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Abstract

Spectral Clustering has become quite popular over the last few years and several new algorithms
have been published. In this paper, we compare several of the best-known algorithms from the point of
view of clustering quality over artificial and real datasets. We implement many variations of the existing
spectral algorithms and compare their performance to see which features are more important. We also
demonstrate that spectral methods show competitive performance on real dataset with respect to existing
methods.

1 Introduction

Clustering has always been a hard problem and an active topic of research. Recently, a new approach has
started to get a lot of attention namely spectral methods. The spectral methods for clustering usually involve
taking the top eigen vectors of some matrix based on the distance between points (or other properties) and
then using them to cluster the various points.

Spectral clustering techniques have seen an explosive development and proliferation over the past few
years. They promise to become strong competitors for other clustering methods. Several successes have
already been registered (LSA,[9]). Spectral methods are attractive because they are easy to implement and
are reasonably fast (for sparse data sets up to several thousands). Also they do not intrinsically suffer from
the problem of local optima. (Though depending on the exact algorithm some local optima might be there.)

In spite of the large number of papers on spectral clustering, so far no systematic comparison between
the existing algorithms has been published. This is what we set out to do here. We intend to take a look
at four spectral algorithms and take them apart. We generate a list of algorithms which are made from
different parts of different algorithms and compare their performance. We hope to be able to find out which
of these sub-components are important and which not, and to see if some combination of these works the
best.

2 Spectral Clustering Algorithms

The algorithms we selected are at this date among the most popular of the published ones. We have also
aimed at representing a diverse set of algorithmic features. The algorithms are: (1) the image segmentation
algorithm introduced by Shi and Malik (SM) [9], (2)A variant by Kannan, Vempala and Vetta (KVV)
[2], (3) the algorithm of Ng, Jordan and Weiss (NJW ) [8], (4) an algorithm suggested by Meild and Shi
(Multicut ) [5]. We also present the results obtained with the Single and Ward linkage algorithms (denoted
by MST Ward) as a “strawman” in order to demonstrate that the clustering tasks that we chose are not
trivial.

Before describing the algorithms in more detail, we introduce some notation. Then we would describe
the four spectral and two grouping algorithms.



2.1 Notation

The set of data points to be clustered will be denoted by I, with |I| = n. For each pair of points i,j € I
a similarity S;; = Sj; > 0 is given. The similarities S;; can be viewed as weights on the undirected edges
ij of a graph G over I. The matrix S = [S;;] plays the role of a “real-valued” adjacency matrix for G. Let
D; = Zjel Sij be called the degree of node i, and the volume of a set A C I be Vol A = ZiEA D;. The
set of edges between two disjoint sets A, B C I is called the edge cut or in short the cut between A, B.

A clustering C = {C1,Cs,...Ck} is a partitioning of I into the nonempty mutually disjoint subsets
C1,...Ck. In the graph theoretical paradigm a clustering represents a multiway cut in the graph G.

All the algorithms that we use here just need a similarity matrix between points (except anchor. But we
never us it on the original (unmapped) points). So all we need is a data with similarity matrix and there
may not be an actual set of distinct points in the initial domain or the points may even come from an infinite
dimensional space. (something an output or an kernel function).

2.2 Overview
The algorithms presented here can be thought of as consisting of 3 stages:

e Preprocessing: This is a form of normalization of the similarity matrix S. We did some smoothing
initially to make sure that matrix is not too ill conditioned. However to make results more relevant
w.r.t. to other papers, we eventually dropped the smoothing.

e Spectral Mapping: Some eigenvectors of the preprocessed similarity matrix are computed. Each data
point 7 is mapped to a tuple representing the values of component 7 in the aforementioned eigenvectors.

e Postprocessing/Grouping: A (usually simple) grouping algorithm clusters the data (in the original
or spectral domain).

There are three kind of algorithms presented here.

e Recursive Spectral: These algorithms try to split the data into two partitions based on a single
eigenvector and are then are recursively used to generate more partitions.

e Multiway Spectral: These use more information in multiple eigenvectors to do a direct multiway
partition of data.

e Non spectral: A (usually simple) grouping algorithm that clusters the data quickly. These are used
in conjunction with the Multiway spectral algorithms and also provide a baseline for performance.

For some of the algorithms (SM, KVV) heuristic methods for finding the number of clusters K have
been suggested [9, 2]. In this work, to provide for a fair comparison, we have assumed for all the algorithms
that the number of clusters K is given in advance.

2.3 The Shi and Malik (SM ) algorithm

This algorithm was introduced by [9] as a heuristic algorithm aimed to minimize the Normalized Cut criterion
proposed by the same authors. The normalized cut between two sets A, B C I is defined as
NCut(A,B) Cut(A, B) L +—1
u = u
’ ’ VolA  VolB
According to [9] the set I is partitioned into two clusters C, C' = I \ C' that minimize NCut(C,C") over
all possible two way partitions of I. This problem is provably NP-hard, but the authors show that under

certain special conditions a spectral algorithm exists that finds the optimum.
Algorithm SM

1. Compute
P =D's (1)



2. Let 1 =Xy > Xy > ... > ), be the eigenvalues of P and v!,v?,...,v" the corresponding eigenvectors!
Compute v2.
3. MIN-Ratio-Cut
(a) Sort the elements of v* in increasing order. Denote by v? the i-th element in the sorted list.
(b) Fori=1,...n—1
Compute NCut(C;,C}) where C ={1,...i}, C' ={i+1,i+2...n}
(c) Partition I into the two clusters C;,, C  where 79 = min NCut(C;, C})
(3

4. Repeat steps 1-3 recursively on the cluster with the largest A\, until K clusters are obtained.

MIN-RATIO-CUT is inspired by [10] which suggests that a line search along the vector produces better cuts
than the original heuristic. This algorithm is almost identical with spectral algorithm II in [2]. That is
discussed in more detail in 2.4. Based on that another version for this algorithm in implemented using the
conductance as a criterion in Min-Ratio-Cut .

2.4 The Kannan, Vempala and Vetta Algorithm (KVV')

The KVVis very similar to to SMalgorithm with two differnces. One difference is in step 3, where the
optimal cut is found with respect to the Cheeger conductance ¢(C;, C}), another measure of cut quality. The
conductance of a clustering {C, I\ C} is defined as

Cut(C,I\C)

HCINC) = Vol O, Vol I\ O)

Also in the recursive step the kvv variant decides the next cluster is the one with the minimum conduc-
tance.This variant of step 3 will be called Min-Conductance .

