In a variable value pair for a
function execution in the new version, the entry point
variable values are different from those in any pair for
the same function execution in the old version. As is
discussed in Section 3.1, in the new version a variable
value pair of a newly created function is filtered out,
not being considered as FVH differences.

An ESXD’s variable values at the entry point are not
infected but its variable values at the exit point are
infected. In contrast, an ED’s variable values at the entry
point have already been infected. Those variable value
pairs that do not show FVH differences are usually not
infected in either their entry or exit points. Our fault
localization heuristics are described as follows:
• Heuristic 1. If the variable value pair for an ED’s

caller execution is not an ED and neither an ED nor
an ESXD is present between the variable value pair
for that ED’s caller execution and that ED, fault

locations are likely to be those statements executed
between the ED’s caller and that ED’s call site.

• Heuristic 2. If an ESXD encloses neither an ED nor
another ESXD, fault locations are likely to be those
statements executed within the ESXD’s function
body.

The fault locations are likely to be within those
statements executed within ESXD or before ED. Above
two heuristics are to narrow down the candidate scope for
fault locations based on the fault propagation effect.

Figure 3 shows fault propagation call trees for two test
executions on a faulty version of tot_info program subject
used in the experiment described in Section 4. In the call
trees, each node is associated with a function execution
and parent node calls its children nodes. The execution
order among function executions is from the top to the
bottom, with the earliest one in the top. An “ED” or
“ESXD” in front of a function name denotes FVH
differences. The names of the faulty functions that are
located using our heuristics successfully are showed in
bold font. In the first call tree, the fault is not propagated
to the exit point of the faulty function so neither
traditional system nor unit testing can expose that fault. In
the second fault propagation call tree, the fault is
propagated through two function boundaries and reaches
the output statement in main function body, being
observed by checking program outputs.

main (execution of test t58 on faulty version 9 of tcas program)
 initialize
 alt_sep_test
 Non_Crossing_Biased_Climb
 Inhibit_Biased_Climb
 Own_Above_Threat
 Non_Crossing_Biased_Descend
 Inhibit_Biased_Climb
 (ED)Own_Below_Threat

 (ED)ALIM
 Own_Above_Threat

main (execution of test t91 on faulty version 9 of tcas program)
 initialize
 (ESXD) alt_sep_test
 Non_Crossing_Biased_Climb
 Inhibit_Biased_Climb
 Own_Above_Threat
 ALIM
 Own_Below_Threat
 (ESXD)Non_Crossing_Biased_Descend
 Inhibit_Biased_Climb
 Own_Below_Threat

Figure 3. Fault propagation call trees

3.4. Spectra Evolution Accommodations

During program evolution, some program changes
cause FVH differences without introducing regression

faults. Examples of this class of changes are summarized
in Table 2 with respect to FVH differences they cause.

Table 2. Common Changes in Program Evolution
Category Exemplary Changes

FVH-
Insensitive
Changes

Changes that do not cause FVH
differences

Output-
Insensitive
Changes

Changes that make non-output variable
values different but keep output variable
values the same in function exit point.
Adding/removing function call sites Call Site

Changes Changing input values to function calls
Adding/removing global variables
Adding/removing function parameters
Changing parameter/return types

Interface
Syntax
Changes

Changing function/parameter names
Changes of a function to make function
exit-point variable values different for
subdomains of inputs and the
subdomains can be formally specified

Incremental
Interface
Semantics
Changes

Same as above except that the
subdomains cannot be formally specified

Revolutionary
Interface
Semantics
Changes

Changes of a function to make function
exit-point variable values different for all
inputs.

The first category comprises those changes that do not
cause FVH differences, such as removing or inlining
function calls, switching function call sites while
preserving the meaning, adding new functions, etc. The
second category comprises output-insensitive changes.
These changes do not cause functional behavior
differences as seen outside a function but cause
differences of those non-output variable values at exit
point, such as those values of argument variables. For this
type of changes, those affected argument variables at exit
point need to be filtered out manually before FVH is
compared in our approach.

The third category comprises call site changes. These
changes take place inside a function’s body causing FVH
differences for its callee invocations, but not causing the
FVH differences in the variable value pair of that
function. Examples of call site changes include when
inputs to callee invocations are changed or when a
function call site is added in a new version and that
function already existed in the old version. Since these
may well be symptoms of regression faults, this kind of
change needs to be identified and filtered out by users.

