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Abstract
Learning statistical models of nonlinear dynamical systems has long been an important

problem in machine learning. The problem becomes especially hard when the dynamical sys-
tem is composed of a mixture of nonlinear models, not just a single nonlinear model. To
address this general case of nonlinear time-series modeling, we propose a new hierarchical
architecture: the Trajectory Mixture Model (TMM). The TMM learns collections of differ-
ent nonlinear “trajectories” through state space. The model uses an expectation maximization
(EM) algorithm to train a collection of nonlinear function approximators based on Gaussian
radial basis function units. State densities are represented using samples estimated by particle
filtering and smoothing. A sample-based representation provides an effective means of repre-
senting non-parametric state densities that change arbitrarily over time. We use entropy-based
model selection to ensure that the individual function approximators, as well as the higher-
level mixture model, do not overfit the data. Our results suggest that TMMs can learn complex
nonlinear state space models directly from observations and may offer greater flexibility in
modeling time-series data than existing methods such as extended Kalman filters and particle
filters.

1 Introduction
Nonlinear dynamical systems are ubiquitous in nature. Such systems generate nonlinear “tra-
jectories” over time through a state space. For example, kinematics of human and robotic limb
movements, changing weather conditions, and the yearly acceptance rates at a conference can all
be described using trajectories in a state space defined by a set of relevant variables. Given an
initial location in state space, the states of such systems change over time according to some set of
nonlinear differential equations. A particularly important class of systems is one in which a high-
level model selects from one of several low-level models, which then generates a specific trajectory
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followed over time. A good example of such a system is speech, in which a high-level model may
select a particular word and a lower-level model may follow the trajectory corresponding to that
word. Such systems cannot be modeled using existing nonlinear state space techniques such as
extended Kalman filters (EKFs) or particle filters [8, 5].

In this paper, we propose the Trajectory Mixture Model (TMM) to address the problem of
learning dynamical systems composed of a mixture of nonlinear models. We introduce an EM
algorithm [1, 6] for model learning and selection. Our algorithm offers several advantages over
previous approaches:

1. Flexibility: The lowest level of the TMM consists of nonlinear function approximators that
allow arbitrary state trajectories to be learned. Apart from using a sum squared error (SSE)
loss function and being able to compute the entropy of the individual function approximators,
the rest of the model is agnostic to the type of approximators used. Following Ghahramani
and Roweis [4], we use radial basis function (RBF) networks as our function approximators.

2. Improved efficiency in high-dimensional state spaces: The method described in [4] did
not adapt the basis function centers and covariances but relied on gridding the space with
fixed hidden unit representations. In contrast, we combine an exact linear weight update
step with a conjugate gradient-based algorithm for adapting our hidden unit centers and
covariances in order to learn trajectories through high-dimensional state spaces.

3. Computational parsimony: The expressiveness and flexibility of the TMM necessitate
model selection to avoid overfitting. This is done using concepts drawn from Rissanen’s
work on the minimum description length (MDL) principle [14]. At the lower level of the
model, the algorithm adds Gaussian hidden units to each RBF network until the entropy of
adding another hidden unit outweighs the information gained about the target trajectory by
adding that new hidden unit. At the higher level, the algorithm adds new mixture compo-
nents until the information cost required to add another component outweighs the benefit in
accuracy derived from adding a new component.

2 The TMM Model

2.1 Nonlinear State Space Models
Throughout this paper, we write vectors as lower-case boldface letters, matrices as upper-case
boldface letters, and scalars in italics. The state and observation equations for nonlinear state
space models are given by:

x(t + 1) = f(x(t),u(t)) + v(t) (1)
z(t) = g(x(t)) + w(t) (2)

where x(t) is an m-dimensional state vector, z(t) is an n-dimensional observation vector, and
v(t) and w(t) are Gaussian-distributed white noise processes. The state dynamics and observation
processes are governed by (potentially) nonlinear functions f and g, and u is an optional control
input that may be a function of the current state (imposed by a higher-level control policy):

u(t) = h(x(t)) (3)
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Figure 1: Trajectory mixture model and inversion method: (a) Graphical model underlying the TMM. The higher
level node in the model (S) selects from one of the C different classes to determine the initial observation state. Each
function approximator (depicted here in red, green, and blue) is responsible for learning a different trajectory class. (b)
Using conjugate gradient (crosses) to invert RBF network outputs on nonlinear functions gives much more accurate
smoothing estimates than linearization (circles).