Another difference is in the “normalization” past the first iteration of step 1. The SM algorithm just
takes the block of S corresponding to the current cluster. The variant in [2] always uses blocks from the P
computed at the first iteration. To ensure that the row sums of the blocks equal 1, the diagonal elements
Py; of the current block are adjusted. Thus, this variant ignores the self-similarity of the data points in all
but the first iteration.

To adjust the Pj; there are two possibilities. We can either scale up all the entries in row to sum up
to one or add the extra weight to the diagonal element. We call the first variant kvv_mult and the second
kvv_add.

2.5 The Ng, Jordan and Weiss (NJW ) algorithm
Algorithm NJW

1. Set the diagonal elements S;; to 0.

2. Compute the matrix

L =D :SD % (2)
3. Let 1 =y > ps > ... > g be the K largest eigenvalues of L and u',u?,...,uX the corresponding
eigenvectors® All eigenvectors are normalized to have unit length. Form the matrix U = [u! u? ... u%]

by stacking the eigenvectors in columns.
4. Form the matrix Y from U by renormalizing each of U’s rows to have unit length (i.e Y;; = Us;/,/>_; U3)-

5. K-Means-Orthogonal Treating each row of Y as a point in K dimensions, cluster them by the K-means
algorithm to obtain the final clustering. The K-means algorithm is initialized by the Orthogonal-
Initialization method described in [8].

LIf the eigenvalues are not distinct, pick the eigenvectors such that viTDvi =0 for i # j. This is always possible and the
Matlab implementation that we used does it automatically.

2If the eigenvalues are not distinct, choose u*’s that are orthogonal to each other. L is related to the Laplacian of S. See
e.g [9] for details.



In [8] it is proved that if the clusters are well separated in the sense that the similarity matrix S is almost
block diagonal, and if the sizes of the clusters and degrees of individual nodes don’t vary too much, the rows
of the Y matrix cluster near K orthonormal vectors in R¥. This fact suggested the orthogonal initialization
method.

We implemented a slightly different version of this algorithm which we think has greater numerical
stability. The details are in the appendix.

2.6 The Meila-Shi algorithm
This algorithm was suggested in [6]. Algorithm MuLTiCUT

1. Compute the stochastic matrix P as in (1).

2. Compute v', ... v¥ the eigenvectors of P corresponding to the K largest eigenvalues. Form the matrix
V whose columns are v', ... v%.

3. Cluster the rows of V' as points in a K-dimensional space.

2.7 Anchor Algorithm

A “flat” version of the Anchor algorithm of [7], also very related to the minimum diameter clustering
method of [1].
Algorithm ANCHOR

1. Choose a point at random. Set k = 1, ¥’ = 0. Choose anchor x; to be the farthest point from the
initial point.

2. Construct C}, the cluster associated with x, as a list of points that are closer to z; than to any other
anchor. The list is sorted by decreasing distance from xy.

3. Test if z;, has enough points. If |Cy| < nyin then &' = k' + 1.
4. Set k = k + 1. Choose anchor xj, to be the farthest point from all existing anchors.
5. If k — k' < K go to step 2.

Note that the algorithm may produce more than K clusters. It is also possible that it never produces
K clusters having more than n,,;, points. In our experiments, all performed with n,,;, = 3, the latter was
never observed.

2.8 Linkage algorithms

These are the hierarchical clustering algorithm which work on distances between the points. Since we have
similarities, we need to choose a way of mapping similarities to distances. We chose to use the inverse of
similarity as the measure (A very small value was added it to similarity to ensure that inverse of zero is not
taken).

We used two methods: single linkage and ward linkage. Single linkage is same as performing the MST on
the dissimilarities graph of the points and ward linkage is similar except that distance is the inner square
distance. For more details on the ward algorithms see [12].

As it will be shown in the following sections, the different algorithmsa re much closer then they ini-
tially appear. Both the experiments and the theory suggest that the differences between algorithms will
depend strongly on the quality of the postprocessing step. Therefore, we experimented with several different
clustering methods that will be described here.

3 Theoretical Results

Here we compare the algorithms with respect to what we call their perfect points, values of S for which
these spectral methods are supposed to perform well. We will show that, even though apparently the four
algorithms are different, some of them are very similar near the perfect points.



First we present a modification to the two algorithms to make them numerically more stable and then
we present the conditions and proof of similarity. The symbols U,V Y, S, P, D, K have the same meaning as
defined in the previous section.

3.1 A modification to the NJW and Multicut method

As discussed in section 2.5, NJW use the top K eigenvectors of L = D :SD % to map data. We use the
top K eigen vectors of the generalized eigen system Sx = ADx. This is a numerically more stable method
to compute the eigen vectors as there is no division by D involved, which could contain very small values.
(An outlier for example would have a very small degree as it is not close to another point).

To prove why this gives the same vector Y consider the following:

D :SD iy = Au, Premultiplying by D % we get (3)
D‘lS(D_%x) = /\(D_%:v) Putting v = D_%x( hence z = D%v) we get (4)
D *Sv = v and hence Sv = ADv. (5)

Now consider the top K eigen vectors U,x g and V,xx. U = D3V. Since D is a diagonal matrix this means

that the i'"row of U is same as the i'" row of V scaled by Di So after the row is normalized to length 1,
the Y obtained from V' is identical to the Y obtained from U.

For the multicut method observe that P = D~'S so the generalized eigen value system Sv = ADwv is
mathematically equivalent and numerically more stable than the computing P and its eigenvectors (for the
reasons stated above).

3.2 Preliminaries: The perfect S

When each of the clusters in the postprocessing step of a spectral algorithm is reduced to a distinct point we
say that S is perfect for the respective algorithm. For example, a block diagonal similarity matrix is perfect
for all algorithms. A perfect S represents the ideal situation for a clustering algorithm. Here we essentially
show that when S is such that the resulting P is block-stochastic, a term that will defined below, then §' is
perfect for NJW and Multicut and should give good performance on recursive algorithms.

When each of the clusters is reduced to a point (v; = 7, Vi,j € Cs Vs) by the spectral mapping we say
that S is perfect for the respective algorithm. A vector v = [v1,v2, . ..,v,]T is piecewise constant (PC) w.r.t
a clustering A iff v; = v; whenever ¢, j are in the same cluster.