The fourth category includes interface syntax changes.
These changes affect the syntax of function interfaces,
such as adding or removing function parameters or global
variables, changing function or parameter names,
changing parameter or return types, etc. However, these
changes might not change the semantics of functions,
which means the values of corresponding variables in

FVH variable value pairs are still the same when some
mappings between variable names in the old and new
versions are specified.

The fifth category is incremental interface semantics
changes. These changes cause semantic differences
between a function in the old and new version for some
subdomains of inputs. But for those inputs outside these
subdomains, two versions of function executions still have
the same variable value pair. Sometimes the subdomains
can be formally specified using predicates, especially
when those changes are specifically intended to enable the
handling of an additional range of input values (such as
better error checking). But sometimes the subdomains are
difficult to formally specify, especially when the changes
are for bug-fixing purposes and the exposure conditions of
those bugs are not easy to capture (or are not perceived as
worth specifying by the programmers). When the
subdomains can be formalized by users, these predicates
can be used to filter out those variable value pairs in the
new version whose input variable values satisfy them in
addition to those subsequently affected variable value
pairs specified by users. When the subdomains are fault-
inducing inputs and cannot be or are not formalized, they
can be specified automatically as those fault-inducing
FVH differences found by using our approach in previous
regression testing cycle. The old version offers some
reliable behaviors outside of the known fault-inducing
input domain, which can be used to protect the program
from being introduced new incidental errors during bug-
fixing modifications.

The final category is revolutionary interface semantics
changes. These changes make the behaviors of a function
might be different between the old and new versions for
all inputs. The affected function’s variable value pairs and
their subsequently affected variable value pairs need to be
filtered out by users in the new version.

Mapping and filtering are two main mechanisms to
handle those program changes that cause FVH differences
but might not induce regression faults. Although this pre-
processing before FVH comparison might require some
manual efforts, several mechanisms can facilitate this
process and reduce the cost. First, function declaration
differences between the old and new versions attained by
static analysis can guide the mapping and filtering that are
related to interface syntax changes and some other
changes. Second, the execution of a full-function-
coverage or maximal-function-coverage test suite, instead
of the whole test pool, can be used as trial-and-test pilot
samples on the new version. Their FVH differences can
guide the mapping and filtering interactively and
iteratively, which can be generalized and applied to the
rest of the test executions. Finally a visualizer (to be
implemented in future work) could show FVH differences
visually making user inspection and manipulation easier.

Finer-grained control of those change-affected variable
value pairs is needed to specify the change impact
boundaries— those function invocations that tightly
enclose the FVH differences caused by fault-free program
changes. We believe that while programmers or testers
perform the mapping and filtering, they might have a
deeper understanding of the changes made to the code and
their impact from a dynamic and value-oriented
perspective in addition to a static and structural
perspective so that they might have more confidence in
these code changes.

4. Experiment

4.1. Experiment Instrumentation

4.1.1. Tool prototype. We prototyped this approach to
determine the practical utility. The basic idea is to take
two versions of a program and to identify spectral
differences between their executions on the same test. The
Daikon [6] front end is used to instrument program code
to collect data traces, which is the source from which we
compute value spectra. We have only prototyped the key
underlying mechanisms of our approach and users can
directly edit a configuration file to manage filtering and
mapping; this activity is supported by the declaration file
that Daikon produces. Our tool can display value spectra
differences in fault propagation call trees (as shown in
Figure 3) and report potential fault locations. The
scalability of data trace collection and value spectra
comparison can be addressed by selective instrumentation.
Only instrumenting the modified functions and those
functions that are directly called by modified functions to
collect data trace in the new version can approximate the
results while reducing costs. But the same execution
points in the old version still need to be instrumented and
run to collect comparison data points a priori or posterior.

4.1.2. Subject programs. Seven C programs are used as
subjects in the experiment. The researchers at Siemens
Research created these seven programs with faulty
versions and a pool of test cases [12]; these programs are
popularly referred as the Siemens programs and are
broadly used in regression testing empirical studies [10].
The researchers constructed the faulty versions by
manually seeding faults that were as realistic as possible.
Each faulty version differs from the original program by
one to five lines of code. The researchers only kept the
faults that were detected by at least three and at most 350
test cases in the test pool. Table 3 shows basic information
about these seven subject programs. The last column
contains two numbers. The first number is the number of
selected faulty versions in this experiment and the second

number is the total number of faulty versions of each
program.

