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Abstra
t

Spe
tral Clustering has be
ome quite popular over the last few years and several new algorithms

have been published. In this paper, we 
ompare several of the best-known algorithms from the point of

view of 
lustering quality over arti�
ial and real datasets. We implement many variations of the existing

spe
tral algorithms and 
ompare their performan
e to see whi
h features are more important. We also

demonstrate that spe
tral methods show 
ompetitive performan
e on real dataset with respe
t to existing

methods.

1 Introdu
tion

Clustering has always been a hard problem and an a
tive topi
 of resear
h. Re
ently, a new approa
h has

started to get a lot of attention namely spe
tral methods. The spe
tral methods for 
lustering usually involve

taking the top eigen ve
tors of some matrix based on the distan
e between points (or other properties) and

then using them to 
luster the various points.

Spe
tral 
lustering te
hniques have seen an explosive development and proliferation over the past few

years. They promise to be
ome strong 
ompetitors for other 
lustering methods. Several su

esses have

already been registered (LSA,[9℄). Spe
tral methods are attra
tive be
ause they are easy to implement and

are reasonably fast (for sparse data sets up to several thousands). Also they do not intrinsi
ally su�er from

the problem of lo
al optima. (Though depending on the exa
t algorithm some lo
al optima might be there.)

In spite of the large number of papers on spe
tral 
lustering, so far no systemati
 
omparison between

the existing algorithms has been published. This is what we set out to do here. We intend to take a look

at four spe
tral algorithms and take them apart. We generate a list of algorithms whi
h are made from

di�erent parts of di�erent algorithms and 
ompare their performan
e. We hope to be able to �nd out whi
h

of these sub-
omponents are important and whi
h not, and to see if some 
ombination of these works the

best.

2 Spe
tral Clustering Algorithms

The algorithms we sele
ted are at this date among the most popular of the published ones. We have also

aimed at representing a diverse set of algorithmi
 features. The algorithms are: (1) the image segmentation

algorithm introdu
ed by Shi and Malik (SM ) [9℄, (2)A variant by Kannan, Vempala and Vetta (KVV )

[2℄, (3) the algorithm of Ng, Jordan and Weiss (NJW ) [8℄, (4) an algorithm suggested by Meil�a and Shi

(Multi
ut ) [5℄. We also present the results obtained with the Single and Ward linkage algorithms (denoted

by MST ,Ward) as a \strawman" in order to demonstrate that the 
lustering tasks that we 
hose are not

trivial.

Before des
ribing the algorithms in more detail, we introdu
e some notation. Then we would des
ribe

the four spe
tral and two grouping algorithms.
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2.1 Notation

The set of data points to be 
lustered will be denoted by I , with jI j = n. For ea
h pair of points i; j 2 I

a similarity S

ij

= S

ji

� 0 is given. The similarities S

ij


an be viewed as weights on the undire
ted edges

ij of a graph G over I . The matrix S = [S

ij

℄ plays the role of a \real-valued" adja
en
y matrix for G. Let

D

i

=

P

j2I

S

ij

be 
alled the degree of node i, and the volume of a set A � I be V ol A =

P

i2A

D

i

. The

set of edges between two disjoint sets A;B � I is 
alled the edge 
ut or in short the 
ut between A;B.

A 
lustering C = fC

1

; C

2

; : : : C

K

g is a partitioning of I into the nonempty mutually disjoint subsets

C

1

; : : : C

K

. In the graph theoreti
al paradigm a 
lustering represents a multiway 
ut in the graph G.

All the algorithms that we use here just need a similarity matrix between points (ex
ept an
hor. But we

never us it on the original (unmapped) points). So all we need is a data with similarity matrix and there

may not be an a
tual set of distin
t points in the initial domain or the points may even 
ome from an in�nite

dimensional spa
e. (something an output or an kernel fun
tion).

2.2 Overview

The algorithms presented here 
an be thought of as 
onsisting of 3 stages:

� Prepro
essing: This is a form of normalization of the similarity matrix S. We did some smoothing

initially to make sure that matrix is not too ill 
onditioned. However to make results more relevant

w.r.t. to other papers, we eventually dropped the smoothing.

� Spe
tral Mapping: Some eigenve
tors of the prepro
essed similarity matrix are 
omputed. Ea
h data

point i is mapped to a tuple representing the values of 
omponent i in the aforementioned eigenve
tors.

� Postpro
essing/Grouping: A (usually simple) grouping algorithm 
lusters the data (in the original

or spe
tral domain).

There are three kind of algorithms presented here.

� Re
ursive Spe
tral: These algorithms try to split the data into two partitions based on a single

eigenve
tor and are then are re
ursively used to generate more partitions.

� Multiway Spe
tral: These use more information in multiple eigenve
tors to do a dire
t multiway

partition of data.

� Non spe
tral: A (usually simple) grouping algorithm that 
lusters the data qui
kly. These are used

in 
onjun
tion with the Multiway spe
tral algorithms and also provide a baseline for performan
e.

For some of the algorithms (SM , KVV ) heuristi
 methods for �nding the number of 
lusters K have

been suggested [9, 2℄. In this work, to provide for a fair 
omparison, we have assumed for all the algorithms

that the number of 
lusters K is given in advan
e.

2.3 The Shi and Malik (SM ) algorithm

This algorithm was introdu
ed by [9℄ as a heuristi
 algorithm aimed to minimize the Normalized Cut 
riterion

proposed by the same authors. The normalized 
ut between two sets A;B � I is de�ned as

NCut(A;B) = Cut(A;B)

�

1

V ol A

+

1

V ol B

�

A

ording to [9℄ the set I is partitioned into two 
lusters C; C

0

= I n C that minimize NCut(C;C

0

) over

all possible two way partitions of I . This problem is provably NP-hard, but the authors show that under


ertain spe
ial 
onditions a spe
tral algorithm exists that �nds the optimum.