A matrix S is called block diagonal (BD) w.r.t. a clustering A iff S;; = 0 whenever ¢ and j belong to
different clusters. It can be easily shown ([2, 9, 6, 8]) that block diagonal S is perfect for all the methods.

Block stochastic P Let P be a stochastic matrix. P is block stochastic [6] (BS) w.r.t. a clustering
A ={Cy,...Cg}iff forall s,s' =1,... K the sums P;; = Zjecs P;; are equal for all i € Ay and the matrix
R = [P,s] (with Psy = ZjeASz P;;,i € Ay) is non-singular. A block stochastic P is guaranteed ([6]) to have
some K eigenvectors PC w.r.t. A. In the rest of the paper we will assume that the PC vectors of P are
always the top K eigenvectors. So from now on we will say that a matrix P has K piecewise constant vectors
(PCE), or is block-stochastic w.r.t. A when its top K eigenvectors are piecewise constant. Thus, if a P has
PCE, the corresponding S is perfect for the Multicut algorithm.

Proposition 1 Let A, «j be a real matric and Dy, be a diagonal matriz such that ATDA = Iy, and that
A has atmost k unique rows. Then A is guaranteed to have exactly k unique orthogonal rows. (proved in
Appendiz).

This is proved in the appendix. Consider a BS P and the corresponding V. Since SV = ADV, VTDV =
I. So the above proposition implies that whenever P is perfect for Multicut, all the clusters in the spectral
domain are unique and orthogonal (but not orthonormal).

As shown in ?? Y in the NJW algorithm can also be obtained by normalizing rows of V' (from Multicut )).
By the above proposition, we have that the rows of Y are also perfectly clustered with the clusters orthogonal
to each. other and hence BS P is perfect for NJW as well. This generalizes the result in [8] where this property



was shown for block diagonal case and shows that a perfect S for Multicutis also perfect for NJW . This
shows that NJW will work well in a much wider range of cases then previously believed. The reverse can
also be shown though the proof is slightly more involved and shown in the appendix. It follows that:

Theorem 2 Whenever the S is perfect for Multicutit is perfect for NJW and vice versa.

In other words, Multicut and NJW are equivalent when S is perfect, although they use different spectral
mappings; NJW maps the clusters to orthonormal vectors, while Multicut maps them to orthogonal vectors of
different lengths. Away from the perfect S the behavior of the two algorithms may differ. We will investigate
this in the experiments section.

3.3 Recursive Algorithms

We have shown the equivalence of for NJW and Multicut block stochastic P. Now we examine the behavior
of the recursive algorithms in the same situation.

Take the case when we are splitting the points I’ C I into two clusters. (At the top level or in any of the
recursive steps). Let the P’ that we have (for I’) be block stochastic w.r.t A’. In that case the second eigen
vector would be PC w.r.t. to the A so when we reorder the points based on this eigen vector we have the
points in the right order. That is, if we chose the right point to partition , none of the clusters in A would
be split. Also the P”, P for these two split cluster be block stochastic (w.r.t to the two parts of A) setting
the optimal stage for the recursive sub steps.

The criteria that the two algorithms use for splitting (minimum Ncut or conductance) do not ensure that
this optimal point of partition is chosen, unless P is block diagonal (then Ncut and conductance are zero
at only these positions). So, for the block diagonal case, all algorithms are equivalent, but we cannot say
what happens in the general BS case. As it will turn out from the experiments, one of the algorithms, SM ,
behaves exactly like the multiway algorithms, while KVV behaves differently.

The above remarks also suggest an alternative to the SMand KVV algorithms in which one chooses the
partition based on largest difference in the sorted eigenvector. We explored this in our experiments.

4 Datasets

As discussed above there is a whole lot of spectral methods each with its little variation that needs to
compared to each other. Since it is not possible to visually compare them we needed datasets which are
“pre-classified” So that it is possible to compute the clustering error and the VI w.r.t. true clustering. (see
section 5) We used both artificial and real datasets as described below. The artificial datasets were primarily
used to demonstrate the robustness of algorithms to noise.

4.1 S100: A Block Stochastic Matrix

This is the “ideal” case for the multicut and ang-based spectral algorithms. Her e we constructed an 100 x 100
matrix which consists of 5 clusters. There are five clusters present of size 10,20,30,20 and 20 respectively.
The similarity matrix is also slightly block diagonal. The purpose of using this dataset was to demonstrate
the stability of the algorithms w.r.t to noise. This data file is called block-stochastic.

4.2 Handwritten digits

This is the set of optical handwritten digit recognition that is available in the NIST site.There are lots
of version available with different preprocessing. In particular we used the data set and preprocessing as
mentioned in [3]

Here is the description of preprocessing done by . They used preprocessing programs made available
by NIST to extract normalized bitmaps of handwritten digits from a preprinted form. From a total of 43
people, 30 contributed to the training set and different 13 to the test set. 32x32 bitmaps are divided into
non overlapping blocks of 4x4 and the number of on pixels are counted in each block. This generates an



input matrix of 8x8 where each element is an integer in the range 0..16. This reduces dimensionality and
gives invariance to small distortions.

We further down sampled the dataset to 100 elements per digit giving a total of thousand 64 dimensional
points and 10 clusters. We call this dataset digit1000. Some of digits were more easy to distinguish from
another and in particular digits 0,2,4,6,7 were a lot more easier to distinguish than the others. So we
created another dataset containing the hundred instances of just these five digits. We called this data set
digitFive1000. (The 1000 just to remind that this is the same the digit1000 database.

4.3 Gene Expression Data

DNA microarrays provide a way to the biologists to study the variation of many genes together. Using these
has been a plethora of gene expression data generated in the community. This has led to the great need
for the data to be analyzed. ([13]). We used one such dataset, the yeast cell cycle data, which is publically
available at [14]. It shows the fluctuation of the gene expression levels of over 6000 genes over the two
cellcycles (which has 17 time points). The dataset is restricted to the 384 genes who’s expression level peak
at different points corresponding to the five phases of the cell cycle. The objective given these expression
levels is to be able to cluster them into clusters corresponding to the five phases.

