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Abstrat

Spetral Clustering has beome quite popular over the last few years and several new algorithms

have been published. In this paper, we ompare several of the best-known algorithms from the point of

view of lustering quality over arti�ial and real datasets. We implement many variations of the existing

spetral algorithms and ompare their performane to see whih features are more important. We also

demonstrate that spetral methods show ompetitive performane on real dataset with respet to existing

methods.

1 Introdution

Clustering has always been a hard problem and an ative topi of researh. Reently, a new approah has

started to get a lot of attention namely spetral methods. The spetral methods for lustering usually involve

taking the top eigen vetors of some matrix based on the distane between points (or other properties) and

then using them to luster the various points.

Spetral lustering tehniques have seen an explosive development and proliferation over the past few

years. They promise to beome strong ompetitors for other lustering methods. Several suesses have

already been registered (LSA,[9℄). Spetral methods are attrative beause they are easy to implement and

are reasonably fast (for sparse data sets up to several thousands). Also they do not intrinsially su�er from

the problem of loal optima. (Though depending on the exat algorithm some loal optima might be there.)

In spite of the large number of papers on spetral lustering, so far no systemati omparison between

the existing algorithms has been published. This is what we set out to do here. We intend to take a look

at four spetral algorithms and take them apart. We generate a list of algorithms whih are made from

di�erent parts of di�erent algorithms and ompare their performane. We hope to be able to �nd out whih

of these sub-omponents are important and whih not, and to see if some ombination of these works the

best.

2 Spetral Clustering Algorithms

The algorithms we seleted are at this date among the most popular of the published ones. We have also

aimed at representing a diverse set of algorithmi features. The algorithms are: (1) the image segmentation

algorithm introdued by Shi and Malik (SM ) [9℄, (2)A variant by Kannan, Vempala and Vetta (KVV )

[2℄, (3) the algorithm of Ng, Jordan and Weiss (NJW ) [8℄, (4) an algorithm suggested by Meil�a and Shi

(Multiut ) [5℄. We also present the results obtained with the Single and Ward linkage algorithms (denoted

by MST ,Ward) as a \strawman" in order to demonstrate that the lustering tasks that we hose are not

trivial.

Before desribing the algorithms in more detail, we introdue some notation. Then we would desribe

the four spetral and two grouping algorithms.
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2.1 Notation

The set of data points to be lustered will be denoted by I , with jI j = n. For eah pair of points i; j 2 I

a similarity S

ij

= S

ji

� 0 is given. The similarities S

ij

an be viewed as weights on the undireted edges

ij of a graph G over I . The matrix S = [S

ij

℄ plays the role of a \real-valued" adjaeny matrix for G. Let

D

i

=

P

j2I

S

ij

be alled the degree of node i, and the volume of a set A � I be V ol A =

P

i2A

D

i

. The

set of edges between two disjoint sets A;B � I is alled the edge ut or in short the ut between A;B.

A lustering C = fC

1

; C

2

; : : : C

K

g is a partitioning of I into the nonempty mutually disjoint subsets

C

1

; : : : C

K

. In the graph theoretial paradigm a lustering represents a multiway ut in the graph G.

All the algorithms that we use here just need a similarity matrix between points (exept anhor. But we

never us it on the original (unmapped) points). So all we need is a data with similarity matrix and there

may not be an atual set of distint points in the initial domain or the points may even ome from an in�nite

dimensional spae. (something an output or an kernel funtion).

2.2 Overview

The algorithms presented here an be thought of as onsisting of 3 stages:

� Preproessing: This is a form of normalization of the similarity matrix S. We did some smoothing

initially to make sure that matrix is not too ill onditioned. However to make results more relevant

w.r.t. to other papers, we eventually dropped the smoothing.

� Spetral Mapping: Some eigenvetors of the preproessed similarity matrix are omputed. Eah data

point i is mapped to a tuple representing the values of omponent i in the aforementioned eigenvetors.

� Postproessing/Grouping: A (usually simple) grouping algorithm lusters the data (in the original

or spetral domain).

There are three kind of algorithms presented here.

� Reursive Spetral: These algorithms try to split the data into two partitions based on a single

eigenvetor and are then are reursively used to generate more partitions.

� Multiway Spetral: These use more information in multiple eigenvetors to do a diret multiway

partition of data.

� Non spetral: A (usually simple) grouping algorithm that lusters the data quikly. These are used

in onjuntion with the Multiway spetral algorithms and also provide a baseline for performane.

For some of the algorithms (SM , KVV ) heuristi methods for �nding the number of lusters K have

been suggested [9, 2℄. In this work, to provide for a fair omparison, we have assumed for all the algorithms

that the number of lusters K is given in advane.

2.3 The Shi and Malik (SM ) algorithm

This algorithm was introdued by [9℄ as a heuristi algorithm aimed to minimize the Normalized Cut riterion

proposed by the same authors. The normalized ut between two sets A;B � I is de�ned as

NCut(A;B) = Cut(A;B)

�

1

V ol A

+

1

V ol B

�

Aording to [9℄ the set I is partitioned into two lusters C; C

0

= I n C that minimize NCut(C;C

0

) over

all possible two way partitions of I . This problem is provably NP-hard, but the authors show that under

ertain speial onditions a spetral algorithm exists that �nds the optimum.

