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ABSTRACT 
Though research on the Semantic Web has progressed at a steady 
pace, its promise is yet to be realized. One major difficulty has 
been that the Semantic Web requires global consistency and qual-
ity, properties that are nearly impossible to achieve in such a large 
scale, mass collaborative system. We circumvent these problems 
by adopting instead the notion of local consistency. We propose 
individual maintenance of beliefs and trusts in other users. This 
paper defines global properties for combination functions which 
merge such trusts and beliefs, and defines a class of functions for 
which merging may be done locally while being equal to having 
done the merging locally. We show an equivalence between merg-
ing trusts and merging beliefs, allowing use of whichever is more 
efficient. We give examples of specific functions which fit into 
the framework and apply them to data from the Epinions knowl-
edge-sharing site and our implemented, real-world testbed, the 
BibServ bibliography server. Experimental results confirm that 
the methods are robust to maliciousness and noise, and do not 
require unreasonably high expectations of user quality. We hope 
that these methods will help move the Semantic Web closer to 
fulfilling its promise. 
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1. INTRODUCTION 
Since the articulation of the  vision for the Semantic Web in the 
landmark paper [10], the Semantic Web has become the focus of 
research on building the next web. The philosophy behind the 
Semantic Web is the same as that behind the World-Wide web – 
anyone can be an information producer or consume anyone else’s 
information. The key difference between the Semantic Web and 
the WWW is that in the Semantic Web, this content is intended to 
be machine understandable. 

Thus far, most research for the Semantic Web [34][6] has focused 
on defining standards for communicating facts, rules, ontologies, 
etc. XML, RDF, RDF-schema, and others form a necessary basis 
for the construction of the Semantic web, but none of them ad-
dress the major issue of how can we ensure the quality of the in-
formation being provided? As with the World-Wide Web, we 
expect there to be problems of information quality, consistency, 
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redundancy, and relevance on the Semantic Web. Consider the 
following scenarios: 

• Incorrect Information: Suppose you wish to find the eleva-
tion of Mt. Everest. One source may claim 29,035 feet, 
while another may claim 29,028 feet1. Which source is 
more trustworthy? Whether intentional or not, misinforma-
tion is likely to be prevalent.  

• Disagreement: Suppose you wish to learn about gravity 
waves. This is an area of active research, in which there is 
disagreement, even between highly credible scientists. 

• Difference of Opinion: Suppose you wish to ask which 
graduate school has the best Computer Science department. 
This is a very opinionated query, and the best answer may 
depend on who is asking the question (for instance, what do 
they value? Who’s opinion do they trust, etc). 

• Too much information: Suppose you wish to find a good 
book on taking care of cats. A list of all books on taking 
care of cats is simply too much. What you really desire is a 
list of book that are recommended, perhaps by other users 
who share similar beliefs and opinions to yourself. 

On the World-Wide Web, these problems have been addressed by 
search engines, moderated taxonomies, etc., but the problems are 
likely to prove much more troublesome on the Semantic Web. If it 
becomes as widespread as the WWW, we expect that there will be 
significantly more facts on the Semantic Web than there are cur-
rently pages on the WWW. Further, computers are typically more 
sensitive to mistakes than humans. Also, research has shown that 
users depend strongly on the visual appearance of web pages to 
estimate their credibility [19], but this is impossible on the Se-
mantic Web. 

One solution would be to require all information contained on the 
Semantic Web to be consistent, organized, and of high quality. 
But due to its sheer magnitude and diversity of sources, this will 
be nearly impossible. Much as in the development of the WWW, 
in which there was no attempt made to create a globally consistent 
library of information, we argue that it is neither feasible nor de-
sirable to maintain globally consistent information on every pos-
sible topic.  

Imagine what it would mean to require global consistency on the 
World Wide Web. It would mean, for example, that before creat-
ing a link to the best modern painting from her page, Jane first get 
a universal agreement on what a modern painting is and what their 
universal rankings are. From Jane's point of view, a painting is 
modern because Jane says so, and it is the best modern painting, 
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until 1999, when new, more accurate GPS equipment revealed 
the actual height to be 29,035 feet. 
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again because she thinks so. The foundation of the success of the 
original web was the respect for individual opinions and judg-
ments, and we do not want to lose sight of this simple axiom. 

It seems clear that we will simply have to accept the existence of 
inconsistency, and develop methods that work under the assump-
tion that the information will be of varying quality. On the 
WWW, researchers have found that one way to handle this prob-
lem is to take advantage of the link structure between pages, 
which can be taken to mean that the source page considers the 
destination page to be of good quality. Only by taking advantage 
of these completely distributed, mass collaborative “statements”  
of quality can we ever expect the entire web to be ranked. 

We propose that the same approach will work on the Semantic 
Web, for maintaining not just quality, but also consistency, rele-
vance, redundancy, and vocabulary differences. We argue that 
what is needed is only local consistency, meaning that you can 
understand and translate the information of a small number of 
“neighbors”  – users who themselves also communicate with and 
understand a small number of people, and so on recursively such 
that you have access to potentially everything on the Semantic 
Web. 

The recent popularity of peer-to-peer networks dovetails nicely 
with what we are proposing. Here, information “on the Semantic 
Web” comes to you filtered through your explicitly chosen 
neighbors. In this way, users only need to ensure that there is 
consistency between themselves and their neighbors. We view this 
as akin to the Piazza project [23] which forms apparent global 
consistency by transitive local consistency between peers. All of 
trust decisions are local. Jane simply specifies who she trusts and 
how much, as do John and Mary and others. Similarly, Jane sim-
ply creates her information without worrying about who might 
want to use it. Jane’s trusts connect her to a world-wide network 
of trust, giving her access to a knowledge base which is a superset 
of what she herself created. The pieces she gets from others are 
determined by who she trusts and who her trustees trust in turn. 
Note that centralized information repositories on specialized top-
ics (e.g. Yahoo, CiteSeer, dictionaries, etc.) can be seamlessly 
integrated in the proposed approach. 

In Section 2 we formulate a model which explicitly has the dual 
notions of trust and belief. Trust is computed transitively so that 
users of the system may calculate beliefs for any statement reach-
able through paths of trust relations (referred to as combined be-
liefs). Then, in Section 3, we describe on a global level what is the 
meaning of belief combination for a broad class of functions. We 
then show that beliefs may in fact be combined on a local level 
while still maintaining their global interpretation. We also show a 
correspondence between combining beliefs and combining trusts 
which conveniently allows for selection of whichever is more 
efficient for the given system.  In Section 4, we present an alterna-
tive interpretation based on probability. As with Section 3, we 
then proceed to show that it is possible to combine beliefs locally 
while maintaining this global interpretation and show a corre-
spondence between combined beliefs and combined trusts. In 
Section 5 we show that the two interpretations are closely related. 

Before concluding with related and future work, we give the re-
sults from two sets of experiments. In Section 6.1 we give the 
results from two sets of experiments. The first set uses the Epin-
ions web of trust; its results show that belief merging works across 
a wide variety of user quality, levels of maliciousness and 
amounts of noise in estimating trust values. In Section 6.2 we 

present the results of experiments with our ongoing project, Bib-
Serv. BibServ is a publicly-accessible bibliography server which 
uses our belief and trust merging techniques to maintain quality 
and consistency of bibliographies. Experimental results indicate 
positive trends in the use of beliefs for determining the quality and 
relevancy of bibliography entries. 

