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Abstract

Silicon technology will continue to provide an exponential increase in the availability of raw transis-
tors. Effectively translating this resource into application performance, however, is an open challenge.
Ever increasing wire-delay relative to switching speed and the exponential cost of circuit complexity
make simply scaling up existing processor designs futile. In this paper, we present an alternative to
superscalar design, WaveScalar.

WaveScalar is a dataflow instruction set architecture and execution model designed for the construc-
tion of intelligent computation caches. Each instruction in a WaveScalar binary executes in place in
the memory system and explicitly communicates with its dependents in dataflow fashion. WaveScalar
architectures cache instructions and the values they operate on together in a WaveCache, a simple grid
of “processor-in-cache” nodes. By co-locating computation and data in physical space, the WaveCache
minimizes long wire, high-latency communication. This paper introduces the WaveScalar instruction set
and an implementation based on current technology, which is evaluated for its performance potential.
Results of the SPEC and mediabench applications demonstrate a factor of 2-4 performance improvement
compared to an aggressively configured superscalar design.

1 Introduction

It is widely accepted that Moore’s Law growth in available transistors will continue for the foreseeable
future. Recent research [1], however, has demonstrated that simply scaling up our current architectures
will not convert these new transistors to commensurate increases in performance. This gap, between the
performance improvements we need and those we can achieve by simply constructing larger versions of
existing architectures, will fundamentally alter processor designs.

Three problems contribute to this gap creating a processor scaling wall: (1) an ever-increasing disparity
between computation and communication performance – fast transistors but slow wires; (2) the increasing
cost of circuit complexity, leading to longer design times, schedule slips, and more processor bugs; and (3)
the decreasing reliability of circuit technology, caused by shrinking feature sizes and continued scaling of
the underlying material characteristics. Superscalar processor designs, in particular, will not scale, because
they are built atop a vast infrastructure of slow broadcast networks, associative searches, complex control
logic, and inherently centralized structures that must all be designed correctly for reliable execution.

Like the memory wall, the processor scaling wall has motivated a number of research efforts [2, 3, 4, 5].
These efforts all augment the existing Von-Neumann model of computation by providing redundant checking
mechanisms [2], by exploiting compiler technology for limited dataflow-like execution [3], or by efficiently
exploiting coarse-grained parallelism [5, 4]. In this paper we propose another approach, WaveScalar, that
does not rely upon traditional Von-Neumann designs.

At its core, WaveScalar is a dataflow instruction set and computing model [6], but unlike past dataflow
work which focused on maximizing processor utilization, WaveScalar’s goal is to rid the processor of long
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wires and broadcast networks and so minimize communication costs. To this end, it includes a completely
decentralized scheme for tag management and matching. Uniquely, WaveScalar efficiently supports tradi-
tional Von-Neumann-like memory semantics in a dataflow model. This allows it to execute applications
written in conventional languages like C, C++ and Java. Indeed, for our performance studies (Section 4) we
use a binary re-writer that translates programs from the Alpha ISA to the WaveScalar instruction set.

WaveScalar is designed for intelligent cache-only computing systems. A cache-only computing archi-
tecture has no central processing unit, but rather consists of a sea of processing nodes in a substrate that
effectively replaces the central processor and instruction cache of a conventional system. Conceptually,
WaveScalar instructions execute in-place in the memory system and explicitly send their results to their
dependents. In practice, WaveScalar instructions are cached and executed by an intelligent, distributed
instruction cache – the WaveCache.

The WaveCache loads instructions from memory and assigns them to processing elements for execution.
They remain in the cache over many, potentially millions, of invocations. Remaining in the cache for
long periods of time enables dynamic optimization of an instruction’s physical placement in relation to
its dependents. Optimizing instruction placement allows a WaveCache to take advantage of predictability
in the dynamic data dependencies of a program, which we call dataflow locality. Just like conventional
forms of locality (temporal and spatial), dataflow locality can be exploited by the cache-like structure of the
WaveCache.

This paper is intended to be the first in a sequence of studies on WaveScalar architectures. It makes four
principle contributions:

1. A dataflow instruction set, WaveScalar, that includes a novel memory ordering model, wave-ordered
memory, to provide traditional memory semantics and allow execution of programs written in con-
ventional, imperative programming languages.

2. An efficient dataflow tag management scheme that is fully distributed and under compiler control.

3. An implementation, the WaveCache, that could be built using current technology. The WaveScalar
ISA and the WaveCache are both built to exploit dataflow locality.

4. A performance study, using the SPECint, SPECfp and mediabench benchmarks that compares the
WaveCache design to an aggressive out-of-order superscalar and demonstrates the WaveCache’s po-
tential to achieve significant performance gains.

We motivate the WaveScalar model with an examination of three key unsolved challenges with super-
scalar designs in Section 2. In Section 3, we describe the WaveScalar instruction set and the WaveCache
design. Section 4 presents an initial evaluation of our WaveCache design, and Section 5 discusses related
work in this area. Finally in Sections 6 and 7, we outline directions for future WaveScalar research and
conclude.

2 A case for exploring superscalar alternatives

The Von Neumann model of execution and its most sophisticated implementations, out-of-order super-
scalars, have been a phenomenal success. However, superscalars suffer from several drawbacks that are
beginning to emerge: their inherent complexity makes efficient implementation a daunting challenge, they
ignore an important source of locality in instruction streams, and their execution model centers around
instruction fetch, an intrinsic serialization point. We examine each of these limitations in turn.
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Figure 1: In this figure (left), we quantify the amount of dataflow locality present in the SPEC2000 integer
benchmark suite. The y-axis is the percent of instruction inputs for which the source instructions is one of
the last unique � (x-axis) producers for that input. This quantity corresponds to the dataflow locality present
in the instruction stream. For instance, without renaming, 92% of values come from 1 of the previous 2
sources. With register renaming, this number drops to 23%, clearly demonstrating the detrimental effects
of register renaming on dataflow locality. On the right, we show a simple example of how dataflow locality
arises. Without renaming, the Mul instruction always gets its input from one of the Add’s via R1. With
renaming, however, the value can come via any physical register.

2.1 Manufacturing and design

As features and cycle times shrink, the hardware structures that form the core of superscalar processors
(register files, issue windows, scheduling logic and caches) become extremely expensive to access. Con-
sequently, clock speed and/or pipeline depth suffers. Indeed, industry recognizes that scaling superscalar
designs with transistor budgets can be impractical, and many manufacturers are turning to larger caches and
chip multiprocessors for increased performance.

