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Abstract

We present a probabilistic approach to learning object rep-
resentations based on the “content and style” bilinear gen-
erative model of Tenenbaum and Freeman. In contrast to
their earlier SVD-based approach, our approach models
images using particle filters. We maintain separate particle
filters to represent the content and style spaces, allowing us
to define arbitrary weighting functions over the particles to
help estimate the content/style densities. We combine this
approach with a new EM-based method for learning basis
vectors that describe content-style mixing. Using a particle-
based representation permits good reconstruction despite
reduced dimensionality, and increases storage capacity and
computational efficiency. We describe how learning the dis-
tributions using particle filters allows us to efficiently com-
pute a probabilistic “novelty” term. Our example appli-
cation considers a dataset of faces under different lighting
conditions. The system classifies faces of people it has seen
before, and can identify previously unseen faces as new con-
tent. Using a probabilistic definition of novelty in conjunc-
tion with learning content-style separability provides a cru-
cial building block for designing real-world, real-time ob-
ject recognition systems.

1. Introduction

Probabilistic methods for recognizing objects and the con-
texts in which they appear have produced encouraging re-
sults in recent years [12, 6, 7]. The bilinear generative
model [13] provides one such framework for separating the
features of an object (its “content”) from the context in
which it is presented (its “style”). The model describes an
image as a multiplicative combination of anm-dimensional
content vectorx representative of a class of objects and an
n-dimensional style vectory representative of the condi-
tions under which the object is viewed (e.g. lighting or
pose). A set of basis vectorswij describe how content and

style representations mix to generate the imagez:

z = f(x,y) =
m∑

i=1

n∑
j=1

wijxiyj (1)

Previous results using the bilinear model [13] used a sum
squared error (SSE) criterion in developing learning and in-
ference procedures. However, no previous work attempts to
learn a probabilistic model of howx vectors are distributed
given a certain content class, or similarly howy vectors are
distributed given a certain style class. Modeling distribu-
tions rather than points is important if there is uncertainty in
our representations, e.g. if we receive noisy images or the
content in the image changes style over time. Many prob-
abilistic approaches (e.g. Gaussian mixture models) seek
to simplify probabilistic representations using analytically
tractable closed form distributions. However, not all distri-
butions of interest in the content and style spaces are nec-
essarily Gaussian. Especially in the case of dimensionality
reduction, where we want to maintain style-content seper-
ability using low-dimensional spaces, nonparametric meth-
ods may be needed to describe these distributions.

1.1. Particle filters
Particle filters (also called bootstrap filters [4] or Condensa-
tion [5]) have emerged in recent years as an efficient method
for approximating arbitrary probability densities using sam-
ples. The particle filter algorithm iteratively estimates re-
gions of high density by representing them as discrete sam-
ple points. Each iteration of the algorithm assigns a likeli-
hood to each particle that it matches the observed state of
the system given the prior estimate (such likelihoods are of-
ten calledweights). The weights are assigned by a weight-
ing function that defines how well the particle reflects ob-
served data. Next the algorithm randomly samples from the
weighted set of particles; the probability of a particle being
picked during sampling is proportional to its weight. After
picking a new set of particles, the algorithm applies an up-
date function to the new particles that reflects the state dy-
namics of the system being estimated. If no dynamics are
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known, for example, we might assume the update function
is described by an identity function with zero-mean Gaus-
sian noise. Our algorithm uses particle filters to represent
densities in the content and style spaces.

1.2. Advantages of our algorithm
Our probabilistic bilinear algorithm incorporates four im-
provements over the previous approach [13]:

1. Representational capacity: Unlike the original
“asymmetric” model proposed by Tenenbaum and
Freeman, our model is able to perform dimensionality
reduction in both the content and style spaces.

2. Novelty: The probabilistic framework lends itself to a
definition of novelty for identifying new content and
style classes.