2. MODEL 
In this section we introduce the general terminology and model 
which will be used throughout this paper. 

2.1 Relation to the Semantic Web 
The vision of the Semantic Web encompasses all forms of knowl-
edge and information. For instance, content could be in the form 
of logical rules, factual assertions, ontologies, probability distribu-
tions, etc. All of these forms are useful for one type of task or 
another, so we do not wish our to discriminate between them. We 
thus refer to information with the generic term statement. A 
statement could be a single rule, or an entire ontology.  

Conceptually, queries on the Semantic Web are answered by re-
trieving all relevant statements, and using the appropriate infer-
ence methods to bring them together and produce an answer. 
However, typically not only would an answer be desired, but also 
some form of confidence in the answer. We envision that the re-
sult of the inference is a statement with an attached belief, which 
is some function of the beliefs of the statements that were input 
into the inferring machinery. The way in which the inference 
combines beliefs is specific to the form of information it is proc-
essing, and we do not address this issue here. Instead, we address 
the issue of how to discount and combine the input beliefs, which 
may have come from multiple different users. In order to do this 
combination, we introduce the notion of trust, and the network of 
trusts which form a web of trust. 

Example: Alice wants to know whether eggs are needed to make 
chow mein. Both Bob and Charley tell her that eggs are needed to 
make noodles, and Dawn tells her that there are possibly noodles 
in chow mein. How much should Alice trust Bob and how much 
should she trust Charley? How much should she believe that eggs 
are needed considering both Bob and Charley stated it was so? 
How uncertain should Alice be that there are noodles in chow 
mein considering Dawn was uncertain? These are all questions 
that this paper addresses. This paper does not answer the question 
of how the beliefs of the input rules should be combined in order 
to determine a belief for result, which is already an active area of 
research for many different forms of knowledge (see Section 7, 
Related Work).  

2.2 Users, trusts, and beliefs 
Consider a system of N users U={ u1, u2, …, uN} , who, as a whole, 
have made M statements. A statement is any assertion made by 
some user, whether accurate or not. Statements may be factual 
(The sky is blue), controversial (Black holes do not exist), opin-
ionated (Chocolate is the best flavor of ice cream), ontological 
(Mammal is a subclass of Animal), translations between terms 
(When John says ‘azul’ , he really  means ‘blue’ ), etc. We assume 
for convenience that statements are globally enumerated, though 
this is not necessary in practice. Since statements are considered 
independently, without loss of generality we introduce the system 
as if there is only one statement. 



2.2.1 Beliefs 
Any user may assert her personal belief in the statement. We will 
assume that a belief is a value taken from [0,1], where a high 
value means that the statement is accurate, credible, and/or rele-
vant. Beliefs will sometimes be interpreted as a probability. Let bi 
represent user i’ s personal belief. If i has not provided one, we set 
bi to 0. We will often refer to the collection of personal beliefs as 
the column vector b 

2.2.2 Trusts 
A user i may specify a personal trust, t ij, for any user  j. We will 
assume that trust is also a value taken from [0,1], where a high 
value means that the user is credible, trustworthy, and/or shares 
similar interests and beliefs.  Take t ij to be 0 if i does not provide a 
personal trust value for  j. Note that t ij need not equal t ji The col-
lection of personal trusts of all users can be represented as a N×N 
matrix t. We write t i to represent to row vector of user i’ s personal 
trusts in other users. 

2.2.3 Merging 
The purpose of the web of trust is to provide a structure on which 
we may compute, for any user, their belief in the statement. We 
will refer these beliefs as merged beliefs (B), to distinguish them 
from the user-specified personal beliefs (b). We also define the 
trust between any two users to be the users’  merged trusts (T), as 
opposed to the user specified personal trusts (t) which define 
their set of neighbors. Note that although it is more typical for the 
case of a letter to denote whether it is a vector or a matrix, we 
have chosen to let case denote whether the values are personal or 
merged, and remind the reader to keep in mind that the letter ‘b’  
always denotes vectors and the letter ‘ t’  always denote matrices. 

3. PATH ALGEBRA INTERPRETATION 
In this section, we define a global interpretation for merged be-
liefs based on the paths between users and beliefs. In Section 4 we 
consider an alternative probabilistic interpretation. In both sec-
tions we will show that merged beliefs may be computed using 
only local information, yet still hold true to their global definition. 
We will also show that in both cases, merged beliefs may be com-
puted indirectly by first computing merged trusts, and then apply-
ing them to users’  personal beliefs. 

3.1 Global belief merging 
We first define the desired global meaning of belief combina-
tionin the network of trusted users. For the moment, we consider 

only acyclic graphs (we later discuss application to cyclic graphs). 
Refer to Figure 1. User A wishes to determine her belief in some 
statement, which may be believed by multiple users (B, D in this 
example). In this interpretation, we specify that the merged belief 
is some function of the collection of all paths between the user 
and every user which believes the statement. Borrowing terminol-
ogy from the generalized transitive closure literature on path 
computations [3], the specific computation is as follows: 

1. Enumerate all (possibly exponential number of) paths 
between the user and every user with a personal belief 
in the statement. 

2. Calculate the belief associated with each path by apply-
ing a concatenation function to the trust values along 
the path and also the personal belief held by the final 
node.  

3. Combine those beliefs with an aggregation function 

We will see shortly that as long as the concatenation and aggrega-
tion functions have certain properties, the potentially exponential 
number of paths between the user and beliefs does not cause the 
computation to become intractable. 

What happens if the user herself has some belief in the statement? 
As we will see later, the computation can be applied to graphs 
with cycles. By specifying a trust in herself, a user’s personal 
beliefs may be incorporated into her merged beliefs (see Section 
3.5 for a more thorough discussion). 

Some useful concatenation functions are multiplication and mini-
mum value. Some possible aggregations functions are addition or 
maximum value. Various combinations lead to plausible belief-
merging calculations such as considering the most-reliable path or 
maximum flow between the node and the statement.  

For brevity, we will let �  and 
�
 represent the concatenation and 

aggregation functions respectively (for intuition, think ‘multipli-
cation’  and ‘addition’ ). For example, since t ik is the amount that 
user i trusts user k, and tkj is the amount that k trusts j, then t ik

� tkj 
is the amount that user i trusts user j via k. The aggregation func-
tion, 

�
, is used to combine multiple paths. For example, the 

amount that i trusts j via any single other node would be 
�
( ∀k: 

t ik
� tkj ). If 

�
 is addition and �  is multiplication, we will have 

�
( 

∀k: t ik
� tkj ) ≡∑

k
kjiktt . We define the matrix operation C=A•B 

such that Cij = 
�
( ∀k: t ik

� tkj ). Note that for the previous example, 
A•B is simply matrix multiplication. 

3.2 Local belief merging 
The global meaning of trusts given above assume A has full 
knowledge of the network including the personal trusts between 
all users. Not only does this raise major privacy concerns, but it 
also runs counter to the ideas of local consistency and keeping the 
network of trust distributed. Can we instead merge beliefs locally 
while keeping the same global interpretation? 

