
Building Large Knowledge Bases by Mass Collaboration

Matthew Richardson Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98189-2350�

mattr, pedrod � @cs.washington.edu

Abstract
Acquiring knowledge has long been the major bottle-
neck preventing the rapid spread of AI systems. Manual
approaches are slow and costly. Machine-learning ap-
proaches have limitations in the depth and breadth of
knowledge they can acquire. The spread of the Inter-
net has made possible a third solution: building knowl-
edge bases by mass collaboration, with thousands of
volunteers contributing simultaneously. While this ap-
proach promises large improvements in the speed and
cost of knowledge base development, it can only suc-
ceed if the problem of ensuring the quality, relevance
and consistency of the knowledge is addressed, if con-
tributors are properly motivated, and if the underlying
algorithms scale. In this paper we propose an architec-
ture that meets all these desiderata. It uses first-order
probabilistic reasoning techniques to combine poten-
tially inconsistent knowledge sources of varying quality,
and it uses machine-learning techniques to estimate the
quality of knowledge. We evaluate the approach using a
series of synthetic knowledge bases and a pilot study in
the domain of printer troubleshooting.

1 Introduction
Truly intelligent action requires large quantities of knowl-
edge. Acquiring this knowledge has long been the major
bottleneck preventing the rapid spread of AI systems. Two
main approaches to this problem exist today. In the manual
approach, exemplified by the Cyc project [10], human beings
enter rules by hand into a knowledge base. This is a slow and
costly process. Although the original goal was to complete
Cyc in ten years, it has now been under development for sev-
enteen.1 In the machine learning approach, exemplified by

0Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

K-CAP’03, October 23-25, 2003, Sanibel Island, FL, USA.
Copyright 2003 ACM 1-58113-000-0/00/0000...$5.00

1Our description of Cyc in this paper is based on the publications
about it, made primarily in its founding years. Cyc has developed

programs such as C4.5 [16], rules are automatically induced
from data. Although this approach has been extremely suc-
cessful in many domains, it has not led to the development
of the large, diverse knowledge bases necessary for truly in-
telligent behavior. Typical learning programs contain only
very weak assumptions about the world, and as a result the
rules they learn are relatively shallow – they refer only to
correlations between observable variables, and the same pro-
gram applied to two different data sets from the same do-
main will typically produce different rules. Recognizing this
problem, researchers have invested substantial effort into de-
veloping learning programs that can incorporate pre-existing
knowledge, in effect combining the manual and automatic ap-
proaches (e.g., Pazzani & Kibler (1992)). However, these
programs have not been widely adopted, largely due to the
difficulty and expense of capturing knowledge – the same bot-
tleneck that has plagued purely manual solutions.

The rise of the Internet has made possible a third approach
to the knowledge acquisition problem, one with the potential
to greatly speed the spread of AI. The open-source software
movement, enabled by the Internet, has shown that it is pos-
sible to develop very high quality software by accumulating
contributions from thousands of volunteers [17]. This sur-
prising outcome, exemplified by the success of the Linux op-
erating system, is relevant to the construction of large-scale
knowledge bases. If the work of a large number of volun-
teers can be properly coordinated, knowledge bases as large
as Cyc or larger can be built in a much shorter period of time,
at a fraction of the cost. Conversely, over a period of a decade
a knowledge base dwarfing any built so far can be inexpen-
sively developed.

However, while building knowledge bases by mass collab-
oration avoids some of the problems of the traditional ap-
proach, it greatly exacerbates others:

Quality. Ensuring the quality of knowledge contributed by
many different sources, when little is known about most
of them, is likely to be very difficult. We thus need mech-
anisms for automatically gauging the quality of contribu-
tions, and for making the best possible use of knowledge of
widely variable quality. This includes taking advantage of
redundant or highly overlapping contributions, when they
are available.

since, but these developments are not publicly available.

Consistency. As the knowledge base grows in size, main-
taining consistency between knowledge entered by differ-
ent contributors, or even by the same contributor at differ-
ent times, becomes increasingly difficult. In a traditional
logic-based system, a single inconsistency is in principle
enough to make all inference collapse. This has been a
major issue in the development of Cyc, and will be a much
more serious problem in a knowledge base built by many
loosely-coordinated volunteers.