3. Computational complexity: Complexity of the previ-
ous SVD-based approach is proportional tok2, where
k is the number of pixels in the image. Complexity
of our algorithm is proportional topk, wherep is a
fixed number of particles (generally proportional to the
dimensionality of the content/style spaces), so the al-
gorithm scales more favorably for large images. Im-
portantly,p is a free parameter, enabling the algorithm
to run more easily on systems with limited computa-
tional resources. Tuningp provides a tradeoff between
reconstruction accuracy and computational parsimony.

4. Dynamics and priors: Using particle filters allows us
to define arbitrary weighting functions for the parti-
cles. This in turn permits use of priors on content and
style and the addition of dynamics, if prior informa-
tion about the representations is known or the content
and/or style change over time. Particle filters also al-
low the algorithm to represent non-parametric content
and style densities.

2. Previous work
In the original model by Freeman and Tenenbaum, an it-
erative SVD-based procedure is used to estimate a content
and a style for each image in the training set according to a
least-squares error criterion. The original model is able to
reconstruct images provided as part of the training set. It is
also able to classify previously seen content and style using
a Gaussian mixture model in the image space.

However, the original model suffers from two limita-
tions: it lacks a framework for incorporating prior infor-
mation about the images, and it makes the related assump-
tion that content and style representations are distributed ac-
cording to a Gaussian distribution in their respective spaces.

Fig. 1(b) shows that dimensionality reduction (where con-
tent dimensionalitym < nc and style dimensionalityn <
ns for nc distinct content classes andns style classes) can
generate non-Gaussian distributions in the content space.
Dimensionality reduction is important for any real-world
system to efficiently learn a large number of content and
style classes.

3. Modeling content and style using
particle filters

To overcome the limitations of the original model, we as-
sume a probabilistic bilinear generative model (Fig. 1(a)).
The model assumes that two hidden variables (vectors)x
andy are respectively generated by some content classCi

and style classSj . The hidden variables combine to form an
imagez according to some linear mixture matrixW. Our
task is therefore to estimate the distributions forx andy,
and to reestimateW as we adjust those densities. Since we
wish to allow arbitrary content and style densities, we repre-
sent the densities using a nonparametric approach: particle
filters. This also circumvents the problem of incorporat-
ing prior information: we can include prior knowledge by
simply changing the weighting functions of the content and
style particle filters. The weighting functions can take on ar-
bitrary forms, not necessarily corresponding to any closed-
form distribution.

Fig. 1(b) plots reconstruction likelihood surfaces for im-
ages in an example content class. The first three columns
show surfaces for individual images from the same class;
because each image has a different style, each of the Gaus-
sian clouds representing that image’s content lies in a differ-
ent location. The final column shows the content represen-
tation for all images in the class taken together. This mul-
timodal shape is not easily captured by the linear learning
approaches used in the original model. While the “asym-
metric” model of Tenenbaum and Freeman, which learns a
separate linear model for each style, might seem applicable,
it is of limited utility in dimensionality reduction: the model
cannot simultaneously reduce the number of style and con-
tent dimensions used to represent an image set. The ability
to represent content and style densities using sample sets
(possibly without a reasonable parametric form) is key to
our system’s scalability.

Each image’s content and style are represented by a
cloud of discrete sample particles (Fig. 1(b)). By thecon-
tent sample setwe denote the union of all content particles
for the images that make up that class across all styles; we
denote thestyle sample setanalogously for style classes.
Our EM algorithm begins by weighting samples that repre-
sent hypotheses over the structures of the content and style
spaces. After this E step, we perform an M step that con-
sists of resampling the particles and reestimating the matrix
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W that describes how content and style mix.