Following [3], let well-formed decomposable path problems be 
defined as those for which 

�
 is commutative and associative, and 

�  is associative and distributes over 
�
. All of the examples for 

aggregation and concatenation given above result in well-formed 
path problems. Any such well-formed path problems may be 
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Figure 1: An example web of trust, demonstrating path 
algebra belief merging.  Edges are labeled with trust. 0.7 
and 0.8 represent B and D’s personal beliefs. A’s belief is 
the aggregation of the concatenation of trusts and beliefs 
for  any path from A to any node with belief. Concatenation 
and aggregation are multiplication and addition. 



computed using generalized transitive closure algorithms2, which 
use only local information. One such algorithm infers beliefs by 
starting with the personal beliefs and iteratively incorporating the 
neighbors’  beliefs until the network converges. If we let B repre-
sent the vector of merged beliefs, then the algorithm is as follows: 

1. B(0) = b 
2. B(n) = t•B(n-1), or alternatively, Bi

(n)=
�
( ∀k: t ik

� Bk
(n-1)

 ) 
3. Repeat until B(n) = B(n-1) 

(where B(i) represents the value of B in iteration i.) 

Notice that in step 2, the user needs only the merged beliefs of her 
immediate neighbors. This computation allows us to merge beliefs 
locally while keeping the same global interpretation. What hap-
pens if we choose concatenation and aggregation functions that do 
not form a well-formed decomposable path problem yet still apply 
the algorithm above? In this case, the global meaning of beliefs 
described in Section 3.1 no longer holds and unexpected behavior 
may result. 

Refer to Figure 2 (Case I). Imagine selecting any node (with no 
personal belief in the statement) and removing it from the net-
work, adding edges from any node which trusted it to any node it 
trusted (set the label of such an edge to be the concatenation of 
the trusts of the two edges it was formed from). Using the method 
described in Section 3.1, the merged beliefs of the remaining us-
ers will remain unchanged. We call this weak global invariance. 
We feel this is an important property as otherwise the introduction 
of users who do nothing more than pass through information can 
affect the trust between users.  

We will sometimes use the term belief combination function to 
refer to the above algorithm and some selection of �  and 

�
 for 

merging beliefs. 

3.3 Strong invar iance 
We can imagine another property which may be desirable. Again 
refer to Figure 2 (Case II). A trusts C through B. If we add an arc 
of trust directly from A to C, and the trust between A and C is 
unchanged, we say that the belief combination function has strong 
global invariance, to differentiate it from the weak global invari-
ance introduced above. 

If John computes his indirect trust in Jane, and then adds Jane as a 
neighbor with that same value of trust, then it is reasonable to 
expect his trust in Jane to remain unchanged. Arguably, in some 
instances, combination functions without strong global invariance 
make sense. For instance, if 

�
 is addition, then adding a direct arc 

of trust to a user who is already indirectly trusted will increase the 
trust in that user, which is not entirely unreasonable. We believe 
that weak global invariance is a minimum requirement for a rea-
sonable belief function, while strong global invariance is optional. 

Any belief combination function with weak invariance, for which 
the aggregation function is also idempotent (meaning, 

�
(x, x) = 

�
(x) ), will have strong invariance. This follows trivially from the 

fact that the aggregation function is associative. Interestingly, 
whether or not the aggregation function must be idempotent is the 
primary difference between Agrawal’s well-formed decomposable 
path problems [3] and Carre’s path algebra [12] (also related is 
the definition of a closed semiring in [4]).   One example of a 
belief combination function with strong global invariance is the 
one defined with 

�
 as maximum and �  as multiplication. 

                                                                 
2 One such algorithm is the semi-naïve algorithm [7]. See Section 

3.7 for a discussion on computational efficiency. 

3.4 Merging trusts 
Notice that the majority of the belief merging calculation involves 
the concatenation of potentially long chains of trust. The belief 
only enters the computation at the endpoint of each path. Can we, 
instead of merging beliefs, consider merging trusts and then reus-
ing these merged trusts when calculating the beliefs for different 
statements? 

Interpretation of merged trusts 

We define the interpretation of globally merged trusts in the same 
was as was done for beliefs: the trust between user i and user j is 
an aggregation function applied to the trust of every path between 
them, where the trust of a path is found by concatenating the trust 
values along it. 

Local trust merging 

As with merging beliefs, it falls directly from path algebra that, if 
�
 is commutative and associative, and �  is associative and distrib-

utes over 
�
, then we can combine trusts locally while still main-

taining global meaning: 

1. T(0) = t 
2. T(n) = t•T(n-1) 
3. Repeat until T(n) = T(n-1) 

(We define T to be the NxN matrix of merged trusts, with T(i) is 
the value of T in iteration i) Step 2 requires merged trusts only 
from immediate neighbors. The result of the computation is a set 
of merged trusts that maintain the global interpretation. 

This leads us to the following theorem: 

Theorem 1 

If 
�
 is commutative and associative, and �  is associative and 

distributes over 
�
, and t, T, b, and B are as above, then 

 t•B = T•b 

The proof is in the appendix. 

Thus, for a wide class of aggregation and concatenation functions, 
merging trusts accomplishes the same as merging beliefs. 

3.5 Cycles 
Up to now, we have assumed the graph is acyclic. The problem 
with cyclic graphs is that there may now be an infinite number of 
paths between two nodes. This means the aggregation function 
may potentially have to be applied to an infinite number of values. 

However, it is improbable that arbitrary webs of trust in the Se-
mantic Web will be acyclic. Indeed, the Epinions web of trust (see 
Section 6.1) is highly connected and far from acyclic. 

Again, borrowing terminology from path algebra, define a path 
problem as cycle-indifferent if it is not affected by introducing a 
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Figure 2: Strong and weak invar iance. 



cycle in the path between two users. As a result of cycle indiffer-
ence, the aggregation over infinite paths will converge, since only 
the (finite number of) paths without cycles affect its calculation. 
By direct application of this property: 

Proposition 1 
All of the results, definitions, and theorems introduced 
thus far are applicable to cyclic graphs if 

�
 and �  de-

fine a cycle-indifferent path problem. 

One example of a cycle-indifferent combination function is the 
one defined by using multiplication for concatenation, and maxi-
mum for aggregation. Since the beliefs and trusts all range in 
[0,1], concatenation of additional edges will only decrease the 
path’s trust value. Maximum will consider only the paths which 
do not encounter the same node twice, as it is guaranteed to have 
a lower concatenated value than the same path without the cycle. 

We now see how the global interpretation incorporates personal 
beliefs. By adding an arc of trust to herself, Jane may specify how 
much she trusts her own beliefs. Because the combination func-
tion must be cycle-indifferent, we know that only the “ first time 
around the cycle”  will count, namely her beliefs will be aggre-
gated into the set of beliefs exactly once. In the case of maximum, 
we can see that this means that if she believes the statement more 
than her neighbors do (scaled by trusts), her merged belief will be 
based on her personal belief. Otherwise, it will be based on the 
neighbors’  beliefs. 

On cyclic graphs, a combination function which is not cycle-
indifferent has the questionable property that, by modifying his 
own personal trusts, a user will sometimes be able to affect others’  
trusts in him. Also, in order to guarantee that the computation 
converges, one must show that the aggregation over infinite paths 
will converge. However, requiring that all combination functions 
are cycle-indifferent may be overly restrictive. In section 4 we 
explore an alternative interpretation for belief combination which 
allows the use of combination functions which are not cycle-
indifferent. 