Relevance. The initial Cyc philosophy of simply entering
knowledge regardless of its possible uses is arguably one
of the main reasons it has failed to have a significant impact
so far. In a distributed setting, ensuring that the knowledge
contributed is relevant – and that volunteers’ effort is pro-
ductive – is an even more significant problem.

Scalability. To achieve its full potential, a collective knowl-
edge base must be able to assimilate the work of an ar-
bitrarily large number of contributors, without the need
for centralized human screening, coordination, or con-
trol becoming a bottleneck. Likewise, the computational
learning and reasoning processes carried out within the
knowledge base should scale at worst log-linearly in the
number of contributions. This implies making expressive-
ness/tractability trade-offs, approximations, etc.

Motivation of contributors. To succeed, collective knowl-
edge bases will depend on the unpaid work of a large num-
ber of volunteers. Motivating these volunteers is therefore
essential. Following the example of open-source software,
collective knowledge bases should allow user-developers
to enter knowledge that is first of all relevant to solving
their own problems. Following the example of knowledge-
sharing Web sites [4], collective knowledge bases should
incorporate a fair mechanism for giving volunteers credit
for their contributions.

This paper proposes an architecture for collective knowl-
edge base development that addresses the five issues above.
The next section describes the architecture. The following
section describes the preliminary experimental evaluation of
the architecture we have carried out. We conclude with a dis-
cussion of related and future work.

2 An Architecture for Collective
Knowledge Bases
Figure 1 shows an input-output view of the architecture. A
collective knowledge base is a continuously-operating system
that receives three streams of information:

Rules and facts from contributors. Rules and facts are ex-
pressed in the Horn clause subset of first-order logic. A
first-order representation is used in the great majority of
knowledge-based systems, including Cyc, and is clearly
necessary to efficiently capture a broad range of real-world
knowledge. Horn clauses are used in many expert system
shells, and form the basis of the Prolog programming lan-
guage. They are an effective trade-off between expressive-
ness and tractability, and using them takes advantage of
extensive previous research on making Horn-clause infer-
ence efficient. Horn clauses also have the key feature of

high modularity: a new rule can be input without knowing
what other rules are already in the knowledge base. Note
that, although our current system requires entering knowl-
edge directly in Horn-clause form, this need not be the case
in general. Allowing knowledge entry via menu-driven in-
terfaces, ontology browsers, and restricted forms of natural
language (e.g., using a particular syntax, or within specific
domains) should greatly increase the number of individuals
that are able to contribute. The extensive previous research
on tools for knowledge base development (e.g., McGuin-
ness et al. (2000)) should be useful here.

Queries and evidence from users. Following conventional
usage, a query is a predicate with open variables (input
directly, or obtained by translation from a user interface).
Users also supply evidence relevant to the queries in the
form of a set of facts (ground instances of predicates).
These facts may be manually input by the user, or automat-
ically captured from the outside system the query refers to.
(For example, if the query is a request to diagnose a mal-
functioning artifact such as a car or a computer, informa-
tion on the state and configuration of the artifact may be
captured directly from it.) As in many knowledge-sharing
sites, queries can also have a “utility value” attached, re-
flecting how much the user is willing to “pay” (in some
real or virtual unit) for the answer.

Feedback on the system’s replies, from users. Given the
answer or answers to a query, the user takes actions,
observes their outcomes, and reports the results to the
knowledge base. For example, if the query is “Where on
the Web can I find X?” and the answer is a URL, the user
can go to that URL and report whether or not X was found
there. In a fault diagnosis problem, the user attempts to
fix the fault where diagnosed, and reports the result. The
outcome can also be in the form of a utility rating for the
answer. This rating can be objective (e.g., time saved,
number of “hits” in some task) or subjective (e.g., user’s
satisfaction on a five point scale).

In return, the collective knowledge base produces two
streams of information:

Answers to queries. Answers to a query consist of instanti-
ations of the open variables for which the query predicate
holds true. They are sorted by probability of correctness,
in the same way that search engines sort documents by rel-
evance. Probabilities of correctness are computed as de-
scribed below.

Credit to contributors. Contributors receive from the
knowledge base feedback on the quality of their entries,
in the form of accumulated (positive or negative) credit
for their use in answering queries. The credit assignment
computation is described below.