2.2 Graphical Model for the TMM
Fig. 1 illustrates the graphical model underlying the TMM. The TMM assumes the existence of
several independent nonstationary processes, or “trajectory classes,” S1, S2, . . . SC through the
state space. At the topmost level, a random variable S chooses one of these trajectory classes for
each time series observed by the model. Each class i ∈ 1 . . . C is learned by a separate function
approximator f i. Each of the different f i generates a different trajectory xi

2, . . .x
i
T , given an initial

state xi
1 and a noise process vi. Additionally, at each time step t, the model may receive some

input vector ui
t, which influences the state at the next time step. The results presented in this paper

assume that no control inputs are provided. We therefore learn dynamical systems consisting of a
mixture of nonlinear models, each given by:

x(t + 1) = f i(x(t)) + vi(t) (4)
z(t) = gi(x(t)) + wi(t) (5)

3 Model learning and selection
The TMM uses an EM algorithm to learn multimodal state dynamics for particle filters. This is a
two-level process. The higher level involves estimating an occupancy matrix specifying conditional
class probabilities that each trajectory class generated an observed sequence. The lower level
involves fitting an individual function approximator for each trajectory class.
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Figure 2: Learning nonlinear particle trajectories: (a) Plot of a 2D nonlinear trajectory in phase space. Before
training, state estimates “*” lie along the noisy observations denoted by “x.” Actual states are shown by bold circles,
and the state trajectory (dashed curve) proceeds counterclockwise as shown by the arrow. The function approximator’s
estimate of the trajectory is shown by the bold curve. Despite a piecewise linear appearance, function approximators
learn smooth functions. (b) After training a single function approximator on several noisy instances of circles, state
estimates converge to the true state. (c) Log likelihood for a single RBF network function approximator over several
iterations of EM. (d) Forward particle estimates for each state on EM iteration 5. Different symbols correspond to
each different actual state. (e) Corresponding backward (smoothing) particle estimates on EM iteration 5. (f) Particle
estimates derived from convolving sample sets shown in (d) and (e).

3.1 EM algorithm for the TMM
The lower level of the TMM consists of one or more Gaussian RBF networks, which compete
to encode the trajectory classes. The basic learning algorithm for each RBF network is shown in
Table 1. Our EM algorithm employs approximate E and M steps.

For the low-level RBF networks, the E step computes the conditional state density under that
model given an observation sequence. The E step uses a sample-based forward-backward algo-
rithm [13, 15]. The forward step (particle filtering) involves generating sample sets by sampling
from an initial distribution πf , then feeding the samples through the RBF network and adding
Gaussian noise. For each sample point x̂f (t − 1), this gives a corresponding predicted sample
xf (t). The resulting sample sets are weighted by the observations and resampled to generate the
forward state sample sets for each time step. To generate backward sample sets, the algorithm must
produce an estimate of the RBF input x̂t for each corresponding output sample x̂t+1 beginning with
an initial sample set with distribution πb. The traditional approach for finding inverses of nonlinear
functions inverts a first-order Taylor expansion about a given backward sample point x̂b(t + 1). To
obtain a more accurate estimate of x̂b(t), the TMM iteratively finds better solutions using conju-
gate gradient on the error surface ∂ε

∂x̂b(t)
, where ε = (f(x̂b(t))− x̂b(t + 1))T (f(x̂b(t))− x̂b(t + 1)).

The initial point for the gradient descent is given by xb(t + 1). The time-consuming nature of this
step is mitigated somewhat by the fact that it must only be done during learning; on-line inference
only requires the forward step (particle filtering).

These steps produce sample sets representing forward and backward state estimates. We use the
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Figure 3: Learning multiple nonlinear particle trajectories: The model learns to assign trajectory classes to
specific function approximators. (a),(d) Show inferred trajectories matched to their corresponding learned mixture
components. (b),(c) Show how mixture components fail to infer trajectories from classes matched to other components
during learning. See text for additional details.

method described by Thrun et al. [15] to convolve the forward and backward sample set estimates.
The method uses density trees to convert from discrete samples to continuous probability densities.
This convolution step generates the final set of samples representing the conditional state density
for each time step given an observation sequence for each lower level RBF model.

The M step uses conjugate gradient to move the RBF hidden unit centers and covariances. For
efficiency our implementation uses diagonal hidden unit covariance matrices. After each gradient
step, the algorithm applies an exact weight update step (see equation (13) for derivations). The
input-output training point pairs provided to the RBF are the most likely sample points computed
in the E step for time steps t and t + 1, with a weighting factor on the error surface given by the
class conditional probability (over RBF models) that this RBF model generated the input sequence.