Algorithm SM

1. Compute

P = D

�1

S (1)
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2. Let 1 = �

1

� �

2

� : : : � �

n

be the eigenvalues of P and v

1

; v

2

; : : : ; v

n

the orresponding eigenvetors

1

Compute v

2

.

3. Min-Ratio-Cut

(a) Sort the elements of v

2

in inreasing order. Denote by v

2

i

the i-th element in the sorted list.

(b) For i = 1; : : : n� 1

Compute NCut(C

i

; C

0

i

) where C = f1; : : : ig; C

0

= fi+ 1; i+ 2 : : : ng

() Partition I into the two lusters C

i

0

; C

0

i

0

where i

0

=
min

i

NCut(C

i

; C

0

i

)

4. Repeat steps 1{3 reursively on the luster with the largest �

2

until K lusters are obtained.

Min-Ratio-Cut is inspired by [10℄ whih suggests that a line searh along the vetor produes better uts

than the original heuristi. This algorithm is almost idential with spetral algorithm II in [2℄. That is

disussed in more detail in 2.4. Based on that another version for this algorithm in implemented using the

ondutane as a riterion in Min-Ratio-Cut .

2.4 The Kannan, Vempala and Vetta Algorithm (KVV)

The KVV is very similar to to SMalgorithm with two di�ernes. One di�erene is in step 3, where the

optimal ut is found with respet to the Cheeger ondutane �(C

i

; C

0

i

), another measure of ut quality. The

ondutane of a lustering fC; I n Cg is de�ned as

�(C; I n C) =

Cut(C; I n C)

minV ol C; V ol I n C)

Also in the reursive step the kvv variant deides the next luster is the one with the minimum ondu-

tane.This variant of step 3 will be alled Min-Condutane .

Another di�erene is in the \normalization" past the �rst iteration of step 1. The SMalgorithm just

takes the blok of S orresponding to the urrent luster. The variant in [2℄ always uses bloks from the P

omputed at the �rst iteration. To ensure that the row sums of the bloks equal 1, the diagonal elements

P

ii

of the urrent blok are adjusted. Thus, this variant ignores the self-similarity of the data points in all

but the �rst iteration.

To adjust the P

ii

there are two possibilities. We an either sale up all the entries in row to sum up

to one or add the extra weight to the diagonal element. We all the �rst variant kvv mult and the seond

kvv add.

2.5 The Ng, Jordan and Weiss (NJW) algorithm

Algorithm NJW

1. Set the diagonal elements S

ii

to 0.

2. Compute the matrix

L = D

�

1

2

SD

�

1

2

(2)

3. Let 1 = �

1

� �

2

� : : : � �

K

be the K largest eigenvalues of L and u

1

; u

2

; : : : ; u

K

the orresponding

eigenvetors

2

All eigenvetors are normalized to have unit length. Form the matrix U = [u

1

u

2

: : : u

K

℄

by staking the eigenvetors in olumns.

4. Form the matrix Y from U by renormalizing eah of U 's rows to have unit length (i.e Y

ij

= U

ij

=

q

P

j

U

2

ij

).

5. K-Means-OrthogonalTreating eah row of Y as a point in K dimensions, luster them by the K-means

algorithm to obtain the �nal lustering. The K-means algorithm is initialized by the Orthogonal-

Initializationmethod desribed in [8℄.

1

If the eigenvalues are not distint, pik the eigenvetors suh that v

i

T

Dv

j

= 0 for i 6= j. This is always possible and the

Matlab implementation that we used does it automatially.

2

If the eigenvalues are not distint, hoose u

k

's that are orthogonal to eah other. L is related to the Laplaian of S. See

e.g [9℄ for details.
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In [8℄ it is proved that if the lusters are well separated in the sense that the similarity matrix S is almost

blok diagonal, and if the sizes of the lusters and degrees of individual nodes don't vary too muh, the rows

of the Y matrix luster near K orthonormal vetors in R

K

. This fat suggested the orthogonal initialization

method.

We implemented a slightly di�erent version of this algorithm whih we think has greater numerial

stability. The details are in the appendix.

2.6 The Meila-Shi algorithm

This algorithm was suggested in [6℄. Algorithm Multiut

1. Compute the stohasti matrix P as in (1).

2. Compute v

1

; : : : v

K

the eigenvetors of P orresponding to the K largest eigenvalues. Form the matrix

V whose olumns are v

1

; : : : v

K

.

3. Cluster the rows of V as points in a K-dimensional spae.

2.7 Anhor Algorithm

A \at" version of the Anhor algorithm of [7℄, also very related to the minimum diameter lustering

method of [1℄.

Algorithm Anhor

1. Choose a point at random. Set k = 1, k

0

= 0. Choose anhor x

1

to be the farthest point from the

initial point.