3.1. E step
We assign each particle a weightw proportional to its like-
lihood of having generated the input imagez, based on the
particle’s ability to reconstruct the image. For the experi-
ments shown in Figs. 2 and 3, we also enforce the constraint
that particles from a particular content or style class con-
form to a Gaussian prior; i.e., for a given content particlex,
its likelihood drops as it moves away from the meanx̄ of all
particles in its cluster. In this case our model becomes simi-
lar to Tenenbaum and Freeman’s original model, except that
we can express how well a given particle fits the Gaussian
cluster (since we have a covariance matrix). For particlesx
in the content space andy in the style space, we define the
reconstruction imagêz as:

ẑ =
m∑

i=1

n∑
j=1

Wijxiyj (2)

For some reconstruction covariance matrixΣ and prior co-
varianceΓ, the weight ofx is:

wx ∝ α exp
(
−1

2
(z− ẑ)TΣ−1(z− ẑ)

)
+ (3)

(1− α) exp
(
−1

2
(x− x̄)TΓ−1(x− x̄)

)
Hereα is a factor that allows us to trade off the importance
of accurate reconstruction versus accuracy of the Gaussian
clustering. By making Gaussian clustering contribute more
significantly to the weights, we increase style-content sepa-
rability, but we may also make it more difficult for the sys-
tem to find accurate reconstructions. The reconstructions
shown in Fig. 1 uses a value ofα = 1; the experiments
shown in Figs. 2 and 3 use a value ofα = 0.05. Although
we use the reconstruction error with a Gaussian prior to
compute weights, we note that arbitrary weighting functions
(e.g. to represent prior information about the distributions
in the content and style spaces) are easily implemented us-
ing this technique by multiplying the likelihood with a prior
probability. As an example, we might specify that content
or style particles obey a sparseness constraint [1, 8] to learn
local rather than global features.

To weight a content particlex by Eqns. 2 and 3, we need
to use a style particley to perform image reconstruction.
Likewise, estimating the weight for a style particle requires
a content particle. Since computing likelihoods over all
possible pairs of content and style particles for an image
would be prohibitively expensive, we consider twocanoni-
cal particlesx̂, ŷ for each image, respectively denoting the
content and style particles with the highest likelihood val-
ues for the image. Each content particle on an iteration of

the algorithm is weighted using the reconstruction image
ẑ computed by mixing the content particle with the previ-
ous iteration’s canonical style particle according to the bi-
linear model, and each style particle’s weight is similarly
derived using the reconstruction derived from the previous
iteration’s canonical content particle.

3.2. M step
On the M step of our algorithm, we resample the particles.
Particles are drawn using sampling-importance resampling
(SIR) [11]. To ensure that the particles explore the space,
we add zero-mean Gaussian noise to each particle (with co-
variance matrixλI, λ = 0.025) after resampling. Addition-
ally, a fixed fraction of the particles (20% in the simulations
shown here) are distributed uniformly over the space, allow-
ing the system to find solutions far outside the original set
of particles. Our use of zero-mean noise is based on a lack
of priors over the dynamics of the content and style spaces.
Because the images in our data set represent static snap-
shots, the current implementation of our algorithm uses the
identity function to represent particle dynamics (with ad-
ditive Gaussian noise). The approach easily generalizes to
the case of time-varying image sequences by applying equa-
tions for describing content-style dynamics.

Each M step of the learning algorithm also reestimates
W to maximize the posterior probability of generating the
training images.W is determined by solving a system of
linear equations in̂x, ŷ. We begin by definingωk as the
vector version of the matrixWk that describes content-style
mixing for thekth pixel, i.e.ωk is anmn× 1 vector rather
than anm× n matrix. We refer to theith element inωk as
ωik. We further define the vectorb as themn × 1 vector
version of the outer product matrix̂xŷT. Maximizing the
log likelihoodQ of the data given the bilinear model gives
the equation:

∂Q

∂ωk
= − 1

C

l∑
i=1

(
zi
k − biTωk

)
bi = 0 (4)

The summation gives us a vectorv of mn elements, corre-
sponding to the left-hand side of the system of linear equa-
tions. Rewriting the sum and expanding the dot product on
the right-hand side, we obtain the form:

v = ω1k · b1
1 · b1 + ω2k · b1

2 · b1 . . . (5)

ω1k · bl
1 · bl + ω2k · bl

1 · bl . . .

This system is solvable given that the system is not under-
constrained (i.e. if enough training images are available).