Table 3. Subject programs in the experiment
Program Function

Number
LOC

(Executable
Test pool

size
Faulty

versions
print_tokens 18 402 4130 7/7
print_tokens 19 483 4115 10/10
replace 21 516 5542 12/31
schedule 18 299 2650 9/9
schedule2 16 297 2710 9/9
tcas 9 138 1608 9/41
tot_info 7 346 1052 6/23

4.1.3. Test suites and versions. In the experiment, we use
all the test cases in test pool for each program to reduce
the potential threats to the validity introduced while
selecting test cases for the experiment. For those programs
with more than 10 faulty versions, we only pick those
faulty versions in order from version 1 to make each
selected version have at least one faulty function that has
not yet occurred in previously selected versions. By doing
so, the detailed results for each selected version can be
presented in this paper given the limited space. Basically
we conduct the experiment on base programs and each of
their selected faulty versions.

4.2. Experiment Design and Results

4.2.1. Variables and Measures. The independent
variables in the experiment are the subject programs and
the selected faulty versions. We run all test cases in the
test pool on the base version of each subject program to
collect data trace information. And then we run all test
cases on the selected faulty version to collect data trace
information. For each combination of subject program and
faulty version, the computed dependent variables
measured in the experiment are as follows:
• POV Diff: The numbers of test case executions that

exhibit POV differences.
• FVH Diff: The numbers of test case executions that

exhibit FVH differences.
• Cov: The number of test case executions that cover

the faulty statements in faulty version. The
calculation results of POV Diff/Cov or FVH Diff/Cov
imply the fault exposure probability of those test
cases that cover the faulty statements by checking
POV differences or FVH differences.

• H1_ok, H1_all, H2_ok, and H2_all: Hn_all is the
number of test case executions that are eligible to use
localization heuristic n. Hn_ok is the number of test
case executions for which applying localization
heuristic n successfully locates faults. The calculation

results of Hn_ok/Hn_all imply the success percentage
of applying heuristic n.

For those faults that are in global data definition
portion, we use the executable code that references the
variables containing the faulty data to approximate the
fault locations.

4.2.2. Threats to Validity. The threats to external validity
primarily include the degree to which the subject
programs, faults, and test cases are representative of true
practice. This is an inherent issue with the Siemens
programs, which are small and for which most of the
faulty versions involve simple, one- or two-line manually
seeded faults. Moreover, our experiment does not
incorporate other fault-free changes since all the changes
made on faulty versions deliberately introduce regression
faults. These threats could be reduced by more
experiments on wider types of subjects.

The threats to internal validity are instrumentation
effects that can bias our results. Faults in our prototype
and Daikon front end might cause such effects. To reduce
these threats, we manually inspected the FVH differences
and FVH spectra on a dozen of traces for each program
subject. The programs to be selected, the tests to be run,
or the versions to be selected might cause the
instrumentation effects. To control these effects, we apply
our approach to each subject program and each test case.
But for those programs with more than 10 faulty versions,
we selected versions based on faulty function coverage
simply to control the scale of the experiment.

One threat to construct validity is that our experiment
makes use of the data trace collected during execution,
assuming that these precisely capture the internal program
states for each execution point. However, in practice the
collected data traces leave out some information for
engineering considerations. In next section, some related
reasons that cause such imprecision are discussed.

4.2.3. Data and Analysis. Table 4-10 presents the results
of the experiment for each subject. The first column
shows the version number and the second one shows the
abbreviations of faulty function names. When faults are in
global data definitions (e.g. global variable value
initializations in a header file), “decl” is showed instead.
When faults are distributed among multiple functions,
multiple functions are listed. The table cells of POV Diff
and FVH Diff are shaded if FVH Diff is not greater than
POV Diff. In the last two columns, Hn_ok and Hn_all is
separated by a “/” mark. The table cells of Hn_ok/Hn_all
are shaded if Hn_ok/Hn_all is less than one. Table 11 lists
the statistical summary of the experiment results showing
the overall success percentage of applying heuristics and
fault exposure probability by checking POV differences or
FVH differences.