2. Construt C

k

the luster assoiated with x

k

as a list of points that are loser to x

k

than to any other

anhor. The list is sorted by dereasing distane from x

k

.

3. Test if x

k

has enough points. If jC

k

j < n

min

then k

0

= k

0

+ 1.

4. Set k = k + 1. Choose anhor x

k

to be the farthest point from all existing anhors.

5. If k � k

0

< K go to step 2.

Note that the algorithm may produe more than K lusters. It is also possible that it never produes

K lusters having more than n

min

points. In our experiments, all performed with n

min

= 3, the latter was

never observed.

2.8 Linkage algorithms

These are the hierarhial lustering algorithm whih work on distanes between the points. Sine we have

similarities, we need to hoose a way of mapping similarities to distanes. We hose to use the inverse of

similarity as the measure (A very small value was added it to similarity to ensure that inverse of zero is not

taken).

We used two methods: single linkage and ward linkage. Single linkage is same as performing the MST on

the dissimilarities graph of the points and ward linkage is similar exept that distane is the inner square

distane. For more details on the ward algorithms see [12℄.

As it will be shown in the following setions, the di�erent algorithmsa re muh loser then they ini-

tially appear. Both the experiments and the theory suggest that the di�erenes between algorithms will

depend strongly on the quality of the postproessing step. Therefore, we experimented with several di�erent

lustering methods that will be desribed here.

3 Theoretial Results

Here we ompare the algorithms with respet to what we all their perfet points, values of S for whih

these spetral methods are supposed to perform well. We will show that, even though apparently the four

algorithms are di�erent, some of them are very similar near the perfet points.
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First we present a modi�ation to the two algorithms to make them numerially more stable and then

we present the onditions and proof of similarity. The symbols U; V; Y; S; P;D;K have the same meaning as

de�ned in the previous setion.

3.1 A modi�ation to the NJWand Multiutmethod

As disussed in setion 2.5, NJWuse the top K eigenvetors of L = D

�

1

2

SD

�

1

2

to map data. We use the

top K eigen vetors of the generalized eigen system Sx = �Dx. This is a numerially more stable method

to ompute the eigen vetors as there is no division by D involved, whih ould ontain very small values.

(An outlier for example would have a very small degree as it is not lose to another point).

To prove why this gives the same vetor Y onsider the following:

D

�

1

2

SD

�

1

2

u = �u; Premultiplying by D

�

1

2

we get (3)

D

�1

S(D

�

1

2

x) = �(D

�

1

2

x) Putting v = D

�

1

2

x( hene x = D

1

2

v) we get (4)

D

�1

Sv = �v and hene Sv = �Dv: (5)

Now onsider the top K eigen vetors U

n�K

and V

n�K

. U = D

1

2

V . Sine D is a diagonal matrix this means

that the i

th

row of U is same as the i

th

row of V saled by D

1

2

ii

. So after the row is normalized to length 1,

the Y obtained from V is idential to the Y obtained from U .

For the multiut method observe that P = D

�1

S so the generalized eigen value system Sv = �Dv is

mathematially equivalent and numerially more stable than the omputing P and its eigenvetors (for the

reasons stated above).

3.2 Preliminaries: The perfet S

When eah of the lusters in the postproessing step of a spetral algorithm is redued to a distint point we

say that S is perfet for the respetive algorithm. For example, a blok diagonal similarity matrix is perfet

for all algorithms. A perfet S represents the ideal situation for a lustering algorithm. Here we essentially

show that when S is suh that the resulting P is blok-stohasti, a term that will de�ned below, then S is

perfet for NJWand Multiut and should give good performane on reursive algorithms.

When eah of the lusters is redued to a point (

i

= 

j

8i; j 2 C

s

8s) by the spetral mapping we say

that S is perfet for the respetive algorithm. A vetor v = [v

1

; v

2

; : : : ; v

n

℄

T

is pieewise onstant (PC ) w.r.t

a lustering � i� v

i

= v

j

whenever i; j are in the same luster.

A matrix S is alled blok diagonal (BD) w.r.t. a lustering � i� S

ij

= 0 whenever i and j belong to

di�erent lusters. It an be easily shown ([2, 9, 6, 8℄) that blok diagonal S is perfet for all the methods.

Blok stohasti P Let P be a stohasti matrix. P is blok stohasti [6℄ (BS) w.r.t. a lustering

� = fC

1

; : : : C

K

g i� for all s; s

0

= 1; : : :K the sums P

is

=

P

j2C

s

P

ij

are equal for all i 2 A

s

0

and the matrix

R = [P

ss

0

℄ (with P

ss

0

=

P

j2A

s

0

P

ij

; i 2 A

s

) is non-singular. A blok stohasti P is guaranteed ([6℄) to have

some K eigenvetors PC w.r.t. �. In the rest of the paper we will assume that the PC vetors of P are

always the top K eigenvetors. So from now on we will say that a matrix P has K pieewise onstant vetors

(PCE), or is blok-stohasti w.r.t. � when its top K eigenvetors are pieewise onstant. Thus, if a P has

PCE, the orresponding S is perfet for the Multiut algorithm.