Algorithm SM

1. Compute

P = D

�1

S (1)
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2. Let 1 = �

1

� �

2

� : : : � �

n

be the eigenvalues of P and v

1

; v

2

; : : : ; v

n

the 
orresponding eigenve
tors

1

Compute v

2

.

3. Min-Ratio-Cut

(a) Sort the elements of v

2

in in
reasing order. Denote by v

2

i

the i-th element in the sorted list.

(b) For i = 1; : : : n� 1

Compute NCut(C

i

; C

0

i

) where C = f1; : : : ig; C

0

= fi+ 1; i+ 2 : : : ng

(
) Partition I into the two 
lusters C

i

0

; C

0

i

0

where i

0

=
min

i

NCut(C

i

; C

0

i

)

4. Repeat steps 1{3 re
ursively on the 
luster with the largest �

2

until K 
lusters are obtained.

Min-Ratio-Cut is inspired by [10℄ whi
h suggests that a line sear
h along the ve
tor produ
es better 
uts

than the original heuristi
. This algorithm is almost identi
al with spe
tral algorithm II in [2℄. That is

dis
ussed in more detail in 2.4. Based on that another version for this algorithm in implemented using the


ondu
tan
e as a 
riterion in Min-Ratio-Cut .

2.4 The Kannan, Vempala and Vetta Algorithm (KVV)

The KVV is very similar to to SMalgorithm with two di�ern
es. One di�eren
e is in step 3, where the

optimal 
ut is found with respe
t to the Cheeger 
ondu
tan
e �(C

i

; C

0

i

), another measure of 
ut quality. The


ondu
tan
e of a 
lustering fC; I n Cg is de�ned as

�(C; I n C) =

Cut(C; I n C)

minV ol C; V ol I n C)

Also in the re
ursive step the kvv variant de
ides the next 
luster is the one with the minimum 
ondu
-

tan
e.This variant of step 3 will be 
alled Min-Condu
tan
e .

Another di�eren
e is in the \normalization" past the �rst iteration of step 1. The SMalgorithm just

takes the blo
k of S 
orresponding to the 
urrent 
luster. The variant in [2℄ always uses blo
ks from the P


omputed at the �rst iteration. To ensure that the row sums of the blo
ks equal 1, the diagonal elements

P

ii

of the 
urrent blo
k are adjusted. Thus, this variant ignores the self-similarity of the data points in all

but the �rst iteration.

To adjust the P

ii

there are two possibilities. We 
an either s
ale up all the entries in row to sum up

to one or add the extra weight to the diagonal element. We 
all the �rst variant kvv mult and the se
ond

kvv add.

2.5 The Ng, Jordan and Weiss (NJW) algorithm

Algorithm NJW

1. Set the diagonal elements S

ii

to 0.

2. Compute the matrix

L = D

�

1

2

SD

�

1

2

(2)

3. Let 1 = �

1

� �

2

� : : : � �

K

be the K largest eigenvalues of L and u

1

; u

2

; : : : ; u

K

the 
orresponding

eigenve
tors

2

All eigenve
tors are normalized to have unit length. Form the matrix U = [u

1

u

2

: : : u

K

℄

by sta
king the eigenve
tors in 
olumns.

4. Form the matrix Y from U by renormalizing ea
h of U 's rows to have unit length (i.e Y

ij

= U

ij

=

q

P

j

U

2

ij

).

5. K-Means-OrthogonalTreating ea
h row of Y as a point in K dimensions, 
luster them by the K-means

algorithm to obtain the �nal 
lustering. The K-means algorithm is initialized by the Orthogonal-

Initializationmethod des
ribed in [8℄.

1

If the eigenvalues are not distin
t, pi
k the eigenve
tors su
h that v

i

T

Dv

j

= 0 for i 6= j. This is always possible and the

Matlab implementation that we used does it automati
ally.

2

If the eigenvalues are not distin
t, 
hoose u

k

's that are orthogonal to ea
h other. L is related to the Lapla
ian of S. See

e.g [9℄ for details.
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In [8℄ it is proved that if the 
lusters are well separated in the sense that the similarity matrix S is almost

blo
k diagonal, and if the sizes of the 
lusters and degrees of individual nodes don't vary too mu
h, the rows

of the Y matrix 
luster near K orthonormal ve
tors in R

K

. This fa
t suggested the orthogonal initialization

method.

We implemented a slightly di�erent version of this algorithm whi
h we think has greater numeri
al

stability. The details are in the appendix.

2.6 The Meila-Shi algorithm

This algorithm was suggested in [6℄. Algorithm Multi
ut

1. Compute the sto
hasti
 matrix P as in (1).

2. Compute v

1

; : : : v

K

the eigenve
tors of P 
orresponding to the K largest eigenvalues. Form the matrix

V whose 
olumns are v

1

; : : : v

K

.

3. Cluster the rows of V as points in a K-dimensional spa
e.

2.7 An
hor Algorithm

A \
at" version of the An
hor algorithm of [7℄, also very related to the minimum diameter 
lustering

method of [1℄.

Algorithm An
hor

1. Choose a point at random. Set k = 1, k

0

= 0. Choose an
hor x

1

to be the farthest point from the

initial point.

2. Constru
t C

k

the 
luster asso
iated with x

k

as a list of points that are 
loser to x

k

than to any other

an
hor. The list is sorted by de
reasing distan
e from x

k

.

3. Test if x

k

has enough points. If jC

k

j < n

min

then k

0

= k

0

+ 1.