3.6 Selection of belief combination function 
The selection of belief combination function may depend on the 
application domain, desired belief and cycle semantics, and the 
expected typical social behavior in that domain. The ideal combi-
nation function may be user-dependent. For the remainder of the 
paper, we will always use multiplication for concatenation, though 
in the future we would like to explore other functions (such as 
taking the minimum value along a given path). Following is a 
brief summary of four different aggregation functions we have 
considered. 

Maximum value 

This aggregation function returns the maximum value of its pa-
rameters. Since this means that the trust between any two users is 
simply the most-trusted path between them, we consider this an 
optimistic belief combination function. The advantages of maxi-
mum are that it is cycle-indifferent and results in absolute valued 
beliefs. Using maximum to combine beliefs is consistent with 
fuzzy logic, in which maximum has been shown to be the most 
reasonable function for performing a generalized or operation 
over [0,1] valued beliefs [9]. The interpretation is that the user 
will believe anything stated by at least one of the users he trusts. 

Minimum value 

Similar to maximum value, minimum value is also a possible 
aggregation function. However, unlike maximum, minimum is not 
cycle-indifferent. In fuzzy logic, minimum value is used to per-
form the and operation. The interpretation is that the user will 
only believe a statement if it is believed by all of the users she 
trusts. 

Average 

Average does not satisfy the requirements for a well-formed path 
algebra outlined above (average is not associative). However, 
average can still be computed by using two aggregation functions: 
sum and count (count simply returns the number of paths by 
summing 1’s). By passing along these two values, each node can 
locally compute averages. Average is not cycle-indifferent. 

As a combination function maximum naturally handles missing 
values (by letting them be 0), is strongly consistent, and is cycle-
indifferent, making it a good candidate for belief combination.  

3.7 Computation 
Since cycle-indifferent, weakly consistent combination functions 
are well-formed path problems, B and T may be computed using 
standard transitive closure algorithms. The simplest of these is the 
semi-naïve algorithm [7], which runs in O(N4) time, and essen-
tially prescribes repeated application of the belief update equa-
tion. If running as a peer-to-peer system, the semi-naïve algorithm 
may be easily parallelized. requiring O(N3) computations per node 
[2]. Another algorithm is the Warshall algorithm [40], which 
computes the transitive closure in O(N3). Some work on parallel 
versions of the Warshall algorithm has been done in [2]. There 
has also been much research on optimizing transitive closure algo-
rithms, such as that in databases for when the graph does not fit 
into memory [3]. Even though the worst case time complexity is 
O(N3), in practice most users will have only a very small fraction 
of the nodes as neighbors, and the number of iterations required to 
fully propagate information is much less than N, reducing the time 
complexity to nearly linear. 

Theorem 1 allows us to choose whether we wish to merge trusts 
or merge beliefs. The most efficient method depends on, among 
other things, whether the system is implemented as a peer-to-peer 
network or as a central server. Other factors that determine the 
most efficient algorithm are the number of neighbors for a given 
user, the number of users, the number of statements in the system, 
and the number of queries made by each user. 

4. PROBABILISTIC INTERPRETATION 
In this formulation, we consider a probabilistic interpretation of 
global belief combination. The treatment is motivated by random 
walks on a Markov chain, which have been found to be of practi-
cal use in discovering high-quality web pages [33]. In what fol-
lows, we assume the set of trusts for a given user have been nor-
malized. 

4.1 Global belief and trust merging 
We now describe the meaning of merged beliefs and trusts for 
user i. Imagine a random knowledge-surfer hopping from user to 
user in search of beliefs. At each step, the surfer probabilistically 
selects a neighbor to jump to according to the current user’s dis-
tribution of trusts. Then, with probability equal to the current 
user’s belief, it says “yes, I believe in the statement” . Otherwise, it 
says “no” . Further, when choosing which user to jump to, the 
random surfer will, with probability λi∈[0,1], ignore the trusts and 
instead jump directly back to user i. 



We define a combination method to have a global probabilistic 
interpretation if it satisfies the following two conditions: 

1) T ij is equal to the probability that, at any given step, user i’ s 
random knowledge-surfer is at user j. 

2) Bi is equal to the probability that, at any given step, user i’ s 
random knowledge-surfer says “yes” . 

Intuitively, user i will have a high merged trust for user j if j is 
well-trusted by many users that are (merged-)trusted by user i. 
User i himself will be trusted at least λi (more if there are cycles of 
trust which point back to him). Also, user i will have a high belief 
in the statement if it is believed highly by users for which his 
merged trust is high. The parameter λi can be viewed as a self-
trust, and specifies the relative weight a user gives to his own 
beliefs and trusts vs. those of his neighbors. The convergence 
properties of such random walks have been well-studied; the be-
liefs and trusts will converge as long as the network of trusts is 
irreducible and aperiodic [31]. 

The behavior of the random knowledge-surfer above is very simi-
lar to that of the intelligent surfer presented in [39], which is a 
generalization of PageRank that allows non-uniform transitions 
between web pages. What makes the calculation personalized to 
user i is the random restart (the occasional jump back to user i), 
which “grounds”  the surfer to i’ s trusts. The resulting set of trusts 
may be drastically different from those that would be obtained 
using standard PageRank since the number of neighbors will typi-
cally be small. A similar technique was used for making PageR-
ank topic-sensitive in [24], though it uses a uniform distribution 
in determining which link to follow. 

4.2 Computation 
User i’ s trust in user j is the probability that his random surfer is 
on a user k, times the probability that the surfer would transition 
to user j, summed over all k. Taking λi into account as well, we 
can write 

 ∑−+−=
k

kjikiiij ji tTT )1()( λδλ  

where δ(0)=1 and δ(x≠0)=0 and t is normalized so that each row 
sums to 1 (in this way, ignoring the random restart, t ij is the prob-
ability that the random surfer, when currently at user i, will transi-
tion to user j). This may also be written as: 

 ( ) tTIT iiiii λλ −+= 1  (1) 

where I i is the i th row of the identify matrix.  

In order to satisfy the global probabilistic interpretation, we need 
Bi to equal the probability that user i’ s random surfer says “yes” . 
This would be equal to the probability that it is on a given user 
times that user’s belief in the statement 

 ∑=
k

kiki bTB , or,  bTB ii =  (2) 

4.3 Local belief and trust merging 
As in section 3.2, we wish to perform this as a local computation. 
We will show that this is possible if we consider the special case 
where λi=λ is constant. From Equation 1, 
 ( )TtIT λλ −+= 1  (3) 

Unrolling the recursion, we find 

 ( ) ���
�

���� −= ∑∞
=0

1
m

mmtT λλ           (note t0=I ) (4) 

From Equation 2, we need B = Tb. Substituting Equation 4, 

 ( ) btB ���
�

		
� −= ∑∞
=0

1
m

mmλλ  (5) 

Equation 5 is satisfied by the recursive definition: 
 ( )tBbB λλ −+= 1  (6) 

Thus we find that in order to compute his merged belief, each user 
needs only to know his personal belief, and the merged beliefs of 
his neighbors. Besides having intuitive appeal, it has a probabilis-
tic interpretation as well: user i selects a neighbor probabilistically 
according to his distribution of trust, t i, and then, with probability 
(1-λ), accepts that neighbor’s (merged) belief, and with probabil-
ity λ accepts his own belief. Further, we note that Equation 4 is 
also equivalent to the following alternate definition of T:  

 ( )tTIT λλ −+= 1  (7) 

by this equation, we find that a user may compute his merged 
trusts knowing only the merged trusts of his neighbors. 