Proposition 1 Let A

n�k

be a real matrix and D

n�n

be a diagonal matrix suh that A

T

DA = I

k�k

and that

A has atmost k unique rows. Then A is guaranteed to have exatly k unique orthogonal rows. (proved in

Appendix).

This is proved in the appendix. Consider a BS P and the orresponding V . Sine SV = �DV , V

T

DV =

I . So the above proposition implies that whenever P is perfet for Multiut , all the lusters in the spetral

domain are unique and orthogonal (but not orthonormal).

As shown in ?? Y in the NJWalgorithm an also be obtained by normalizing rows of V (from Multiut )).

By the above proposition, we have that the rows of Y are also perfetly lustered with the lusters orthogonal

to eah. other and hene BS P is perfet for NJWas well. This generalizes the result in [8℄ where this property
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was shown for blok diagonal ase and shows that a perfet S for Multiut is also perfet for NJW . This

shows that NJWwill work well in a muh wider range of ases then previously believed. The reverse an

also be shown though the proof is slightly more involved and shown in the appendix. It follows that:

Theorem 2 Whenever the S is perfet for Multiut it is perfet for NJWand vie versa.

In other words, Multiut and NJWare equivalent when S is perfet, although they use di�erent spetral

mappings; NJWmaps the lusters to orthonormal vetors, while Multiutmaps them to orthogonal vetors of

di�erent lengths. Away from the perfet S the behavior of the two algorithms may di�er. We will investigate

this in the experiments setion.

3.3 Reursive Algorithms

We have shown the equivalene of for NJWand Multiut blok stohasti P . Now we examine the behavior

of the reursive algorithms in the same situation.

Take the ase when we are splitting the points I

0

� I into two lusters. (At the top level or in any of the

reursive steps). Let the P

0

that we have (for I' ) be blok stohasti w.r.t �

0

. In that ase the seond eigen

vetor would be PC w.r.t. to the � so when we reorder the points based on this eigen vetor we have the

points in the right order. That is, if we hose the right point to partition , none of the lusters in � would

be split. Also the P

00

; P

000

for these two split luster be blok stohasti (w.r.t to the two parts of �) setting

the optimal stage for the reursive sub steps.

The riteria that the two algorithms use for splitting (minimum Nut or ondutane) do not ensure that

this optimal point of partition is hosen, unless P is blok diagonal (then Nut and ondutane are zero

at only these positions). So, for the blok diagonal ase, all algorithms are equivalent, but we annot say

what happens in the general BS ase. As it will turn out from the experiments, one of the algorithms, SM ,

behaves exatly like the multiway algorithms, while KVVbehaves di�erently.

The above remarks also suggest an alternative to the SMand KVValgorithms in whih one hooses the

partition based on largest di�erene in the sorted eigenvetor. We explored this in our experiments.

4 Datasets

As disussed above there is a whole lot of spetral methods eah with its little variation that needs to

ompared to eah other. Sine it is not possible to visually ompare them we needed datasets whih are

\pre-lassi�ed" So that it is possible to ompute the lustering error and the VI w.r.t. true lustering. (see

setion 5) We used both arti�ial and real datasets as desribed below. The arti�ial datasets were primarily

used to demonstrate the robustness of algorithms to noise.

4.1 S100: A Blok Stohasti Matrix

This is the \ideal" ase for the multiut and ang-based spetral algorithms. Her e we onstruted an 100�100

matrix whih onsists of 5 lusters. There are �ve lusters present of size 10,20,30,20 and 20 respetively.

The similarity matrix is also slightly blok diagonal. The purpose of using this dataset was to demonstrate

the stability of the algorithms w.r.t to noise. This data �le is alled blok-stohasti.

4.2 Handwritten digits

This is the set of optial handwritten digit reognition that is available in the NIST site.There are lots

of version available with di�erent preproessing. In partiular we used the data set and preproessing as

mentioned in [3℄

Here is the desription of preproessing done by . They used preproessing programs made available

by NIST to extrat normalized bitmaps of handwritten digits from a preprinted form. From a total of 43

people, 30 ontributed to the training set and di�erent 13 to the test set. 32x32 bitmaps are divided into

non overlapping bloks of 4x4 and the number of on pixels are ounted in eah blok. This generates an
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input matrix of 8x8 where eah element is an integer in the range 0..16. This redues dimensionality and

gives invariane to small distortions.

We further down sampled the dataset to 100 elements per digit giving a total of thousand 64 dimensional

points and 10 lusters. We all this dataset digit1000. Some of digits were more easy to distinguish from

another and in partiular digits 0,2,4,6,7 were a lot more easier to distinguish than the others. So we

reated another dataset ontaining the hundred instanes of just these �ve digits. We alled this data set

digitFive1000. (The 1000 just to remind that this is the same the digit1000 database.