3.2 Model selection
Our model uses the MDL principle of Rissanen [14], which states that the error obtained by a model
learning a function should be balanced against the length of the code required to represent the
model. For our RBF function approximators, we begin by providing each function approximator
some base number of hidden units k. We train the model, then assess its SSE performance on
the training data. We add a new Gaussian hidden unit Gk+1 to the RBF approximator for class
i ∈ 1, . . . , C if the SSE on the model trained with k + 1 hidden units plus the entropy H of the
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k + 1 unit is less than or equal to the SSE of the model trained with k hidden units:

Ti
∑

t=1

(

eiT
t ei

t

)

≥

Ti
∑

t=1

(

e′iTt e′it
)

+ H (Gk+1) (6)

H(Gk+1) =
1

2
[ln |Σk+1| · m · (1 + ln (2π))] + n · hw (7)

where |Σ| is the determinant of the m × m covariance matrix Σ and hw is the entropy per weight
connection. Again, the internal structure of our function approximators is irrelevant for the purpose
of model selection; only the SSE and entropy of the function approximators must be known.

Input: A set of input sequences Z
1, . . . ,ZR. Each sequence Z

a comprises an ordered set of observations {za
1
, za

2
, . . . , za

T }.
Output: A set of minimum-entropy RBF networks f i

best
(and optionally, gi

best
), i = 1, . . . , C.

for i = 1, . . . , C /* Initialize parameters */

Hi
prev ←∞; Hi

curr ←∞; ki ← 0; f i ← init RBF network;

E step:

for i = 1, . . . , C /* For each lower-level trajectory model: */

1. for r ∈ {1 . . . R} /* Loop over all input sequences */

1) x̂r
f
(0)← resample(πf ) /* Generate forward samples from prior distribution πf */

2) for t ∈ {1 . . . length(Zr)} /* Loop over all time steps in the rth sequence */

xr
f
(t)← f i(x̂r

f
(t − 1)) + vt /* Use RBF network to generate next sample set */

x̃r
f
(t)← weight(xr

f
(t), zr

t ) /* Weight new samples according to observation */

x̂r
f
(t)← resample(x̃r

f
(t)) /* Importance resampling for forward estimate */

3) x̂r
b
(length(Zr) + 1)← resample(πb) /* Generate initial backward sample set */

4) for t ∈ {length(Zr) . . . 1}

Use conjugate gradient to compute samples xr
b
(t) such that f i(xr

b
(t)) ≈ x̂r

b
(t + 1))

x̃r
b
(t)← weight(xr

b
(t), zr

t )) /* Weight backward samples according to observation */

x̂r
b
(t)← resample(x̃r

b
(t)) /* Importance resampling for backward estimate */

5) for t ∈ {1 . . . length(Zr)}
/* Convolve forward and backward sample sets using den-
sity trees to get final state distribution */

x̂r,i(t)← convolve samples(x̂r
f
(t), x̂r

b
(t))

M step: /* Update RBF parameters based on outputs of E step */

for i = 1, . . . , C /* For each lower-level trajectory model: */

1. for r ∈ {1 . . . R} /* Loop over all input sequences: */

1) Compute mixing proportion pr
i = P (i|Zr)

2) f i ← weighted conjugate gradient(pr
i , {x̂r,i(1), . . . , x̂r,i(T )})

2. f i
best
← f i

3. Hi
curr ← RBF network entropy(f i)

4. if Hi
curr ≤ Hi

prev /* If entropy of the model (plus error) decreases */

〈µf
k
, Σf

k
〉 ← init RBF unit(f, k) /* Add another RBF unit with mean µ

f
k

, covariance Σf
k

*/

k← k + 1

5. Hi
prev ← Hi

curr

Table 1: The TMM Algorithm
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Higher-level model selection is performed by selecting a mixture model with lowest entropy.
The entropy of the mixture model is computed by summing the entropy over all function approxi-
mators, plus the entropy of the occupancy matrix of class conditional probabilities. As with model
selection in the low-level function approximators, we continue adding a new function approxima-
tor to the mixture until the entropy of the new function approximator exceeds the reduction in sum
squared error resulting from addition of the approximator.

4 Results
Fig. 1(b) demonstrates how our conjugate gradient method for RBF inversion outperforms a sim-
ple linearization. The solid curve denotes a function in the 〈xt,xt+1〉 space learned by a single
function approximator. Crosses plotted along the curve depict smoothing estimates on the function
computed using conjugate gradient. Circles depict smoothing estimates for the same curve using
linearization, evaluated about the same points as the conjugate gradient inverse. Note the lower
SSE reconstruction for the conjugate gradient method.