Second, the complexity of modern processors means that verification is an ever increasing cost in pro-
cessor design. To squeeze maximum performance from the core, more complex algorithms and structures
are required. Each new mechanism, optimization, or predictor adds additional complexity and increases
verification time. Already, design verification consumes 40% of project resources on complex designs [7]
and verification costs are increasing.

Finally, most traditional designs are not tolerant of manufacturing defects. Manufacturers are beginning
to address this problem. The McKinley (Itanium 2) and upcoming Madison processors from Intel contain a
good deal of redundancy to increase yields [8]. Eventually, however, it will be necessary to design processors
to be fault tolerant from day one [2].

2.2 Untapped locality

Superscalars devote a large share of their hardware and complexity to exploiting locality and predictability
in program behavior. However, they fail to utilize a significant source of locality intrinsic to applications:
dataflow locality. Dataflow locality is the predictability of instruction dependencies through the dynamic
trace of an application.

Dataflow locality exists, because instructions only communicate with a few other static instructions in
a program binary, and they communicate via fixed registers encoded in the instructions. Although, there
may be several potential producers of an input to a given static instruction along different control paths, our
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measurements show that 95% of instruction input values have only 1 or 2 potential static producers. Figure 1
illustrates this effect by measuring dataflow locality for the Spec2000 benchmarks.

Instead of simply ignoring dataflow locality, however, superscalars destroy it in their search for paral-
lelism. Fetching the same static instructions repeatedly, such as within a loop, causes the same register name
to be used repeatedly, leading to both write-after-write (WAW) and write-after-read (WAR) conflicts. Regis-
ter renaming [9, 10] removes these false dependencies and allows different physical registers to correspond
to different dynamic instances of the same architectural register. Renaming enables dynamic loop unrolling
and exposes a large amount of dynamic ILP for the superscalar core to exploit.

However, register renaming destroys the predictability of data communication patterns. Without renam-
ing, each instruction would only need high-speed access to (at most) three registers, since its source and
destination registers are fixed. By changing the physical registers an instruction uses, renaming forces the
architecture to provide each instruction with fast access to the entire physical register file. The result is a
huge, slow register file and complicated forwarding networks.

Destroying dataflow locality leads to a shocking inefficiency in modern processor designs: The processor
fetches a stream of instructions with a highly predictable (upwards of 90%) point-to-point (i.e., instruction-
to-instruction) communication pattern, destroys that predictability (to well below 30%) by renaming, and
then compensates by using broadcast communication in the register file and a by-pass network combined
with complex scheduling in the instruction queue. The consequence is that modern processor designs devote
few resources to actual execution (less than 10%, as measured on a Pentium III die photo), and the vast
majority to communication infrastructure. This infrastructure is necessary precisely because superscalars
do not exploit dataflow locality.

It is an open question whether a Von-Neumann machine can ever effectively exploit this type of locality.
Aside from a few research proposals [3, 11, 12], modern processors have not tried to aggressively exploit
dataflow locality. Partitioned superscalars like the Alpha 21264 and some VLIW machines [13, 14] exploit
it to a limited degree, but neither is able to make full use of it. The GPA project [3] suggests that it may
be possible to better utilize dataflow locality, although further study is needed. In Section 3, we present an
execution model and architecture built expressly to exploit the temporal, spatial, and dataflow locality that
exist in instruction and data streams.

2.3 The Von Neumann model: serial computing

In addition to design difficulties and unexploited locality, superscalars (and Von Neumann machines in gen-
eral) suffer from a more subtle, but fundamental, limitation. In the Von Neumann model, the processor,
guided by the program counter and control instructions, assembles a linear sequence of operations for ex-
ecution. The elegance and the simplicity of the model are striking, but the price is steep. Von Neumann
processors are fundamentally sequential. There is no parallelism in the model.

In practice, of course, Von Neumann processors do achieve limited parallelism (e.g., IPCs greater than
1), by using one of two methods. The explicitly parallel instructions sets for VLIW and vector machines
enable the compiler to express instruction independence statically. Superscalars take a different approach
and examine many instructions in the execution stream simultaneously, violating the sequential ordering
when they determine it is safe to do so.

Prior work [15, 16, 17, 18] demonstrated that ample instruction level parallelism (ILP) exists within ap-
plications, but the control dependencies that sequential fetch introduces constrains this ILP. Despite tremen-
dous effort over decades of computer architecture research, we have yet to devise a processor that comes
close to the intrinsic ILP limits researchers have measured in limit studies. Several factors account for this,
including the memory wall and necessarily finite execution resources, but control dependence and, by ex-
tension, the inherently sequential nature of Von Neumann execution, remain dominant factors [15]. In the
next section, we describe an alternative model that does not introduce false control dependencies.
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for(i = 0; i < 10; i++) {
    if (a[i] < 0)
       sum −= a[i];
   else
      sum += a[i];
}
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Figure 2: Wavescalar execution: At left is a loop with some simple control and two loop-carried depen-
dencies. The center images show the WaveScalar “binary” for the code. In addition to RISC instructions,
it includes WAVE-COORDINATE (circles), WAVE-RENAME (diamonds), and several

�����
instructions (trian-

gles). The two groups of a branch instruction and several
�����

instructions, labeled � and � , correspond to
the branches in- and outside the loop, respectively. The loop body comprises a single wave with a WAVE-
COORDINATE and three WAVE-RENAME instructions to rename each value at the top of the loop. Another
WAVE-COORDINATE and two more WAVE-RENAME instructions set the wave number for the code that fol-
lows the loop (not shown). At right, each of the instructions is attached to a functional unit in the WaveCache
substrate.

3 WaveScalar

The original motivation for WaveScalar was to build a decentralized superscalar processor core, not to create
a dataflow architecture. Our initial approach was to examine each piece of a superscalar and try to design
a new, decentralized hardware algorithm for it. Our thesis was that by decentralizing everything, we could
design a truly scalable superscalar. It soon became apparent that instruction fetch is difficult to decentralize,
because, by its very nature, a single program counter controls it. Our response was to make the processor
fetch in data-driven rather than program counter-driven order. From there, our “superscalar” processor
quickly became a small dataflow machine, and other parallels began to appear. Register renaming in a Von-
Neumann machine corresponds to tag creation in a dataflow processor, the issue window corresponds to
the token store, and the scheduling and execution rules are essentially the same (i.e., instructions fire when
their inputs are ready). The problem then became how to build a fully decentralized dataflow machine.
WaveScalar is the creative extension of this line of reasoning.