There are two kinds of pre processing that are suggested in [13]. First is to the take the logarithm of the
expression level and second to “standardize” the mean to be zero and variance 1. These data transformations
were done so as to make the data fit better to the gaussian model (They were using mixture models to cluster
the data. See [13] for more details). We call the first dataset cellcycle and the second cellcycle-std.

5 Evaluating Clustering Performance

Measuring a clustering performance in general is a very hard problem. The notion of good clustering is
intrinsically tied with the definition of what a cluster is which in itself is a big research topic. In our case
measuring clustering performance is easier as in all the datasets we have the “true” clustering available.
Given that the clustering performance is just a measure of how “different” is the clustering produced w.r.t
the true clustering. There are three kind of measures that we used: Clustering Error and Variation of
Information . In this section C*"“¢ would represent the true (given) clustering and C the clustering produced
by the clustering algorithm.

5.1 Clustering Error

Clustering error is defined as the number of “misclassification” This the error induced in the clustering w.r.t.
to the true clustering.

Let Confusion be the confusion matrix of two clusterings. (Confusion(kipye, k) = |C,ff:‘fe N Cy| i-e.
number of points = that are cluster k. in true clustering and cluster k in the clustering produced. Then

CEC,C"™)=| Y. > Confusion(kirue,k) | /n (6)

ktrue k#kirue

where n is the total number of points.

There is a subtle problem with this naive definition. This does not take into account the renumbering
that might happen while clustering. Cluster 1 in the true clustering might be assigned cluster 3 in the
clustering produced and so on. To counter that the C'E is computed for all possible renumbering of the
clustering produced and the minimum of all those is taken. (This is computed efficiently by modeling the
problem as a maximum weighted bipartite matching problem and then computing the solution using linear
programming).



5.2 Variation of Information

Variation of Information (VI) is a metric introduced in [4] to compare two clusterings. It measures the
amount of information that is lost/gained from going from one clustering to another and vice versa. To
define it let introduce some more notation as used in [4]. (with some changes).

Let n; be the number of point in k" cluster in C. Let P(k) = “&. Then the entropy associated with
clustering C is defined as

K
Z P(k)log P(k)
k=1

Define ny,,.,.r = |Ci*¢ NCi| and P(kirye, k) = =222 Then mutual information between the clustering
I(Ctree C) is defined as

Etrue, k)
true P rue 1 (true;
e Mz_lg Ftrues V108 v ) PO

Given these the variation of information is
VI(Ct e C) = H(C) + H(C'™ ¢) — 2I(C'"*,C)

See [4] for various properties of this measure.

5.3 Wallace Index

Wallas Index is an index introduced in the ([11]) to measure the differences between two clusters. There are
two asymmetric criteria defined. We just used one of the indices which represents the probability that a pair
of point that were in the same cluster in C*"*¢, are also in the same cluster in C. Let nj/"* = |C[" | and
N1 be the number of points pairs that are in the same cluster in both C and Ctrve, Then Wallace Index

(one sided) is defined as
Niy
K
D kure=1 Mgree (Mire, = 1)/2

This gives the value of 1 if the clustering if perfect (same as true clustering) and zero if the clustering
disagree on all point pairs.

WI(C, Ctrue) —

6 EXPERIMENTAL SETUP

In this section we provide the specific details on how the experiments were run. Throughout this section we
use AffinityMatriz of a group vectors 1,2 ... 2,to be the similarity matrix S such that S;; = exp(—||z; —
z;||?/20? where o would be the parameter used (We would specify the value used). Also K would refer to
the input the clustering algorithms to specify the number of cluster to generate. Each algorithm was run
multiple number of times and the average taken.

6.1 Exact Algorithms Used

In section 2 we described the algorithms as presented in paper the so called classic version. However to
exactly distinguish between the effects of the various components of the spectral algorithms we implemented
a whole range of algorithms containing most of the variations of the algorithms mentioned above.

The list of all the algorithms implemented is shown below. In each of the algorithm listed here, the various
components represent the application of a particular algorithm in that “stage”. So ang and mcut refer to the
spectral mapping using the NJW and Multicut methods into a domain. After mapping the similarity matrix



(if required) is obtained by computing the Af finityMatriz with o = 0.2 This choice was straight forward
in case of NJW algorithm as points lie on a unit sphere. We used the same value for Multicut as well.

The anchor,ward,kmeans refer to the respective algorithms applied after the spectral mappings. In
kmeans we performed kmeans with 5 runs of initializing with orthogonal centers and 20 runs initialized with
random centers.

We also had the intuition that the spectral methods might be more effective in clustering points after
mapping them in the spectral domain. To explore that possibility we implemented the double spectral
methods like ang mcut_ward in which the first we map the points in the ang spectral domain and then those
points in the mcut spectral domain, finally grouping them using the ward method.

Linkage Algorithms:

single_linkage

ward_linkage

Multiway Spectral Algorithms:

njw_ward

njw_kmeans

njw_anchor

mcut_ward

mcut_kmeans

mcut_anchor

njwnjw_ward

njwnjw_kmeans

njwmcut_ward

njwmcut_kmeans | mcut_mcut_ward | mcut_mcut_kmeans
Recursive Spectral Algorithms: smncut kvvl ncut kvv2 ncut
sm_cond kvvl_cond kvv2_cond
sm_gap

Table 1: List of Algorithms

6.2 S100

We used this database primarily to compare the robustness of algorithms w.r.t. to noise. We took the original
block stochastic matrix and added uniform noise of increasing magnitude from n = 107%! to » = 107 in
steps of 0.1 (in the exponent). The noise added was to preserve the signal-to-noise ratio in the sense that
noise added in S;; was made proportional to degrees of points ¢, j. More precisely, the new S;; was calculated

as follows:
Sij = Sij + (U(O,l) X n X \/D; x Dj) /n

Where U(0,1) is number between 0 and 1 chosen at random.
For each noise levels 10 such matrices were generated and the average performance of each algorithm
taken.

6.3 Handwritten digits

This dataset consisted of vector in the 64 dimensional space ranging from 0 to 16. The similarity matrix
was computed as Affinity matrix with o = 10. ( We experimented with various sigma and the value of 10
seemed to give reasonable results).

For the dataset digit1000, we ran each algorithm for 5 iterations for K ranging from 8 to 12. Where as
for digitFive1000, 10 iterations for K = 3 to 7 were executed.