4.3 Gene Expression Data

DNA miroarrays provide a way to the biologists to study the variation of many genes together. Using these

has been a plethora of gene expression data generated in the ommunity. This has led to the great need

for the data to be analyzed. ([13℄). We used one suh dataset, the yeast ell yle data, whih is publially

available at [14℄. It shows the utuation of the gene expression levels of over 6000 genes over the two

ellyles (whih has 17 time points). The dataset is restrited to the 384 genes who's expression level peak

at di�erent points orresponding to the �ve phases of the ell yle. The objetive given these expression

levels is to be able to luster them into lusters orresponding to the �ve phases.

There are two kinds of pre proessing that are suggested in [13℄. First is to the take the logarithm of the

expression level and seond to \standardize" the mean to be zero and variane 1. These data transformations

were done so as to make the data �t better to the gaussian model (They were using mixture models to luster

the data. See [13℄ for more details). We all the �rst dataset ellyle and the seond ellyle-std.

5 Evaluating Clustering Performane

Measuring a lustering performane in general is a very hard problem. The notion of good lustering is

intrinsially tied with the de�nition of what a luster is whih in itself is a big researh topi. In our ase

measuring lustering performane is easier as in all the datasets we have the \true" lustering available.

Given that the lustering performane is just a measure of how \di�erent" is the lustering produed w.r.t

the true lustering. There are three kind of measures that we used: Clustering Error and Variation of

Information . In this setion C

true

would represent the true (given) lustering and C the lustering produed

by the lustering algorithm.

5.1 Clustering Error

Clustering error is de�ned as the number of \mislassi�ation" This the error indued in the lustering w.r.t.

to the true lustering.

Let Confusion be the onfusion matrix of two lusterings. (Confusion(k

true

; k) = jC

true

k

true

\ C

k

j i.e.

number of points x that are luster k

true

in true lustering and luster k in the lustering produed. Then

CE(C; C

true

) =

0

�

X

k

true

X

k 6=k

true

Confusion(k

true

; k)

1

A

=n (6)

where n is the total number of points.

There is a subtle problem with this naive de�nition. This does not take into aount the renumbering

that might happen while lustering. Cluster 1 in the true lustering might be assigned luster 3 in the

lustering produed and so on. To ounter that the CE is omputed for all possible renumbering of the

lustering produed and the minimum of all those is taken. (This is omputed eÆiently by modeling the

problem as a maximum weighted bipartite mathing problem and then omputing the solution using linear

programming).
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5.2 Variation of Information

Variation of Information (VI) is a metri introdued in [4℄ to ompare two lusterings. It measures the

amount of information that is lost/gained from going from one lustering to another and vie versa. To

de�ne it let introdue some more notation as used in [4℄. (with some hanges).

Let n

k

be the number of point in k

th

luster in C. Let P (k) =

n

k

n

. Then the entropy assoiated with

lustering C is de�ned as

H(C) = �

K

X

k=1

P (k) logP (k)

De�ne n

k

true

k

= jC

true

k

true

\C

k

j and P (k

true

; k) =

n

k

true

k

n

. Then mutual information between the lustering

I(C

true

; C) is de�ned as

I(C

true

; C) =

K

X

k

true

=1

K

X

k=1

P (k

true

; k) log

P (k

true

; k)

P

true

(k

true

)P (k)

Given these the variation of information is

V I(C

true

; C) = H(C) +H(C

true

)� 2I(C

true

; C)

See [4℄ for various properties of this measure.

5.3 Wallae Index

Wallas Index is an index introdued in the ([11℄) to measure the di�erenes between two lusters. There are

two asymmetri riteria de�ned. We just used one of the indies whih represents the probability that a pair

of point that were in the same luster in C

true

, are also in the same luster in C. Let n

true

k

true

= jC

true

k

true

j and

N

11

be the number of points pairs that are in the same luster in both C and C

true

. Then Wallae Index

(one sided) is de�ned as

WI(C; C

true

) =

N

11

P

K

k

true

=1

n

true

k

true

(n

true

k

true

� 1)=2

This gives the value of 1 if the lustering if perfet (same as true lustering) and zero if the lustering

disagree on all point pairs.

6 EXPERIMENTAL SETUP

In this setion we provide the spei� details on how the experiments were run. Throughout this setion we

use AÆnityMatrix of a group vetors x

1

; x

2

: : : x

n

to be the similarity matrix S suh that S

ij

= exp(�jjx

i

�

x

j

jj

2

=2�

2

where � would be the parameter used (We would speify the value used). Also K would refer to

the input the lustering algorithms to speify the number of luster to generate. Eah algorithm was run

multiple number of times and the average taken.

6.1 Exat Algorithms Used

In setion 2 we desribed the algorithms as presented in paper the so alled lassi version. However to

exatly distinguish between the e�ets of the various omponents of the spetral algorithms we implemented

a whole range of algorithms ontaining most of the variations of the algorithms mentioned above.

The list of all the algorithms implemented is shown below. In eah of the algorithm listed here, the various

omponents represent the appliation of a partiular algorithm in that \stage". So ang and mut refer to the

spetral mapping using the NJWand Multiutmethods into a domain. After mapping the similarity matrix

8



(if required) is obtained by omputing the AffinityMatrix with � = 0:2 This hoie was straight forward

in ase of NJWalgorithm as points lie on a unit sphere. We used the same value for Multiut as well.