Dataflow has a long history. The first designs appeared in the early 70’s [6, 19, 20], and there was
a significant revival in the 80’s and early 90’s [21, 22, 23, 24, 25, 26, 27]. Dataflow machines execute
programs according to the dataflow firing rule (DFR), which stipulates that an instruction may execute
at any time, as long as its operands are available. When dataflow instructions complete, they trigger the
execution of dependent instructions. Values in a dataflow machine generally carry a tag to distinguish them
from other dynamic instances of the same variable. Tagged values usually reside in a specialized memory
(the token store) while waiting for an instruction to consume them. There are, of course, many variations on
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this basic dataflow idea. We discuss some of these in Section 5.
We propose a new approach to dataflow computing, WaveScalar, that addresses the problems discussed

in Section 2. WaveScalar’s primary goal is to exploit dataflow locality. Since it is a dataflow instruction
set, it avoids the serialization inherent in the fetch stage of the Von Neumann model. However, it also
provides two significant features absent in traditional dataflow designs: The ability to efficiently execute
programs written in traditional imperative languages, such as C, C++ and Java, and completely distributed
tag management.

Conceptually a WaveScalar binary is the dataflow graph of an executable and resides in memory as a
collection of intelligent instruction words. Each instruction word is intelligent because it has a dedicated
functional unit. Since this is impractical, instructions are cached by an intelligent instruction cache, a Wave-
Cache, in practice.

Figure 2 illustrates the relationships between C source code, a WaveScalar binary, and a WaveCache
processor. The left portion of the figure is a simple loop containing an if-then-else construct. The WaveScalar
compiler produces the data flow graph for the loop (middle). The WaveScalar version of the loop contains
special instructions to ensure that all control and data dependencies between instructions are explicit. The
added instructions will be discussed shortly.

In Figure 2 (right), we see each instruction bound to an intelligent cache “line” (a simple functional
unit). After the WaveCache assigns them to a processing element, instructions remain in place for possibly
millions of executions. Instructions exchange data values over a switched, dynamically scheduled on-chip
network. Communication latency depends on instruction placement, so a good placement is paramount for
optimal performance.

In the next two sections, we use this example to motivate our description of the WaveScalar ISA and a
sample WaveCache design that could be built today.

3.1 The WaveScalar ISA

A WaveScalar executable contains an encoding of the program dataflow graph. In addition to normal
RISC-like instructions, WaveScalar provides special instructions for managing control flow. In this respect
WaveScalar is similar to previous dataflow assembly languages[20, 28, 27]. WaveScalar is unique, how-
ever, because it includes a mechanism for expressing independence among memory operations and support
for distributed tag management. Also unlike all previous dataflow work that we are aware of, WaveScalar
targets programs written in mainstream imperative languages (such as C), instead of those written in special-
ized dataflow languages [29, 30, 31, 32, 33, 34, 35]. There have been some prior attempts at this [36, 37].
However, none adequately addressed the most difficult challenges including pointers, aliasing, and mutable
data structures. The specific differences between the WaveScalar ISA and a normal RISC-like instruction
set are described below.

3.1.1 Control flow within a DAG

A WaveScalar instruction must explicitly send data to its consumers instead of simply storing values in
the register file to be read by instructions that need them. Within a basic block, this can be done simply
by addressing the dependent instruction directly. In general, however, values need to cross basic blocks
boundaries. The potential consumers are known at compile time, but depending on control flow, only a
subset of them should receive the values at run-time. There are two solutions to this problem, and different
dataflow ISAs have used one or both.

The first solution is a conditional selector, or
�

, instruction [38]. These instructions take two input values
and a boolean selector input and, depending on the selector, produce one of the inputs on their output.

�
instructions are analogous to conditional moves and provide a form of predication. They are desirable
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because they remove the selector input from the critical path of some computations and therefore increase
parallelism. They are also somewhat wasteful because they discard the unselected input.

The alternative is a conditional split, or
� ���

[27] instruction, the opposite of a
�

instruction. The
� ���

instructions take an input value and a boolean output selector. It directs the input to one of two possible out-
puts depending on the selector value, effectively steering data values to the instructions that should receive
them. These instructions correspond most directly with traditional branch instructions, and they are required
for implementing loops.

In the example of WaveScalar code in Figure 2 the triangular nodes are
� ���

instructions. There are
two sets of

� ���
instructions, labeled � and � . Set � guides data through the IF-THEN-ELSE inside the

loop, and group � manages loop control. Each set receive its selector value via a set of dotted lines from
the predicate instruction with the same label. Each set of

� ���
instructions, combined with its predicate,

corresponds to a branch instruction in a conventional RISC assembly language. Note that set � contains
only two

� ���
instructions, because the conditional instructions only use � and sum. In contrast, group �

requires four: one each for
�
, � , sum, and the wave number (See below).

3.1.2 Wave numbers

A significant source of complexity in WaveScalar is that instructions can operate on several instances of
data simultaneously. For instance, consider a loop. A traditional out-of-order machine can execute multiple
iterations simultaneously, because it creates a copy of each instruction for each iteration. In WaveScalar,
the same processing element handles the instruction for all iterations. Therefore, some disambiguation must
occur to ensure that the instruction operates on values from one iteration at a time.

Just as a superscalar uses renamed registers, a traditional dataflow machine uses tags to identify different
dynamic instances. In WaveScalar, we aggregate tag management across a directed acyclic graph (DAG)
of basic blocks called a wave. Wave numbers differentiate between dynamic waves. Two special types of
instructions manage wave numbers:

� WAVE-COORDINATE: The WAVE-COORDINATE instruction takes as input an existing wave number,
increments it (modulo a maximum), and sends the new value to the associated WAVE-RENAME in-
struction(s) and the following WAVE-COORDINATE instruction via one or more

� ���
or

�
instructions.

� WAVE-RENAME: The WAVE-RENAME instruction takes as input a data value and a wave number. It
replaces the wave number of the data value with the new wave number it receives from the WAVE-
COORDINATE instruction.

To use these instructions, the compiler (or binary translator in our case) begins by partitioning an ap-
plication’s control flow graph into waves. Each wave is a connected, directed acyclic graph with a single
entrance and the additional constraint that, for every node, either all or none of its predecessors may be in
the same wave. We partition an application into maximal waves and add a single WAVE-COORDINATE node
and one WAVE-RENAME node for each of the wave’s live input values. These nodes reside at the entrance of
the wave and ensure that all data values entering the wave have the same wave number.