6.4 Gene Expression Data

For both the datasets, cellcycle and cellcycle-std, the similarity was computed as the correlation
coefficients between the gene expression levels of the different genes. (plus 1 to make the similarity matrix
positive. So the similarities ranged from 0 to 2.) Five runs were executed for K varying from 3 to 7.

6.5 Implementation

The algorithms are very simple to implemented and we were able to implement each of them using only a
few lines of code of matlab. The majority of the time taken was for the eigen decomposition. A full eigen
decomposition (using eig function of matlab) would take O(n?) time. However since we just needed the top
K eigen vectors, we used eigs function to reduce the time taken.



7 Performance Graphs

In this section we present the graphs for the various algorithms on the five datasets. Since there are so many
algorithms we do not show them all on the same graph. For all the datasets we present six graphs. Three
each for the two metrics : Clustering error (CE) and Variation of Information (VI) shown one above the
another.

In first column we have the various versions of the multiway spectral algorithms. In the second column
the recursive spectral algorithms and the third columns the best five. The best five are chosen as follows:
First we pick the best algorithm amongst the linkage, recursive, and multiway spectral classes of algorithms.
The other two are the best two of the remaining. (The “best” method was picked by looking at individual
graphs) In many of the cases when there were a lot of methods with very similar performance we just chose
two which looked better (or arbitrarily if that was hard to decide).

This way we can see how the various classes of spectral methods compare within themselves and w.r.t
to each other. Note that y-axis of the graphs are not the same. And hence different graphs should be
compared by just looking at their heights or levels. (This to done to show better contrast in between a
particular class, esp. when performance within the class is near identical)

8 Results and Discussion

8.1 S100

Block—stochastic
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(a) Varying K. No noise (b) True K. Noise added.
Figure 1: Block Stochastic Dataset. a) Performance on Wallace index of spectral algorithms on Block
Stochastic Datasets. b) Performance on Variation of Information in presence of noise

The results of of various algorithms on the block stochastic matrix are presented in figure 1. The first
graph (a) shows the Wallace index ([11]) of clustering produce w.r.t to the “true” clustering given various
K as input and no noise. The wallace index would have a value of 1 in case the clustering produced does
not split the true clusters. i.e. two points which were in the same cluster in the true clustering are in the
same cluster in the clustering produced. The graph illustrates a lot of points that in accordance with the
theoretical predictions. First of all, the multiway spectral methods, irrespective of the post processing step
perform perfectly when K < Ky, = 5. This is to be expected as all the points in a single cluster are mapped
to the same point in the spectral domain. Also most of the recursive spectral algorithms end up splitting
some clusters or another except for sm_gap (which in fact performs best) and sm ncut. The reason for this
is that conductance or kvv based methods are not able to find the optimal point to partition. Another
important thing to note is that the multiway spectral algorithms degrade must more steeply if K > K.y is
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used. Eigenvectors corresponding to i" largest eigenvalues are no longer guaranteed to be PC if i > Kyyye.
This means that those spectral dimensions is essentially “random” w.r.t A. The recursive algorithms on the
other hand use only the second largest eigenvector which are PC w.r.t. A and so the first few cuts are lot
more stable leading to better results.

The behavior of algorithms in presence of noise is quite similar. Figure 1(b) shows the how the perfor-
mance degrades as noise is added. (K = Kyue = 5). As expected the multiway algorithms perform the
best. Like above the conductance based algorithm perform the worst. Another observation to make is that
spectral algorithms with NJW as the first stage tend to degrade slightly less then those with Multicut as the
first stage. This was hinted in [8] and is a result of mapping the points on a unit sphere which gets rid of
radial variation. .

The purpose of this dataset was to demonstrate the robustness to noise. So this is the only dataset on
which the error bars are shown (except for the first column in which all methods performed nearly the same
with similar error bars. We omitted them to make the graphs more clear).

As we can see in figure 2 (c) and (f) linkage algorithm are too sensitive to noise and infact could not
find out the correct clustering even when (almost) no noise was added to the block stochastic matrix. The
multiway spectral methods as expected perform the best as this is their perfect S. Within this class All
the algorithms seems to perform nearly same with mcut methods performing slightly better than the ang
methods. This suggests that for the block stochastic similarity matrices it might be slightly preferable to use
the Multicut base algorithms. The reason for this might be the that NJW maps the clusters to the unit sphere
and this might blow up distances between points that are in the same cluster. However the experimental
proof is not conclusive.

In the recursive algorithms only the shi-r-ncut gets the perfect clusters in case of low noise though other
variants based on also perform well. It is interesting to note that conductance based performs significantly
worse. This is again expected as the the conductance only takes the smaller cluster size into account while
Ncut is based on both the cluster sizes.

11



4\

Block Stochastic
T

Block Stochastic

0.4 T T T T
-e - njw-ward
== njw—kmeans
0.35F -® - njw-anchor
-+ - meut-ward
mcut-kmeans
03F =¢ - mcut-anchor
. =P - njw-njw-ward
=< - njw-njw-kmeans
-+ - njw-mcut-ward
50.25F -v - njw-mcut-kmeans
= meut-mcut-ward . ,
w -% - mcut-mcut-kmeans ,"‘,”/,'(/"aﬁ
o rod
£ oz o
5 o A
2 RN A
E e
Ooasf R 72
R O
. 2,052k
10705
o1} o
L E
*37
0.051 e
Aok
g7
A ‘ ‘
0791 1.261.58 2 251 3.16 3.98 5.01
Noise Level (n)
(a) CE for Spectral Methods
Block Stochastic
25 T T T T T T T
2t
c
28
T
£15F
S
=
k] 2
c + njw-ward
£ 1t == njw-kmeans
8 -@ - njw-anchor
g -+ meut-ward
mcut-kmeans
-4 - mcut-anchor
=b+ njw-njw-ward
0.5r =< njw-njw-kmeans
-+ . njw-mcut-ward
-+ njw-mcut-kmeans
mcut-mcut-ward
-% - mcut-mcut-kmeans
P I I . . I I
0791 1.26158 2 2.51 3.16 3.98 5.01

Noise Level (n)