4. Set k = k + 1. Choose an
hor x

k

to be the farthest point from all existing an
hors.

5. If k � k

0

< K go to step 2.

Note that the algorithm may produ
e more than K 
lusters. It is also possible that it never produ
es

K 
lusters having more than n

min

points. In our experiments, all performed with n

min

= 3, the latter was

never observed.

2.8 Linkage algorithms

These are the hierar
hi
al 
lustering algorithm whi
h work on distan
es between the points. Sin
e we have

similarities, we need to 
hoose a way of mapping similarities to distan
es. We 
hose to use the inverse of

similarity as the measure (A very small value was added it to similarity to ensure that inverse of zero is not

taken).

We used two methods: single linkage and ward linkage. Single linkage is same as performing the MST on

the dissimilarities graph of the points and ward linkage is similar ex
ept that distan
e is the inner square

distan
e. For more details on the ward algorithms see [12℄.

As it will be shown in the following se
tions, the di�erent algorithmsa re mu
h 
loser then they ini-

tially appear. Both the experiments and the theory suggest that the di�eren
es between algorithms will

depend strongly on the quality of the postpro
essing step. Therefore, we experimented with several di�erent


lustering methods that will be des
ribed here.

3 Theoreti
al Results

Here we 
ompare the algorithms with respe
t to what we 
all their perfe
t points, values of S for whi
h

these spe
tral methods are supposed to perform well. We will show that, even though apparently the four

algorithms are di�erent, some of them are very similar near the perfe
t points.
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First we present a modi�
ation to the two algorithms to make them numeri
ally more stable and then

we present the 
onditions and proof of similarity. The symbols U; V; Y; S; P;D;K have the same meaning as

de�ned in the previous se
tion.

3.1 A modi�
ation to the NJWand Multi
utmethod

As dis
ussed in se
tion 2.5, NJWuse the top K eigenve
tors of L = D

�

1

2

SD

�

1

2

to map data. We use the

top K eigen ve
tors of the generalized eigen system Sx = �Dx. This is a numeri
ally more stable method

to 
ompute the eigen ve
tors as there is no division by D involved, whi
h 
ould 
ontain very small values.

(An outlier for example would have a very small degree as it is not 
lose to another point).

To prove why this gives the same ve
tor Y 
onsider the following:

D

�

1

2

SD

�

1

2

u = �u; Premultiplying by D

�

1

2

we get (3)

D

�1

S(D

�

1

2

x) = �(D

�

1

2

x) Putting v = D

�

1

2

x( hen
e x = D

1

2

v) we get (4)

D

�1

Sv = �v and hen
e Sv = �Dv: (5)

Now 
onsider the top K eigen ve
tors U

n�K

and V

n�K

. U = D

1

2

V . Sin
e D is a diagonal matrix this means

that the i

th

row of U is same as the i

th

row of V s
aled by D

1

2

ii

. So after the row is normalized to length 1,

the Y obtained from V is identi
al to the Y obtained from U .

For the multi
ut method observe that P = D

�1

S so the generalized eigen value system Sv = �Dv is

mathemati
ally equivalent and numeri
ally more stable than the 
omputing P and its eigenve
tors (for the

reasons stated above).

3.2 Preliminaries: The perfe
t S

When ea
h of the 
lusters in the postpro
essing step of a spe
tral algorithm is redu
ed to a distin
t point we

say that S is perfe
t for the respe
tive algorithm. For example, a blo
k diagonal similarity matrix is perfe
t

for all algorithms. A perfe
t S represents the ideal situation for a 
lustering algorithm. Here we essentially

show that when S is su
h that the resulting P is blo
k-sto
hasti
, a term that will de�ned below, then S is

perfe
t for NJWand Multi
ut and should give good performan
e on re
ursive algorithms.

When ea
h of the 
lusters is redu
ed to a point (


i

= 


j

8i; j 2 C

s

8s) by the spe
tral mapping we say

that S is perfe
t for the respe
tive algorithm. A ve
tor v = [v

1

; v

2

; : : : ; v

n

℄

T

is pie
ewise 
onstant (PC ) w.r.t

a 
lustering � i� v

i

= v

j

whenever i; j are in the same 
luster.

A matrix S is 
alled blo
k diagonal (BD) w.r.t. a 
lustering � i� S

ij

= 0 whenever i and j belong to

di�erent 
lusters. It 
an be easily shown ([2, 9, 6, 8℄) that blo
k diagonal S is perfe
t for all the methods.

Blo
k sto
hasti
 P Let P be a sto
hasti
 matrix. P is blo
k sto
hasti
 [6℄ (BS) w.r.t. a 
lustering

� = fC

1

; : : : C

K

g i� for all s; s

0

= 1; : : :K the sums P

is

=

P

j2C

s

P

ij

are equal for all i 2 A

s

0

and the matrix

R = [P

ss

0

℄ (with P

ss

0

=

P

j2A

s

0

P

ij

; i 2 A

s

) is non-singular. A blo
k sto
hasti
 P is guaranteed ([6℄) to have

some K eigenve
tors PC w.r.t. �. In the rest of the paper we will assume that the PC ve
tors of P are

always the top K eigenve
tors. So from now on we will say that a matrix P has K pie
ewise 
onstant ve
tors

(PCE), or is blo
k-sto
hasti
 w.r.t. � when its top K eigenve
tors are pie
ewise 
onstant. Thus, if a P has

PCE, the 
orresponding S is perfe
t for the Multi
ut algorithm.

Proposition 1 Let A

n�k

be a real matrix and D

n�n

be a diagonal matrix su
h that A

T

DA = I

k�k

and that

A has atmost k unique rows. Then A is guaranteed to have exa
tly k unique orthogonal rows. (proved in

Appendix).