Examining the results, it is observed that our approach
increases the regression fault exposure probability about a
factor of two compared to only checking program outputs.
Both of our heuristics are effective in locating the faults
and heuristic 1 is relatively more effective than heuristic
2. False positives are those reported faults that are
indicated by spectra differences but are actually not faults.
Although we do not quantitatively measure the percentage
of false positives, while inspecting the reported locations
of faults, we observed that when faulty functions are
successfully reported for one test execution, usually there
are few false positives reported at the same time.

For those versions whose faults are distributed in
multiple functions, some test cases can expose all those
faults in one test run, but some others can expose parts of
them in one run. For those faults that lie in global data
definitions, the reported fault locations are distributed in
multiple places that reference those common faulty data.
This might direct users’ attention to the actual fault
locations in the global data definitions.

For a few versions and tests, our fault localization
heuristics could not precisely locate the faults. We
inspected these traces carefully and identified some key
reasons. For example, we faced some standard problems
with floating point precision, unable to distinguish some
minor floating point differences at the exit point of faulty
functions (e.g. tot_info version 12). As another example,
the traces capture the complete content for basic pointer-
based data but only capture partial content for those
complex pointer-based data structures such as linked list
(e.g. some schedule and schedule2 versions). In addition,
the traces do not capture the external file stream pointed at
by file descriptors (e.g. some print_tokens and
print_tokens2 versions). Since our value spectra
comparison does not compare the structure among
pointers, the pointer differences caused by faults are not
detected when the contents pointed by the correct and
wrong pointers are the same (e.g. some replace versions).
Our approach identifies and utilizes FVH differences that
do not consider the sequence order among variable value
pairs. For some print_tokens versions, sometimes one
infected variable value pair is not identified as ED
because the variable value pair after infection is also
present elsewhere in the old version when that
corresponding function is executed multiple times in a test
run. Although some locations other than the actual faulty
functions are reported for these central reasons, we
observe that most of the time they enclose the actual faulty
functions quite tightly.