(d) VI for Spectral Methods

0.7 — T T T T T T T
0.6 1
0.5- 1
8
50.4t 4
j=2]
£
I
S0 f
O
0.21 ’V Lo -6 - sm-ncut
' o =» kvwl-ncut
K PPt -@ - kvv2-ncut
1 o -+ sm-cond
0.1r K o kwi-cond ||
» o " -¢ - kw2-cond
oo o” -> - sm-gap
o—e-7" . . I . . .
0.791 1.261.58 2 251 3.16 3.98 5.01
Noise Level (n)
.
(b) CE for Recursive Methods
Block Stochastic
35 T T T T T T T
3k 1
2.5r R
<
2
g
5 2 ]
=
k]
S1sf ]
8
3
>
1ir >,’ e - sm-ncut
. " == kvwil-ncut
K s -& - kvv2-ncut
. . -+ sm-cond
0.5 ! ,'o kvvl-cond
,)‘ e’ -4 kvw2-cond
[ -> - sm-gap
¢ . . . . . .
0.791 1.261.58 2 251 3.16 3.98 5.01

Noise Level (n)

(e) VI for Recursive Methods

Block Stochastic

0.7

0.6-

o
2l
T

Clustering Error

0.2r

0.1r

o
~
T

o
w
T

_-e-a
e, o'o BRI TTe--m-mmmoo b
h-4
-@ - ward-linkage
-» sm-ncut
-= - mcut-kmeans
-+ njw—mcut-ward
njw-mcut-kmeans
P LL i ‘ ‘ ‘ ‘
0.791 1.261.5 2 251 3.16 3.98 5.01
Noise Level (n)
.
(c) CE for Best Five

Block Stochastic

35

N
&l

Variation of Information
N

1.5¢ 4
ir 4
-e - ward-linkage
-» sm-ncut
0.5 -& - meut-kmeans 4
v’ -+ njw-mcut-ward
AT njw-mcut-kmeans
¥ I I . . . .
0791 1.26158 2 251 3.16 3.98 5.01

Noise Level (n)

(f) VI for Best Five

Figure 2: Block Stochastic Dataset. The x-axis is the log;o(n) where 7 is the noise added.



0.5

0.3

Clustering Error

0.251

0.2

digit1000
T

- njw-ward

== njw-kmeans

-®& - njw-anchor

-+ meut-ward
meut-kmeans

+ meut-anchor

+ njw-njw-ward

njw-njw-kmeans

-+ njw-mecut-ward

-¥ - njw-mcut-kmeans

mcut-meut-ward
=% - mcut-mcut-kmeans

0.15

€1

19

10
Number of Clusters (K)

11 12

(a) CE for Spectral Methods

digit1000

1.8

= P
o ~

Variation of Information
-

=
w

12

-6 - njw-ward

=» njw-kmeans

-® - njw-anchor

-+ mcut-ward
mcut-kmeans

-4 - mcut-anchor

=» - njw-njw-ward

=< njw-njw-kmeans

- - njw-mcut-ward

4| =% - njw-mcut-kmeans

. mcut-meut-ward

+ meut-meut-kmeans

1.1

10
Number of Clusters (K)

11 12

(d) VI for Spectral Methods

0.44y

0.42

0.4

Clustering Error
o
w
&

0.34

digit1000
T

- N =& sm-ncut
- \ == kvvl-ncut
N -o kvv2-ncut
. -+ sm-cond
\ kvvl-cond
kvv2-cond | {
sm-gap

10
Number of Clusters (K)

(b) CE for Recursive Methods

digit1000
17 T T T
JPiac -6 sm-ncut
1.65 PPt AN =» kvwil-ncut |
JPtae N -& - kvv2-ncut
3 . -+ sm-cond
1.6 A kvvl-cond |
N -4 kvw2-cond
. -»> sm-gap

< 155 AR

k=] N

s

E

S

E

k]

c

L

g

8

>

1.2
8

11 12
Number of Clusters (K)

(e) VI for Recursive Methods

Figure 3: Handwritten digits (digit1000)

Clustering Error

Variation of Information

digit1000
0.5 T T !
-@ - ward-linkage
=* - sm-ncut
. -= - sm-cond
0.45¢ == =-o_____ o -+ njw-kmeans
njw-anchor
0.41 e ee- L
SR

. . .
0'158 10 11
Number of Clusters (K)
(¢) CE for Best Five
digit1000
2.8 T T T
-@ - ward-linkage
> ==+ sm-ncut
26F Tt meeaol ° kvv2-ncut
- =+ - njw-anchor
Seo kvvl-ncut
2.4F Teel -
O mmmmmmmmea o P
2.2r
2k
1.8
1.6

10
Number of Clusters (K)

(f) VI for Best Five




4!

Clustering Error

Variation of Information

digitFive1000
T

0.45 T T
-@ - njw-ward
== njw-kmeans
0.4% -& - njw-anchor ]
AN -+ meut-ward
3 mcut-kmeans
0351 % -4 mcut-anchor q
Ay =» - njw-njw-ward
A -4 njw-njw—kmeans
0.3r \ -+ njw-meut-ward 1
Y -% - njw-mcut-kmeans
Y meut-mcut-ward
0.251 N =% - mcut-mcut-kmeans ]
S
0.2f *, g
s
Y
s
0.15f " q
3
Y
5,
0.1 N J
S
s,
s,
\,
0.05[ AN
\
\,
0 . *- eaiatinttaiet, Sttt 4
3 5 7
Number of Clusters (K)
(a) CE for Spectral Methods
digitFive1000
14 T T

-6 - njw-ward

== njw-kmeans

-@ - njw-anchor

-+ mecut-ward
mcut-kmeans

=¢ - mcut-anchor

=b - njw-njw-ward

=< njw-njw-kmeans

=+ njw-mcut-ward

~%  njw-mcut-kmeans
mcut-mcut-ward

-#% - mcut-meut-kmeans

5
Number of Clusters (K)

(d) VI for Spectral Methods

Figure 4: Handwritten digits : Five Digits (0,2,4,6,7) (digitFive1000

Clustering Error

Variation of Information

digitFive1000
0.45 T T T
-6 sm-ncut
== kvwil-ncut | |
- - kvw2-ncut
Sy . -+ sm-cond
Dy N kvvl-cond
0.35- ‘\\\\ N -6 - kw2-cond | |
N N -b - sm-gap
N
0.3r AN
0.251
0.2
0.151
0.1r
0.05-
0
3

