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Abstract— There are two principal problems in collecting data in large
and sparse ad-hoc sensor networks: 1) high energy expenditure in multi-
hop routing between widely separated nodes; and 2) routing hotspots near
the destination of the data that shortens the effective lifetime of the net-
work.

In this paper, we present and analyze an alternative architecture which
addresses above problems. Our approach exploits mobile nodes present in
the sensor field as forwarding agents. As a mobile node moves in close prox-
imity to sensors, data is transferred to the mobile node for later depositing
at the destination of the data. Transmitting data over these much shorter
distances leads to substantial power savings at sensors. This is a natural
scenario for a wide variety of monitoring and dissemination applications
that span large geographic areas.

We investigate the advantages and disadvantages of our approach and
present an analytical model to understand the key performance metrics
such as data transfer, latency to the destination, and power. Parameters for
our model include: sensor buffer size, data generation rate, radio charac-
teristics, and mobility patterns of mobile nodes. The modeling results pro-
vide insights and guidelines for the deployment of such systems. Through
simulation we verify that our approach can provide substantial savings in
energy as compared to traditional ad-hoc network approach.

|. INTRODUCTION

Continuing advances in device and radio technology have en-
abled the production of small and inexpensive wireless sensor
devices. These sensors will be embedded in the environment
on a large scale and networked together to enable a wide vari-
ety of applications [1, 2]. Examples include: monitoring physi-
cal environments such as tracking animal migrations in remote-
areas [3], weather conditions in national parks [4], habitat mon-
itoring on remote islands [5], city traffic monitoring, seismic
structure analysis, inventory tracking in warehouses, etc. For
some applications such as city traffic monitoring or habitat mon-
itoring, sensors are spread over a large geographic area resulting
in a sparse network. The issues faced in efficiently collecting
data in such large and sparse sensor networks are the focus of
this paper.

The objective of monitoring systems is to collect data from
sensors and deliver it to an access point to the infrastructure.
These systems are expected to run unattended for long periods
of time (on the order of months). The principal constraint is the
energy budget of the sensors which is limited due to their size
and needs to last as long as possible. In particular, the commu-
nication subsystem has been the primary energy consumption
source [6, 2] and therefore solutions for energy efficient com-
munication are of prime importance. In this paper, we present
a solution for energy efficient data collection in sparse wireless
sensor networks.

Current approaches involve forming an ad-hoc network
among the sensor nodes to send data. However, this faces the
following energy related issues. Firstly, in a sparse network,
the energy required for transmitting data over one hop is quite
large. This is because sensors may be far from each other and
the transmission power required increases as the fourth power

of distance. Secondly, in an ad-hoc network sensors have to
not only send their data, but also forward data for other sen-
sors. Thirdly, the network has routing hotspots near the access
points. Sensors that are near the access points have to forward
many more packets and drain their battery much more quickly.
Finally, the routing protocol overhead in a large-scale network
can be significant. This is true especially for protocols which try
to optimize energy and typically require global knowledge [7].
In summary, we believe that there are significant challenges in
using ad-hoc sensor networks for large-scale data collection in
sparse configurations. Similar issues were encountered in the
habitat monitoring project and an energy efficiency improve-
ment of over an order of magnitude is desired to achieve the
long terms of the project [5].

Our architecture addresses the above issues of per-hop en-
ergy, routing hotspots and routing overhead. The key idea is
to exploit mobile entities present in an application scenario. We
call these entities MULEs (Mobile Ubiquitous LAN Extensions)
because they “carry” data from sensor to access point. For ex-
ample, in a city traffic monitoring application vehicles can act
as MULEs; in a habitat monitoring scenario, the role can be
served by animals; in a national park monitoring scenario, peo-
ple can be MULEs. MULEs are assumed to be capable of short-
range wireless communication and can exchange data as they
pass by sensors and access points as a result of their motion.
Thus MULEs pick up data from sensors, buffer it and later on
drop off the data at an access-point. The resulting architecture
can be viewed as having three tiers: sensors, MULEs, and ac-
cess points. Of course, mobility can be applied to any combina-
tion of the three layers and they can be partially or completely
collapsed (e.g., MULEs that also serve as access-points to the
infrastructure).

In the MULE architecture sensors transmit data only over a
short range that requires less transmission power. Further, sen-
sors do not have to forward data for (as many) other sensors and
there is little or no routing protocol overhead as a result. There-
fore, substantial energy can be saved at the sensors. However,
there are couple of limitations as well. Firstly, a sensor has to
wait for a MULE to pass within range before it can transfer its
data. Therefore, the observed latency in our architecture can be
on the order of minutes or even hours. Nevertheless, for many
applications such high latency is acceptable. For example, this
is certainly the case for applications where data is collected for
scientific analysis over a long time period. Secondly, in some
sense the MULE architecture has transferred the burden of for-
warding from sensors to MULEs. We expect MULEs to have
much larger and more easily renewable energy resources than
sensors. Whether the MULE approach provides a cost-effective
solution or not is a difficult question to answer at this stage. We
do not claim that the MULE architecture is always the method



of choice, but rather that for certain applications it may be the
most effective option.

Although the MULE architecture is simple, significant issues
have to be addressed to understand the performance-cost trade-
offs. We present a simple analytical model based upon queueing
theory to understand the relationship between performance met-
rics and system parameters. Performance is characterized along
three dimensions: data transfer rate, latency, and energy require-
ments at the sensors. Our model incorporates system parameters
such as sensor data generation rate, buffer size, radio character-
istics such as range and capacity, MULE velocity, MULE mo-
bility model, etc.

The model allows us to answer questions such as how fre-
quently MULEs should arrive at a sensor, how do buffer re-
quirements at the sensors scale with MULE arrival frequency,
how do radio characteristics affect data transfer, for what range
of parameters is the queueing system stable etc.

We also use simulation to estimate the potential energy sav-
ings achieved with the MULE architecture as compared to form-
ing an ad-hoc network. Our results are promising and indicate
at least an order of magnitude energy savings (for communica-
tion). Energy savings increased were over two orders of mag-
nitude for sparser networks. The potential improvement in the
operational lifetime of the network was even more dramatic.

Another issue addressed is the efficient discovery of sen-
sors. In the basic model, sensors continuously listen to discover
nearby MULEs. We address this by lowering the sensor duty-
cycle. Lowering duty cycle negatively affects performance and,
based upon our analysis, we propose a novel discovery mech-
anism that permits significantly lower duty cycles while at the
same time has very little impact on performance.