In our example (Figure 2), WAVE-COORDINATE instructions are circles and WAVE-RENAME instruc-
tions are diamond-shaped. A simple inner loop’s body comprises a single wave and requires two WAVE-
COORDINATE instructions, one for the loop body and one for the follow-on code. Each WAVE-COORDINATE

sends a new wave number to its set of WAVE-RENAME instructions. In the example, the loop body requires
three WAVE-RENAME’s for the three live values in the loop body (

�
, � , and sum), while follow-on code

requires only two since the value
�

is not used outside the loop.
A key feature of WaveScalar is that the WAVE-COORDINATE and WAVE-RENAME instructions allow

wave-number management to be entirely distributed and under software control. This is in contrast to
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traditional dataflow machines in which tag creation is either partially distributed or completely centralized
[30].

Our system for managing wave numbers has two other advantages. First, since they can contain control
flow joins, waves are more general than hyperblocks [39]. Allowing joins enables a compiler to increase a
wave’s size and expose additional parallelism with simple techniques such as loop unrolling. Since at least
one WAVE-RENAME instruction in each wave is always on the critical path (they must relabel all incoming
values) but only appear at the beginning of a wave, larger waves are desirable.

3.1.3 Indirect jumps

Modern systems rely upon object linking and shared libraries, and many codes rely upon indirect function
calls. Supporting these constructs requires an additional instruction:

� INDIRECT-SEND: INDIRECT-SEND instructions have three inputs: a data value (i.e. a function argu-
ment), an address, and an offset (which is statically encoded into the instruction). It sends the value
to the consumer instruction located at the address plus the offset.

Using this instruction, we can call a function and return values. Each argument to the function is passed
through its own INDIRECT-SEND instruction. At the start of a function, a set of instructions receives these
operands and starts the function execution. The function address need not be known at compile time, and a
very similar mechanism allows for indirect jumps.

3.1.4 Memory ordering

Traditional imperative languages provide the programmer with a model of memory known as “total load-
store ordering.” Coupled with indirect addressing and memory aliasing, they leave the hardware little room
to maneuver when it comes to extracting parallelism from memory accesses.

A naive method of supporting total load-store ordering in a dataflow machine is to pass a value from
one memory operation to the next; each operation increments the value and includes it with its request
to memory. A store buffer can then reconstruct the load-store order and process the memory operations
correctly. The problem with this approach is that the ordering value becomes dependent on the control flow
of a program. Since nearly every basic block contains a memory operation, the token becomes dependent
on the outcome of nearly every branch. Consequently, basic blocks that could execute in parallel in the
WaveCache would execute serially.

For WaveScalar, we developed a far more efficient method, wave-ordered memory. The WaveScalar
compiler statically assigns a unique (within a wave) sequence number to each memory operation in breadth
first fashion, ensuring that sequence numbers increase along any path through the wave. Next, it labels
each memory operation with the sequence numbers of the predecessor and successor memory operations,
if they can be uniquely determined. Because of branches and joins, there can be multiple predecessor or
successor memory operations. In these cases, the compiler uses a special wild-card value, ‘?’, instead. The
combination of an instruction’s sequence number and the predecessor and successor sequence numbers form
a link, which we denote ���������
	��������	���������� .

When a load or store instruction executes, it sends its link, its wave number (taken from an input value),
an address, and data (for a store) to the memory. The memory system uses this information to assemble
the correct sequence of loads and stores. This is possible because a memory instruction’s link and wave
number provide a total ordering on memory operations through any traversal of a wave, and, by extension,
an application. To guarantee a total ordering, no path through the program may contain a pair of memory
operations in which the first operation’s succ value and the second operation’s pred value are both ‘?’. If
such a situation occurs, the compiler adds a special MEMORY-NOP instructions to remove the ambiguity.
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Figure 3: Memory operations are ordered through a combination of static sequence numbers and dynamic
wave numbers. The key is that through any path taken through a wave, complete knowledge about the load
store order is available.

These instructions participate in memory ordering but have no effect. In practice, MEMORY-NOP’s are rare
(less than 3% of instruction).

Figure 3 provides an example of wave-ordered memory in action. For any two consecutive memory
accesses, � and � , either the � ’s ‘succ’ value matches � ’s sequence number or � ’s ‘pred’ value matches
� ’s sequence number. In a WaveScalar binary, this property holds on all possible paths through a wave.
Furthermore, the store buffer detects gaps in the sequence of operations and waits for the necessary operation
to arrive.

Wave-ordered memory is the key to efficiently executing programs written in conventional languages.
It allows WaveScalar to separate memory ordering from control flow. The processing elements are freed
from worrying about implicit dependencies through memory and can treat memory operations just like other
instructions. The sequencing information included with memory requests provides a concise summary of the
path taken through the program. The memory systems can use this summary in a variety of ways. Figure 3
depicts the operation of a wave-ordered store buffer. Alternatively, a speculative memory system [40, 41, 42]
could use the ordering to detect misspeculations.

In the future, we plan to extend wave-ordered memory to allow for multiple, parallel streams of memory
operations. This will allow the compiler to describe dependence and independence relationships explicitly.

3.1.5 WaveScalar overhead and encoding

Converting from a RISC instruction set to WaveScalar increases code size in two ways. First, the individual
instructions require more than 32 bits to encode because WaveScalar uses a target-based encoding scheme.
Second, it is clear from the previous discussion that WaveScalar executables contain more instructions than
their RISC counterparts.

The number of bits in an encoded instruction is not a significant factor since the WaveCache loads
instructions infrequently and can amortize the cost over many invocations.

Instruction count, however, is more important because there is limited space in the WaveCache. To
reduce overhead, the compiler can fold

� ���
and WAVE-RENAME instructions into the preceding arithmetic

or logical operation, because they are so simple. For instance, the WaveScalar ISA contains both a normal
ADD and a ADD-WITH-WAVE-RENAME instruction. This might modestly increase the number of bits in each
instruction, but it also dramatically decreases the total instruction count.

For the applications we consider in Section 4, folding decreases instruction count overhead by up to a
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hold all relevant architectural state (data, control, etc) for all dynamic instances of that instruction.

factor of four, and the final instruction count overhead with folding varies from 20% to 140%. Although the
overhead is substantial, the results in Section 4 demonstrate that the impact on performance is much smaller.