5
Number of Clusters (K)

(b) CE for Recursive Methods

7

digitFive1000
1.4 T
-& - sm-ncut
==+ kvvl-ncut
12F -® - kw2-ncut
-+ - sm-cond
kwvl-cond
-4 - kvww2-cond
] e » -P - sm-gap 4
0 . . I
3 4

5
Number of Clusters (K)

(e) VI for Recursive Methods

Clustering Error

Variation of Information

0.45

0.4

0.3

0.25

0.2

0.15

0.1

0.05

digitFive1000
T

-@ - ward-linkage

=®* njw-mcut-kmeans
-& - kvv2—-cond

-+ meut-mcut-ward

~ meut-mcut-kmeans

15

5
Number of Clusters (K)

(¢) CE for Best Five

digitFive1000
T

T
ward-linkage

+ kwl-ncut
njw-mcut-kmeans
mcut-meut-ward
mcut-mcut-kmeans

5
Number of Clusters (K)

(f) VI for Best Five




Clustering Error

qT

Variation of Information

cellcycle
T

0.551

0.5F

-e

-4

+ njw-ward

njw-kmeans

- njw-anchor

meut-ward
meut-kmeans

+ meut-anchor
* njw-njw-ward

+ njw-meut-ward

njw-mcut-kmeans
meut-meut-ward

-% - mcut-mcut-kmeans
I S

0.3

5
Number of Clusters (K)

(a) CE for Spectral Methods

cellcycle

- njw-ward
« njw-kmeans
* njw-anchor

meut-ward
meut-kmeans

* meut-anchor

* njw-njw-ward

- njw-njw-kmeans
* njw-mcut-ward

njw-mcut-kmeans
meut-meut-ward

+ meut-meut-kmeans

5
Number of Clusters (K)

(d) VI for Spectral Methods

Figure 5:

Clustering Error

Variation of Information

cellcycle
T

0.6

o
o
3]

I
3l

I
IS
a

-6 sm-ncut

== kvwvl-ncut

-& - kvw2-ncut |7

-+ sm-cond

N kvvl-cond

N =4 - kw2-cond
. -» - sm-gap

5
Number of Clusters (K)

(b) CE for Recursive Methods

cellcycle
2.8 T T T
sm-ncut
+ kwwl-ncut
2.7 kvv2-ncut
sm-cond
kvvl-cond
2.6r - kvwv2-cond
sm-gap
251
2.4r
2.3F
b
2.2r
2.1F
¥
3
2 . . .
3 6 7

5
Number of Clusters (K)

(e) VI for Recursive Methods

Log normalized yeast cell cycle data (cellcycle)

0.65

0.6

0.55

0.5

Clustering Error

0.25,

cellcycle
T

-e - ward-linkage

=» = sm-ncut

-=- kvwl-ncut

-+ - njw—-mcut-kmeans
njw-njw-ward

—— Best Model

5
Number of Clusters (K)

(c) CE for Best Five

2.8r

Variation of Information
N N
kN =

N
N

cellcycle
T T 1

-e - ward-linkage

- == sm-ncut

-= - kvwl-ncut

-+ - kw2-ncut
njw-mcut-kmeans

—— Best Model

5
Number of Clusters (K)

(f) VI for Best Five



Clustering Error

91

Variation of Information

cellcycle-std

0.55 T

-@ - njw-ward

== njw-kmeans

-® - njw-anchor

-+ meut-ward

0.5F mcut-kmeans

-4 - mcut-anchor

njw-ward

jw—njw-kmeans

-+ njw-mcut-ward

-¥ + njw-mcut-kmeans
mcut-meut-ward

=% - mcut-mcut-kmeans

5
Number of Clusters (K)

(a) CE for Spectral Methods

32 T

cellcycle-std

-6 - njw-ward

== - njw-kmeans

-® - njw-anchor

-+ - meut-ward
meut-kmeans

-¢ - mcut-anchor

=b - njw-njw-ward

=< - njw—njw-kmeans

=+ njw-mcut-ward

-¥ © njw-mcut-kmeans

26k meut-meut-ward

-% - mcut-meut-kmeans

2.8

5
Number of Clusters (K)

(d) VI for Spectral Methods

Figure 6: Standardized yeast cell cycle data cellcycle-std

0.7 T T T
=& - sm-ncut
= kvvl-ncut
0.655 - kvv2-ncut |
AN -+ sm-cond
~. kvvl-cond
0.6- Ss. =4 kww2-cond | |
. -> - sm-gap
[ PSS — O P
0.551- 3

25

2.4]

Variation of Information
~ N
N w

N
o

Clustering Error
o
(%)
T
.

cellcycle-std

5
Number of Clusters (K)

(b) CE for Recursive Methods

cellcycle-std

- sm-ncut
==+ kvwwl-ncut
-= - kvv2-ncut
-+ sm-cond |+

kvv1-cond
=4 - kvv2-cond
-> - sm-gap

1,:;3

5
Number of Clusters (K)

(e) VI for Recursive Methods

Clustering Error

Variation of Information

0.44

cellcycle-std

o

w

=3
T

o

w

X
T

o

w

N
T

o
w
T

0.28

-e - ward-linkage
== - mcut-anchor
-® - njw-njw-ward
-+ - mcut-kmeans
kvv2-ncut
— Best Model

5
Number of Clusters (K)

(¢) CE for Best Five

cellcycle-std
T

2.7,

g
=)
T

N
3]
T

N
a

Ind
w

d
N

N
[

1
-e - ward-linkage
- » - mcut-kmeans
=& - kvvl-ncut
-+ - sm-cond
kvvl-cond

Best Model

5
Number of Clusters (K)

(f) VI for Best Five



8.2 Handwritten Digits

This is the first real dataset the we tested the algorithm on. On the complete dataset digit1000 (figure 3)
the multiway spectral methods perform slightly better than the recursive spectral. However the performance
difference is not that significant (and in case of the VI measure almost zero) to make any conclusive statement.
The linkage algorithms performed a lot worse. Within the multiway spectral algorithms, mcut_mcut_ward
seems to be the clear winner.

The results on the digitFive1000 dataset are much more interesting. The performance is near perfect
(at K = 5) and hence the comparison could be done in light of a dataset with well established structure.
If we take a look at figure 4 (a) then is is easy to see that all the multiway spectral algorithm give nearly
identical results from K = 3 to 5. This is a strong empirical justification of the similarity of the NJW and
Multicut which was theoretically proved above. Also in this particular the clusters are obviously well formed
as the result in this sections are independent of the grouping algorithm that is used in the third stage.