This is proved in the appendix. Consider a BS P and the 
orresponding V . Sin
e SV = �DV , V

T

DV =

I . So the above proposition implies that whenever P is perfe
t for Multi
ut , all the 
lusters in the spe
tral

domain are unique and orthogonal (but not orthonormal).

As shown in ?? Y in the NJWalgorithm 
an also be obtained by normalizing rows of V (from Multi
ut )).

By the above proposition, we have that the rows of Y are also perfe
tly 
lustered with the 
lusters orthogonal

to ea
h. other and hen
e BS P is perfe
t for NJWas well. This generalizes the result in [8℄ where this property
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was shown for blo
k diagonal 
ase and shows that a perfe
t S for Multi
ut is also perfe
t for NJW . This

shows that NJWwill work well in a mu
h wider range of 
ases then previously believed. The reverse 
an

also be shown though the proof is slightly more involved and shown in the appendix. It follows that:

Theorem 2 Whenever the S is perfe
t for Multi
ut it is perfe
t for NJWand vi
e versa.

In other words, Multi
ut and NJWare equivalent when S is perfe
t, although they use di�erent spe
tral

mappings; NJWmaps the 
lusters to orthonormal ve
tors, while Multi
utmaps them to orthogonal ve
tors of

di�erent lengths. Away from the perfe
t S the behavior of the two algorithms may di�er. We will investigate

this in the experiments se
tion.

3.3 Re
ursive Algorithms

We have shown the equivalen
e of for NJWand Multi
ut blo
k sto
hasti
 P . Now we examine the behavior

of the re
ursive algorithms in the same situation.

Take the 
ase when we are splitting the points I

0

� I into two 
lusters. (At the top level or in any of the

re
ursive steps). Let the P

0

that we have (for I' ) be blo
k sto
hasti
 w.r.t �

0

. In that 
ase the se
ond eigen

ve
tor would be PC w.r.t. to the � so when we reorder the points based on this eigen ve
tor we have the

points in the right order. That is, if we 
hose the right point to partition , none of the 
lusters in � would

be split. Also the P

00

; P

000

for these two split 
luster be blo
k sto
hasti
 (w.r.t to the two parts of �) setting

the optimal stage for the re
ursive sub steps.

The 
riteria that the two algorithms use for splitting (minimum N
ut or 
ondu
tan
e) do not ensure that

this optimal point of partition is 
hosen, unless P is blo
k diagonal (then N
ut and 
ondu
tan
e are zero

at only these positions). So, for the blo
k diagonal 
ase, all algorithms are equivalent, but we 
annot say

what happens in the general BS 
ase. As it will turn out from the experiments, one of the algorithms, SM ,

behaves exa
tly like the multiway algorithms, while KVVbehaves di�erently.

The above remarks also suggest an alternative to the SMand KVValgorithms in whi
h one 
hooses the

partition based on largest di�eren
e in the sorted eigenve
tor. We explored this in our experiments.

4 Datasets

As dis
ussed above there is a whole lot of spe
tral methods ea
h with its little variation that needs to


ompared to ea
h other. Sin
e it is not possible to visually 
ompare them we needed datasets whi
h are

\pre-
lassi�ed" So that it is possible to 
ompute the 
lustering error and the VI w.r.t. true 
lustering. (see

se
tion 5) We used both arti�
ial and real datasets as des
ribed below. The arti�
ial datasets were primarily

used to demonstrate the robustness of algorithms to noise.

4.1 S100: A Blo
k Sto
hasti
 Matrix

This is the \ideal" 
ase for the multi
ut and ang-based spe
tral algorithms. Her e we 
onstru
ted an 100�100

matrix whi
h 
onsists of 5 
lusters. There are �ve 
lusters present of size 10,20,30,20 and 20 respe
tively.

The similarity matrix is also slightly blo
k diagonal. The purpose of using this dataset was to demonstrate

the stability of the algorithms w.r.t to noise. This data �le is 
alled blo
k-sto
hasti
.

4.2 Handwritten digits

This is the set of opti
al handwritten digit re
ognition that is available in the NIST site.There are lots

of version available with di�erent prepro
essing. In parti
ular we used the data set and prepro
essing as

mentioned in [3℄

Here is the des
ription of prepro
essing done by . They used prepro
essing programs made available

by NIST to extra
t normalized bitmaps of handwritten digits from a preprinted form. From a total of 43

people, 30 
ontributed to the training set and di�erent 13 to the test set. 32x32 bitmaps are divided into

non overlapping blo
ks of 4x4 and the number of on pixels are 
ounted in ea
h blo
k. This generates an

6



input matrix of 8x8 where ea
h element is an integer in the range 0..16. This redu
es dimensionality and

gives invarian
e to small distortions.

We further down sampled the dataset to 100 elements per digit giving a total of thousand 64 dimensional

points and 10 
lusters. We 
all this dataset digit1000. Some of digits were more easy to distinguish from

another and in parti
ular digits 0,2,4,6,7 were a lot more easier to distinguish than the others. So we


reated another dataset 
ontaining the hundred instan
es of just these �ve digits. We 
alled this data set

digitFive1000. (The 1000 just to remind that this is the same the digit1000 database.

4.3 Gene Expression Data

DNA mi
roarrays provide a way to the biologists to study the variation of many genes together. Using these

has been a plethora of gene expression data generated in the 
ommunity. This has led to the great need

for the data to be analyzed. ([13℄). We used one su
h dataset, the yeast 
ell 
y
le data, whi
h is publi
ally

available at [14℄. It shows the 
u
tuation of the gene expression levels of over 6000 genes over the two


ell
y
les (whi
h has 17 time points). The dataset is restri
ted to the 384 genes who's expression level peak

at di�erent points 
orresponding to the �ve phases of the 
ell 
y
le. The obje
tive given these expression

levels is to be able to 
luster them into 
lusters 
orresponding to the �ve phases.