Part of this overhead is due to conservative assumptions necessary for the binary-translation process. We
believe that overhead will decrease substantially after we complete a native WaveScalar compiler that will
have more information about program structure and include aggressive optimizations to reduce overhead.

3.2 The WaveCache: a practical
implementation for today

In this section, we describe a small WaveCache that can be built with current technology and can execute
WaveScalar binaries. The WaveCache functions as an executable instruction cache. There is no central
computing core, no issue queue, and no register file. Instead of fetching instructions from a conventional
I-Cache into a processing core, the WaveCache executes instructions in place and in dataflow fashion. We
evaluate the performance of this architecture in Section 4.

Like any architecture, the WaveCache’s goal is high performance from a given area of silicon. Su-
perscalars accomplish this by constructing complex communication infrastructure around a few functional
units in an attempt to keep them continually busy. This is the correct approach when functional units are
expensive and wires are cheap, but this is no longer the case (Section 2). The WaveCache, in contrast, does
not focus on keeping its functional units busy. Instead, it spreads computational resources throughout the
chip to reduce the complexity and latency of the communication infrastructure.

Figure 4 is a block diagram of the WaveCache. The WaveCache is a grid of approximately 2K process-
ing tiles arranged into clusters of 16 tiles each. Each tile contains dynamic configuration logic to control
instruction placement, input and output queues for instruction operands, communication logic, and a func-
tional unit.

Each tile also contains buffering and storage for 8 different instructions, bringing the total WaveCache
capacity to 16 thousand instructions – equivalent to a 64Kbyte instruction cache in a modern RISC machine.
Total storage, however, is close to four megabytes when the input and output operand queues for each
instruction are accounted for.

In addition to the instruction operand queues, the WaveCache contains several store buffers and tradi-
tional level 1 data caches. Each dynamic wave is bound to a nearby store buffer that processes its memory
requests, and as waves complete, the store buffer of the next wave is triggered to proceed. The caches access
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DRAM through a conventional unified, non-intelligent L2 cache.
Within a cluster, the 16 tiles communicate via a set of shared buses. For communication between clus-

ters, the WaveCache uses a dynamically routed grid-based network. Tiles within the same cluster receive
results at the end of the clock cycle during which they were computed. Data that must cross clusters incur
a one-cycle penalty per cluster crossed. An alternative to this arrangement would be a single tile operating
in isolation. Several prior tiled architectures take this approach [43, 5]. However, clustering allows the
WaveCache to trade-off the advantages of long wires against their negative effect on cycle time. By varying
the size of the cluster, we can tune the WaveCache’s cycle time to maximize total performance.

A tile in this framework is extremely simple. It contains a basic functional unit, buffers for operands,
and a network interface. We estimate that the integer execution logic and network interface will be a mere
50,000 logic transistors, with an additional 4 Kbytes of memory for input and output operand storage. This
number is pessimistically calculated from examining the size of early RISC processors [44]. Within each
cluster we assume that a single tile supports floating point operations and consumes an additional 500,000
transistors [45]. Finally, attached to each cluster is a small L1 data cache of 32 Kbytes. Using these figures,
we estimate that no more than 250 million transistors will be used for logic, another 200 million for operand
storage (4MBytes total), and another 100 million for data caches. These numbers are aggressive for current
technology, but are within the scope of the forthcoming Madison chip (500 million transistors total). Even
assuming that our estimates are off by a factor of two, which safely accounts for additional items such as
cache control, replacement, and data cache coherence, such a device is about one billion transistors, which
is similar to chips currently under development at Intel [46].

The WaveCache has an instruction memory management policy analogous to a conventional cache re-
placement policy. Instructions are brought into the WaveCache in precisely the same manner they are
brought into a traditional cache – by way of a cache miss. When instructions already in the cache send
results to instructions not currently available, a load request is sent to the cache controller. The controller
locates a free node (or makes a node free by writing back an instruction and any partially computed state
associated with it), and places the new instruction at that node. Instruction placement is critical to reducing
inter-instruction latency, so placing dependent instructions within the same cluster is desirable.

For WaveCaches of this small size, the dependent tiles can simply be notified of the new instruction’s
location. Future, larger scale and more distributed systems will operate a discovery protocol, much like wide
area networks.

Prefetching entire basic blocks or functions into the WaveCache could avoid loading instructions one at
a time. Once in this cache, the instructions execute in place, following the WaveScalar execution algorithm
(Section 3.1).

In Figure 2, the right side shows the dataflow graph mapped onto a small WaveCache.

4 Results

In this section, we explore the performance limits of the WaveScalar ISA and the WaveCache. We investigate
four aspects of execution: The overhead due to WaveScalar instructions, WaveCache performance relative
to a superscalar, the sensitivity of the WaveCache to cluster size, and the potential effectiveness of control
and memory speculation.

4.1 Methodology

For both the WaveCache and superscalar we examine two configurations: An ideal configuration which
assumes arbitrarily fast communication and a more realistic configuration with reasonable communication
costs.
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For our baseline WaveCache configuration, we use the system described in Section 3.2. The ideal
WaveCache contains a single, infinitely large cluster, so all communication is single-cycle. The realistic
WaveCache has 16 processing element per cluster, and we place instructions statically into clusters using
a simple greedy strategy that attempts to place dependent instructions in the same cluster. We expect to
achieve better results in the future using a dynamic placement [47] algorithm to improve layout.

Our realistic superscalar machine uses a 15 pipeline stage, 16-wide out-of-order processing core, with
1024 physical registers and a 1024 entry issue window with oldest-instruction-first scheduling. Its core
uses an aggressively pipelined issue window and register file similar to what is described in [48], to reduce
critical scheduling/wake-up loop delays. The core also includes a gshare branch predictor [49], store buffer,
and perfect (16 ported) cache memory system. Since the pipeline is not partitioned, 15 cycles is aggressive
given the size of the register file and issue window and width of the machine.

The ideal superscalar uses a shorter, seven-stage, pipeline to ignore the cost of accessing the large register
file and issue queue. This decreases the critical load-use and branch misprediction loops [50]. Otherwise
it is identical to the realistic machine. In all architectures (both superscalar and WaveCache) we assume a
perfect L1 data cache. The superscalar is also provided with a perfect L1 instruction cache.

To perform a fair comparison to the superscalar design and leverage existing compiler infrastructure,
we used a custom binary re-writing tool to convert Alpha binaries into the WaveScalar instruction set –
effectively demonstrating the feasibility of binary translation from Von-Neumann to dataflow computing
models.