Table 4. print_tokens (test pool size: 4130)
V Faulty

Functions
POV
Diff

FVH
Diff

Cov H1_ok/
H1_all

H2_ok/
H2_all

1 get_token 6 425 2648 425/425

2 get_token 48 480 1594 480/480

3 get_token 38 38 38 38/38

4 decl 28 28 4070 25/26 3/3

5 get_token 150 1365 1400 1365/1365 10/10

6 decl 186 324 4070 138/172 198/215

7 numeric_cas 28 28 385 28/28

Table 5. print_tokens2 (test pool size: 4115)
V Faulty

Functions
POV
Diff

FVH
Diff

Cov H1_ok/
H1_all

H2_ok/
H2_all

1 get_token 240 249 3081 33/249

2 get_token 249 249 249 249/249

3 get_token 33 758 759 758/758

4 get_token 332 1431 3938 1431/1431 4/398

5 is_str_constant 173 173 173 173/173

6 is_num_constant 518 517 701 517/517
7 is_token_end 207 291 1429 291/291

8 is_token_end 256 256 3503 256/256

9 is_token_end 56 60 1429 60/60

10 is_str_constant 173 173 935 173/173

Table 6. replace (test pool size: 5542)
V Faulty

Functions
POV
Diff

FVH
Diff

Cov H1_ok/
H1_all

H2_ok/
H2_all

1 dodash 68 295 2862 295/295 0//38

3 subline 130 142 4176 142/142

6 locate 96 317 1745 317/317

7 in_set_2 83 88 1367 88/88

12 decl 309 5519 5519 5519/5519 0/88

14 omatch 137 303 1012 5/5 303/303

15 makepat 60 5009 5009 5009/5009

17 esc 24 52 52 52/52

19 getline 3 4204 4657 0/27 4177/4177

21 getline, etc. 3 5519 5519 5519/5519 33/38

22 getccl 19 1820 2890 1791/1820 0/18

27 in_pat_set 263 263 3913 263/263

Table 7. schedule (test pool size:2650)
V Faulty

Functions
POV
Diff

FVH
Diff

Cov H1_ok/
H1_all

H2_ok/
H2_all

1 find_nth 4 7 1824 7/7

2 unblock_pro 210 1387 1592 1386/1387 2/17

3 upgrade_pro 159 305 1358 305/305 1/15

4 upgrade_pro 294 622 1775 93/566 182/225

5 upgrade_pro 37 41 1317 41/41

6 find_nth 4 7 1824 7/7

7 upgrade_pro
 unblock_pro 27 18 1831 18/18

8 upgrade_pro 31 51 1342 13/51 3/6

9 main 23 23 2627 23/23

Table 8. schedule2 (test pool size: 2710)
V Faulty

Functions
POV
Diff

FVH
Diff

Cov H1_ok/
H1_all

H2_ok/
H2_all

1 upgrad_prio 65 311 1867 311/311 0/21

2 get_process 31 36 2667 36/36

3 get_process 34 133 2667 133/133

4 get_command 2 67 2580 67/67

5 new_job 32 64 2660 64/64

6 get_command 7 2575 2580 2575/2575

7 get_process 31 74 2667 74/74

8 put_end 60 97 2610 97/97

9 finish 0 0 2290

10 enqueue 46 97 2660 97/97 0/58

Table 9. tcas (test pool size: 1608)
V Faulty

Functions
POV
Diff

FVH
Diff

Cov H1_ok/
H1_all

H2_ok/
H2_all

1 Non_Crossing_BC 132 131 478 131/131

2 Inhibit_Biased_C 69 539 886 539/539

3 alt_sep_test 23 108 1578 108/108

6 Own_Below_Th 12 14 601 14/14

7 initialize 36 1578 1578 8/8 1570/1570

9 Non_Crossing_BD 9 34 886 27/27 7/7

10 Own_Below_Th
Own_Above_Th 14 16 886 16/16

13 decl 4 29 1578 29/29

37 ALIM 97 373 564 373/373

Table 10. tot_info (test pool size: 1052)
V Faulty

Functions
POV
Diff

FVH
Diff

Cov H1_ok/
H1_all

H2_ok/
H2_all

1 InfoTbl 158 158 158 158/158

2 main 10 10 963 10/10

4 gcf 33 61 668 61/61

6 decl 46 46 1052 1/1 45/45

8 gser 199 199 253 199/199

12 LGamma 33 301 738 272/301

Table 11. Statistical Summary of Experiment Results
Items Data Items Data

Mean(H1_ok/H1_all) 100% Stdev (H1_ok/H1_all) 25.7%

Mean(H2_ok/H2_all) 100% Stdev (H2_ok/H2_all) 37.6%

Mean(POV Diff/Cov) 3.5% Stdev (POV Diff/Cov) 26.9%

Mean(FVH Diff/Cov) 10.3% Stdev (FVH Diff/Cov) 39.1%

5. Related Work

Our approach is related to several different threads of
research. Statistical summary of structural coverage
information of a group of passing and failing tests on a
faulty version is also used to guide fault localization
[2][13]. These approaches can be ineffective when Cov is
much greater than POV Diff in the faulty version or when
execution information is provided for only a few tests.
These approaches observe a set of passing and failing tests
executions on a new version to locate faults in statement
granularity; in contrast, our approach observes a single
test execution on both the old and new versions to locate
faults in function or code fragment granularity. Moreover,
the infected variable values together with reported fault
locations in our approach can better aid actual fault
location determination and debugging process. Our

approach can complement existing structural approaches
to improve fault localization effectiveness.

A dynamic slice of a program is the set of statements
that actually affect the value of a selected variable at a
specific location after the program is executed against a
given test or tests [1]. It is used in locating the faulty
statement given the infected variable values. Our approach
complements this dynamic slicing approach since the
results of our approach, the infected variable values, can
provide inputs to the dynamic slicing approach.

Fault propagation has been broadly investigated in
testing literature. The RELAY model is intended to
understand how a fault may or may not cause a failure on
execution of some test datum [20]. PIE (propagation,
infection, and execution) analysis is used to assess the
probability that under a given input distribution, if a fault
exists in a code component, it will result in a failure [21].
This approach focuses on the estimation and analysis of
fault exposure probability with the goal of generating or
selecting test cases that propagate the faults to outputs.
However, our approach focuses on regression testing fault
exposure and localization by proactively exposing the
faults even before they are (or even if they are not)
propagated to outputs. Our approach can also offer an
empirical way to study the fault propagation behaviors to
complement existing analytic approaches.