There are two kinds of pre pro
essing that are suggested in [13℄. First is to the take the logarithm of the

expression level and se
ond to \standardize" the mean to be zero and varian
e 1. These data transformations

were done so as to make the data �t better to the gaussian model (They were using mixture models to 
luster

the data. See [13℄ for more details). We 
all the �rst dataset 
ell
y
le and the se
ond 
ell
y
le-std.

5 Evaluating Clustering Performan
e

Measuring a 
lustering performan
e in general is a very hard problem. The notion of good 
lustering is

intrinsi
ally tied with the de�nition of what a 
luster is whi
h in itself is a big resear
h topi
. In our 
ase

measuring 
lustering performan
e is easier as in all the datasets we have the \true" 
lustering available.

Given that the 
lustering performan
e is just a measure of how \di�erent" is the 
lustering produ
ed w.r.t

the true 
lustering. There are three kind of measures that we used: Clustering Error and Variation of

Information . In this se
tion C

true

would represent the true (given) 
lustering and C the 
lustering produ
ed

by the 
lustering algorithm.

5.1 Clustering Error

Clustering error is de�ned as the number of \mis
lassi�
ation" This the error indu
ed in the 
lustering w.r.t.

to the true 
lustering.

Let Confusion be the 
onfusion matrix of two 
lusterings. (Confusion(k

true

; k) = jC

true

k

true

\ C

k

j i.e.

number of points x that are 
luster k

true

in true 
lustering and 
luster k in the 
lustering produ
ed. Then

CE(C; C

true

) =

0

�

X

k

true

X

k 6=k

true

Confusion(k

true

; k)

1

A

=n (6)

where n is the total number of points.

There is a subtle problem with this naive de�nition. This does not take into a

ount the renumbering

that might happen while 
lustering. Cluster 1 in the true 
lustering might be assigned 
luster 3 in the


lustering produ
ed and so on. To 
ounter that the CE is 
omputed for all possible renumbering of the


lustering produ
ed and the minimum of all those is taken. (This is 
omputed eÆ
iently by modeling the

problem as a maximum weighted bipartite mat
hing problem and then 
omputing the solution using linear

programming).
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5.2 Variation of Information

Variation of Information (VI) is a metri
 introdu
ed in [4℄ to 
ompare two 
lusterings. It measures the

amount of information that is lost/gained from going from one 
lustering to another and vi
e versa. To

de�ne it let introdu
e some more notation as used in [4℄. (with some 
hanges).

Let n

k

be the number of point in k

th


luster in C. Let P (k) =

n

k

n

. Then the entropy asso
iated with


lustering C is de�ned as

H(C) = �

K

X

k=1

P (k) logP (k)

De�ne n

k

true

k

= jC

true

k

true

\C

k

j and P (k

true

; k) =

n

k

true

k

n

. Then mutual information between the 
lustering

I(C

true

; C) is de�ned as

I(C

true

; C) =

K

X

k

true

=1

K

X

k=1

P (k

true

; k) log

P (k

true

; k)

P

true

(k

true

)P (k)

Given these the variation of information is

V I(C

true

; C) = H(C) +H(C

true

)� 2I(C

true

; C)

See [4℄ for various properties of this measure.

5.3 Walla
e Index

Wallas Index is an index introdu
ed in the ([11℄) to measure the di�eren
es between two 
lusters. There are

two asymmetri
 
riteria de�ned. We just used one of the indi
es whi
h represents the probability that a pair

of point that were in the same 
luster in C

true

, are also in the same 
luster in C. Let n

true

k

true

= jC

true

k

true

j and

N

11

be the number of points pairs that are in the same 
luster in both C and C

true

. Then Walla
e Index

(one sided) is de�ned as

WI(C; C

true

) =

N

11

P

K

k

true

=1

n

true

k

true

(n

true

k

true

� 1)=2

This gives the value of 1 if the 
lustering if perfe
t (same as true 
lustering) and zero if the 
lustering

disagree on all point pairs.

6 EXPERIMENTAL SETUP

In this se
tion we provide the spe
i�
 details on how the experiments were run. Throughout this se
tion we

use AÆnityMatrix of a group ve
tors x

1

; x

2

: : : x

n

to be the similarity matrix S su
h that S

ij

= exp(�jjx

i

�

x

j

jj

2

=2�

2

where � would be the parameter used (We would spe
ify the value used). Also K would refer to

the input the 
lustering algorithms to spe
ify the number of 
luster to generate. Ea
h algorithm was run

multiple number of times and the average taken.

6.1 Exa
t Algorithms Used

In se
tion 2 we des
ribed the algorithms as presented in paper the so 
alled 
lassi
 version. However to

exa
tly distinguish between the e�e
ts of the various 
omponents of the spe
tral algorithms we implemented

a whole range of algorithms 
ontaining most of the variations of the algorithms mentioned above.

The list of all the algorithms implemented is shown below. In ea
h of the algorithm listed here, the various


omponents represent the appli
ation of a parti
ular algorithm in that \stage". So ang and m
ut refer to the

spe
tral mapping using the NJWand Multi
utmethods into a domain. After mapping the similarity matrix

8



(if required) is obtained by 
omputing the AffinityMatrix with � = 0:2 This 
hoi
e was straight forward

in 
ase of NJWalgorithm as points lie on a unit sphere. We used the same value for Multi
ut as well.