The collective knowledge base is thus involved in two con-
tinuous loops of interaction, one with contributors, and one
with users (these two populations need not be disjoint). Con-
tributors and users, as a result, interact via the knowledge
base. This interaction is in general not one-to-one, but many-
to-many: entries from many different contributors may be
combined by inference to yield the answer(s) to a query,
and the feedback from a query’s outcome will in return be

Rules

Facts

Feedback

Queries

Evidence

Answers

Outcomes

Contributors Users

Collective

Knowledge

Base

Inference

Learning

Figure 1: Input-output view of a collective knowledge base.

propagated to many different contributors. Conversely, a sin-
gle contribution may be used in answering many different
queries, and receive feedback from all of them.

The contributed rules are likely to be noisy, so associ-
ated with each are probabilistic parameters specifying quality
and/or accuracy. The result is a probabilistic first-order rep-
resentation. There are a variety of approaches for reasoning
in such a representation; we chose to base our algorithms on
knowledge-based model construction (KBMC) (see Section
3), the most directly applicable method. In KBMC, queries
are answered by first compiling the knowledge base (and as-
sociated rule weights) into a Bayesian network[15], then ap-
plying standard Bayesian network inference algorithms. Sim-
ilarly, feedback is incorporated by using standard BN meth-
ods such as expectation-maximization [3] (EM) to find the
rule weights which maximize the likelihood of the feedback.
KBMC allows for efficient inference and learning (in space,
time and the number of samples needed to accurately learn
the parameters). We will provide more algorithmic details in
Section 3

A key feature of this architecture is that collective knowl-
edge bases are built by an intimate combination of human
work and machine learning, and the division of labor between
them reflects their respective strengths and weaknesses. Hu-
man beings are best at making simplified, qualitative state-
ments about what is true in the world, and using their judg-
ment to gauge the quality of the end results produced by com-
puters. They are notoriously poor at estimating probabilities
or reasoning with them [19]. Machines are best at handling
large volumes of data, estimating probabilities, and comput-
ing with them. Another key feature is that the knowledge
base is not developed in open-loop mode, with the knowl-
edge enterers receiving no real-world feedback on the quality
and correctness of their contributions. Rather, the evolving
knowledge base is subjected to constant reality checks in the
form of queries and their outcomes, and the resulting knowl-
edge is therefore much more likely to be both relevant and
correct.

In current knowledge-sharing sites and knowledge man-
agement systems, questions are answered from an indexed
repository of past answers, or routed to the appropriate ex-
perts. Thus the only questions that can be answered automati-
cally are those that have been asked and answered in the past.
In contrast, the architecture we propose here allows chain-

ing between rules and facts provided by different experts, and
thus automatically answering potentially a very large number
of questions that were not answered before. This can greatly
increase the utility of the system, decrease the cost of an-
swering questions, and increase the rewards of contributing
knowledge.

The architecture answers the problems posed in the intro-
duction:

Quality. By employing feedback and machine learning, we
are able to determine which rules are of high quality, and
which are not. Further, since we are tracking the utility
of knowledge provided by users, they are more inclined to
provide good rules.

Consistency. By using a probabilistic framework, we are
able to handle inconsistent knowledge.

Relevance. Since the knowledge base is being built by users,
for users, we expect the rules to be on topics that the users
find relevant and interesting. The credit assignment pro-
cess rewards those contributors whose rules are used (and
produced a correct answer), which provides incentive to
create rules that are relevant to users’ needs.

Scalability. For both training and query-answering, the most
expensive portion of the computation is the probabilistic
inference on the Bayesian network. However, this com-
putation depends only on the size of the network, not of
the entire knowledge base. The Bayesian network is con-
structed out of only the relevant knowledge, which we ex-
pect (and confirm empirically in the experimental section)
will lead to relatively small networks even for very large
knowledge bases.

Motivation of contributors. By tracking the utility of rules
and assigning credit to those which are used to answer
queries, we provide the means for motivating contributors
(e.g. listing the top-10, paying in some real or virtual cur-
rency, etc.)

In the next section, we present the CKB algorithms in more
detail.

3 Algorithm
The internal workings of a collective knowledge base
generally follow the knowledge-based model construction

(KBMC) framework of Ngo and Haddawy [13]. This has
been used by, among others, Koller and Pfeffer [9], and Ker-
sting [8]. KBMC takes a Horn clause knowledge base and a
query as inputs, and produces a Bayesian network relevant to
answering the query. The advantage of KBMC over ordinary
logical inference is that it allows for “noisy” knowledge (i.e.,
it takes into account that facts and rules may not be believed
with certainty).