We compiled a set of benchmarks using the Compaq cc (v5.9) compiler on Tru64 Unix, using the -O4
-unroll 16 flags. The benchmarks are vpr, twolf, and mcf from SPECint2000 [51], equake and art from
SPECfp2000, adpcm, and mpeg2encode from mediabench [52], and fft, a kernel from Numerical Recipes
in C [53]. Our current simulation tool chain limits us to studying 1M instruction traces, so we carefully
select and validate our starting points for each application. First, we use gprof on a native Alpha system to
identify the region of code well after application startup. We collect a 1M instruction trace starting at this
point. We test the validity of this trace by executing this short trace and a longer 100M instruction trace on
our superscalar simulator. The difference in superscalar performance between the short and long traces is
less than 5%. We then use our binary translator to converts the Alpha executable into the WaveScalar ISA,
and we use a trace of the same subset of execution to drive a timing simulator of the WaveCache.

We report the results in terms of Alpha-equivalent instructions per cycle (AIPC). For the WaveCache
measurements we carefully distinguished between instructions from the original Alpha binary, and those
added by the Alpha-to-WaveScalar binary re-writer. Our binary rewriting tool introduces many new instruc-
tions (

� ���
, WAVE-COORDINATE, etc.), but these are not counted in any of the throughput measurements.

Thus we use AIPC, because it fairly compares the amount of application-level work performed by each
processor.

We expect WaveCache systems to achieve faster clock rates than the superscalar we are comparing
against, but in this study we ignore this effect, both to be pessimistic about WaveCache performance and
because we cannot yet reliably quantify the difference in clock rate.

4.2 Overhead

Translating Alpha applications into WaveScalar binaries can introduce significant overhead in terms of ad-
ditional instructions. In Section 3.1.5 we discussed the increased static size of WaveScalar binaries, here we
quantify their effect on performance. Added WaveScalar instructions affect performance primarily because
they increase the critical path.

Table 1 shows the percentage increase in dynamic instruction count for each of our applications relative
to the original Alpha binary. The mean increase is 40%, but the overhead can vary dramatically. For
instance, vpr suffers a 76% increase in instructions executed, while equake and adpcm increase by less
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Static Dynamic Zero Wave
overhead overhead overhead size

inst. inst. speedup (inst.)
count (%) count (%) (%)

vpr 83.9 76.5 11.7 19.5
twolf 97.5 69.1 11.6 10.3
mcf 108.0 67.6 24.1 17.5
equake 17.5 0.2 0.6 81.5
art 100.1 45.6 15.7 14.8
adpcm 29.4 � 0.1 0 51.2
mpeg 14.2 2.6 1.8 399.8
fft 67.7 50.9 14.6 22.9

Table 1: WaveScalar overhead and wave size: The first two columns are static and dynamic overhead
from WaveScalar instructions. Column three is the speedup with zero-latency WAVE-COORDINATE, WAVE-
RENAME, and

� ���
instructions, relative to the baseline WaveCache with a single, infinite cluster. The last

column measures wave size.

than 1%. The increase for vpr reflects its complicated control and the corresponding large number of
� ���

,
WAVE-RENAME, and WAVE-COORDINATE instructions. equake and adpcm grow very little, because they
have simple control flow and benefit significantly from loop unrolling.

While the overhead may seem large, its impact on performance is less dramatic, because few of the
added instructions are on the critical path; removing the latency due to overhead instructions improves
performance by only 11% on average. As we mentioned in Section 3 a native WaveScalar compiler could
generate code better tuned to the WaveCache.

4.3 Comparison to superscalar

Figure 5 compares the WaveCache to the superscalar. The bars are split between the ideal and realistic
configurations. For the models with realistic performance, the WaveCache outperforms the superscalar by a
factor of 3. For highly loop parallel applications, such as equake, and the applications from the mediabench
programs, the WaveCache is over 4 times faster than the comparable superscalar. With ideal communication,
the WaveCache is only 50% faster. The difference in performance between the ideal and realistic cases
suggests that the WaveCache tolerates communication costs better than the superscalar.

In Section 3 we argued that large waves are desirable for good performance. Fully understanding the
effects of wave size requires further study, but the data in table and Figure 5 demonstrate that wave size
correlates with higher AIPC: the benchmarks with the largest waves (adpcm, equake, and mpeg) also achieve
the highest AIPC.

4.4 Cluster size and instruction layout

One of the WaveCache’s goals is to communicate efficiently and achieve high performance without resorting
to long wires. We now examine this aspect of the WaveCache in detail.

Recall that in WaveCache configurations, processing elements are arranged in clusters and that within
these clusters communication takes a single cycle. Since larger clusters require longer wires and, therefore,
a slower clock, cluster size is a key parameter. Figure 6 shows performance results for clusters ranging in
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Figure 5: Superscalar vs. WaveCache: Each application is evaluated on the superscalar (left bar) and the
WaveCache (right bar). The lower portion of the bars represents performance with realistic communication
costs, while the upper portion adds in performance with ideal communication.

size from one to sixty-four processing elements. It also includes a configuration with a single, infinite cluster
as an upper bound.

Overall, the performance of 16-processing-element clusters is 90% of the infinite case. This is a sub-
stantial improvement over 4-element clusters (71%), and 64 elements per cluster provides only incremental
improvement (96%). Sixteen-element clusters do a fine job of capturing dataflow locality. For each bench-
mark, fewer than 15% of values leave their cluster of origin, and fewer than 10% must cross more than
one cluster to reach their destination. Unless noted, the rest of the data we present in this section is for a
16-element cluster configuration.

Also interesting is performance with isolated processing elements. Using singleton clusters reduces
performance by 54%. While this may seem like a dramatic drop, a single-element cluster WaveCache still
outperforms a 15-stage superscalar by an average of 52%. Tiny clusters also reduce wire length and increase
the potential clock rate. Accounting for a faster clock in our performance estimates is the subject of future
study.

4.5 Control and memory speculation

Speculation is an important aspect of superscalar design, and modern processors contain speculative mech-
anisms. Among them, control speculation and memory independence predictions [41] provide particularly
large performance gains.

Figure 7 evaluates WaveCache performance with both kinds of speculation. For each benchmark, the
first bar represents baseline performance, while the others measure WaveCache performance with a variety
of prediction schemes: perfect branch prediction, perfect wave prediction (described below), perfect mem-
ory disambiguation, and combinations of the three. We collected simular data for the superscalar and discuss
it as needed.