4. Novelty detection
We definenoveltyof an imagez with respect to a set of
disjoint learned content classes labeledC1 . . . Ci, given that
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Figure 1:Probabilistic bilinear models based on particle filters.(a) Graphical model for our probabilistic framework. DistributionsC andS generate
content and style vectorsx andy, which in turn generate imagez. (b) Reduced dimensionalities in the content and style spaces produce non-Gaussian
likelihood surfaces. A particle filter (lower row) is able to capture the non-parametric shapes of the content likelihood surfaces shown here (upper row).
The first 3 columns show likelihood surfaces in the content space for 3 individual images composing a single content class. The final column shows the
likelihood surface for the entire class. (c) Image reconstructions under Freeman and Tenenbaum’s original asymmetric model and our model. First row:
original images; second row: images reconstructed by the asymmetric model; third row: images reconstructed by our particle filter algorithm (after 50
iterations). Note our model’s lower mean squared error on image reconstruction.

the image has styleS, as:

pnovel(z|S) =
nc∏
i=1

(
1− P (Ci|z, S)

)
(6)

That is, novelty is the probability that the image was not
generated using styleS by any of the classesC1 . . . Ci.
Note this definition can also be extended to cover novelty
with respect to a style, a class, or some combination of
styles and classes.

Our sample-based representation for content and style
presents a problem when calculating novelty. Ideally, given
the maximum likelihood particlesx andy that represent a
test image, we could determine the probability that the con-
tent (or style) sample for the test image was generated by
each content (style) class provided during training. Unfor-
tunately, with probability 1, no two samples are identical

between the particles from the test image’s sample set and
the particles from each training class’ sample set.

Density trees [9, 2] provide a convenient mechanism
for turning a sample-based representation into a continuous
representation over a space. Density trees are essentially
binary search trees that partition a space. Each leaf node
i is annotated with a density valuedi describing theden-
sity (summed sample weightswmathbfx) of the samplesx
contained within the leaf:

di =
∑

x in i wx

|V |
(7)

where|V | denotes the volume of leaf nodei. We normal-
ize over the density values in the leaf nodes to produce a
probability measure. Given that a sample is drawn from the
sample set corresponding to a particular density tree, the
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probability of the sample being generated by a particular
leaf node in the tree is thus proportional to the density at
that leaf. We define a density tree for each content sam-
ple set and style sample set, giving us a continuous novelty
measure over the content and style spaces. Fig. 3(a) shows
an example density tree, plotted with the underlying sam-
ples from which it is composed. The tree performs a binary
search on the space to find regions of high sample density,
stopping recursion when a lower limit of square root of the
number of samples is reached [14] or when the recursion
depth exceeds 10. We compute novelty of an image by fit-
ting a group of samples to the image, then determining the
probability that the sample set was not generated by any of
the trees representing learned content classes. Each sam-
ple in the sample set has a probability that it is novel with
respect to all the learned content trees. The joint distribu-
tion p(x0,x1, . . .xn) over all then samples in the set repre-
sents the probability that the entire sample set is novel. We
approximate the joint density by assuming each particle is
independent of the others in the set. Thus we add the log
likelihoods over all the particles to determine the probabil-
ity that the whole sample set lies outside the learned content
classes encoded by the trees.

5. Results
We have compared our algorithm to the original model of
Tenenbaum and Freeman [13] where appropriate. Fig. 1(c)
shows the relative performances of our model and the orig-
inal asymmetric model on a dataset of hands performing
ASL finger spelling gestures (27× 37 greyscale images,
with 3 content classes and 3 style classes). Hereα = 1.
Our algorithm produces lower sum-squared errors on the
training set than the original SVD-based approach, and the
resulting images appear qualitatively closer to the training
set. Face data shown in Figs. 2 and 3 come from the Harvard
face database1.

5.1. Dimensionality reduction
Reducing the number of dimensions used to represent con-
tent and style is critical to implementing bilinear models on
realistic input data. Storage capacity required for any given
image increases linearly in the number of dimensions, and
for particle filters in particular the time required to converge
will tend to increase exponentially in the number of dimen-
sions. Further, having too many unconstrained dimensions
(e.g. when a real-time object recognition system is initial-
ized and hasn’t seen very many training images) results in
singular or near-singular matrices when we recompute the
basis vectorsW on the M step of our algorithm.