The an
hor,ward,kmeans refer to the respe
tive algorithms applied after the spe
tral mappings. In

kmeans we performed kmeans with 5 runs of initializing with orthogonal 
enters and 20 runs initialized with

random 
enters.

We also had the intuition that the spe
tral methods might be more e�e
tive in 
lustering points after

mapping them in the spe
tral domain. To explore that possibility we implemented the double spe
tral

methods like ang m
ut ward in whi
h the �rst we map the points in the ang spe
tral domain and then those

points in the m
ut spe
tral domain, �nally grouping them using the ward method.

Linkage Algorithms: single linkage ward linkage

Multiway Spe
tral Algorithms: njw ward njw kmeans njw an
hor

m
ut ward m
ut kmeans m
ut an
hor

njw njw ward njw njw kmeans njw m
ut ward

njw m
ut kmeans m
ut m
ut ward m
ut m
ut kmeans

Re
ursive Spe
tral Algorithms: sm n
ut kvv1 n
ut kvv2 n
ut

sm 
ond kvv1 
ond kvv2 
ond

sm gap

Table 1: List of Algorithms

6.2 S100

We used this database primarily to 
ompare the robustness of algorithms w.r.t. to noise. We took the original

blo
k sto
hasti
 matrix and added uniform noise of in
reasing magnitude from � = 10

�0:1

to � = 10

0:7

in

steps of 0:1 (in the exponent). The noise added was to preserve the signal-to-noise ratio in the sense that

noise added in S

ij

was made proportional to degrees of points i; j. More pre
isely, the new S

ij

was 
al
ulated

as follows:

S

ij

= S

ij

+

�

U(0; 1)� � �

p

D

i

�D

j

�

=n

Where U(0; 1) is number between 0 and 1 
hosen at random.

For ea
h noise levels 10 su
h matri
es were generated and the average performan
e of ea
h algorithm

taken.

6.3 Handwritten digits

This dataset 
onsisted of ve
tor in the 64 dimensional spa
e ranging from 0 to 16. The similarity matrix

was 
omputed as AÆnity matrix with � = 10. ( We experimented with various sigma and the value of 10

seemed to give reasonable results).

For the dataset digit1000, we ran ea
h algorithm for 5 iterations for K ranging from 8 to 12. Where as

for digitFive1000, 10 iterations for K = 3 to 7 were exe
uted.

6.4 Gene Expression Data

For both the datasets, 
ell
y
le and 
ell
y
le-std, the similarity was 
omputed as the 
orrelation


oeÆ
ients between the gene expression levels of the di�erent genes. (plus 1 to make the similarity matrix

positive. So the similarities ranged from 0 to 2.) Five runs were exe
uted for K varying from 3 to 7.

6.5 Implementation

The algorithms are very simple to implemented and we were able to implement ea
h of them using only a

few lines of 
ode of matlab. The majority of the time taken was for the eigen de
omposition. A full eigen

de
omposition (using eig fun
tion of matlab) would take O(n

3

) time. However sin
e we just needed the top

K eigen ve
tors, we used eigs fun
tion to redu
e the time taken.
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7 Performan
e Graphs

In this se
tion we present the graphs for the various algorithms on the �ve datasets. Sin
e there are so many

algorithms we do not show them all on the same graph. For all the datasets we present six graphs. Three

ea
h for the two metri
s : Clustering error (CE) and Variation of Information (VI) shown one above the

another.

In �rst 
olumn we have the various versions of the multiway spe
tral algorithms. In the se
ond 
olumn

the re
ursive spe
tral algorithms and the third 
olumns the best �ve. The best �ve are 
hosen as follows:

First we pi
k the best algorithm amongst the linkage, re
ursive, and multiway spe
tral 
lasses of algorithms.

The other two are the best two of the remaining. (The \best" method was pi
ked by looking at individual

graphs) In many of the 
ases when there were a lot of methods with very similar performan
e we just 
hose

two whi
h looked better (or arbitrarily if that was hard to de
ide).

This way we 
an see how the various 
lasses of spe
tral methods 
ompare within themselves and w.r.t

to ea
h other. Note that y-axis of the graphs are not the same. And hen
e di�erent graphs should be


ompared by just looking at their heights or levels. (This to done to show better 
ontrast in between a

parti
ular 
lass, esp. when performan
e within the 
lass is near identi
al)

8 Results and Dis
ussion

8.1 S100
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on NJW  

Five Recursive
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(a) Varying K. No noise (b) True K. Noise added.

Figure 1: Blo
k Sto
hasti
 Dataset. a) Performan
e on Walla
e index of spe
tral algorithms on Blo
k

Sto
hasti
 Datasets. b) Performan
e on Variation of Information in presen
e of noise

The results of of various algorithms on the blo
k sto
hasti
 matrix are presented in �gure 1. The �rst

graph (a) shows the Walla
e index ([11℄) of 
lustering produ
e w.r.t to the \true" 
lustering given various

K as input and no noise. The walla
e index would have a value of 1 in 
ase the 
lustering produ
ed does

not split the true 
lusters. i.e. two points whi
h were in the same 
luster in the true 
lustering are in the

same 
luster in the 
lustering produ
ed. The graph illustrates a lot of points that in a

ordan
e with the

theoreti
al predi
tions. First of all, the multiway spe
tral methods, irrespe
tive of the post pro
essing step

perform perfe
tly whenK � K

true

= 5. This is to be expe
ted as all the points in a single 
luster are mapped

to the same point in the spe
tral domain. Also most of the re
ursive spe
tral algorithms end up splitting

some 
lusters or another ex
ept for sm gap (whi
h in fa
t performs best) and sm n
ut. The reason for this

is that 
ondu
tan
e or kvv based methods are not able to �nd the optimal point to partition. Another

important thing to note is that the multiway spe
tral algorithms degrade must more steeply if K > K

true

is
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used. Eigenve
tors 
orresponding to i

th

largest eigenvalues are no longer guaranteed to be PC if i > K

true

.