4.5.1 Control speculation

Control speculation dramatically increases superscalar performance [54]. We investigate two control spec-
ulation methods for the WaveCache in the hope of achieving similar benefits. In the first, perfect branch
prediction,

� ���
instructions steer values to the correct output without waiting for the selector input. The sec-

ond, perfect wave prediction, allows the wave number value to pass directly from one WAVE-COORDINATE
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Figure 6: Communication Costs: For each benchmark, the first bar is the baseline ideal WaveCache per-
formance. The next three bars measure performance with smaller clusters and, consequently, slower inter-
cluster communication. For comparison, the final bar is the performance of the realistic superscalar.
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Figure 7: WaveCache Speculation: Comparison of the baseline realistic WaveCache configuration with a
variety of speculation schemes. For art and fft, it appears that wave speculation hurts performance in some
cases. This anomaly is due to limiting the number of executing waves (see Section 4.5.1).
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instruction to the next instead of percolating through multiple
�

and
� ���

instructions. The simulator cannot
perform truly “perfect” wave speculation. Instead we bound the number of executing waves to 1000. Our
measurements show the effect of this simplification is less than 10%.

Perfect branch prediction and wave prediction increase performance for the realistic WaveCache by 37%
and 7%, respectively, and a combination of the two yields a 38% increase. This suggests that WaveCache
branch prediction schemes deserve closer study.

Although the gains from wave speculation are small, the technique is interesting, since it is similar in
some respects to thread speculation systems [55, 56]. This suggests, that many coarse-grained speculation
schemes described elsewhere [55, 57] might fit elegantly into the WaveCache.

4.5.2 Memory speculation

Most programming languages require a memory model with completely sequentialized memory operations.
In reality, however, a processor can execute memory accesses out of order, if the accesses are to different
locations. To measure the potential value of this approach, we added perfect memory disambiguation to
both the WaveCache and superscalar simulators.

Memory disambiguation gives a substantial boost to WaveCache performance, increasing it by an av-
erage of 61% and out-performs the superscalar with perfect disambiguation on all of the benchmarks by
170%.

Memory speculation not only provides large performance gains by itself, but also enhances branch pre-
diction and wave prediction. Without memory disambiguation, wave prediction increases AIPC by 7%, but
with disambiguation, it provides a 16% increase. Likewise, branch prediction increases AIPC by 63% in the
presence of perfect disambiguation. Finally, all three forms of speculation combined, increase WaveCache
performance by 170%.

Although we cannot hope to achieve these results in practice (the predictors are perfect), speculation
can clearly play an important role in improving WaveCache performance. On the other hand, we have also
shown that the WaveCache does not require speculation to achieve high performance.

5 Related work

WaveScalar builds upon several ground-breaking studies in both dataflow and Von-Neumann processing.
In this section we place WaveScalar in the context of previous work and describe where it extends prior
projects and stands in contrast to them.

5.1 Dataflow

Dataflow computing is perhaps the best studied alternative to the Von Neumann model of computation. The
first dataflow architectures [6, 20] appeared in the mid to late 70’s, and in the late 80’s and early 90’s there
was a notable revival [21, 22, 23, 24, 25, 26]. The dataflow work of the late 80’s and early 90’s made it clear
that high performance dataflow machines were difficult to build. Culler et. al. [58] articulated this difficulty
as a cost/benefit problem and argued that dataflow suffers from two fundamental problems, both of which
have to with the top of the memory hierarchy.

First, the memory hierarchy limits the amount of latency a dataflow machine can hide. A processor can
only hide latency (and keep busy) by executing instructions whose inputs are at the top level of the memory
hierarchy. If the top of the memory hierarchy is too small, the processor will sit idle, waiting for the inputs
to arrive.
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Second, the data flow firing rule is naive, since it ignores locality in execution. Ideally, a dataflow
machine would execute program fragments that are related to one another to exploit locality and prevent
“thrashing” at the top of the memory hierarchy.

Culler’s arguments were sound at the time, but they are bound to the assumption that execution resources
are expensive and that hiding latency and keeping the processors busy are the keys to performance. Given
that commercial microprocessors ship with less than 10% of the die area devoted to execution, this persec-
utive is no longer up to date. The key efficiency point is total performance per chip, independent whether
this performance is achieved through hundreds of execution cores (WaveCaches), or massive communica-
tion networks (superscalars). We have demonstrated that the WaveCache can effectively exploit locality in
communication patterns to increase performance for a given die area.

This does not mean, however, that the memory hierarchy is unimportant, but in recent years the size
of on-chip memories has soared. The PA-RISC 8700 has 2.25MB of L1 caches [59] and the forthcoming
Madison chip from Intel will include a 6MB L2 cache [60]. Since each WaveCache processing element
contains a small memory, the WaveCache can simultaneously utilize an enormous amount of on-chip storage
with very short access times.

Traditional dataflow work has too often relied upon alternative memory models [61, 62], which, while
enhancing performance, limit acceptance. Wave-ordered memory make WaveScalar a uniquely different sort
of dataflow instruction set: Through an aggressive dynamic wave and static-ordering process WaveScalar
supports traditional memory semantics, including side-effects, indirection and aliasing. In our opinion,
supporting traditional programming languages is required for instruction sets and new architectures to be
successful.

The WaveScalar ISA builds upon some of the original program representations used in [19, 27], which
was derived from earlier compiler and theory work [33]. The intermediate compiler language, Pegasus [63],
for NanoFabrics [64] adapts these ideas as well. The Pegasus researchers transform an entire application
into a static dataflow graph and map it onto a large spatial fabric of molecular electronics that can operate
like an FPGA. To date, the system is limited to a static dataflow model, although the early discussions of
moving to a partially dynamic system are in [63].

Treating the entire device as an FPGA and mapping the entire application to it is intriguing, but our
cache-based approach has the advantage of being able to localize in physical space the dependencies of an
application at run time, instead of compile time. This is particularly useful when co-locating computation
and data. By keeping instructions and data at a fixed location in the NanoFrabric, memory operations
sometimes have to travel quite long distances, repetitively. It is not clear yet how the NanoFabric work
intends to really handle memory ordering; however, the wave-ordered memory would work for their system.