The paper is structured as follows. We next describe related
work. Section Il describes the model of our sensor network.
We outline the limitations of existing approaches in section 1V.
The MULE architecture is discussed in Section V. Section VI
describes the analytical model and derives various results. We
evaluate our architecture in Section VIII. We discuss some en-
hancements in Section 1X and conclude in Section X.

Il. RELATED WORK

We classify the related work in two parts. First we discuss the
previous work that uses the concept of mobility for communica-
tion in ad-hoc networks. Then we briefly review existing work
on energy efficient routing in ad-hoc networks.

A. Mobility for communication

Exploiting mobility for communication in ad-hoc networks
has received much attention recently [8, 9, 10, 11, 12]. The work
focuses on scenarios in which there is no immediate end-to-end
path between two nodes that wish to communicate, usually be-
cause of limited radio range. If the nodes are mobile, end-to-end
connectivity may be achieved by buffering data at the nodes and
waiting to transfer until they are in range of access-points. The-
oretical capacity of such networks was considered in [8]. It was
shown that mobility can provide scalable throughput at the cost
of latency. Controlling mobile nodes to achieve connectivity
and efficiency has been discussed in [9, 12].

The general idea of our architecture is also mobility. The key
difference is that our application context is focused on sensor
networks unlike previous work where the focus was towards
mobile ad-hoc networks. The severe resource constrained na-
ture of sensors networks places different requirements on the
optimization objectives. For example, our work tries to max-
imize sensor network lifetime by reducing the communication
energy required at the sensors. This has not been discussed in
previous work. Our architecture explicitly introduces a layer of
mobile nodes for communication (MULES) as part of the infras-
tructure.

More specifically, in the context of sensor networks, the Ze-
braNet [3] project collects data from sensors on zebras in a na-
ture reserve by exploiting the natural motion of the animals.
Therefore, sensors are themselves mobile and there are no ex-
plicit MULE(s). Mobile access-points, in the form of over-
flying aircraft, have also been suggested. Our architecture also
targets fixed sensor networks and encompasses the ZebraNet
scenario. The Manatee project [13] is also exploring the idea of
using mobility. A weather monitoring application in a national
park is discussed in [4]. There are three distinctions with our
work. Firstly, we derive an analytical model for understanding
performance metrics. Secondly, we show the trade-offs between
our approach and traditional approaches using ad-hoc networks
in the context of data collection. Finally, energy efficient op-
eration of sensors, such as discovery, which is central to our
discussion has not been addressed in [4].

Another related project is the Infostation project which pro-
vides services such as email/file-transfer to a mobile user [14].
Infostations are installed throughout the city and act as very
high bandwidth data exchange points. A mobile user can fetch
the data required whenever they are in the vicinity of an Infos-
tation. Our domain of sensor networks presents different con-
straints and objectives, particularly as regards to power, as com-
pared to the Infostation project.

B. Energy Efficiency in Ad-hoc Networks

Energy efficient routing in ad-hoc networks has been ad-
dressed in [7, 15, 16, 17, 18, 19]. Inspite of the plethora of
work, extending these ideas efficiently to large scale sensor net-
works remains a challenge [20, 5, 21]. For ad-hoc networks
optimizing overall energy and maximizing network lifetime are
different goals and a solution for one does not transfer to the
other [7]. Optimizing for network life is much harder as it re-
quires use of multi-path routing to eliminate hotspots [16, 22,
23]. Our architecture on the other hand results in equal con-
sumption of energy at sensors because they are not responsible
for forwarding and therefore experience no hotspots.

Another class of techniques optimize energy by reducing the
radio listening time. For dense networks this is achieved by
making a subset of nodes go to sleep [17, 19]. For sparse net-
works, techniques based upon reducing the duty-cycle are pro-
posed [24]. We also reduce a sensor’s duty-cycle to minimize
the radio listening overhead.

I1l. MODEL AND METRICS

We now describe the class of sensor networks for which our
architecture is suitable. We also discuss performance metrics for



gauging the effectiveness of a data collection solution in such a
sensor network.

Model

Our architecture is designed for large and sparse wireless sen-
sor networks where mobile entities are present. Sparse networks
occur when there are relatively few sensors covering a large ge-
ographic area such as a city or forest. Sensors are assumed to be
small, resource (energy, memory, bandwidth, CPU) constrained
and battery operated. To achieve increased longevity of the net-
work it is crucial to efficiently utilize resources available at sen-
sors.

The purpose of a sensor network is to sense the environment
and transfer the sensed data to the infrastructure for further elab-
oration. Our architecture is targeted for applications in which
the data is sent to external storage through a small number of
access-points, which are servers with ample storage and Inter-
net connectivity. Access-points can communicate to each other
and therefore, in our model, it is sufficient that data reaches any
one access-point. Furthermore, the MULE architecture is appli-
cable only when real time delivery of data is not required. This
is true for many monitoring applications where data is collected
for scientific analysis over time.

Example Scenario: Traffic Monitoring

Sensors are scattered over various street intersections in a city
to collect a variety of data including: counting the number of
vehicles, vehicle speeds, traffic density, etc. The data is trans-
mitted to a central repository where it can be stored for future
use by traffic engineers to determine optimal timings of traf-
fic lights or the need for additional lanes. In this scenario, the
MULEs can be vehicles such as mail-vans, police cars, buses,
and/or taxis. These vehicles can be fitted with an appropriate
transceiver to discover and collect the data from the sensors as
they drive around. Later on, as they are in the vicinity of an
access-point the data is delivered to a central repository via the
internet.

Metrics

« Data Success Ratio (DSR): This measures the effectiveness
of data delivery. It is defined as the ratio of the total amount
of data transferred to the access-points to the total amount of
data generated. This metric has been also been used in [3, 25].
Ideally, DSR will be one. Data may be lost because of errors
in radio communication or failure of MULEs. In addition, the
sensor’s limited buffer capacity (for example, a UC Berkeley
MICA mote has only 500KB) may also cause data loss. If no
MULE comes for a long period of time the buffer may fill and,
eventually, overflow. Average sensor buffer occupancy is used
as an indicator of sensor buffer requirements.

o Latency: This is the average time taken by data to reach
access-points from the time of its generation. The latency re-
quirements are application dependent. For example, in a traffic
monitoring application latency could be many minutes or even
hours. Interestingly, latency will be lower in cases of higher
traffic corridors where there are more vehicles and the need for
more data at lower latency.

« Communication Energy: Modeling complete energy con-
sumption is a complex subject in itself; therefore, in this paper

we will focus on the energy required for communication. We as-
sume (as argued by others [2]) that by saving energy required for
communication, lifetime can be improved substantially. Within
this context the following metrics are evaluated [26]:

Average Usage: Average energy consumed per sensor in com-
municating data from sensors to access-points.