Mutation testing is a specific form of fault injection
that consists of creating different versions of a program by
making small syntactic changes. Weak mutation testing
requires that a test case causes a mutated version to
compute a different value than original version does on at
least one execution of mutated version in contrast to the
strong mutation testing that requires mutated and original
versions to produce different output [11]. The difference
between our approach and traditional output-checking
fault exposure approach is analogous to weak and strong
mutation testing. Both weak mutation testing and our
approach do not require the faults to be propagated to
outputs. Weak mutation testing observes the exposure of
hypothesized and seeded faults by a test for estimation
purpose but our approach is observing the exposure of
actual faults by a test for regression fault exposure and
localization purpose. Moreover, weak mutation testing is
primarily a unit testing technique, but our approach can be
either system or unit testing technique by checking the
internal behaviors inside a system or unit.

Runtime assertion checking [3][18] and dynamically
inferred invariant detection [6][9] also check inside the
black box. But these approaches do not focus on value
infection caused by regression faults. Some regression
faults might cause variable values to be different from the
correct ones but still meet the assertions or invariants. Our
approach can expose those faults that are exposed by these
approaches when those violated assertions or invariants
are defined in function entry or exit points. Again because

of a different focus, assertion or invariant violations are
less effective than our approach in locating faults since the
infected variable values might be propagated across
functions through certain number of assertions or
invariants without violating them before they reach the
points where an assertion or invariant is violated. The
assertion or invariant violation locations might not be
close to the fault locations.

The HERCULES deployment framework is proposed
for upgrading components while keeping multiple
versions of a component running [5]. The specific
subdomain that a new version of a component correctly
addresses is formally specified. For each invocation of the
component, multiple versions of the component are run in
parallel and the results from the version whose specified
domain contains this invocation’s parameters are selected.
Handling of incremental interface semantics changes
whose subdomain can be formally specified in our
approach is similar to the HERCULES approach.
However the HERCULES approach cannot handle the
revolutionary interface semantics changes or the
incremental interface semantics changes whose subdomain
cannot be formally specified, which are common for bug-
fixing and some other evolutions.

The relative debugging technique allows users to
define a series of assertions between a reference program
and a suspect program [19]. These assertions specify key
data structures that must be equivalent at specific
locations in two programs. According to these assertions,
a relative debugger automatically compares the data
structures and reports any differences while both versions
are executed concurrently. It mainly aims at those data-
centric scientific programs that are ported to, or rewritten
for, another computer platform, e.g. a sequential language
program being ported to a parallel language. Our
approach can be applied in a broader scope of evolutions
for more kinds of programs. Our approach is more
effective in fault localization based on a fault propagation
model and provides higher quality assurance and finer-
grained controls over changes by checking value spectra
instead of only checking user-specified data structures at
user-specified locations.

Delta debugging algorithm isolates the relevant
variables and values by systematically narrowing the
internal program state differences between a passing and a
failing test execution on a faulty version [22]. Our
approach makes use of the internal program state
differences between the test executions of the same test on
an old version and a new version to expose regression
faults and locate their locations. In their approach, the
internal program states at only a few user-specified
locations are captured by using memory graph [23], which
are more accurate and complete than those captured by
instrumenting source code with Daikon front-end in our
approach. However, using memory graph in more than a

few locations is not scalable. Their approach can assist in
debugging those faults besides regression ones, which are
mainly targeted by our approach. However, their approach
may require a large number of additional test runs and the
symptoms for those test run failures be easily identified,
e.g. program crash.

6. Concluding Remarks

We have developed a technique to augment and
complement existing regression testing and to improve
fault localization through comparing internal values across
program versions. Checking inside the black box can
improve testing effectiveness by increasing fault exposure
probability in contrast to just checking the outputs of the
black box. In regression system testing, our approach not
only checks the input/outputs of the modified units inside
the system black box, as traditional unit testing does, but
also checks the internal variable values of the modified
units in addition to the behaviors of their callees inside the
unit black box. Our approach can expose faults without
requiring them to be propagated outside the faulty
function or across function boundaries to reach outputs.
Our approach has other potential applications as well. For
example, when the outputs of the system under regression
testing are not convenient to check automatically, e.g.
GUI outputs, our approach can be used to check internal
program states other than the system outputs  these then
act as proxies for the actual outputs. Moreover, the change
impact boundaries in our approach can be used in
dynamic impact analysis a posterior after changes are
made complementing the existing dynamic impact
analysis a priori before changes are made [14]. Finally our
approach can be easily adapted to use in a component-
based system or object-oriented system.