5.2 TRIPS

The TRIPS / GPA [3] processor and WaveScalar are attacking the same technology challenges, and tend
to use the same terminology to describe aspects of their designs. However, the only architectural feature
TRIPS and WaveScalar share is the use of direct links between instructions of the same hyper-block (or
wave). TRIPS is an innovative way to build a Very Long Instruction Word (VLIW) processor from next
generation silicon technology. A VLIW bundles instructions horizontally to be executed in parallel. The
TRIPS processor makes the keen insight that between subsequent VLIW instructions is a significant amount
of dependence. Hence, it bundles groups of VLIW instructions together vertically and describes their depen-
dencies explicitly instead of implicitly through registers. Next it statically schedules them onto a physically
horizontal and vertical VLIW-like set of functional units. For the most part, a traditional centralized register
file is used to pass data items between hyperblocks; however, work is ongoing within the TRIPS project
to develop methods to stitch data dependences dynamically between adjacent hyper-blocks [65]. It will be
interesting to see how far this notion can be pushed by the TRIPS project without transforming all the way
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to a dataflow model of computation like WaveScalar.
WaveScalar offers three key advantages over the existing TRIPS architecture. First, it makes a clean

break away from a single program counter. This exposes more parallelism through the execution model,
without relying upon trace scheduling compilers. Lam et al [15] illustrate that being forced to process
control dependencies in program order severally constrains ILP. Unlike TRIPS, WaveScalar, breaks away
from this constraint, taking a step towards what Lam terms the “CD-MF” (control dependence with multiple
flows) model of computation. Yet it does this without speculation. It achieves it by virtue of being based on a
dataflow model of computation and wave-memory ordering. The second advantage WaveScalar offers over
TRIPS is that instructions are designed to execute in-place in an intelligent memory system. This allows
for the construction of a cache to exploit dataflow locality across far-flung sections of an application, not
just locally adjacent hyperblocks. Furthermore the dynamic nature of the WaveCache allows it to optimize
these instruction placements locally with runtime information. TRIPS relies upon static scheduling of de-
pendent instructions within a single hyperblock. Finally, the WaveScalar memory model exposes memory
parallelism across hyperblocks (i.e. with in wave). Like all Von-Neumann machines, memory ordering
occurs through a program counter with TRIPS, relying upon good control prediction for performance. Only
time and more experiments will tell which model of computation (dataflow or Von Neumann) and which
architecture (WaveScalar or TRIPS) is the right solution.

5.3 RAW and SmartMemories

The idea of computing with ten’s to hundred’s of nodes on a chip is not new. The RAW [43] and SmartMem-
ories [5] project use a tiled node architecture. While pictorially WaveScalar systems might appear like yet
another tiled architecture, there are several key differences. On some level, both RAW and SmartMemories
are really chip-multiprocessors, except that they have sophisticated and novel communication facilities tied
into their processing cores and memory systems. Both architectures use a processor connected to a memory
for each node.

The RAW project puts forth two programming models. The first, similar to SmartMemories, is that of
an advanced chip multiprocessor; the second is that of a speculative threaded machine [66]. Unfortunately,
the inter-node communication latency between tiles in RAW is extremely high, compared to classic inter-
functional unit latencies in superscalars (but compared to a conventional DSM it is quite low).

6 Future work

Since our investigation of the WaveScalar ISA and a possible WaveCache implementations is just begin-
ning, there are far more questions than answers. In this paper we presented our early results and initial
investigations. Below, we outline some of the areas of future work.

Microarchitecture: Chief among the unexplored microarchitectural issues are data caching and dead-
lock avoidance. Our current architecture distributes the datacache into several small caches throughout the
architecture. Our plan is to apply an existing directory-based cache coherence protocol [67, 68] to these
on-chip cache. We are building a model of this protocol and cache hierarchy into our simulation framework,
to explore its effect on performance. Additionally, the current WaveCache architecture uses a dynamically
routed switched network, similar to [5]. Without the ability to drop packets within the network, these net-
works can deadlock. Our current work uses a reliable acknowledge/resend mechanism between nodes, but
in the future we will investigate integrated checkpointing mechanisms. Checkpointing may have additional
uses besides deadlock avoidance in the area of coarse grained speculation.

Compiler: A top priority is to replace the Alpha ISA to WaveScalar ISA binary rewriter with a back-
end for an existing C/C++ compiler. Using a native compiler will generate more efficient code and allow
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us to explore opportunities and problems unique to WaveScalar, such as compiler-directed wave number
management and direct execution of single static assignment [38] code using

�
instructions.

Speculation: In Section 4 we demonstrated that WaveScalar can see significant benefit from several
kinds of speculation. WaveScalar systems can speculate by initiating speculative execution at a node with
one message and completing (or squashing) it with a second message once the correct path or value is
available. We are currently exploring several existing techniques for control and fine and coarse grained
memory speculation [55, 40, 69] and determining whether and how to integrate them into our design.

Defect tolerance: Large WaveCache systems will suffer from defective nodes, clusters, and communi-
cation networks. The fact that our architecture is uniform and decentralized means that we should be able to
map around such defective nodes with little performance loss. Exploring the effects of defective nodes and
dynamic faults will be a long-term focus of WaveScalar research.

Threads: The WaveScalar instruction set and WaveCache architecture are ideal tools to build threaded
machines. Currently, there are two classes of threaded processors, simultaneous multithreading machines
and chip multiprocessors. The fundamental difference between the two is whether resources are partitioned
statically between the threads or shared dynamically. In the WaveCache this is simply a parameter to the
WaveCache replacement policy: for the SMT [70] model, all the threads compete for the available pro-
cessing elements; in the chip multiprocessor [71] model the WaveCache confines each thread to a portion
of the grid. By simply adding a THREAD-ID to each wave number, and modifying the memory interface
accordingly, a vast array of multithreading strategies become possible.

7 Conclusion

In this paper we have presented WaveScalar, a new dataflow execution instruction set with several attrac-
tive properties. In contrast to prior dataflow work, WaveScalar provides a novel memory ordering model,
wave-ordered memory, that efficiently supports mainstream programming languages on a true dataflow com-
puting platform without sacrificing parallelism. Dividing the program into waves, combined with the WAVE-
RENAME and WAVE-COORDINATE instructions provide decentralized, inexpensive, software-controlled tag
management. In practice, WaveScalar programs run in a distributed computation substrate called the Wave-
Cache that co-locates computation and data values to reduce communication costs and exploit dataflow
locality.

The performance of our initial WaveCache is promising. The WaveCache’s ability to exploit parallelism
usually hidden by the Von Neumann model, leads to a factor of 2-4 performance increase in our limit
study on the SPEC and mediabench applications when compared to an aggressively configured superscalar
processor. It does this, without speculation, in a communication-scalable architecture that provides several
opportunities for further study and refinement.
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