Hotspot Usage: Maximum energy consumed by any sensor.
This dictates the network life time because this determines the
time till one of the sensor runs out of energy.

1V. CURRENT APPROACHES

In this section, we discuss the limitations of current ap-
proaches for data gathering.

A. Ad-hoc Network

In ad hoc networking approaches, the sensor nodes form an
ad-hoc network to gather data [6, 27, 5]. It has the following
limitations:

1. Large Transmission Power: In a sparse ad-hoc network the
average distance between two neighbor sensors is large. The
power required to transmit packet increases dramatically with
distance (typically as the fourth power of distance [28]); there-
fore, a substantial amount of energy is consumed to send a
packet over a single hop. In addition, a packet typically tra-
verses multiple hops before reaching its destination, an unnec-
essary waste of communication energy.

2. Routing Hotspots: Sensors located near access-points for-
ward many more packets than others and consequently form
hotspots. This reduces the network lifetime substantially. We
verify and discuss this further in the evaluation of section VIlII-
C.

3. Routing Scalability: Current ad-hoc routing algorithms that
optimize energy consumption or network lifetime are based on
a global knowledge [7, 16, 19, 21]. Techniques based upon hi-
erarchy [23] or location information [29] have been proposed
to reduce the overhead by a limited extent but are also more
complex. We believe that the routing overhead; computation,
memory and energy; of current energy-aware routing protocols
for networks containing thousands of sensors is substantial and
a limiting factor in large-scale sensor deployments.

4. Extra Forwarding Nodes: If the sensor network is sparse
and the radio range is small, it is possible that the ad-hoc net-
work is not fully connected [30]. Extra forwarding nodes are
required to make the network dense enough to achieve connec-
tivity.

5. Radio Listening Overhead: In a basic ad-hoc network, sen-
sors have to continuously listen because they may have to for-
ward data for other sensors. Listening consumes substantial en-
ergy and reducing this overhead is important [19, 24, 31, 32].
One approach is to reduce sensors’ duty-cycle and listen only
when required. This is challenging because in ad-hoc networks
there is no centralized entity and decisions about when to listen
have to be taken in a distributed and cooperative fashion [32].

B. Direct Communication

In this approach, each sensor transmits data directly to one of
the few access-points. This leads to large energy consumption
as typically the nearest access-point is located far away from the
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Fig. 1. The three tiers of the MULE architecture

sensor. Deployments of access-points are usually limited be-
cause of their cost. An access-point is equivalent to a server and
has similar installation and recurring maintenance costs. More-
over, in some environments installing multiple access-points
may not even be feasible because of physical limitations such
as in remote-terrains.

V. MULE ARCHITECTURE

This section describes our basic MULE architecture. En-
hancements to the basic architecture are described in section IX.

A. Overview

The MULE architecture provides connectivity by adding an
intermediate layer of mobile nodes to the existing relationship
between sensors and access-points used in typical sensor net-
work designs [5, 26] as shown in Figure 1. As a MULE moves
in close proximity to a sensor, the sensor’s data is transferred
to the MULE for later delivery to an access-point. Transmitting
data over these short distances leads to substantial power sav-
ings for sensors. However, a sensor has to wait for a MULE to
pass nearby before it can send data which makes the latencies
much higher. We now describe the three-tiers and the interac-
tions among them.

B. Three-Tiered Design

« Lower tier - sensors: Sensors provide data, communicate via
a short-range radio, and have limited power and memory. The
amount of work performed by sensors should be minimized be-
cause they have the most constrained resources among the three
tiers. In our architecture, sensors’ communications are limited
to transferring data to a nearby MULE.

« Middle tier - MULEs: MULEs are mobile entities with large
storage capacities (relative to sensors), renewable power, and
have the ability to communicate with sensors and access-points.
A MULE has the responsibility to discover sensors and access-
points and transferring data between them. In our basic model
MULE(s) do not communicate with each other. In Section IX
we discuss the effect of MULE-to-MULE communication as an
enhancement to our basic architecture.

« Upper tier - access-points: These are servers with Internet
connectivity and enhanced power, storage and processing capa-
bilities. For our purposes, these are the eventual destination of
sensor data. They are used to offload the data collected by and
stored in the MULEs.

The MULE system is intended to create a framework that can
be applied to a large variety of sensing applications. The MULE
layer is an abstract network layer for the endpoints (sensors and
access-points) and can be used simultaneously by different ap-
plications.

Depending on the scenario, a number of tiers in our three-tier
abstraction could be collapsed onto one device. This increases
the applicability of our architecture. For example, sensors can
be mobile as in the ZebraNet project [3]. Here sensors are at-
tached to zebras, causing the sensor and the MULE tier to be
mapped to the same device. Similarly, if MULE(s) have Inter-
net connectivity and sufficient storage they can act as an access-
point, thus, combining the MULE and access-point tiers. For
example, to reduce latency in the traffic monitoring application,
MULEs can be equipped with an always-on connection (such as
a cellular modem) that allows the MULE to transmit sensor data
immediately to an access-point and thereby reducing the latency
between the upper and middle tiers. For example, this would be
appropriate in making traffic monitoring more real-time.

C. Data Transfer Interactions

« Discovery: A sensor needs to discover a nearby MULE to be
able to offload its data. In our architecture the prime responsi-
bility of discovery is placed on the MULE, as our objective is
to minimize the load on sensors. A MULE continuously sends
out a discovery message to detect a nearby sensor. This requires
a sensor to listen for discovery messages. For most radio tech-
nologies listening can consume a substantial amount of power,
almost as much as receiving [17]. Therefore it is important to
reduce the amount of time a sensor spends listening. As dis-
cussed earlier in Section IV-A, the same issue exists in ad-hoc
networks, where a node has to listen continuously because it
might be required to forward data for other node.

The situation is simpler in the MULE architecture because a

sensor is not responsible for forwarding another sensor’s data
and can make decisions about listening locally. To save addi-
tional power, we apply the basic idea of reducing the duty cycle
of the sensor radio. A sensor can periodically (at a low rate)
listen to the radio channel to discover nearby MULEs. Clearly,
there is a tradeoff as a sensor may miss some MULEs and per-
formance may deteriorate. One can have very low duty cycle
where the radio listening overhead is lower but performance is
worse because sensors don’t discover MULEs as much. This
affect of duty cycle on performance is analyzed in detail in Sec-
tion VII-E. We also discuss some interesting techniques for
reducing listening time in the enhancements section 1X.
« Data transfer: In our basic model, the sensor transmits as
much data as it can to the MULEs in the order the data was
generated. In Section VI1I-D we will derive an estimate of how
much data can be transferred as a MULE passes by a sensor.
However, the amount data that needs to be transfer between
MULEs and access-points is much larger, as MULES carry data
for multiple sensors. To solve the problem a high bandwidth
radio may be used for MULE to access point communication,
or the MULEs can increase the amount of time they are near an
access point. For example in the traffic monitoring application,
mail trucks (acting as MULES) park every night at a post office,
giving plenty of time for their data to be offloaded.