The results shown in the current paper assume no external control inputs ut. We also assume
for simplicity that observations are related to states by a multiple of the identity matrix, although
it would be straightforward to learn a linear transformation mapping states into observations (or
another nonlinear function approximator if a nonlinear transformation is known a priori to be
likely). We trained the model on a handful of instances generated by a number of different linear
and nonlinear functions. Fig. 2 shows how our function approximators learn nonlinear trajectories
using EM. Fig. 2(a) shows a nonlinear trajectory in 2D phase space (dashed line), and the model’s
estimate of the trajectory before learning (solid line). Despite the piecewise linear appearance, the
model learns a smooth nonlinear function due to the interpolation properties of the RBF network.
Fig. 2(b) shows the estimated trajectory after training, (c) shows log likelihood increasing over
several EM training iterations, (d) shows filtering estimates for each state after 5 EM iterations, (e)
shows smoothing estimates for each state after 5 iterations, and (f) shows the sample set resulting
from the convolution of the sample sets in (d) and (e) using density trees.

Fig. 3 shows an example of the model learning multiple trajectory classes. Mixture component
1 selects for circular trajectories, while mixture component 2 selects linear trajectories. The figure
shows model performance after learning: (a) shows how the trajectory inferred by mixture com-
ponent 1 follows the true trajectory (dashed line), while in (b) the mixture component that learned
linear trajectories fails to infer the circular trajectory. Fig. 3(c,d) show similar results on a linear
trajectory instance for the two mixture components. The figures contain log likelihoods (LL) of
each mixture component generating the data.

5 Related Work
While several models have been suggested for learning nonlinear state space models, we are not
aware of methods aimed specifically at learning continuous state space models composed of mix-
tures of nonlinear functions. For example, the model presented in [7] assumes switching state
space dynamics but only learns a single nonlinear trajectory function. Systems such as the mixture
of factor analyzers [2] learn mixtures of linear functions while recent work by Ghahramani and
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Roweis uses extended Kalman smoothing and an EM algorithm to learn a single dynamical non-
linear function [4]. Hierarchical mixtures of experts (HMEs) [9] learn static nonlinear functions in
a supervised manner using hierarchical local linear approximations.

Although the TMM is similar in spirit to the switching state space model (SSM) proposed by
Ghahramani and Hinton [3], our model differs from the SSM in several ways. First, the TMM uses
nonlinear function approximators rather than linear approximations. The TMM uses particle filters
and does not assume a Gaussian state distribution. It also performs model selection to prevent
overfitting. Finally, unlike [3], the TMM assumes no switching between trajectories over a single
time course of data, i.e. the higher-level “switching” state stays fixed throughout all observations
of a given trajectory until a “goal” state is reached. The usefulness of such a model for natural
applications such as speech has already been mentioned.

The Monte Carlo HMM (MCHMM) [15] offers a mechanism for learning a single dynamic
nonlinear function using samples. It relies on sampling to approximate all distributions of inter-
est, including state transition functions. Particularly in high-dimensional spaces, over-reliance on
sampling can limit performance. The function approximators in our model do not suffer from the
potentially exponential blowup in complexity seen in purely sample-based approaches. Using a
sample-based representation for transition functions is equivalent to using a look-up table to com-
pute state transition probabilities, and therefore also lacks the interpolation properties inherent in
function approximator models. Although the MCHMM includes model selection (in the form of
shrinkage trees [11, 12]), the criterion used does not give an intuitive understanding of the tradeoff
between generalization and accuracy. Our model uses an information-theoretic model selection
criterion that more intuitively captures this tradeoff.

6 Conclusion
This paper proposes the Trajectory Mixture Model as a hierarchical framework for learning mix-
tures of nonlinear dynamical systems. To our knowledge, the proposed approach is the first to
allow mixtures of particle filters to be learned. The model includes entropy-based model selec-
tion to avoid overfitting. We also employ conjugate gradient to achieve a better smoothing result
than afforded by linearization. Although the model as currently stated uses particles to represent
state densities, it is relatively straightforward to extend it to other state estimation frameworks, e.g.
unscented Kalman filters [10].

We presented preliminary results illustrating the performance of the TMM in learning synthetic
mixtures of nonlinear dynamical systems. We are currently investigating the applications of the
TMM in speech processing, EEG-based brain-computer interfaces, and motor control in an active
vision stereo head.