Dimensionality reduction in the original asymmetric
model is equivalent to maintaining several linear models

1http://cvc.yale.edu/people/faculty/belhumeur.html

(one for each style), and performing PCA for each model to
learn global features for each content class [3, 10, 15]. The
particle filter appears highly robust to reduced dimension-
ality. Fig. 2(a) shows some sample images from our train-
ing set of 450 images (10 different content classes under 45
different styles, resolution24× 21). Fig. 2(b) shows recon-
struction quality for the same images with dimensionalities
m = 8, n = 20 (reduced fromm = 10, n = 45), while
Fig. 2(c) shows reconstruction of the same images with re-
duced dimensionalitiesm = 8, n = 4. Note the similar
quality of reconstruction despite the difference in dimen-
sionalities. Fig. 2(d) plots a graph that shows how reduced
dimensionality affects reconstruction accuracy. Holding
content dimensionality fixed atm = 8, the graph shows
how reconstruction improves with increasing style dimen-
sionalityn. Pastn = 4, increased dimensionality does not
significantly lower the MSE of the reconstructions. Points
on the graph represent the mean MSE from 3 different runs
of our algorithm, each with a different initial random seed.
Error bars represent standard deviation.

5.2. Novelty detection and classification
The training algorithms developed in the original bilinear
model, and the extensions proposed here, assume that all
training images are provided with content and style labels.
Novelty detection is critical for an unsupervised system to
learn to differentiate categories of objects and contexts of
presentation when such labels are not available. We tested
our system using a set of 6 content classes seen during train-
ing and 2 novel content classes, with the goal of identi-
fying the test images as displaying novel content. A sim-
ple threshold classifier is able to differentiate between the 6
faces that were part of the training set and the 2 novel faces
not in the training set. Fig. 3(c) demonstrates the ability of
our system to learn novelty. The algorithm marks each face
with a novelty value calculated using a density tree accord-
ing to Eqn. 6. Here we provide the algorithm with a style
label S to assist detection of novel content. Starting from
a uniform distribution, the content particles (shown in red)
coding for the non-novel image collapse into a Gaussian
cloud over approximately the same region as the particles
for that content that were learned during training (shown in
blue). For an image with novel content, the red particles
converge to a spot outside any of the sample sets learned
during training. This causes the algorithm to assign the im-
age’s content a high novelty value.

The algorithm is also able to recognize content classes it
has seen before. Unlike the method proposed by Tenen-
baum and Freeman [13], which reconstructs images and
then fits a mixture model to the results, our EM algorithm
classifies images within the content and style spaces them-
selves. We examine the density tree values for the content
(or style) samples after the algorithm has converged. If the
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Figure 2: Particle filters allow substantial dimensionality reduction. (a) A subset of our training set of 450 images (10 contents, 45 styles). (b)
Reconstructions when content dimensionality is reduced fromm = 10 to m = 8 and style dimensionality is reduced fromn = 45 to n = 20. (c)
Reconstructions whenm = 8 andn = 4. (d) MSE decreases as we increase the style dimensionality. The plot shows mean MSE over 3 different initial
random conditions; errorbars indicate standard deviation. The EM algorithm runs for 100 iterations, ensuring convergence. Pastn = 4, increasing the style
dimensionality does not substantially increase reconstruction accuracy.

converged samples lie in regions of high density for one of
the trees (see Fig. 3(a)), they are likely to represent the con-
tent or style stored by that tree, and will therefore be marked
by the tree as having a high probability. The tree with the
highest joint densityp(x0,x1, . . .xn) over all then samples
in the set is the most likely tree for the converged sample
set of particles. Again, we make the simplifying assump-
tion that we can simply multiply the samples together to get
an estimate of the likelihood that the sample set belongs to
each content class. Thus, we add the log likelihoods as-
signed by a given tree over all the samples to obtain the log
likelihood for the entire sample set. The tree with the high-
est log likelihood determines the class to which the sample
set is assigned.