D. Trade-offs

We now highlight the relative advantages and disadvantages
of the MULE architecture.

Benefits
« Energy Efficient: Substantial energy is saved because sen-
sors communicate over a short range. Moreover, there are no
hotspots in the network as sensors do not forward data for other
sensors. Energy savings are evaluated in Section VI1I-C.
« No Routing Overhead: In contrast to ad-hoc networks, the
MULE architecture does not have any routing protocol overhead
for sensors.
« Robustness: Performance degrades gracefully as MULES
fail. Any single MULE failure does not lead to a disconnected
network. The primary effect of a MULE failure on the over-
all system is a slight increase in latency as there are now fewer
MULEs to pick up data. In contrast, in an ad-hoc network fail-
ure of few critical nodes might lead to a disconnected network.
« Scalable: The MULE architecture is easily scalable as de-
ployment of new sensors or MULES requires no network recon-
figuration.
« Simplicity: The data routing aspect of the MULE architecture
is very simple and extremely lightweight for the sensors. This
is important because sensors are the bottleneck of the system.
The MULE architecture does not require any synchronization
or location information; an assumption made by many ad-hoc
networks based solutions [26, 19]. The MULE architecture also
exploits spatial reuse of bandwidth by using short-range com-
munication without losing long term connectivity and avoids
radio communication complexities such as collisions.

Limitations
« The MULE architecture has high latency and this limits its
applicability to real-time applications (although this can be mit-
igated by collapsing the MULE and access-point tiers).
« The system requires a sufficient number of mobile nodes in
the application environment to act as MULEs (often this scales
appropriately with the application as is likely to be the case
for traffic monitoring - more traffic leading to naturally more
MULEs and more timely data collection).
« Data delivery in the basic architecture is best-effort; deliv-
ery is not guaranteed. There are two reasons for this. First,
MULEs motion may be quite random. They may not arrive at
a sensor or after picking the data may not reach near an access-
point to deliver it. Second, data may be lost because of radio-
communication errors or MULEs crashing. To improve data
delivery, higher-level protocols need to be incorporated in the
MULE architecture. This is discussed further in the enhance-
ments section IX.

VI. ANALYTICAL MODEL

The goal of our modeling is to understand the relationship
between performance metrics and parameters in the MULE ar-
chitecture. As discussed in section Il the metrics are: aver-
age sensor buffer occupancy, DSR (the fraction of generated
data that is delivered to the access-points), latency. Modeling
energy requirements for communication is considered later in
Section VIII-C.

We begin with a discussion of the parameters involved in the
MULE architecture. .This is followed by an analytical model

based upon queuing theory and the results for the different per-
formance metrics.

A. Parameter Space

The parameter space can be divided into the four following
categories.

« Sensor related: The data generation rate (\) defines the av-
erage amount of data that a sensor is generating. This directly
affects the buffer requirements at the sensor. The sensor buffer
size (S B) determines the maximum amount of data that can be
stored on the sensor and can affect loss of data from buffer over-
flows. Another parameter is the duty cycle of sensor.

« MULEs related: The primary aspect is to determine when
MULEs come into the communication range of a sensor. The
MULE arrival within a sensor’s range is modeled as a discrete
event. Thus, the key parameter is the distribution of time be-
tween two MULE arrivals at a sensor.

Determining this distribution is a complex problem that de-
pends on many factors such as MULE velocity, number of
MULEs, sensor’s radio range and a MULE’s mobility pattern.
For example, doubling the number of MULESs or doubling ve-
locity would double the average MULE arrival rate. The distri-
bution of arrivals also depends on the application scenario. In
a traffic monitoring scenario, if the MULEs are city buses then
the inter-arrival distribution can be modeled as deterministic;
whereas, in a habitat monitoring application the MULEs are an-
imals, the inter-arrival distribution would be determined by the
random motion of the animals.

MULEs buffer size is another parameter, but for the purposes
of this paper we assume that MULEs have sufficiently large
buffers.

« Access point related: The important aspect here is the distri-
bution and the number of access-points. This affects how fre-
quently MULE visits access-point to deliver data. This is mod-
eled by a parameter characterizing the distribution of the time
interval between visits to access-point by a MULE.

« Radio related: The radio parameters affect the amount of
data that can be transferred as a MULE passes by a sensor. We
use a radial model for the radio, i.e. sensors and MULEs can
communicate if they are within a distance r. The rate of data
transfer is a fixed quantity B. Although simplistic, this provides
a good approximation, particularly because the sensor to MULE
communication will be over a short-range.

The discussion of the categories above highlights the fact that
there are many knobs in the MULE architecture. Our approach
is to identify a few basic parameters that are sufficient to charac-
terize the performance metrics. These basic parameters are: 1)
sensor data generation, 2) sensor buffer size (S B), 3) amount of
data transferred between a MULE and a sensor, denoted by K
4) MULEs arrival at a sensor and 5) a MULE’s visit to access-
points. These are defined more precisely in the next section.

The affect of other parameters can be understood by first
studying how they change one or more of the basic parameters
and subsequently studying how the performance is affected by
the change in basic parameters. For example, the impact of in-
creasing MULE velocity on performance can be examined in
two steps. First, by examining the impact of increasing MULE
velocity on the basic parameters. In this case, it increases the
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MULE arrival rate at the sensors/access-points and decreases K
(see section VI1I-D). Second, the analytical model is used to ana-
lyze the affect on performance due to the changes in these basic
parameters. The effects of sensor duty cycle are modeled in a
similar manner (see section VII-E).

B. Model

The primary component of our model is a queue of gener-
ated data (but not delivered) at each sensor. In queuing theory
terminology, generation of new data at a sensor corresponds to
an arrival at the sensor’s queue. The buffer size of the sensor
defines the capacity of the queue. If the buffer is full then any
newly generated data is dropped. The queue is served whenever
aMULE is in asensor’s range. For modeling purpose the arrival
of a MULE in a sensor’s range is considered as a discrete event.
This event causes transfer of data from the sensor’s queue to the
MULE. The sensor then waits for the next MULE arrival event
to transfer the data. Thus, the time between two MULE arrivals
defines the service time.

The amount of data that be transferred on a MULE arrival
event is a random variable and depends on factors such as, the
time the MULE is in the communication range of sensor. How-
ever, for analytical tractability, this is taken as a fixed quantity,
denoted by K. K is derived in section VII-D.