The probabilistic interpretation for belief combination is essen-
tially taking the weighted average of the neighbors’  beliefs. We 
will thus refer to this belief combination as weighted average for 
the remainder of the paper. Note that for weighted average to 
make sense, the computation must specify a belief for every user. 
If the user has not made this belief available, then we need to 
impute the value. Techniques such as those used in collaborative 
filtering [37] and Bayesian networks [15] for dealing with missing 
values may be applicable. If only relative rankings of beliefs are 
necessary, then it may be sufficient to consider all unstated beliefs 
to have value 0.  

5. SIMILARITY OF INTERPRETATIONS 
There are clearly many similarities between the probabilistic in-
terpretation of beliefs and the path algebra interpretation defined 
in Section 3. In both,  the beliefs may be merged by querying 
neighbors for their beliefs, multiplying (or concatenating) those 
beliefs by the trust in each neighbor, and adding (or aggregating) 
them together (and including the personal beliefs in the sum for 
the probabilistic interpretation). The correspondence is similar for 
trusts. Both interpretations also allow the computation of merged 
beliefs by concatenating merged trusts with personal beliefs. 

In fact, if we let the aggregation function be addition, and the 
concatenation function be multiplication, then the similarity is 
even more clear. The only difference between the two interpreta-
tions is due to the factor, λ. If λ=0, then Equation 6 for computing 
B is functionally the same as the algorithm for computing B in the 
path algebra interpretation. However, consider this: If λ is 0 then 
Equation 1 for computing T i simply finds the primary eigenvector 
of the matrix t. Since there is only one primary eigenvector, this 
means that T i would be the same for all users (assuming the graph 
is aperiodic and irreducible). How do we reconcile this with the 
path algebra interpretation?  

The path algebra combination function defined by using multipli-
cation for concatenation and addition for aggregation is not cycle 
independent. As a result, if we were to combine beliefs as in the 
path algebra interpretation, the user’s personal beliefs will get 
“washed out”  by the infinite aggregation of other users’  beliefs. 



Hence, as in the probabilistic interpretation, all users would end 
up with the same merged beliefs. 

Both methods share similar tradeoffs with regards to architectural 
design. The methods presented in this paper are may easily be 
employed in a peer to peer system, though they can also be used 
in a central server. As peer-to-peer, we expect the system to be 
robust to maliciousness because a user who is not merging beliefs 
well, or is injecting false information into the network will be 
trusted less over time. Further, since the default trust in a user is 0, 
it is not useful for a user to create multiple pseudonyms, and users 
are motivated to maintain quality of information. 

The web of trust calculation is not susceptible to ‘ link-spamming’ , 
a phenomenon in PageRank whereby a person may increase oth-
ers’  trust in him by generating hundreds of virtual personas which 
all link to him. In PageRank, the uniformly random jump of the 
surfer means that each virtual persona is bestowed some small 
amount of PageRank, which they ‘distribute’  to the spammer, thus 
increasing his rank. With a web of trust, this cheating technique 
gains nothing unless the user is able to convince others to trust 
him or his virtual personas, which we expect will only occur if 
they provide useful information. 

6. EXPERIMENTS 
In this section, we measure some properties of belief combination 
using the methods from this paper. We present two sets of ex-
periments. The first uses a real web of trust, mined from Epinions. 
We wanted to see how weighted average compared with maxi-
mum for belief combination. We also wanted to see what quality 
of user population is necessary for the system to work well, and 
what happens if there are mixes of both low and high quality us-
ers. Finally, these methods would have little practical use if we 
required that users are perfect at estimating trusts of their 
neighbors, so we examine the effect that varying the quality of 
trust estimation has on the overall accuracy of the system.  

For the second experiment, we implemented a real-world applica-
tion available over the web (BibServ, http://www.bibserv.org). 
BibServ provides us with both anecdotal and experimental results. 
We first begin with the synthetic experiments 

6.1 Epinions Web of Trust 
We used the Epinions (www.epinions.com) web of trust for our 
network. Epinions in a product review site in which the reviews 
are provided by users. In order to maintain quality, Epinions en-
courages users to specify which other users they trust, and uses 
the resulting web of trust to custom-tailor the order of product 
reviews seen by each person. With over 75k users and 500k 
edges3, Epinions’  web of trust is an ideal source for web of trust 
experiments. 

6.1.1 Experimental setup 
We did not use the actual text reviews from Epinions since the 
Semantic Web deals with information, represented in our model 
by statements with associated beliefs. We instead imagined that 
the statements being combined were all of the form “Product at-
tribute a has value x” , where x is one of two values. We generated 
a ground truth by randomly assigning actual values to each attrib-

                                                                 
3 The trust relationships can be obtained by crawling the site, as 

described in our previous work [38]. Though the full graph con-
tains 75k users, we restrict our experiments to the first 5k users 
(by crawl-order), which forms a network of 180k edges. 

ute, which results in a set of M = 2⋅(number of attributes) state-
ments, half of which are true. We expected that in a real-world 
system, the quality of information and trusts would vary from user 
to user, which we model by assigning a quality to each user. Each 
user asserts some number of statements, and the probability that 
an asserted statement is true is equal to the user’s quality. 

The Epinions web of trust is Boolean, but our methods work on 
real-valued trusts. We assume that a user with low quality is also 
bad at estimating trust, so we set the trust between two users to be 
the quality of the trusted user plus some uniformly distributed 
noise, which ranges +/- (1 – the quality of the trusting user).  

Example: User A has a quality of 0.3, user B has a quality of 0.8. 
On average, 30% of user A’s assertions are be true (70% false), 
likewise for B. If, in the Epinions web of trust, there was a link 
from A to B, then the trust between them would be some random 
value chosen uniformly from [0.1,1.0] (0.8 +/- 0.7). If there was a 
link from B to A then the trust would be randomly selected from 
[0.1, 0.5]. 

Each user’s task is to select a set of attribute-value pairs which 
they believe best represents the ground truth. Our metric of per-
formance is precision, which is the fraction of the pairs which are 
actually in the ground truth. As such, after calculating her com-
bined beliefs, each user performs a final post-processing step to 
make them consistent. If the user holds a positive belief for both 
values of a single attribute, only the one with highest belief value 
will be kept (the other is set to 0). 

The number of statements made by a user is equal to the number 
of Epinions reviews that user wrote. Users with high connectivity 
tend to have written more reviews, and there are few users that 
have written many reviews and many users that wrote few or no 
reviews. These characteristics are the same as we would expect to 
find in the distribution of statements in the network of trust for the 
Semantic Web. 

Parameters 

Unless otherwise specified, we used 5000 attributes, and the qual-
ity of a user was chosen from a Gaussian distribution with µ = 0.5 
and σ = 0.25, and λ is 0.5. A user’s personal belief in any state-
ment he asserted is 1.0, and is 0.0 for any other statement. 