3.1 Review of KBMC
We begin by introducing KBMC for the common case of us-
ing noisy-or [15] to combine rules (Horn clauses) with the
same consequent. Noisy-or is a probabilistic generalization
of the logical OR function; it makes the assumption that the
probability that one of the “causes” fails to produce the effect
is independent of the success or failure of the other causes.
In this case, with each clause is associated a parameter that
specifies the probability that the consequent holds given that
the antecedents hold. Table 1 gives an example set of Horn
clauses and their associated parameters. For example, the
probability that a person, say “mary”, exercises is 0.8 if she
owns a gym membership. Because the clause is defined for
all X, this probability is the same for all people in the model.
This parameter sharing facilitates both a compact representa-
tion, and learning. KBMC allows Horn clauses with relations
of any arity.

To answer a query, KBMC extracts from the knowledge
base a Bayesian network containing the relevant knowledge.
Each grounded predicate that is relevant to the query ap-
pears in the Bayesian network as a node. Relevant predi-
cates are found by using standard Prolog backward chaining
techniques, except that rather than stopping when one proof
tree is found, KBMC conceptually finds every possible proof
tree. The multiple trees together form a proof DAG (directed
acyclic graph) where each node of the DAG is a grounded
predicate. For example, Figure 2 shows the Bayesian net-
work that would result from the query “healthy(mary)?”
given “eats well(mary)” and “gym member(mary)”. Once
the query has been converted into a Bayesian network, any
standard BN inference technique may be used to answer the
query.

When there are multiple relevant clauses that have the
same grounded consequent, KBMC employs a combination
function to compute the consequent’s probability. For ex-
ample, consider the second clause in Table 1: eats well(X)

� eats(X,Y), healthy food(Y). If eats(mary,carrots) and
eats(mary,apples), both of which are healthy food(.), then
what is the probability that eats well(mary)? To answer this,
an additional set of nodes are introduced to the Bayesian net-
work, one for each clause (e.g, E1 and E2 in Figure 3). The
node corresponding to a clause represents the proposition “All
of the clause’s antecedents are true,” and is thus a determinis-
tic AND function of those antecedents. For each (grounded)
predicate, the probability that the predicate holds is a func-
tion of the “clause” nodes (e.g., E1) that have that predicate
as the consequent. For example, the predicate can be a noisy-
or of the clauses that have it as the consequent. In general,
the combination function can be any model of the conditional
distribution of a Boolean variable given other Boolean vari-

0.9 healthy(X) � eats well(X), exercises(X)
0.7 eats well(X) � eats(X,Y), healthy food(Y)
0.8 exercises(X) � gym member(X)

Table 1: Sample Horn clauses defining part of a knowledge
base. The number specifies the probability of the consequent
when all of the antecedents are true .

healthy(mary)

eats_well(mary)exercises(mary)

gym_member(mary)

Figure 2: Example Bayesian network formed for a query on
the knowledge base shown in table 1.

ables, and can be different for different predicates. Our im-
plemented system supports three combination functions, all
of which require one parameter per clause: noisy-or [15], lin-
ear pool [5][7], and logistic regression [1].

Notice that the size of the Bayesian network produced by
KBMC in response to a query is only proportional to the num-
ber of rules and facts relevant to the query, not the size of the
whole knowledge base; this is crucial to the scalability of the
approach.

For some combination functions (such as a leaky noisy-or),
a fact may have non-zero probability even if none of the rules
for which it is a consequent apply. When using such func-
tions, the results of inference are not complete: probabilities
are only computed for facts that have at least one applicable
rule. Generally, non-derivable answers vastly outnumber the
derivable ones, and ignoring them greatly reduces the compu-
tational complexity of query answering. Since these answers
would presumably have low probability, and users will gener-
ally only want to look at the top few most probable answers,

eats_well(mary)

E1 E2

combining function
(noisy or)

eats(mary,carrots)

healthy_food(carrots)

eats(mary,apples)

healthy_food(apples)

Figure 3: When there are multiple sources of evidence, they
are combined using a node which performs a function such
as noisy-or. Above is an example Bayesian network for the
query “eats well(mary)?”.

Inference

Variable Substitution 1

Variable Substitution 2

Variable Substitution N

Probability
of correctness

Answer

Answer

Answer2

N

1

Learning

Fact Rule body AND Combiner

Figure 4: Internal functioning of the knowledge base.

this should have very little effect on the end result.