This is also one dataset in which the multiway spectral methods seem to dominate over the recursive
methods. The linkage methods are as expected far behind. One surprising thing observed is that the Ncut
methods are lagging behind in the performance as compared to those based on conductance.

8.3 Gene Expression Data

This dataset was more interesting of the two real datasets we used. There are a variety of reasons. First of
all, since we had results from the model based algorithms for this dataset (from [13]) there was something
to compare the spectral algorithms with rather than just amongst themselves. Secondly this contained the
same dataset with different data transformation applied to them (See section 4.3), we could see how much
the clustering algorithms are dependent on preprocessing.

For the cellcycle dataset the best of the spectral algorithms perform slightly better than the model
based algorithms. This is encouraging as this shows that spectral methods are competitive even on real
dataset and not just the perfect case. The recursive algorithm show similar performance as the multiway
algorithms except that Ncut based algorithms are a little better and the conductance based a little worse.
While the ordering within the recursive algorithms is expected it is not clear why some of them are better
than the multiway algorithms. It is possible that in presence of noise depending on the later eigenvectors is
not always the best thing to do and it is better to do the process recursively which ensures that atleast the
first few partitions are correct.

However what is even more surprising is the performance of cluster-ward-linkage. This simple linkage
algorithm gives nearly the best performance on both measures!. We think that in case of such high error
rates as we are observing here it is really anybody’s game unless there is a dominant structure known to be
in the data which corresponds to the clustering algorithm.

In comparison the situation for cellcycle std is completely reversed! The model based algorithm
performs the best. The reason for this is that this data transformation is known to fit better to gaussian
model and hence the better performance. The performance of best spectral methods remains the same,
though the multiway methods perform better now than recursive ones. (with conductance based methods
now just slightly worse and even better at K = 5.).

8.4 Future work

In this paper we did not address the problem of how to go about choosing the number of clusters. We intend
to explore methods which could find the number of clusters based on the data.

There also are two other algorithms that we did not implement for the lack of time.. The first one is
another variant of the SM algorithm which theoretically should perform very well on block stochastic matrix.
We did not use it because we think it might be too sensitive to noise. The second is a non-spectral method
based on single linkage and runt analysis which we expect to be a lot more robust to noise. We wish to
explore how using this algorithm as the grouping algorithm after spectral mapping affects the performance
of various methods.
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9 Conclusion

The goal of the present paper was to analyze comparatively the features of a number of published spectral
clustering algorithms. Rather than establishing which of the published algorithms is better, we aimed at
evaluating what features make a spectral clustering more valuable.

Because for clustering a data set the “goodness” is in the eye of the beholder, one should look at clustering
algorithms not only as competing with each other but also as complementing each other’s strengths and
weaknesses. Hence, a second goal of our research, was to see how different the various algorithms are in their
approach.

The answer to the second question is largely negative. The theory predicts that the perfect S for all
three algorithms is the same, a result that is strongly supported by the experiments. All algorithms work
very well in the cases when S is almost perfect and there is not clear winner in case it is not. We did find the
multiway spectral clustering algorithm to be slightly better performing especially when there is structure to
be easily found in the data. For the recursive methods we recommend using the Ncut measure over others
though other than that there is no clear winner. As compared to other method we showed that spectral
methods give competitive performance to the existing methods and are definitely worth further exploration.
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Appendix

Proof of Proposition 1

A matriz A, xr with orthonormal columns and atmost k unique rows would have exactly k unique orthogonal
TOWS.

Proof: First of since A has rank k it has to have k independent rows, which means that it has ezactly
k unique rows.

Now, Rearrange the rows so that the identical rows are next to each other. (This does not affect the
result so we assume that A has this property). So now A can written as A = C),x;Brxr where B is the
matrix with the & unique rows and C;; = 1 if the i'" row of A is same as the j" row of B. We just need to
prove that B has orthogonal rows.

Since the columns of A are orthonormal, AT A = I},,. This implies BTCTCB = I, Now it is easy to
see that CTC is a diagonal matrix (say D). Define Z = D= B. This gives us Z7Z = I which means that Z
is orthonormal with orthogonal rows. Which proves that B has orthogonal rows. (Premultiplying a matrix
with a diagonal matrix just scales its rows). QED.

Consider the algorithms NJW and Multicut. They use the top K eigen vectors which are orthonormal.
So if these eigenvectors are piecewise constant w.r.t to a clustering A then they have atmost K unique rows
and hence would need have exactly K unique rows which would make the S perfect. So all we need is for
the eigenvectors to be PC w.r.t A. Also note that these rows would be orthogonal.

Proof of Theorem 2 (reverse direction)

Whenever the S is perfect for Multicut it is perfect for NJW and vice versa.
Proof: Let S be perfect for NJW w.r.t. A for the first K eigen vectors. We would prove the S is perfect
for Multicut as well. (We would continue the notation introduced in section 2.)
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Let P be the corresponding stochastic matrix for S. And let P be block diagonal with { blocks (I would
have the trivial value 1 when P is not BD). There are two cases possible. First case is when [ > K. This a
block diagonal S (with more than K blocks) and is trivially perfect for Multicut .

The second case is when | < K. For P with [ blocks ones can always rotate the first [ eigen vectors
such that they are the indicator functions for the block. i.e. V;; = ¢; > 0 iff point ¢ belongs to block j and
zero otherwise. So, Yj; # 0 iff ¢ belongs to block j. (fori=1...n,j = 1...1). This means two (K-dim)
points in different blocks would have to differ in atleast one dimension. So, if p,q € Cs (in A) then they
have to be in the same block, say j. Since S is perfect w.r.t. A for NJW this means that rows of Y are
equal w.r.t to A. Now consider arbitrary p,q € Cs where s is arbitrarily chosen from 1,2,... K. By the
assumption, y, = yp, = ¥s(Let). This implies z, = |zp|y, = |2p|¥s and z, = |z;|y; = |r4|¥s. In particular
the j dimension of the z, and z, (which are also in j'* column of V') are proportional to |z;| and |z;|. i.e.
Vpj = |7p|94 and Vy; = |z,]72. But we know that V,; = V,; which means that |z,| = |z,| and hence z, = z,.
Since p, q, s were chosen arbitarily this proves that S is perfect for Multicut .
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