6.1.2 Comparing combining functions 
In Table 1, we give results for a variety of belief combination 
functions. Let Si be the set of statements s for which Bi > 0. Let G 
be the set of actually true statements asserted by at least one user 
in the system4. Then: 

Precisioni = 
i

i

S

GS ∩
 

Notice that the typical notion of recall is hard to define in this 
domain because we are dealing not just with the retrieval of in-
formation, but also whether or not that information was correct. 
To keep the metric of precision fair, our results report the preci-
sion at the highest possible recall. In other words, beliefs did not 
have to cross a threshold in order to be reported. We also found 
that for two reasonable definitions of recall, the results were 
meaningless anyway, as it depended on the structure of the net-
work rather than the belief combination metric being used.  

                                                                 
4 Note Si∩G is the set of statements that the user correctly be-
lieved were true. 



The combination functions maximum and weighted average are 
the same as introduced earlier. The first two “combination func-
tions”  in Table 1 are as follows: Combination function None is no 
trust combination (i.e. T=t and B=tb) – meaning that a user in-
corporates only the personal beliefs of his neighbors. With “com-
bination function”  random, T ij is chosen uniformly randomly from 
[0,1], meaning that a user incorporates all of the beliefs of all 
users in the network indiscriminately. As expected, the precision 
for such a user is low. Since the average quality is 0.5, half of the 
facts in the system are true, so believing a random set of those 
facts leads to a precision of 0.5. 

Weighted average and maximum outperform the baseline combi-
nation functions. Further, maximum significantly out performs 
weighted average in precision. Interestingly, the precision varied 
only slightly for users with high quality compared to users with 
low quality. We suspect this is because even a user with low qual-
ity may have good combined beliefs if all of his neighbors have 
good combined beliefs.  

6.1.3 Varying the population quality 
From the experiences of CiteSeer and OpenMind, we may expect 
the average quality of users to be fairly high [personal communi-
cation], but it is still important to understand how the average 
precision is affected by varying the quality of users. 

We first explored the effect of varying µ, the mean population 
quality (see Figure 3). Maximum significantly outperforms nor-
malized sum (p < 0.01). For high population quality, the two per-
form similarly, but with low quality, maximum’s precision is con-

siderably better than normalized sum produces considerably better 
precision results. 

Why does this happen? We believe it is because at low µ, there 
are few users with high quality. Those that do have high quality 
will be well trusted on average, but the trust in them is likely to be 
very noisy due to the overall low average quality. With maximum 
combination, each user needs just one path of high trust between 
themselves and the good user. With weighted average combina-
tion, the few high trust paths are overwhelmed by the significantly 
larger number low trust and simply noisy paths, resulting in too 
much uncertainty. Another way to look at it is that maximum fil-
ters out all noise by considering only the most trusted opinion, 
while weighted average incorporates all opinions. When the aver-
age quality of the users is high, the two should be similar, but 
when the average quality is low, maximum’ s ability to filter in-
formation allows it to produce consistently better results. 

We also wanted to explore the effect of varying λ for weighted 
average. In Figure 4, we see that λ has only a small effect on the 
results. Interestingly, high λ is best when the population is bad, 
while low λ is best when the population is good. Intuitively, the 
better the population, the more a user should consider their opin-
ion, hence the lower λ should be. Because maximum seems to 
consistently outperform weighted average, and has the additional 
advantages of being cycle-indifferent and producing absolute 
beliefs, we restrict the remaining experiments to it. 

6.1.4 Good and bad users 
The distribution of quality so far has been Gaussian. To measure 
the robustness of the network to malicious (or just clueless) users, 
we varied the population by drawing from two Gaussian distribu-
tions, with means of 0.25 and 0.75 (both have the same standard 
deviation as earlier, 0.25). Users drawn from the first Gaussian are 
referred to as bad, while those from the second are good. In Fig-
ure 5 we see the effect of varying the fraction of good users in the 
network. 

We found the network to be surprisingly robust to bad users. The 
average precision was very high (80-90%) when only 10-20% of 
the users were good. Consider also the situation where half of the 
users are good, which means the average quality of the system is 
0.5. We can compare the precision of this network with the single-
Gaussian results presented in Figure 3, which also have a mean 
quality of 0.5. Interestingly, the population consisting of good and 
bad users has a higher precision. This shows that it is more useful 
to have a few very good users than to have many mediocre ones. 

These results are actually conservative. It is likely that the Epin-
ions users who are more trusted, and who have written more re-
views, are more likely to be good users. 

Table 1: Average precision and recall for  var ious belief com-
bination functions. The +/- value is the standard deviation. 

Comb. Function Precision 

None 0.57 +/- 0.13 

Random 0.5 
  

Weighted Average 0.69 +/- 0.06 

Maximum 0.87 +/- 0.13 
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Figure 3: Average precision for  maximum and weighted aver-
age. Error  bars show one standard deviation on either  side of 
the mean. Maximum has a statistically significantly (p<0.01) 
higher  precision than normalized sum on this data set. 
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Figure 4: Effect of λλλλ on the precision when combining with 
weighted average. 



6.1.5 Varying trust estimation accuracy 
How well does the network handle inaccurate trust estimation? In 
this section we investigate how accurate the trusts must be in or-
der to maintain good quality beliefs. For this experiment, we let 
the amount that user i trusts user j depend on a noise parameter δ: 

t ij = uniformly chosen from [max(γj-δ, 0), min(γj+δ, 1)]  

where γj is the quality of user j. Note that when δ=0,  t ij=γj, and 
when δ=1,  t ij is chosen uniformly from [0,1].  

Figure 6 shows the average precision for various values of δ. 
Clearly, if all of the trust values are random, and there is no corre-
lation between the number of trusts to a person and the quality of 
their information, then the users will have completely random 
beliefs. Thus, the lowest precision is 0.5, when the noise is 1. The 
results demonstrate that the network is robust to noise, malicious-
ness, and low quality users. They also show that, for this particu-
lar domain, maximum outperforms weighted average. We now 
describe our BibServ system, and the real-world experiments it 
was used to conduct. 

6.2 BibServ System 
We have implemented these belief and trust combination func-
tions in the BibServ system, the beta version of which is publicly 
accessible at www.bibserv.org. BibServ is a bibliography service 
which allows users to upload and maintain bibliographies, create 
new bibliographic entries, and edit, rate, and/or find any entry in 
the system, whether created by them or not. 

6.2.1 Why bibliographies? 
Before giving specific details on the implementation and applica-
tion of belief combination to BibServ, we first motivate the choice 
of bibliographies as a domain. We felt that bibliographies have 
many characteristics that make them an excellent starting point for 
research into mass collaboration for the Semantic Web. Currently, 
because they are not connected, many people create bibliography 
entries for the same paper The result is a massive duplication of 

effort, and the creation of entries that may be inconsistent (due to 
errors) and may be of widely varying quality. Further, different 
people are likely to be interested in different subsets of all papers, 
so there are also issues of relevance to be handled. The bibliogra-
phy domain is simple, yet gives rise to all of the issues of informa-
tion quality, relevance, inconsistency, and redundancy that we 
desire to research. There are pragmatic reasons as well. Even 
without handling any of the complexities outlined above, a collec-
tion of bibliography entries is immediately useful, especially to 
researchers. The BibServ beta site currently has 70 users and 
18000 bibliography entries5, drawn mainly from the UW com-
puter science department and IBM Almaden. We have received 
highly positive feedback from multiple users. 