3.2 Credit and Rule Weights

For each answer to a query there is a proof DAG (directed
acyclic graph). Each subtree of the DAG rooted in the answer
and with facts (evidence or contributed) as leaves corresponds
to an alternate derivation of the answer. Given feedback on
the correctness of the answer (entered by the user), the util-
ity of the corresponding query is propagated throughout the
proof DAG. Credit is divided equally among the proof trees,
and within each tree among the rules and facts that were used
in it. If a rule or fact was used in multiple proof trees, it accu-
mulates credit from all of them. Over many queries, each rule
or fact accumulates credit proportional to its overall utility,
and each contributor accumulates credit from all the queries
his/her knowledge has helped to answer. If a rule or fact tends
to lead to incorrect answers, the consequent cost (or negative
utility) will be propagated to it; this will encourage contribu-
tors to enter only knowledge they believe to be of high quality.

Feedback from users, in the form of confirmation of the
system’s answers, or the correct answers after they become
known, is also used to learn the weights of rules and facts in
the knowledge base. This is done using the EM algorithm [3;
9], with each example being the evidence and correct an-
swer for a given query, and the missing information being
the remaining facts. By default, each first-order rule has only
one weight, obtained by tying (averaging) the weights of its
ground instances. The weights of all the combination nodes
corresponding to that rule in the propositionalized network
are set to this value.

The CKB algorithms are summarized in Table 2. Gener-
ateProofDAG() uses Prolog to find all possible proof trees for
the given query, and then merges these proof trees into a proof
DAG. ConvertToBayesianNetwork() constructs a Bayesian
network of AND and combination nodes as described ear-
lier. UpdateRuleProbabilities() updates the probabilities in
the knowledge base so as to maximize the likelihood of the
feedback.

Table 2: The CKB algorithms.

Inputs:

E Set of grounded predicates (evidence)
KB Set of horn clauses with associated probabilities

(knowledge base)
F Feedback set

���������	�	��
�
�
�
, with

�������������������
:

an evidence set, a query, and the correct answer.

AnswerQuery(KB, E,
�
)

N = GenerateNetwork(KB, E,
�
)

return � ����� � � = RunBayesNetInference(!)

Train(KB, F)
do while KB probabilities have not converged:

for each
� �

in F:
N = GenerateNetwork(KB,

�	�"��� �
,
���#���$�

)
SetEvidence(! ,

�	�#���$�
)

RunBayesNetInference(!)
AccumulateProbabilities(KB, !)

UpdateRuleProbabilities(KB)

GenerateNetwork(KB, E,
�
)%

= GenerateProofDAG(KB, E,
�
)

! = ConvertToBayesianNetwork(
%

)
return ! = SetEvidence(! , E)

4 Experimental Evaluation

As a preliminary evaluation, we performed two sets of exper-
iments using our implementation of a collective knowledge
base. In the first, we generated synthetic first-order rules and
facts. In the second, we built a printer troubleshooting knowl-
edge base using contributions from real users. Logistic re-
gression was used as the evidence combination function in
both experiments.

4.1 Synthetic Knowledge Bases

To our knowledge, there is currently no publicly-available
knowledge base of the scope that would be desirable for
demonstrating the advantages of our system. We thus opted
to simulate the contributions of many different volunteers to
a collective knowledge base, in the form of first-order rules
and facts.

We based our knowledge generation process on the as-
sumption that a contributor is an expert in a particular topic.
We thus first generated a random taxonomy of topics, each of
which contained some number of predicates, variable types,
and ground instances. An expert is likely to know not just
the concepts in a given topic, but also the general concepts of
more specialized sub-topics. Each topic was thus divided into
general and specific predicates. An expert could form rules
for a topic2 using as antecedents any of the topic’s predicates,
or any of the general predicates of the immediate sub-topics.
We generated a random knowledge base of rules in this way.

We simulated an expert by choosing a random topic and
sampling the knowledge base for rules with consequents from

2Rules for a topic are defined as rules whose consequent is a
predicate belonging to that topic.

nodes in the vicinity of that topic in the hierarchy. The prob-
ability that an expert submitted a rule in a given topic de-
creased exponentially with the distance (number of hops) be-
tween that topic and the expert’s one in the taxonomy. We
randomly added and removed antecedents from an expert’s
rules to simulate noisy or incomplete knowledge.