The anhor,ward,kmeans refer to the respetive algorithms applied after the spetral mappings. In

kmeans we performed kmeans with 5 runs of initializing with orthogonal enters and 20 runs initialized with

random enters.

We also had the intuition that the spetral methods might be more e�etive in lustering points after

mapping them in the spetral domain. To explore that possibility we implemented the double spetral

methods like ang mut ward in whih the �rst we map the points in the ang spetral domain and then those

points in the mut spetral domain, �nally grouping them using the ward method.

Linkage Algorithms: single linkage ward linkage

Multiway Spetral Algorithms: njw ward njw kmeans njw anhor

mut ward mut kmeans mut anhor

njw njw ward njw njw kmeans njw mut ward

njw mut kmeans mut mut ward mut mut kmeans

Reursive Spetral Algorithms: sm nut kvv1 nut kvv2 nut

sm ond kvv1 ond kvv2 ond

sm gap

Table 1: List of Algorithms

6.2 S100

We used this database primarily to ompare the robustness of algorithms w.r.t. to noise. We took the original

blok stohasti matrix and added uniform noise of inreasing magnitude from � = 10

�0:1

to � = 10

0:7

in

steps of 0:1 (in the exponent). The noise added was to preserve the signal-to-noise ratio in the sense that

noise added in S

ij

was made proportional to degrees of points i; j. More preisely, the new S

ij

was alulated

as follows:

S

ij

= S

ij

+

�

U(0; 1)� � �

p

D

i

�D

j

�

=n

Where U(0; 1) is number between 0 and 1 hosen at random.

For eah noise levels 10 suh matries were generated and the average performane of eah algorithm

taken.

6.3 Handwritten digits

This dataset onsisted of vetor in the 64 dimensional spae ranging from 0 to 16. The similarity matrix

was omputed as AÆnity matrix with � = 10. ( We experimented with various sigma and the value of 10

seemed to give reasonable results).

For the dataset digit1000, we ran eah algorithm for 5 iterations for K ranging from 8 to 12. Where as

for digitFive1000, 10 iterations for K = 3 to 7 were exeuted.

6.4 Gene Expression Data

For both the datasets, ellyle and ellyle-std, the similarity was omputed as the orrelation

oeÆients between the gene expression levels of the di�erent genes. (plus 1 to make the similarity matrix

positive. So the similarities ranged from 0 to 2.) Five runs were exeuted for K varying from 3 to 7.

6.5 Implementation

The algorithms are very simple to implemented and we were able to implement eah of them using only a

few lines of ode of matlab. The majority of the time taken was for the eigen deomposition. A full eigen

deomposition (using eig funtion of matlab) would take O(n

3

) time. However sine we just needed the top

K eigen vetors, we used eigs funtion to redue the time taken.
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7 Performane Graphs

In this setion we present the graphs for the various algorithms on the �ve datasets. Sine there are so many

algorithms we do not show them all on the same graph. For all the datasets we present six graphs. Three

eah for the two metris : Clustering error (CE) and Variation of Information (VI) shown one above the

another.

In �rst olumn we have the various versions of the multiway spetral algorithms. In the seond olumn

the reursive spetral algorithms and the third olumns the best �ve. The best �ve are hosen as follows:

First we pik the best algorithm amongst the linkage, reursive, and multiway spetral lasses of algorithms.

The other two are the best two of the remaining. (The \best" method was piked by looking at individual

graphs) In many of the ases when there were a lot of methods with very similar performane we just hose

two whih looked better (or arbitrarily if that was hard to deide).

This way we an see how the various lasses of spetral methods ompare within themselves and w.r.t

to eah other. Note that y-axis of the graphs are not the same. And hene di�erent graphs should be

ompared by just looking at their heights or levels. (This to done to show better ontrast in between a

partiular lass, esp. when performane within the lass is near idential)

8 Results and Disussion
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Figure 1: Blok Stohasti Dataset. a) Performane on Wallae index of spetral algorithms on Blok

Stohasti Datasets. b) Performane on Variation of Information in presene of noise

The results of of various algorithms on the blok stohasti matrix are presented in �gure 1. The �rst

graph (a) shows the Wallae index ([11℄) of lustering produe w.r.t to the \true" lustering given various

K as input and no noise. The wallae index would have a value of 1 in ase the lustering produed does

not split the true lusters. i.e. two points whih were in the same luster in the true lustering are in the

same luster in the lustering produed. The graph illustrates a lot of points that in aordane with the

theoretial preditions. First of all, the multiway spetral methods, irrespetive of the post proessing step

perform perfetly whenK � K

true

= 5. This is to be expeted as all the points in a single luster are mapped

to the same point in the spetral domain. Also most of the reursive spetral algorithms end up splitting

some lusters or another exept for sm gap (whih in fat performs best) and sm nut. The reason for this

is that ondutane or kvv based methods are not able to �nd the optimal point to partition. Another

important thing to note is that the multiway spetral algorithms degrade must more steeply if K > K

true

is

10



used. Eigenvetors orresponding to i

th

largest eigenvalues are no longer guaranteed to be PC if i > K

true

.