The relation of BibServ to belief combination is as follows: Bib-
Serv users are presented with a list of other BibServ users whom 
they may rate for “ trust and relevance” . This forms the trust ma-
trix t. Users are allowed to upload and create new bibliography 
entries. We treat each entry as a statement. Users may set their 
beliefs explicitly by rating the quality of the entry, and we implic-
itly assume a belief of 1.0 for any entry in their personal bibliog-
raphy (unless otherwise explicitly rated). This forms the vector b 
for each entry. We currently use the weighted average combining 
function for merging beliefs and trusts. 

6.2.2 Implementation 
Because BibServ is implemented with a central server architec-
ture, we chose to store the merged trusts T and compute the 
merged beliefs as needed. This requires O(NM) storage space. 
Since the number of users is much less than the number of bibli-
ography entries, this is much less than the O(M2) space that would 
be required if we instead stored the merged beliefs. 

By our definition, a user’s merged belief in a bibliography entry 
represents the quality and relevance of that entry to them. Hence, 
when a search query is issued, we calculate the belief in each 
matching entry and present the search results ordered by belief. 
Incorporating both traditional measures of query relevance (for 
instance, TFIDF) and belief would likely lead to a better ordering 
of entries. One probabilistic-based technique for this is that of 
query-dependent PageRank [39], which we believe would fit 
nicely into the existing framework for belief merging. The compu-
tation of both trust and belief are implemented in SQL and, in the 
case of beliefs, is incorporated directly into the search query itself. 
The overhead of computing beliefs is typically less than 10% of 
the time required to perform the query itself. This is partially due 
to the fact that the number of beliefs in any particular entry is 
small, so computing the merged beliefs takes time approximately 
linear in the number of entries. 

6.2.3 Experiments and results 
We are still collecting data from BibServ, which has been “ live”  
for only three weeks. The results presented in this section may not 
be reliable because they are based on a small quantity of data, but 
we believe that the trends indicated here are indicative of the re-
sults we will find as BibServ grows. We are continuing to perform 
experiments, and plan to report more extensive results in the cam-
era ready version of this paper. Experiments were performed using 
weighted average or maximum as belief combination functions. 
Unless otherwise specified, λ=0.5 for weighted average. The web 
of trust specified by the BibServ users seems to follow a power-

                                                                 
5 Aside from the half a million entries it was seeded with 
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Figure 5: Precision for  var ious fractions of good people in the 
network, using maximum belief combination. 
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Figure 6: Effect of varying the quality of trust estimation. 



law [8] distribution. Both the in-degree and out-degree of users 
have a R2 value of over 0.8 with the power-law trend line. 

Belief as quality and relevance 

Our claim is that beliefs indicate the quality and relevance of bib-
liography entries to a particular user. To validate this claim, we 
ran the following experiment: We asked the pool of BibServ users 
to think of a particular paper they would like to look for, such as 
one they are currently reading, and use BibServ to search for a 
bibliography entry for that paper. We returned the search results 
in random order, and asked the user to rate each entry in terms of 
quality (0-5) and relevance (either “yes, this is the paper I was 
looking for”  or “no, this is not” . We also allowed ‘ It is hard to 
tell’  to be used if necessary). Since we wished to compare beliefs 
with ratings for each search, we required that the search return at 
least 5 entries, and that the user rate every entry. The data set we 
have gathered so far consists of 405 ratings of quality and rele-
vance by 13 different users, split across 26 searches. 

The results of the experiment were positive, even if not inconclu-
sive. We measured the correlation between belief and either qual-
ity or relevance. Correlation was measured for a data set consist-
ing of all ratings and beliefs for all searches. Ratings and beliefs 
were first converted to z-scores on a per-search basis in order to 
remove user variation in rating interpretation. The best correlation 
was weighted average, which produced beliefs which had a corre-
lation of 0.29 with the quality ratings ( λ=0.03). The other corre-
lations where 0.10 (weighted average vs. relevance), 0.16 (maxi-
mum vs. quality), and -0.01 (maximum vs. relevance). We expect 
that as BibServ grows, and there is a much wider diversity of us-
ers  (currently, nearly all users are from computer science, and 
many specialize in data mining), that correlation, especially with 
relevance, will improve.  

In order to measure the usefulness of beliefs for ordering search 
results, we measured the ratio of the average rating of the top k 
results (ordered by belief) vs. the average rating of all results, on a 
per search basis. The average ratio (across different searches) for 
relevance ranges from 1.2 to 1.6 for a variety of k (1-5) and for 
either belief combination function. The average ratio ranges from 
0.96 to 1.05 for quality. The ratio rapidly tends towards 1.0 as k 
increases, indicating that while belief is a good indicator for rele-
vance, the data contains a lot of noise (making it possible only to 
identify the very best few entries, not order them all). 

Perhaps the most interesting result of the experiments was with 
regard to λ. We found that the best results when measuring beliefs 
vs. quality ratings were when λ was very small, though still non-
zero. On the other hand, the best results when measuring beliefs 
vs. relevance were when λ was very large, though not equal to 
one. This indicates two things: 1) The majority of users share a 
similar metric for evaluating the quality of a bibliography entry, 
since personalizing the estimation of quality only degraded the 
results, and 2) Users have a widely varying metric for evaluating 
the relevance of a bibliography entry, which is intuitive since 
users may all have different specialties. The fact that the best λ 
was not 0 or 1 indicates that in both cases, both information 
gleaned from others, as well as having personalized beliefs, can be 
useful. 

7. RELATED WORK 
The idea of a web of trust is not new. As mentioned, it is used by 
Epinions for ordering product reviews. Cryptography also makes 
use of a web of trust. In public-key cryptography, if John wishes 
to send a secret message to Jane then he must first get Jane’s pub-

lic key. The difficulty is, how can he verify that the key he re-
ceives actually belongs to Jane? The standard approach depends 
on certificate authorities to verify user identification. Interest-
ingly, a grassroots decentralized approach (PGP) has also arisen, 
which essentially allows John to verify Jane’s public key through 
a network of trusted users. Discussion and extensions of this can 
be found in [11]. In Abdul-Rahman’s distributed system for trust 
management, John’s trust in Jane, and John’s trust in Jane’s abil-
ity to determine who is trustworthy, are kept explicitly separate, 
though trusts are discrete and only qualitatively valued [1]. We 
think such a separation would be interesting to consider in our 
framework as well. 

The analogy to belief combination on the web is ranking the qual-
ity of web pages. Information retrieval methods based on the con-
tent of the page (such as TFIDF [26]) performed reasonably, but 
considered each page to be independent. When methods were 
developed which also considered the connectivity between pages 
[33][13][29], web page quality estimation improved dramatically. 
We see our belief combination on the Semantic Web as analogous 
to such methods on the WWW  

There have been a number of previous projects on mass collabora-
tion. Quiq is one deployed application of mass collaboration 
which has been successful. OpenMind (www.openmind.org) aims 
to collect large amounts of information, most typically training 
data such as handwriting and speech,  through mass collaboration. 
The Open Directory Project (www.dmoz.org) aims to build a 
taxonomy of web pages through volunteer effort. However, none 
of these projects explicitly incorporate a concept of trust, that we 
are aware of. These projects, and indeed any mass collaboration 
domain, may be able to benefit from the web of trust calculations 
presented in this paper. 