The above model assumes that the MULE(s) can transfer all
the data to the access-points. We do not model in detail the in-
teractions between the MULEs and the access-points. Our focus
is on sensors, which are the primary bottleneck of the system.
In future, we plan to extend our analysis to incorporate MULE-
access-points interactions in detail.

The above queueing model resembles the bulk service model
in the queuing literature. The model is typically denoted as
G/GX/1/SB [33]. The two G’s stands for the general input
(data generation) and service (MULE arrival) distributions re-
spectively. K is the service size, and S B is the maximum queue
capacity. If less than K units of data are available at the sen-
sor then that data is transferred and the MULE leaves without
waiting for additional data.

The following list provides a summary of assumptions and
key notational symbols. For a complete glossary refer to ap-
pendix -A.

« The MULEs arrival process at a sensor is a renewal process
{S(t),t > 0}, where S(t) is the total number of MULEs that
have visited the sensor till time ¢. The renewal assumption
means that the inter-arrival times (time between arrival of two
MULEsS) are independent and identically distributed (denoted
by random variable X #). Average MULE arrival rate is denoted
by u and the variance of X? is o,s.

« A MULE’s visit to the access-points is also a renewal process

{R(t),t > 0}, i.e, the time intervals between a MULE’s visit to
access-points are independent and identically distributed. Aver-
age MULE visit rate is denoted by p.,. and the variance of the
inter-arrival times by ...

« Ata given time only one MULE interacts with a given sensor
and vice-versa.

« Sensors are identical. This allows us to generalize by analyz-
ing any one sensor. Although not essential, we will assume that
sensors are not mobile for ease of exposition.

« The data generation process at a sensor is a renewal process
{U(t),t > 0}, where U(t) is the total amount of data generated
till time ¢. Average data generation rate is denoted by A.

« The queueing discipline is FCFS. The data that is generated
first is picked up first.

« MULEs have sufficiently large buffers.

« A MULE is able to transfer all its data to an access-point
whenever they come in contact.

« Without loss of generality, SB > K. If SB < K then the
maximum amount of data that is available at sensor buffer to
transfer to MULE is SB. Therefore, K = SB for such cases.

« Data transmission does not incur any loss. The only loss is
due to sensor buffer overflow.

« The queueing system is stable and only the stationary (time
independent) probabilities are considered. These are the proba-
bilities as t — oo.

VII. RESULTS
A. Stability Condition

Result 1: The system is stable (the queue reaches a unique
stationary regime) iff

A
% <1 1)
Proof: The proof is given in [34] (Theorem 3.1). |
Intuitively, the equation says that the system is stable if the
net service rate (product of K and the MULE arrival rate) is
more than the data generation rate. The utility of this lies in
the fact that if the stability condition is not satisfied, the sensor
queues can grow arbitrarily large leading to data loss and large
latencies.

Our analysis assumes that SB > K (see assumptions VI-B).

Incorporating this we get,

A
—_—— < 1 2
min(SB, K)p — @)
The above equation can be used to derive the minimum value of
K or SB (for a given A, p) required to reach a stable system.

B. Results for Performance metrics

We now present results for different performance metrics.
The rest of this section assumes the knowledge of the distri-
bution of the queue length at the instance a MULE arrives at a
sensor (denoted by the random variable @)). More specifically,
P; will denote the probability that the queue length @ is j (note
that P; = 0 for j > SB). Distribution of () for specific scenar-
ios is derived in next section.



The average of @ (E[Q]) is used as a measure of the average
buffer occupancy of a sensor. By definition,

SB
EQ] =) _jP
=0

E[Q)] indicates the sensor buffer requirement. In general, the
sensor buffer (SB) should be much larger than E[Q] to pre-
vent any loss of data. From the definition of @, this quantity is
also the average amount of data that a sensor will have when a
MULE comes nearby. Therefore, E[Q] can be used as an indi-
cator of K also.

Result 2: Data Success Ratio (DSR) is given by:

N(E]I'(:O JPj+ Ef:BK+1 KFj)
- 3 )
Proof: Proof is given in appendix -C. |

Later, we will see that P;s depend only on the ratio of A and
w1 and not on their absolute values. From the above equation this
will also be true for DSR. This tells us that the system perfor-
mance (DSR and buffer occupancy) will not be affected if both
parameters are scaled proportionately.

The rest of this section deals with the derivation of average
latency. Latency has two components. The first component is
the queuing delay which is the amount of time spent by data in
the sensor queue (1¥9). The second is the time spent by data on
a MULE before it is delivered to an access-point (WW™).

Result 3: Average queuing delay (17?) is given by:
Wq — /1‘2Ums + 1 + E[Bno] (5)
2p Iz

Proof: In general, a single MULE may not be able to
transfer all the data in the sensor buffer. In such a case multi-
ple MULEs may have to arrive before a data sample is served.
E[B™°] denotes the average number of MULEs that arrive at
the sensor while a data unit is in the queue excluding the MULE
which serves the data unit itself. The expression for E[B™°]
is derived in appendix -D. Recall that, for the MULE arrival
process {S(t)}, p is the average renewal rate and o, is the
variance of the inter-arrival time distribution.

Consider a random time ¢ at which some data (call it d) is
generated and accepted into the queue. The time spent by d
in the queue can be decomposed into two parts. The time till
the next MULE arrives after ¢, plus, the time till next E[B™°]
MULEs arrive. This is because on average d is served when the
(E[B™] + 1)’th MULE arrives.

To compute the average time till the next MULE arrives, we
will use the concept of Residual Life for renewal processes. This
is a standard concept in the theory of renewal processes and for
completeness sake is briefly discussed in Appendix -B.

Since the MULE arrival process is a renewal process, the av-
erage time till the next MULE arrival is by definition the aver-
age residual life of the MULE arrival process ({S(t)}). There-
fore, by residual life theorem -B.1, the average residual life for

{S(t)} is: £oomatl,

Since the average time between two arrivals of MULE is ﬁ
the average time taken for E[B™°] MULEs to arrive is BB

Finally, /¢ is the sum of the above two components.

|

If K is sufficiently large, a MULE can pick up all the data in
the sensor queue. In this case E[B™°] would be zero. There-
fore, the average queuing delay is just the residual life of the
MULE arrival process. The average queuing delay increases
with o, 5. Therefore, MULE arrival processes with lower vari-
ance will have lower queuing delay.

Result 4: Average time spent by a packet on MULE (W™)
is:

Proof: Recall that for {R(lz)r}, Wy 1S the average renewal
rate and o,,, is the variance of the inter-arrival time distribu-
tion. The proof is similar to the derivation of the first part of the
queuing delay, W4.