Appendix A: RBF learning algorithm

Following Ghahramani and Roweis [4], we use radial basis function (RBF) networks to perform
nonlinear function approximation in the TMM. For greater efficiency, we also use a linear regres-
sion matrix D in our function approximation.

The RBF network model consists of an input layer, a hidden layer and an output layer. The
input layer at time t is given by the data point xt. The hidden layer is a set of k Gaussian basis
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functions, where the basis function a is parameterized by a mean ca and covariance matrix Sa. The
set of k means and covariance matrices in an RBF network are denoted {c} and {S} respectively.
The output layer is parameterized by a linear weight matrix W of dimension m × k, and a linear
regression matrix D. We denote column a of W as wa. The output of the network for data point
xt is denoted ot, and is a linear product of W with the output of the hidden layer, plus the linear
product of D with xt.

ha
t = exp(−(xt − ca)TSa(xt − ca)) (8)

ot =
k
∑

a=1

ha
t wa + Dxt (9)

= Wht + Dxt (10)
et = yt − ot (11)

E =

T
∑

t=1

eT
t et (12)

The weight matrix is set to minimize the sum squared error E with respect to W. The exact least
squares solution for the weight matrix is

W =





(

T
∑

t=1

λthth
T
t

)−1( T
∑

t=1

λthto
T
t

)





T

(13)

We minimize the sum squared error E with respect to {S} and {c} using conjugate gradient. The
conjugate gradient algorithm requires computing jacobians and hessians of E with respect to all of
the free parameters. To derive the conjugate gradient algorithm, we compute the quantities ∂E

∂ca and
∂2E

∂ca∂cb (first and second partial derivatives of the error with respect to the mean(s) of units a and
b), ∂E

∂Sa and ∂E
∂SaSb (first and second partial derivatives of the error with respect to the covariance(s)

of units a and b), and ∂2E
∂Sacb (second partial derivative of the error with respect to the covariance of

unit a and mean of unit b). Note that ∂2E
∂Sacb = ∂2E

∂cbSa .
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∂E

∂ca
=

∑

t

ha
t Sa(xt − ca)w

T
a et (14)

∂2E

∂ca∂cb
=











∑

t

(ha
t Sa(xt − ca)w

T
a )(hb

tSb(xt − cb)w
T
b )T

∑

t

(ha
t Sa(xt − ca)w

T
a )(hb

tSb(xt − cb)w
T
b )T

(15)

∂E

∂Sa
=

∑

t

ha
t (xt − ca)(xt − ca)

T (wT
a )et (16)

∂E

∂SaSb
=











∑

t

ha
t h

b
t(xt − ca)(xt − ca)

T (wT
a )(xt − cb)(xt − cb)

T (wT
b )

∑

t

ha
t h

b
t(xt − ca)(xt − ca)

T (wT
a )(xt − cb)(xt − cb)

T (wT
b )

(17)

∂E

∂Sacb
=











∑

t

ha
t h

b
t(xt − ca)(xt − ca)

T (wT
a )Sb(xt − cb)w

T
b

∑

t

ha
t h

b
t(xt − ca)(xt − ca)

T (wT
a )Sb(xt − cb)w

T
b

(18)

Appendix B: RBF inversion

To obtain estimates for the RBF input x̂t for each output sample x̂t+1, we use iterative conjugate
gradient steps to minimize eT

t et with respect to x̂t. The first and second derivatives are

∂

∂xt

(eT
t et) = −2

∑

a

ha
t S

a(xt − ca)wT
a et (19)

∂2

∂x2
t

(eT
t et) = ha

t

[

Sa(xt − ca)(Sa(xt − ca))T + SaSa(xt − ca)
]

wa
t et (20)

− 2ha
t Sa(xt − ca)wt

a

(
∑

ah
a
t S

a(xt − ca)wT
a et

)

(21)

Finding the inverse of an RBF requires computing one possible solution from a potentially infinite
set of solutions. Sometimes, a possible inversion isn’t found using conjugate gradient. In this case,
we don’t include the backward estimate we obtain among the set of backward estimates.

Appendix C: High Level Mixture Model

The higher level EM algorithm in its most general form maximizes the likelihood Q of the data
given the model parameters Θ and the latent data H . This is equivalent to maximizing the log
likelihood

Q = P (D|H, Θ) (22)

=

T
∏

t=1

P (xt|H, Θ)P (zt|H, Θ) (23)

log Q =
T
∑

t=1

P (xt|H,Θ) (24)
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