Programmers are reluctant to make changes to their
code in the fear of breaking the existing code. Our
approach can alleviate this fear by enabling them to
understand and control the consequences of their changes
in a fine-grained way. Therefore changes are exploited to
improve the reliability and dependability during program
evolution.

7. Acknowledgement

We thank Michael Ernst and the Daikon project
members at MIT for their assistance in our installing and
using Daikon tool. We are grateful for the assistance of
Gregg Rothermel and Mary Jean Harrold in attaining the
subject programs. This work was supported in part by the
National Science Foundation under grant ITR 0086003.
The authors wish to acknowledge support through the
High Dependability Computing Program from NASA
Ames cooperative agreement NCC-2-1298.

10. References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging
with dynamic slicing and backtracking. Softw. Pract. and
Exper., 23(6), pp. 589–616, June 1993.
[2] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault
localization using execution slices and data flow tests. In Proc.
of IEEE Softw. Reli. Eng., pp. 143--151, 1995
[3] B. Andrews, Using Executable Assertions for Testing and
Fault Tolerance. In Proc. 9th IEEE Int’l Symp. Fault-Tole.
Comp., pp. 102-105, 1978.
[4] T. Ball and J. R. Larus. Efficient path profiling. in Proc. of
Micro 96, pages 46-57, Dec. 1996.
[5] J. E. Cook and J. A. Dage, Highly Reliable Upgrading of
Components. In Proc. Int’l Conf. Softw. Eng., pp. 203—212,
1999
[6] M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically Discovering Likely Program Invariants to Support
Program Evolution. In Proc. Int’l Conf. Softw. Eng., May 1999.
[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.
[8] W. G. Griswold and D. Notkin. Automated assistance for
program restructuring. ACM Trans. on Softw. Eng. and
Methodology, 2(3):228–269, July 1993.
[9] S. Hangal and M. S. Lam. Tracking Down Software Bugs
Using Automatic Anomaly Detection. In Proc. Int’l Conf. Softw.
Eng., May, 2002.
[10] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, L. Yi. An
Empirical Investigation of the Relationship Between Fault-
Revealing Test Behavior and Differences in Program Spectra, J.
of Softw. Testing, Verifi., and Reli. V. 10, no. 3, Sept., 2000.
[11] W. E. Howden. Weak mutation testing and completeness of
test sets. IEEE Trans. on Softw. Eng., 8(4):371--379, July 1982.
[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria. In Proc. Int’l Conf. Softw. Eng., pp.
191-200, May 1994
[13] J. A. Jones, M. J. Harrold, J. Stasko. Visualization of Test
Information to Assist Fault Localization. In Proc. Int’l Conf.
Softw. Eng., 2002
[14] J. Law and G. Rothermel, Path Profile-Based Dynamic
Impact Analysis, In Proc. Int’l. Conf. Soft. Maint., Oct. 2002
[15] J. E.Payne, R. T. Alexander, and C. D.Hutchinson, Design-
for-Testability For Object-Oriented Software, Object Mag., pp.
35 – 43, July 1997
[16] S. P. Reiss and M. Renieris, Encoding program executions,
In Proc. Int’l Conf. Softw. Eng., pp. 221—230, 2001.
[17] T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the year
2000 problem. ACM Softw. Eng. Notes, 22(6):432-439, Nov.
1997.
[18] D. Rosenblum, Towards a Method of Programming with
Assertions, In Proc. Int’l Conf. on Softw. Eng. pp. 92–104, 1992
[19] R. Sosic and D. Abramson. Guard: A Relative Debugger,
Softw. – Pract. and Expe., Vol. 27, No. 2, pp 185-206, Feb.,
1997.

[20] M.C. Thompson, D.J. Richardson, and L.A. Clarke. An
information flow model of fault detection. In ACM Int’l Symp.
Softw. Testing and Anal., pages 182--192, June 1993.
[21] J. Voas. PIE: A dynamic failure-based technique. IEEE
Tran. on Softw. Eng., pp. 717-727, Aug. 1992
[22] A. Zeller. Isolating Cause-Effect Chains from Computer
Programs. In Proc. ACM Int’l Symp. Found. Softw. Eng., 2002.
[23] T. Zimmermann and A. Zeller. Visualizing memory graphs.
In Proc. Int’l Dagstuhl Seminar on Soft Vis., pp. 191-204, 2002