Consider a random time ¢ at which some data (call it d) is
transferred to the MULE. The amount of time d spends on the
MULE is the time from ¢ until the MULE visits the next access-
point. Since MULE’s visits to the access-points is the renewal
process {R(t)}, this is the average residual life of the process
{R(t)}. By residual life theorem -B.1, the average residual life
for {R(t)} is “2gmet1, m
Additionally, when {R(t)} is a poisson process, the average
residual life is simply -1 (use corollary -B.1.1 in appendix -B).
Therefore in this case ﬁ;m can be simplified to:

W =, @
Lemma VII-B.1: Average latency (W) is:

W =W+ W1 (8)
This follows directly from the observation that the latency seen
by a data is the sum of queuing delay and the time spent on the
MULE.

C. Specific scenarios

The previous section has presented results assuming that the
distribution of @ is known. We now derive ) for specific sce-
narios.

C.1 The MULE arrival distribution and the data generation pro-
cess is Poisson

The poisson assumption allows us to obtain closed form re-
sults. Moreover, it can be a reasonable approximation under
certain environments. For example, it is known by the Palm-
Khintchine theorem (p. 156 [35]) that under mild conditions on
the individual arriving entities (MULEs in our case), the aggre-
gate arrival process (also called the superposition process) often
looks approximately Poisson as n — oo.

We directly apply the results from Section 4.5 of [33].

P =
Pgp

(Fsp—j — Fsp—j—1)/[FsBl,j =0,...SB—1
1/[FsB]



where,
Frb =1
F, = E‘EZ%K‘F”](_]_)S(i—:K)(I _p)spsK—i i>1

Observe that P;’s depend only on the ratio of g and A. This
indicates that the absolute value of & and A is not important.
This would be useful in evaluating the effect of scaling parame-
ters on performance (see section V1I1) as one of the parameters
can be fixed.

C.2 Kislarge (KX > SB)

When K > SB, all the data is transferred when a MULE vis-
its a sensor. Therefore, the amount of data in the sensor buffer
(®) is the minimum of: 1) the amount of data generated during
the time between arrival of two MULEs, 2) the sensor buffer
size. In most cases, by stationarity assumption, the amount of
data generated in an interval depends only on the length of the
interval. For example, for poisson or deterministic data genera-
tion process. Therefore,

Q =min(U(X?®),SB)

If SB is large, the equation can be further simplified to:

RQ=UX")
In this case, the expected queue length can be derived simply as:
A
mm=Ewmmm=; )

D. Determining K

K is the average amount of data that can be transferred be-
tween a MULE and a sensor, as the MULE passes by a sensor.
We assume that the sensor is stationary. For mabile sensors the
same analysis can be applied by considering the relative motion
between the two entities.

In our radio model, sensors and MULEs can communicate
only if they are within a distance r. Therefore, the amount
of data transferred is the radio data transfer rate (B) times the
amount of time the MULE is in the radio range of sensor (called
CT).

K=CT xB (10)

The average contact time can be computed as follows. Let
x be the perpendicular distance between the sensor and the
MULE’s line of motion as shown in Figure 32. Assume that
z is uniformly distributed between 0 and r. If z is greater than
r then the MULE is not in contact with the sensor. The average
distance that the MULE remains in contact with the sensor can
now be computed as:

T r2 _ 2
2 / VIZ 28 g
z=0 T

L\We are ignoring the time required for discovery. This is reasonable because
typically the discovery time would be much smaller than the time the MULE
will be in contact with the sensor.

21n general an application may have additional constraints on z, such as for
traffic monitoring application z is at-least few meters because of spatial con-
straints.

radio
range (7}

X
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MULE’s
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Fig. 3. lllustrates the amount of time a sensor is in contact with a MULE
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Fig. 4. lllustrates the impact of duty cycle on discovering a MULE. (a) the
MULE is missed by the sensor because the sensor is asleep during the time
the MULE is in contact with the sensor. (b) The sensor discovers the MULE
after it has been in it’s range for some time. This leaves only a fraction of
contact time for data transfer.

The above integral evaluates to Zr. If the MULE has a veloc-
ity v, we get
T™r

T=_—-
¢ 2v

Combining equation 10 and 11,
K=(LT
2v

For example, consider a sensor-MULE interaction using a
Berkeley mote. The Berkeley mote has a radio range of about 25
meter and data transfer rate of 40Kb per second. If the MULE
has a velocity of 10 m/s (10 m/s is approx 20 miles per hour),
using above equation, we get K = 150K.

(11)

)B

E. Impact of sensor duty cycle

We will assume that the sensor periodically listens for DT
seconds every BT seconds. DT is the time required for the
discovery protocol to complete and BT is the beacon interval
time. Duty-cycle (vy) by definition is, %. Compared to the
100% duty cycle case, performance will be affected because of
two reasons:



1. AMULE may not be discovered at all because the sensor was
asleep during the time the MULE was in communication range
of sensor (Figure 4a). This affects the effective MULE arrival
rate, which is the rate at which a sensor actually discovers a
MULE. We model this by finding the probability of discovering
a nearby MULE and use it to get the effective MULE arrival
rate. For example, if the probability of discovering a MULE is
0.25, then the effective arrival rate is one-quarter of the original
rateS.

2. The amount of data that can be transferred(K) may decrease
if the MULE is not discovered in the beginning, but in the mid-
dle of the time it is in the communication range of the sensor.
We model this by finding an effective K, the average amount of
data transferred between the MULE and the sensor due to late
discovery.

We now derive the effective MULE arrival rate (called p*)
and effective data transfer (called K*). CT as before, denotes
the time the MULE is in the communication range of sensor.

Effective MULE arrival rate

If CT > BT+ DT, thenthe sensor is awake for the discovery
time at least once during the time the MULE is in range of the
sensor 4. Therefore if CT > BT, the probability of discovery
is 1 and the effective arrival rate remains unchanged.

However, if CT < BT+ DT, there is a window during which
a MULE may be missed. This is illustrated in Figure 4 (a). The
probability that a MULE is missed is the same as the probability
that the MULE contact time interval does not overlap with the
sensor’s discovery interval. Assuming that the MULE contact
time can begin uniformly at any time with respect to a sensor’s
duty cycle, the probability of discovering a MULE is (CT —
DT)/BT. Therefore, u* is u(CT — DT')/BT.

Effective data transfer

If CT > BT + DT, then as discussed above the sensor is dis-
covered with probability one. In fact, the discovery starts in the
first BT seconds. Assuming that the discovery is equally likely
to begin at any time during the first BT seconds, the average
time before discovery starts is BT'/2. Once the discovery starts,
the sensor is in contact with the MULE for the rest of the contact
time period. Hence, the average contact time is CT — (BT/2).
Therefore, K* is K(1 — BT /2CT).