This means that those spetral dimensions is essentially \random" w.r.t �. The reursive algorithms on the

other hand use only the seond largest eigenvetor whih are PC w.r.t. � and so the �rst few uts are lot

more stable leading to better results.

The behavior of algorithms in presene of noise is quite similar. Figure 1(b) shows the how the perfor-

mane degrades as noise is added. (K = K

true

= 5). As expeted the multiway algorithms perform the

best. Like above the ondutane based algorithm perform the worst. Another observation to make is that

spetral algorithms with NJWas the �rst stage tend to degrade slightly less then those with Multiut as the

�rst stage. This was hinted in [8℄ and is a result of mapping the points on a unit sphere whih gets rid of

radial variation. .

The purpose of this dataset was to demonstrate the robustness to noise. So this is the only dataset on

whih the error bars are shown (exept for the �rst olumn in whih all methods performed nearly the same

with similar error bars. We omitted them to make the graphs more lear).

As we an see in �gure 2 () and (f) linkage algorithm are too sensitive to noise and infat ould not

�nd out the orret lustering even when (almost) no noise was added to the blok stohasti matrix. The

multiway spetral methods as expeted perform the best as this is their perfet S. Within this lass All

the algorithms seems to perform nearly same with mut methods performing slightly better than the ang

methods. This suggests that for the blok stohasti similarity matries it might be slightly preferable to use

the Multiut base algorithms. The reason for this might be the that NJWmaps the lusters to the unit sphere

and this might blow up distanes between points that are in the same luster. However the experimental

proof is not onlusive.

In the reursive algorithms only the shi-r-nut gets the perfet lusters in ase of low noise though other

variants based on also perform well. It is interesting to note that ondutane based performs signi�antly

worse. This is again expeted as the the ondutane only takes the smaller luster size into aount while

Nut is based on both the luster sizes.
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Figure 2: Blok Stohasti Dataset. The x-axis is the log

10

(�) where � is the noise added.
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Figure 5: Log normalized yeast ell yle data (ellyle)
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8.2 Handwritten Digits

This is the �rst real dataset the we tested the algorithm on. On the omplete dataset digit1000 (�gure 3)

the multiway spetral methods perform slightly better than the reursive spetral. However the performane

di�erene is not that signi�ant (and in ase of the VI measure almost zero) to make any onlusive statement.

The linkage algorithms performed a lot worse. Within the multiway spetral algorithms, mut mut ward

seems to be the lear winner.

The results on the digitFive1000 dataset are muh more interesting. The performane is near perfet

(at K = 5) and hene the omparison ould be done in light of a dataset with well established struture.

If we take a look at �gure 4 (a) then is is easy to see that all the multiway spetral algorithm give nearly

idential results from K = 3 to 5. This is a strong empirial justi�ation of the similarity of the NJWand

Multiut whih was theoretially proved above. Also in this partiular the lusters are obviously well formed

as the result in this setions are independent of the grouping algorithm that is used in the third stage.

This is also one dataset in whih the multiway spetral methods seem to dominate over the reursive

methods. The linkage methods are as expeted far behind. One surprising thing observed is that the Nut

methods are lagging behind in the performane as ompared to those based on ondutane.

8.3 Gene Expression Data

This dataset was more interesting of the two real datasets we used. There are a variety of reasons. First of

all, sine we had results from the model based algorithms for this dataset (from [13℄) there was something

to ompare the spetral algorithms with rather than just amongst themselves. Seondly this ontained the

same dataset with di�erent data transformation applied to them (See setion 4.3), we ould see how muh

the lustering algorithms are dependent on preproessing.

For the ellyle dataset the best of the spetral algorithms perform slightly better than the model

based algorithms. This is enouraging as this shows that spetral methods are ompetitive even on real

dataset and not just the perfet ase. The reursive algorithm show similar performane as the multiway

algorithms exept that Nut based algorithms are a little better and the ondutane based a little worse.

While the ordering within the reursive algorithms is expeted it is not lear why some of them are better

than the multiway algorithms. It is possible that in presene of noise depending on the later eigenvetors is

not always the best thing to do and it is better to do the proess reursively whih ensures that atleast the

�rst few partitions are orret.

However what is even more surprising is the performane of luster-ward-linkage. This simple linkage

algorithm gives nearly the best performane on both measures!. We think that in ase of suh high error

rates as we are observing here it is really anybody's game unless there is a dominant struture known to be

in the data whih orresponds to the lustering algorithm.

In omparison the situation for ellyle std is ompletely reversed! The model based algorithm

performs the best. The reason for this is that this data transformation is known to �t better to gaussian

model and hene the better performane. The performane of best spetral methods remains the same,

though the multiway methods perform better now than reursive ones. (with ondutane based methods

now just slightly worse and even better at K = 5.).