This means that those spe
tral dimensions is essentially \random" w.r.t �. The re
ursive algorithms on the

other hand use only the se
ond largest eigenve
tor whi
h are PC w.r.t. � and so the �rst few 
uts are lot

more stable leading to better results.

The behavior of algorithms in presen
e of noise is quite similar. Figure 1(b) shows the how the perfor-

man
e degrades as noise is added. (K = K

true

= 5). As expe
ted the multiway algorithms perform the

best. Like above the 
ondu
tan
e based algorithm perform the worst. Another observation to make is that

spe
tral algorithms with NJWas the �rst stage tend to degrade slightly less then those with Multi
ut as the

�rst stage. This was hinted in [8℄ and is a result of mapping the points on a unit sphere whi
h gets rid of

radial variation. .

The purpose of this dataset was to demonstrate the robustness to noise. So this is the only dataset on

whi
h the error bars are shown (ex
ept for the �rst 
olumn in whi
h all methods performed nearly the same

with similar error bars. We omitted them to make the graphs more 
lear).

As we 
an see in �gure 2 (
) and (f) linkage algorithm are too sensitive to noise and infa
t 
ould not

�nd out the 
orre
t 
lustering even when (almost) no noise was added to the blo
k sto
hasti
 matrix. The

multiway spe
tral methods as expe
ted perform the best as this is their perfe
t S. Within this 
lass All

the algorithms seems to perform nearly same with m
ut methods performing slightly better than the ang

methods. This suggests that for the blo
k sto
hasti
 similarity matri
es it might be slightly preferable to use

the Multi
ut base algorithms. The reason for this might be the that NJWmaps the 
lusters to the unit sphere

and this might blow up distan
es between points that are in the same 
luster. However the experimental

proof is not 
on
lusive.

In the re
ursive algorithms only the shi-r-n
ut gets the perfe
t 
lusters in 
ase of low noise though other

variants based on also perform well. It is interesting to note that 
ondu
tan
e based performs signi�
antly

worse. This is again expe
ted as the the 
ondu
tan
e only takes the smaller 
luster size into a

ount while

N
ut is based on both the 
luster sizes.
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Figure 2: Blo
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 Dataset. The x-axis is the log
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(�) where � is the noise added.
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8.2 Handwritten Digits

This is the �rst real dataset the we tested the algorithm on. On the 
omplete dataset digit1000 (�gure 3)

the multiway spe
tral methods perform slightly better than the re
ursive spe
tral. However the performan
e

di�eren
e is not that signi�
ant (and in 
ase of the VI measure almost zero) to make any 
on
lusive statement.

The linkage algorithms performed a lot worse. Within the multiway spe
tral algorithms, m
ut m
ut ward

seems to be the 
lear winner.

The results on the digitFive1000 dataset are mu
h more interesting. The performan
e is near perfe
t

(at K = 5) and hen
e the 
omparison 
ould be done in light of a dataset with well established stru
ture.

If we take a look at �gure 4 (a) then is is easy to see that all the multiway spe
tral algorithm give nearly

identi
al results from K = 3 to 5. This is a strong empiri
al justi�
ation of the similarity of the NJWand

Multi
ut whi
h was theoreti
ally proved above. Also in this parti
ular the 
lusters are obviously well formed

as the result in this se
tions are independent of the grouping algorithm that is used in the third stage.

This is also one dataset in whi
h the multiway spe
tral methods seem to dominate over the re
ursive

methods. The linkage methods are as expe
ted far behind. One surprising thing observed is that the N
ut

methods are lagging behind in the performan
e as 
ompared to those based on 
ondu
tan
e.

8.3 Gene Expression Data

This dataset was more interesting of the two real datasets we used. There are a variety of reasons. First of

all, sin
e we had results from the model based algorithms for this dataset (from [13℄) there was something

to 
ompare the spe
tral algorithms with rather than just amongst themselves. Se
ondly this 
ontained the

same dataset with di�erent data transformation applied to them (See se
tion 4.3), we 
ould see how mu
h

the 
lustering algorithms are dependent on prepro
essing.

For the 
ell
y
le dataset the best of the spe
tral algorithms perform slightly better than the model

based algorithms. This is en
ouraging as this shows that spe
tral methods are 
ompetitive even on real

dataset and not just the perfe
t 
ase. The re
ursive algorithm show similar performan
e as the multiway

algorithms ex
ept that N
ut based algorithms are a little better and the 
ondu
tan
e based a little worse.

While the ordering within the re
ursive algorithms is expe
ted it is not 
lear why some of them are better

than the multiway algorithms. It is possible that in presen
e of noise depending on the later eigenve
tors is

not always the best thing to do and it is better to do the pro
ess re
ursively whi
h ensures that atleast the

�rst few partitions are 
orre
t.

However what is even more surprising is the performan
e of 
luster-ward-linkage. This simple linkage

algorithm gives nearly the best performan
e on both measures!. We think that in 
ase of su
h high error

rates as we are observing here it is really anybody's game unless there is a dominant stru
ture known to be

in the data whi
h 
orresponds to the 
lustering algorithm.

In 
omparison the situation for 
ell
y
le std is 
ompletely reversed! The model based algorithm

performs the best. The reason for this is that this data transformation is known to �t better to gaussian

model and hen
e the better performan
e. The performan
e of best spe
tral methods remains the same,

though the multiway methods perform better now than re
ursive ones. (with 
ondu
tan
e based methods

now just slightly worse and even better at K = 5.).