Positive training and testing examples were generated
by randomly choosing a consequent and backward-chaining
through rules in the knowledge base to find evidence that sup-
ported them. A positive example was turned into a negative
one by removing a single evidence item, which resulted in
“near-miss” examples that are easy to mistake as positive.
Note that some samples thus required only knowledge con-
tained within one topic, while others required chains of infer-
ence that spanned topics and subtopics, which we believe is
often the case in the real world.

We modeled the accumulation of knowledge as propor-
tional to the number of contributors to the system, with 25
rules and 50 feedback instances per contributor. The ontol-
ogy had 25 nodes, and the “true” knowledge base had 50 rules
per category. These and other parameters (provided in an on-
line appendix) were constant throughout the experiments, and
set before seeing any test results. We tested with 500 queries.
The results are shown in Figure 5,3 where “Averaged Experts”
is the performance obtained by estimating the probability of
an answer as the average of the probabilities predicted by the
relevant experts (i.e., those that were able to answer the ques-
tion). “Trained CKB” and “Untrained CKB” refer to the per-
formance obtained by using the architecture presented in this
paper, with or without using the feedback to train. The per-
formance measure (“Accuracy”) is the fraction of queries that
were answered correctly (with unanswered queries counting
as failures). The advantage of the collective knowledge base
increases rapidly with the number of contributors. This is at-
tributable to the increasing number of connections that can be
made between different contributions as the knowledge base
becomes increasingly densely populated. We also see that ap-
plying machine learning to estimate the quality of knowledge
further improves performance.

Although not optimized for speed, our current system is
fairly efficient. The time required to extract the Bayesian net-
work for a query from the knowledge base was dominated by
the time to run probabilistic inference on the network. The
size of the extracted Bayesian network grew sub-linearly in
the size of the knowledge base, from an average of 11 nodes
for a collection of 10 experts to 24 nodes for a collection of 50
experts. The average time spent on probabilistic inference for
a query asked of the pool of 50 experts was 400 milliseconds;
the time required to run EM was approximately proportional
to the product of this and the number of training examples.

4.2 Printer Troubleshooting
A significant portion of Usenet newsgroups, FAQs, and dis-
cussion forums is devoted to the task of helping others diag-
nose their computer problems. This suggests that an auto-
mated knowledge base for this domain would be in high de-

3We are currently completing the runs for the upper curve; they
will be included in the final paper.

5

10

15

20

25

30

35

40

45

0 400 800 1200 1600

A
cc

ur
ac

y(
%

)

Number of Contributed Rules

Trained CKB
Untrained CKB
Averaged Experts

Figure 5: Results on synthetic knowledge bases.

mand. It is also potentially well suited to development using
our collective knowledge base architecture, due to the avail-
ability of a large pool of willing experts with some degree of
formal knowledge, the availability of objective outcomes for
feedback purposes, the composable nature of the knowledge,
the fact that evidence can potentially be captured automati-
cally from the machines being diagnosed, etc. As a first step
in this direction, we have carried out a pilot study demon-
strating that knowledge obtained from real-world experts in
this domain can be merged into a system that is more accu-
rate than the experts in isolation.

We used the Microsoft printer troubleshooting Bayesian
network as a model of the domain.4 (In other words, exam-
ples generated from this network were used to simulate exam-
ples generated by the real world.) The network consists of 76
Boolean variables. Seventy of these are informational, such
as “print spooling is enabled” and “fonts are installed cor-
rectly”, and six are problem-related, such as “printing takes
too long”. Many of the variables are labeled as fixable and/or
observable with associated costs. We considered any variable
whose cost of observation was less than one to be evidence,
and any proposition that was fixable but not evidence to be
a cause, which resulted in seventeen evidence variables and
twenty-three causes.

The system attempts to identify the most likely cause of a
problem, given the evidence and problem nodes. To generate
plausible problems a user may ask the system about, we gen-
erated random samples from the network and accepted only
those where exactly one cause was at fault and at least one of
the problem-related propositions was true. The system was
then presented with the resulting evidence and problem nodes
and asked to diagnose which proposition was the cause of the
problem. As in the first-order domain, the system may elect
not to answer a question. We report two measures of success.
One is the fraction of queries whose cause is properly diag-
nosed (with unanswered queries counting as failures). The
other is the average rank of the correct diagnosis in the list of

4Available at http://www.cs.huji.ac.il/˜galel/Repository/Datase-
ts/win95pts/.

probable causes returned (with the most probable cause hav-
ing rank one). This corresponds to the number of actions a
user needs to perform before the printer is functioning again.