In previous work [18], we mined trust relationships from online 
sites, and applied social network algorithms to them in order to 
identify users with high network influence. Applying the same 
methods to the Semantic Web web of trust may prove fruitful in 
identifying useful contributors, highly respected entities, etc. Also 
in a similar vein is the ReferralWeb project, which mines multiple 
sources to discover networks of trust among users [27]. Also in-
teresting is collaborative filtering [37], in which a user’s belief is 
estimated by considering the beliefs of users he is similar to. This 
can be seen as belief combination without explicit trusts, or even 
as forming the web of trust implicitly, based solely on similarity 
of interests.  

Work on belief combination has had a long history. Fuzzy logic 
[41] and certainty factors [5] are just two of the fields of study 
devoted to the topic. A summary of various belief combination 
functions can be found in [20] and  [22]. For more a probabilistic 
treatment, see [35]. A different form of belief combination is that 
of Pennock et. al [36] who looked at how web-based artificial 
markets may combine the beliefs of their users.  

There are a number of probabilistic approaches to belief combina-
tion that would be interesting to explore. Since our model is net-
work-based, we believe that graphical models such as Bayesian 
networks [35], Markov random fields [14], and/or dependency 
networks [25] could be used for belief combination. Presently, 
such models are too computationally expensive to scale to net-
works of the scale of the Semantic Web. 

As mentioned in Section 2.1, much work has been done on infer-
ence methods for statements augmented with beliefs or probabili-
ties. Knowledge-based model construction (KBMC) [32] and 



related methods [28][30] augment first-order rules with probabil-
ity and describe how inference is then performed. Bayesian net-
works are used to determine beliefs when the information is in the 
form of conditional probabilities for propositional variables. Simi-
larly, probabilistic relational models [21] (PRMs) are used when 
the probabilities concern relational statements. We consider such 
work to be complementary to our belief combination, in that both 
are needed for solving separate aspects of the problem of beliefs 
on the Semantic Web. 

8. Future work 
In this work, we assumed that statements are independent. We 
would like to investigate how dependencies between statements, 
with varying beliefs on each, may be handled. For example, if we 
consider a taxonomy to be a set of class-subclass relationships, 
and consider each relationship to be an independent statement, 
then merging such taxonomy beliefs is likely to lead to a nonsen-
sical taxonomy. We would like to be able to merge structural ele-
ments like taxonomies, and expect that approaches such as [16] 
and [17] may provide useful insights into possible solutions. 

The path algebra and probabilistic interpretations were shown to 
be nearly identical, and the probabilistic interpretation is a gener-
alization of PageRank. Considering PageRank works so well on 
web pages, it would be interesting to apply the ideas developed 
here back to the WWW for the purposes of ranking pages. For 
instance, might we find it useful to replace the sum with a maxi-
mum in PageRank? 

We would like to consider networks in which not all users employ 
the same belief combination function. Can we guarantee any kind 
of global interpretation in such a case? In the path algebra formu-
lation, it appeared that in order to find a good global interpreta-
tion, we would need the aggregation and concatenation functions 
to have overly-restrictive properties. We would like to investigate 
modifying the global interpretation in order to relax the require-
ments. 

There are many tradeoffs between computation, communication, 
and storage requirements for the different architectures (peer to 
peer, central server, hierarchical, etc.), algorithms (semi-naïve, 
Warshall, etc.), and strategies (merge beliefs on demand, store all 
beliefs, etc.). We would like to formalize these tradeoffs for better 
understanding of the efficiency of the various architectures. 

In this paper, we considered only single valued beliefs and trusts. 
In general, a belief could actually be multi-valued, representing a 
magnitude in multiple dimensions, such as ‘ truth’ , and ‘ impor-
tance’ , and ‘novelty’ . We would also like to consider multi-valued 
trusts, which may represent similar dimensions as beliefs (but 
applied to users). It may be possible to combine beliefs and trusts 
into one concept, ‘opinion’ , which may be similarly applied to 
both statements and users. 

Similarly, we would also like to allow users to specify topic-
specific trusts. We expect that with topic-specific trusts, the nor-
malized sum combination function would be similar to calculating 
query-dependent PageRanks [39]. We would also like to apply 
query-dependent PageRank to the problem of merging a state-
ment’s belief and a statement relevance for the purposes of pre-
senting a user with an ordered list of statements that are both rele-
vant and highly believed. 

9. CONCLUSIONS 
If it is to succeed, the Semantic Web must address the issues of 
information quality, relevance, inconsistency and redundancy. 

This is done on today's Web using algorithms like PageRank, 
which take advantage of the link structure of the Web. We pro-
pose to generalize this to the Semantic Web by having each user 
specify which others s/he trusts, and leveraging this "web of trust" 
to estimate a user's belief in statements supplied by any other user. 
This paper formalizes some of the requirements for such a calcu-
lus, and describes a number of possible models for carrying it out. 
The effectiveness of the approach, and the tradeoffs involved, are 
illustrated by experiments using data from the Epinions knowl-
edge-sharing site, and from the BibServ site we have set up for 
collecting and serving bibliographic references. 
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12. APPENDIX 
In this Appendix, we give a proof of Theorem 1. From the theo-
rem, we may assume that 

�
 is commutative and associative, and �  

is associative and distributes over 
�
, and t, T, b, and B are defined 

as in Section 3. Also from Section 3,  

(A•B)ij=
�
(∀k: A ik

� Bkj) 

We first prove the following: 

Lemma:  •••• is associative 

Let X=(A•B)•C 
Then 
Xij = 

�
(∀k: 

�
(∀l: A il

� Blk) 
�  Ckj ) from definition of • 

 = 
�
(∀k: 

�
(∀l: A il

� Blk
� Ckj ))  

   since �  distributes over 
�
 and �  is associative 

 = 
�
(∀l: 

�
(∀k: A il

� Blk
� Ckj ))  since 

�
 is associative 

 = 
�
(∀l: A il

�  
�
(∀k: Blk

� Ckj ))  since �  distributes over 
�
 

 = 
�
(∀l: A il

�  (B•C)lj)  by definition of • 
�  X = A•(B•C)  by definition of •. 
Belief Merging:  

We have 
 B(0) = b and B(n) = t•B(n-1) 
So, B(1) = t•b, B(1) = t•b 
or B(n) = t•( t•(… •( t•b))))… 
From the lemma, •••• is associative, so we find 
 B(n)= tn••••b (8) 
(where tn means t•t•t… n times, and t0 is the identity matrix) 
Trust Merging:  

We have 

 T(0) = t and B(n) = t•T(n-1) 
 T(n) = t•( t•(… •( t•t))))… 
 T(n)= t••••tn (9) 

 
Theorem:  
Combining Equations 8 and 9, 
 t•B(n) = T(n)•b 
Since we run each recursion until convergence, this is sufficient to 
show that  
 t•B = T•b 