8.4 Future work

In this paper we did not address the problem of how to go about 
hoosing the number of 
lusters. We intend

to explore methods whi
h 
ould �nd the number of 
lusters based on the data.

There also are two other algorithms that we did not implement for the la
k of time.. The �rst one is

another variant of the SMalgorithm whi
h theoreti
ally should perform very well on blo
k sto
hasti
 matrix.

We did not use it be
ause we think it might be too sensitive to noise. The se
ond is a non-spe
tral method

based on single linkage and runt analysis whi
h we expe
t to be a lot more robust to noise. We wish to

explore how using this algorithm as the grouping algorithm after spe
tral mapping a�e
ts the performan
e

of various methods.
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9 Con
lusion

The goal of the present paper was to analyze 
omparatively the features of a number of published spe
tral


lustering algorithms. Rather than establishing whi
h of the published algorithms is better, we aimed at

evaluating what features make a spe
tral 
lustering more valuable.

Be
ause for 
lustering a data set the \goodness" is in the eye of the beholder, one should look at 
lustering

algorithms not only as 
ompeting with ea
h other but also as 
omplementing ea
h other's strengths and

weaknesses. Hen
e, a se
ond goal of our resear
h, was to see how di�erent the various algorithms are in their

approa
h.

The answer to the se
ond question is largely negative. The theory predi
ts that the perfe
t S for all

three algorithms is the same, a result that is strongly supported by the experiments. All algorithms work

very well in the 
ases when S is almost perfe
t and there is not 
lear winner in 
ase it is not. We did �nd the

multiway spe
tral 
lustering algorithm to be slightly better performing espe
ially when there is stru
ture to

be easily found in the data. For the re
ursive methods we re
ommend using the N
ut measure over others

though other than that there is no 
lear winner. As 
ompared to other method we showed that spe
tral

methods give 
ompetitive performan
e to the existing methods and are de�nitely worth further exploration.
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Appendix

Proof of Proposition 1

A matrix A

n�k

with orthonormal 
olumns and atmost k unique rows would have exa
tly k unique orthogonal

rows.

Proof: First of sin
e A has rank k it has to have k independent rows, whi
h means that it has exa
tly

k unique rows.

Now, Rearrange the rows so that the identi
al rows are next to ea
h other. (This does not a�e
t the

result so we assume that A has this property). So now A 
an written as A = C

n�k

B

k�k

where B is the

matrix with the k unique rows and C

ij

= 1 if the i

th

row of A is same as the j

th

row of B. We just need to

prove that B has orthogonal rows.

Sin
e the 
olumns of A are orthonormal, A

T

A = I

k�k

. This implies B

T

C

T

CB = I , Now it is easy to

see that C

T

C is a diagonal matrix (say D). De�ne Z = D

1

2

B. This gives us Z

T

Z = I whi
h means that Z

is orthonormal with orthogonal rows. Whi
h proves that B has orthogonal rows. (Premultiplying a matrix

with a diagonal matrix just s
ales its rows). QED.

Consider the algorithms NJWand Multi
ut . They use the top K eigen ve
tors whi
h are orthonormal.

So if these eigenve
tors are pie
ewise 
onstant w.r.t to a 
lustering � then they have atmost K unique rows

and hen
e would need have exa
tly K unique rows whi
h would make the S perfe
t. So all we need is for

the eigenve
tors to be PC w.r.t �. Also note that these rows would be orthogonal.

Proof of Theorem 2 (reverse dire
tion)

Whenever the S is perfe
t for Multi
ut it is perfe
t for NJWand vi
e versa.

Proof: Let S be perfe
t for NJWw.r.t. � for the �rst K eigen ve
tors. We would prove the S is perfe
t

for Multi
ut as well. (We would 
ontinue the notation introdu
ed in se
tion 2.)
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Let P be the 
orresponding sto
hasti
 matrix for S. And let P be blo
k diagonal with l blo
ks (l would

have the trivial value 1 when P is not BD). There are two 
ases possible. First 
ase is when l � K. This a

blo
k diagonal S (with more than K blo
ks) and is trivially perfe
t for Multi
ut .

The se
ond 
ase is when l < K. For P with l blo
ks ones 
an always rotate the �rst l eigen ve
tors

su
h that they are the indi
ator fun
tions for the blo
k. i.e. V

ij

= 


j

> 0 i� point i belongs to blo
k j and

zero otherwise. So, Y

ij

6= 0 i� i belongs to blo
k j. (for i = 1 : : : n; j = 1 : : : l). This means two (K-dim)

points in di�erent blo
ks would have to di�er in atleast one dimension. So, if p; q 2 C

s

(in �) then they

have to be in the same blo
k, say j. Sin
e S is perfe
t w.r.t. � for NJWthis means that rows of Y are

equal w.r.t to �. Now 
onsider arbitrary p; q 2 C

s

where s is arbitrarily 
hosen from 1; 2; : : :K. By the

assumption, y

p

= y

p

= ~y

s

(Let). This implies x

p

= jx

p

jy

q

= jx

p

j~y

s

and x

q

= jx

j

jy

q

= jx

q

j~y

s

. In parti
ular

the j

th

dimension of the x

p

and x

q

(whi
h are also in j

th


olumn of V ) are proportional to jx

i

j and jx

j

j. i.e.

V

pj

= jx

p

j~y

j

s

and V

qj

= jx

q

j~y

j

s

. But we know that V

pj

= V

qj

whi
h means that jx

p

j = jx

q

j and hen
e x

p

= x

q

.

Sin
e p; q; s were 
hosen arbitarily this proves that S is perfe
t for Multi
ut .
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