When CT < BT + DT, if the MULE discovers the sen-
sor then the discovery starts in the first CT' — DT seconds.
Therefore, the average elapsed time before discovery starts
is (CT — DT)/2. Thus, the total average contact time is
CT — (CT — DT)/2,whichis (CT + DT)/2. Therefore, K*
is £(1+ DT/CT).

Summary

We now summarize the effect of a low duty cycle for the in-
teresting case when the duty cycle is very low (BT is large).

3Here we are assuming that the MULE arrival process is Poisson and the
results hold because random sampling of Poisson processes results in another
Poisson process [36]. For general distributions, this provides a convenient ap-
proximation.

4The sensor has to be awake for a consecutive time period of DT seconds.
That’s why the condition is CT > BT + DT instead of CT > BT

Specifically when BT > CT.

. CcT
K= mpr (12)
. K
K* = 5 (13)
The following observations can be made from the above two

equations:

« The effective MULE arrival rate is proportional to the duty
cycle . This is expected as lowering the sensor duty cycle de-
creases the discovery probability and hence reduces the effective
MULE arrival rate.

« The effective amount of data transferred in a single contact is
roughly halved and is independent of the duty cycle.

o The decrease in the effective MULE arrival rate because of
low duty cycle can be compensated in two ways. One method
is to decrease the discovery time (DT'). Reducing DT will also
reduce the duty cycle. Therefore, low latency discovery proto-
cols are important. The second method is to increase the contact
time CT'. As discussed in the previous section, CT depends on
the radio range and the MULE velocity and therefore can be
controlled to a certain extent. An interesting enhancement for
efficient discovery, which exploits this method is discussed in
more detail in Section IX.

As an example, suppose sensors have a duty cycle of 1/100.
Consider a sensor-MULE interaction scenario, where the radio
range is 25m and the MULE velocity is 10 m/s. The contact
time (CT) for these parameters is approximately 4 seconds using
Equation 11. Discovery time is typically 10°s of milli-seconds,
say 40 ms. For these parameters, from equation 12, p* is the
same as u. The only affect is on K, which is halved. This
shows that the sensors can operate at low duty cycles without
substantially affecting performance.

VI1Il. EVALUATION

This section evaluates the following aspect of the MULE ar-
chitecture using both analysis and simulation.
1. Performance Metrics: This section investigates the effect
on performance metrics as system parameters are scaled. The
results derived in the analytical modeling section VII-B and
VII-C.1 (when the MULE arrival process is Poisson) are applied
here.
2. Mobility Model: The impact of the MULE mobility model
on performance is studied. Other than Poisson arrivals, MULE
arrival processes governed by mobility models such as deter-
ministic, random-waypoint and manhattan [37] are discussed.
3. Energy Savings: This quantifies the energy savings and the
increase in the lifetime in the MULE architecture as compared
to an ad-hoc network.

A. Performance Metrics

This section investigates the effect on performance metrics as
system parameters are scaled. The parameters and the perfor-
mance metrics considered are the one’s defined in the modeling
section V1.

The data generation process and the MULE arrival process
are assumed to be poisson and apply the results presented in
Section VII-B and Section VII-C.1. Data generation rate ())



is fixed at 90KB/Hour. This is reasonable because as mentioned
during analysis the absolute value of X is not important and only
the ratio 2 affects the performance metrics. Therefore, it is suf-
ficient to only scale i (the MULE arrival rate at a sensor). Also,
to simplify presentation the time spent by data on a MULE is
not considered. Under poisson assumption, this is the inverse
of the rate at which the MULEs visit access-points (Equation 7)
and is trivial to incorporate.

We first study the effect of increasing x and SB, assuming
sufficiently large K (K > SB). Subsequently, the effect of K
is considered.

A.1 Scaling p and SB

Figure 5 shows the effect of increasing . on the performance
metrics. The three different lines on the plots corresponds to
three different sensor buffer sizes 1MB, 100KB and 50 KB.

Figure 5(a) shows the affect of increasing p on average sen-
sor buffer occupancy.

As expected, with increasing p the average buffer occupancy
decreases. This is because when MULES come more frequently
there is less amount of data generated between two arrivals. Fur-
ther, interestingly, S B does not have much effect on buffer oc-
cupancy except when the MULE arrival rate is small. This can
be explained in the following manner. When g is small, large
amount of data is generated between two MULE arrivals. If SB
is small, the data would be dropped and buffer occupancy will
stay low. However, if SB is large, the data would be stored in
the buffer and the buffer occupancy increases. Infact, for large
1, buffer occupancy is approximately % (Equation 9).

Figure 5(b) shows the effect of increasing u on the data suc-
cess ratio (DSR).

With increasing p, the DSR increases sharply eventually
reaching one. This is because when y is large, the buffer occu-
pancy decreases and therefore less data is dropped. The arrow
on each curve shows the minimum value of . required for stabil-
ity of the queuing system. This is g (Equation 2). If p = 25
, the DSR is very low (around 0.6). Therefore, u should be
much larger than the minimum required. For our experiments,
©w>5x s% resulted in DSR greater than .95.

The DSR is higher, when SB is larger. This is expected be-
cause when S B is large, less data is dropped. Similar to scaling
of u, good DSR was achieved when SB was chosen such that
> 5 x s%- In general, one can increase DSR by either in-
creasing p or SB.

Figure 5(a) shows the effect of increasing p on latency.

As mentioned before, only the queuing delay is considered.
Since K is large, the queuing delay is simply the residual life
of the MULE arrival process. Since the MULE arrival is pois-
son, the residual life is i (by Corollary -B.1.1 in appendix -B).
Therefore with increasing i the latency decreases. Additionally,
S B has no impact on latency, thus the three lines coincide.

A.2 Effectof K

Figure 6(a) and 6(b) shows the effect of increasing K on the
average buffer occupancy and the latency respectively (note that
the y-axis is logscale). We chose p as 1 per hour and relatively
large SB of 1MB. Since SB is large, the DSR is always close
to one and is not shown. The arrow on the plots correspond to
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Fig. 6. Effect of scaling K. (a) shows average buffer occupancy and (b) shows
latency

the minimum value of K for a stable queue. This is the ratio %
(Equation 1) and for our plot it is 90 KB. We make the following
observations:

1. When K is small, both buffer occupancy and latency is
large. This is because a sensor cannot transfer all the data in the
queue to a MULE during a single contact. This increases the
average buffer occupancy. Latency is also increased because a
data unit has to wait for multiple MULEs to arrive before it can
be served.