8.4 Future work

In this paper we did not address the problem of how to go about hoosing the number of lusters. We intend

to explore methods whih ould �nd the number of lusters based on the data.

There also are two other algorithms that we did not implement for the lak of time.. The �rst one is

another variant of the SMalgorithm whih theoretially should perform very well on blok stohasti matrix.

We did not use it beause we think it might be too sensitive to noise. The seond is a non-spetral method

based on single linkage and runt analysis whih we expet to be a lot more robust to noise. We wish to

explore how using this algorithm as the grouping algorithm after spetral mapping a�ets the performane

of various methods.
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9 Conlusion

The goal of the present paper was to analyze omparatively the features of a number of published spetral

lustering algorithms. Rather than establishing whih of the published algorithms is better, we aimed at

evaluating what features make a spetral lustering more valuable.

Beause for lustering a data set the \goodness" is in the eye of the beholder, one should look at lustering

algorithms not only as ompeting with eah other but also as omplementing eah other's strengths and

weaknesses. Hene, a seond goal of our researh, was to see how di�erent the various algorithms are in their

approah.

The answer to the seond question is largely negative. The theory predits that the perfet S for all

three algorithms is the same, a result that is strongly supported by the experiments. All algorithms work

very well in the ases when S is almost perfet and there is not lear winner in ase it is not. We did �nd the

multiway spetral lustering algorithm to be slightly better performing espeially when there is struture to

be easily found in the data. For the reursive methods we reommend using the Nut measure over others

though other than that there is no lear winner. As ompared to other method we showed that spetral

methods give ompetitive performane to the existing methods and are de�nitely worth further exploration.
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Appendix

Proof of Proposition 1

A matrix A

n�k

with orthonormal olumns and atmost k unique rows would have exatly k unique orthogonal

rows.

Proof: First of sine A has rank k it has to have k independent rows, whih means that it has exatly

k unique rows.

Now, Rearrange the rows so that the idential rows are next to eah other. (This does not a�et the

result so we assume that A has this property). So now A an written as A = C

n�k

B

k�k

where B is the

matrix with the k unique rows and C

ij

= 1 if the i

th

row of A is same as the j

th

row of B. We just need to

prove that B has orthogonal rows.

Sine the olumns of A are orthonormal, A

T

A = I

k�k

. This implies B

T

C

T

CB = I , Now it is easy to

see that C

T

C is a diagonal matrix (say D). De�ne Z = D

1

2

B. This gives us Z

T

Z = I whih means that Z

is orthonormal with orthogonal rows. Whih proves that B has orthogonal rows. (Premultiplying a matrix

with a diagonal matrix just sales its rows). QED.

Consider the algorithms NJWand Multiut . They use the top K eigen vetors whih are orthonormal.

So if these eigenvetors are pieewise onstant w.r.t to a lustering � then they have atmost K unique rows

and hene would need have exatly K unique rows whih would make the S perfet. So all we need is for

the eigenvetors to be PC w.r.t �. Also note that these rows would be orthogonal.

Proof of Theorem 2 (reverse diretion)

Whenever the S is perfet for Multiut it is perfet for NJWand vie versa.

Proof: Let S be perfet for NJWw.r.t. � for the �rst K eigen vetors. We would prove the S is perfet

for Multiut as well. (We would ontinue the notation introdued in setion 2.)
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Let P be the orresponding stohasti matrix for S. And let P be blok diagonal with l bloks (l would

have the trivial value 1 when P is not BD). There are two ases possible. First ase is when l � K. This a

blok diagonal S (with more than K bloks) and is trivially perfet for Multiut .

The seond ase is when l < K. For P with l bloks ones an always rotate the �rst l eigen vetors

suh that they are the indiator funtions for the blok. i.e. V

ij

= 

j

> 0 i� point i belongs to blok j and

zero otherwise. So, Y

ij

6= 0 i� i belongs to blok j. (for i = 1 : : : n; j = 1 : : : l). This means two (K-dim)

points in di�erent bloks would have to di�er in atleast one dimension. So, if p; q 2 C

s

(in �) then they

have to be in the same blok, say j. Sine S is perfet w.r.t. � for NJWthis means that rows of Y are

equal w.r.t to �. Now onsider arbitrary p; q 2 C

s

where s is arbitrarily hosen from 1; 2; : : :K. By the

assumption, y

p

= y

p

= ~y

s

(Let). This implies x

p

= jx

p

jy

q

= jx

p

j~y

s

and x

q

= jx

j

jy

q

= jx

q

j~y

s

. In partiular

the j

th

dimension of the x

p

and x

q

(whih are also in j

th

olumn of V ) are proportional to jx

i

j and jx

j

j. i.e.

V

pj

= jx

p

j~y

j

s

and V

qj

= jx

q

j~y

j

s

. But we know that V

pj

= V

qj

whih means that jx

p

j = jx

q

j and hene x

p

= x

q

.

Sine p; q; s were hosen arbitarily this proves that S is perfet for Multiut .
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