We gave the definitions of the seventy-six variables to four
volunteers, who were each asked to write rules describing the
printer domain to the best of their ability in a limited amount
of time. All four were computer users who have had expe-
rience printing but did not have any particular expertise or
training on the subject. Table 3 shows for each volunteer the
time spent contributing knowledge, the number of rules con-
tributed, and the performance before and after learning rule
weights. Two hundred examples were used for training. Note
that random guessing would have achieved an accuracy of
4.5%.

Table 3 also shows the results of combining the experts.
The row labeled “Average” is the result of averaging pre-
dictions as described before.5 The “CKB” row shows the
added advantage of the collective knowledge base: it achieves
higher accuracy than a simple combination of the individual
volunteers, both when the individual volunteers’ rule coeffi-
cients have been trained and when they have not. Thus we
observe once again that the collective knowledge base is able
to benefit from chaining between the rules of different volun-
teers.

5 Related Work
Open Mind (www.openmind.org) and MindPixel (www.-
mindpixel.com) are two recent projects that seek to build col-
lective knowledge bases. However, neither of them addresses
the issues of quality, consistency, relevance, scalability and
motivation that are critical to the success of such an enter-
prise. The MindPixel site asks contributors to input natural
language statements and states that they will be used to train
a neural network, but it is not clear how this will be done, or
how the results will be used. Open Mind appears to be mainly
an effort to gather training sets for learning algorithms (e.g.,
for handwriting and speech recognition). Its “common sense”
component is similar to MindPixel. Cycorp (www.cyc.com)
has recently announced its intention to allow contributions
to Cyc from the public. However, its model is to have con-
tributions screened by Cyc employees, which makes these a
bottleneck preventing truly large-scale collaboration. There
is also no mechanism for motivating contributors or ensur-
ing the relevance of contributions. Another key difference
between Cyc and our approach is that Cyc is an attempt to
solve the extremely difficult problem of formally represent-
ing all common sense knowledge, while our goal is to build
knowledge bases for well-defined, concrete domains where
it should be possible to enter much useful knowledge using
relatively simple representations.

The Semantic Web is a concept that has received increas-
ing attention in recent times [2]. Its goal can be summarized
as making machine-readable information available on the
Web, so as to greatly broaden the spectrum of information-
gathering and inference tasks that computers can carry out un-

5This can be higher than the average accuracy of the contributing
experts, if different experts answer different questions, because an
unanswered query is counted as answered incorrectly.

aided. The Semantic Web can be viewed as complementary to
the architecture described here, in that each can benefit from
the other. The Semantic Web can provide much of the infras-
tructure needed for collective knowledge bases (e.g., standard
formats for knowledge). In turn, the mechanisms described in
this paper can be used to guide and optimize the development
of the Semantic Web. Similar remarks apply to other ongo-
ing efforts to support large-scale, distributed knowledge base
development (e.g., the Chimaera project [11]).

Collaborative filtering systems [18] and knowledge-
sharing sites [4] can be viewed as primitive forms of collec-
tive knowledge base. Their success is an indication of the
promise of mass collaboration.

The representation we use is a form of probabilistic logic
program [13]. Other recently-proposed probabilistic first-
order formalisms include stochastic logic programs [12] and
probabilistic relational models [6]. Stochastic logic programs
are a generalization of probabilistic context-free grammars,
and assume that for a given consequent only one rule can
fire at a time. They are thus not applicable when multi-
ple rules can function simultaneously as sources of evidence
for their common consequent. Probabilistic relational mod-
els lack the modularity required for construction by many
loosely-coordinated individuals. In the future we plan to ex-
plore ways of adapting these approaches for our purposes,
and to compare them with probabilistic logic programs.

6 Conclusion

Knowledge acquisition is the key bottleneck preventing the
wider spread of AI systems. Both current approaches to it
— manual and automatic — have limitations that are hard
to overcome. The Internet makes possible a new alternative:
building knowledge bases by mass collaboration. While this
approach can greatly reduce the time and cost of develop-
ing very large knowledge bases, it raises problems of quality,
consistency, relevance, scalability and motivation. This paper
proposes an architecture that addresses each of these prob-
lems. Experiments with large synthetic knowledge bases and
a pilot study in the printer diagnosis domain show its promise.