Over a set of 32 faces drawn from the training set, aver-
aged over 3 different initial random conditions, the system
is able to classify 82%± 3% of the content correctly by
checking values in the density tree. Over a set of 8 out-
of-sample faces drawn from contents the system has seen
before, but in novel styles, and averaged over 3 different ini-

tial random conditions, the system classifies correctly 71%
± 11% of the time. We do not provide the system with any
hints as to the content or style.

It is possible to train the system as a classifier when
the particles are completely unconstrained (i.e., whenα =
1). However, the resulting multimodal representation also
makes classification much more difficult since the algorithm
must now sample over a wider range of the style space to
find a good canonical style particlêy. Sample-based classi-
fication without a Gaussian prior does not currently perform
robustly: after training on a small subset of 12 faces, the
algorithm is able to classify 6 of them (again without pro-
viding any prior information about the content or style being
shown). We are continuing to investigate improved methods
for performing classification when content and style repre-
sentations are multimodal.
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6. Summary and conclusions

We have presented a new method for learning bilinear
appearance-based models of objects based on particle fil-
ters. The system robustly reconstructs training images de-
spite appreciable dimensionality reduction, outperforming
the original asymmetric model in many cases. The sys-
tem is computationally efficient, able to tune the number of
particles to adapt to available computing resources. Using
particle filters also provides a principled method for includ-
ing prior information or dynamics in the content and style
spaces. We have used our probabilistic model to define nov-
elty with respect to content and style classes. Novelty de-
tection provides a building block for future systems which
will need to determine when to form new representational
classes for objects.

Development of a novelty measure motivates the ability
to learn new content and style classes. However, the new
classes must not be learned at the expense of previously
formed class definitions. To perform relearning, we could
reconstruct a canonical image for each content-style com-
bination learned thus far by sampling from the appropriate
density trees and iterating the algorithm until it converges to
a good reconstruction. We would then combine the result-
ing images with images defining novel classes the system
may have acquired, and rerunning our EM algorithm. As-
suming that the algorithm learned a good representation for
the original training set, the relearned data should not dis-
turb the original set of canonical particles. Alternatively,
we could simply remember the canonical particles for each
image in the original training set (possibly requiring a large
amount of data storage). We are currently investigating how
parameterization of the system affects its ability to perform
stable relearning.

One future direction would be to extend our EM algo-
rithm to cover sparseness priors, allowing us to learn local
features rather than global ones. Another possible exten-
sion of our work would cover the case where dynamics in
the style space are important, e.g. if objects are moving
in a scene or if lighting conditions are changing relatively
quickly over time. Over the long term, we anticipate in-
corporating our algorithm into a larger vision system for
context-invariant appearance-based recognition of objects,
capable of identifying and representing new object types as
it encounters them.
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Figure 3: Using a probabilistic model allows novelty detection.(a) Example of a 2-D style sample set partitioned by a density tree. (b) Content
representations under a Gaussian prior. Each Gaussian represents a separate content class; ellipses denote principal eigenvectors of the covariance matrices.
Individual images (shown as different colored clouds of particles) can cluster into non-parametric shapes, but weights for the particles include a term to pull
images with similar content toward one another, maintaining style-content invariance. (c) Contents in the algorithm’s training set (top row) are marked as
non-novel, while contents that are previously unseen (bottom row) are marked as novel. Evaluation of each image starts with a uniformly distributed set
of particles, shown in red (first column). After running our EM algorithm for 5 iterations, the content particles (in red, top right) coding for the non-novel
image have collapsed into the same region of the content space as the particles that coded for that content class during training. This means the converged
content particles lie within regions of high density for this class’ density tree, leading to a low novelty scorepnovel(z|S). In contrast, the novel image’s
particles (in red, bottom right) converge to a Gaussian cloud outside of any other learned sample sets. Thus, the image’s content representation lies outside
the regions of high density for all learned density trees. This causes the algorithm to assign high novelty to the image.
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