Directions for future work include: developing first-order
probabilistic methods specifically for collective knowledge
engineering, focusing particularly on the restrictions on ex-
pressiveness needed for scalability; studying different alter-
natives for credit assignment, leveraging results from the
multi-agent systems literature; developing mechanisms for
guiding contributors to where new knowledge would be most
useful, using value-of-information computations; detecting
and overcoming malicious users; using machine learning
techniques to automatically propose to contributors refine-
ments of their entries; developing machine learning methods
for automatically translating between the ontologies used by
different subcommunities of contributors; and deploying a pi-
lot Web site for collective knowledge base construction, open
to contributions from all sources, focusing initially on the do-
main of computer troubleshooting.

Table 3: Printer troubleshooting results. “Volunteer � ” is the system using the � th volunteer’s rules. “CKB” is the collective
knowledge base. The accuracy of random guessing is 4.5%.

System Time Num. Accuracy (%) Rank
(mins) Rules Untrained Trained Untrained Trained

Volunteer 1 120 79 11.1 15.8 11.9 6.7
Volunteer 2 30 32 2.6 4.5 9.4 8.6
Volunteer 3 120 40 2.7 10.3 13.6 10.3
Volunteer 4 60 34 3.9 6.3 13.0 12.0
Average – – 2.2 17.6 13.3 6.7
CKB – – 4.6 34.6 12.7 5.7

References
[1] A. Agresti. Categorical Data Analysis. Wiley, New

York, NY, 1990.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Seman-
tic Web. Scientific American, May 2001.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maxi-
mum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society, Series B,
39:1–38, 1977.

[4] M. Frauenfelder. Revenge of the know-it-alls: Inside
the Web’s free-advice revolution. Wired, 8(7):144–158,
2000.

[5] S. French. Group consensus probability distributions: A
critical survey. In J. M. Bernardo, M. H. DeGroot, D. V.
Lindley, and A. F. M. Smith, editors, Bayesian Statistics
2, pages 183–202. Elsevier, Amsterdam, Netherlands,
1985.

[6] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In Proceed-
ings of the Sixteenth International Joint Conference on
Artificial Intelligence, pages 1300–1307, Stockholm,
Sweden, 1999. Morgan Kaufmann.

[7] C. Genest and J. V. Zidek. Combining probability distri-
butions: A critique and an annotated bibliography. Sta-
tistical Science, 1:114–148, 1986.

[8] K. Kersting. Bayesian Logic Programs. PhD thesis,
University of Freiburg, Freiburg, Germany, 2000.

[9] D. Koller and A. Pfeffer. Learning probabilities for
noisy first-order rules. In Proceedings of the Fif-
teenth International Joint Conference on Artificial Intel-
ligence, pages 1316–1321, Nagoya, Japan, 1997. Mor-
gan Kaufmann.

[10] D. B. Lenat and R. V. Guha. Building Large Knowledge-
Based Systems: Representation and Inference in the Cyc
Project. Addison-Wesley, Reading, MA, 1990.

[11] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An
environment for merging and testing large ontologies.
In Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Rea-
soning, Breckenridge, CO, 2000. Morgan Kaufmann.

[12] S. Muggleton. Stochastic logic programs. In L. de
Raedt, editor, Advances in Inductive Logic Program-
ming, pages 254–264. IOS Press, Amsterdam, The
Netherlands, 1996.

[13] L. Ngo and P. Haddawy. Answering queries from
context-sensitive probabilistic knowledge bases. The-
oretical Computer Science, 171:147–177, 1997.

[14] M. Pazzani and D. Kibler. The utility of knowledge in
inductive learning. Machine Learning, 9:57–94, 1992.

[15] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
San Francisco, CA, 1988.

[16] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[17] E. S. Raymond. The Cathedral and the Bazaar: Mus-
ings on Linux and Open Source by an Accidental Revo-
lutionary. O’Reilly, Sebastopol, CA, 1999.

[18] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An open architecture for col-
laborative filtering of netnews. In Proceedings of the
ACM 1994 Conference on Computer Supported Cooper-
ative Work, pages 175–186, New York, NY, 1994. ACM
Press.

[19] A. Tversky and D. Kahneman. Judgment under uncer-
tainty: Heuristics and biases. Science, 185:1124–1131,
1974.