2. As K is increased, there is a sharp decrease in both the
buffer occupancy and the latency initially. For example, when
K isdoubled from its minimum value (90KB) the average buffer
occupancy decreases by a factor of ten.

3. Increasing K beyond a certain limit does not effect perfor-
mance. This follows by observing the flat region of the plots.
Intuitively, this is because K only needs to be large enough so
as to absorb the occasional burst in the sensor buffer. For our
experiments, we found that K = 3 x ﬁ was sufficient to be in
the flat region.

A.3 Summary

Table VII-A.3 summarizes the qualitative relationship be-
tween the different parameters and the metrics. > We also find
that:

« DSR is less than 60% if the parameters are chosen such that
the stability condition is just met.

« DSR can be made close to one by increasing u or SB. When
K is large, choosing SB and p such that uB > 5\ resulted in a
DSR greater than 95%.

« When K equals % the minimum value, the sensor buffer oc-

cupancy is quite large (as compared to % as in Equation 9).

However, the performance improves sharply by increasing K
initially and eventually saturates when K > 3 x %

B. Effect of Mobility Model

This section investigates how the choice of MULE’s mobility
model affects performance. This is done by considering MULEs
arrival distribution resulting from the following mobility mod-
els:

1. Poisson arrival of MULEs: This is the default model dis-
cussed so far. MULEs arrival at a sensor is described by a Pois-
son process. This makes the analysis tractable and as mentioned

5Effect of increasing X is the same as decreasing p.
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Fig. 5. Effect of scaling u on performance metrics. (a) shows average buffer occupancy. (b) shows DSR and (c) shows latency.
Performance Metrics for applications such as wild life monitoring where MULEsS are

Parameters | Buffer Occ | DSR | Latency animals. We consider the following two models here [37]:

nt l T l Random-Waypoint: MULEs randomly choose their destina-

SB1 — ) — tion and move towards it. On reaching the destination, a new

K l T l destination is chosen randomly. Random waypoint is widely

AT ) 1 1 used to model the motion of random entities in mobile ad-hoc

TABLE | networks.
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Fig. 8. Variation of latency with u for different mobility models

in Section VI1I-C.1 by the virtue of the Palm-Khintchine theorem
provides a good model for some applications.

2. Deterministic arrival of MULEs: MULEs arrive at a fixed
interval at sensors. For example, when MULEs are scheduled
city buses in a traffic-monitoring application or are controlled
entities such as robots.

3. Random motion: Here MULEs are independent entities
moving randomly over a two dimensional plane. This is suitable

Manhattan or Random-Walk: MULEs randomly choose a di-
rection and move in that direction. On reaching an intersection,
a new direction is chosen randomly. Our topology is a two di-
mensional grid and on reaching an intersection either of the four
directions (east, west, north or south) is chosen with equal prob-
ability. This is typically used for emulating the movement of
mobile nodes on streets.

We do not have the MULEs arrival distribution (X #) in closed
form when the MULE motion is random. Therefore simulation
is used to obtain the results. A custom simulator was written to
simulate MULEs’ motion and the queuing model presented in
the modeling section VI. The details are omitted due to space
constraints.

The underlying topology used in simulations had dimensions
2km*2km. The topology was divided into square grids each
of size 25m*25m 6. The MULE velocity was set to be at 10
m/s. For a fair comparison across multiple mobility models, the
number of MULES were chosen such that the MULE arrival rate
(1) was same across different models. The data generation rate
was 90KB/s. K and S B were fixed at 100 KB and only p was
varied.

Figure 7 and 8 shows the DSR and the latency for different
mobility models as p scales. In all cases as p increases, the
DSR increases and the latency decreases. The performance is
best when the MULE arrival is deterministic and worst under
the manhattan model. The performance of random-waypoint
model closely matches that of poisson model.

To understand this behavior, consider the coefficient of varia-
tion (CVR) for different mobility models as shown in Table 117,
CVR gives an idea of the burstiness of MULEs arrival. Large
CVR means that the MULE arrival pattern is more bursty and
vice-versa. For example, for deterministic arrivals the CVR is
zero because the MULEs arrive at fixed intervals.

8\We tried few variations in the topology dimensions and qualitatively similar
results were obtained

7Coefficient of variation is the ratio of the standard deviation to the mean. In
general, for random motions it varied slightly with u. Values shown are for u =
8 MULESs/Hour



Mobility || Poisson | Determ- | Waypoint | Manhattan
Model inistic
| CVR | 1.0 | 0.0 | 0.75 | 21 |
TABLE Il

COEFFICIENT OF VARIATION (CVR) FOR MULE INTER-ARRIVAL
DISTRIBUTION FOR DIFFERENT MOBILITY MODELS

Now, the performance would be better when the MULEs ar-
rive at regular interval than in bursts (assuming same ). This
is because when the MULE arrival pattern is bursty, relatively
longer periods exist when no MULE arrives. This can cause the
sensor buffer overflow and reduce the DSR. This also affects la-
tency because latency increases with the variance as discussed
in the latency analysis (Results 3, 4).

C. Energy Savings

This section compares the energy consumption in the MULE
architecture to an ad-hoc network. Only consider the energy
required for sending and receiving data is considered. Energy
consumed in idle radio listening is dictated by sensor’s duty cy-
cle and can be made comparable for both approaches. The fol-
lowing metrics are used:

Average Energy Ratio: This is the ratio of the average en-
ergy consumed per unit time at a sensor in the ad-hoc network
to the average energy consumed in the MULE architecture.

Hotspot Ratio: This is the ratio of hotspot usage in the ad-
hoc network to the hotspot usage in the MULE architecture.
Hotspot Usage is defined as the maximum energy consumed by
any sensor. As discussed in section |11, hotspot usage gauges
the network lifetime.

Before presenting results, we discuss how we compute en-
ergy requirements for the above two approaches. The following
model is used for communication energy [28].

pe = (011 + Oéz(d)l)
pr = (12)

pq is the energy dissipated to transmit 1 bit of data to a node
at a distance d. p, is the energy dissipated to receive one bit
of data. [ is the path loss index and a’s are positive constants.
Here, a11 =45 nJ, oo = 135 nJ, ap = 10pJim? (1=2) or .0001
pim*(l=4),ifd < 8™ml=2,else | = 4.

Energy Requirements in the MULE architecture: In the
MULE architecture, a sensor communicates data only to a
MULE within range r. & Therefore transmit energy per bit (per
sensor) is simply a1 + ao(r)!. We will take r as 25m.

Energy Requirements in an ad-hoc network: This depends
on the sensor network topology and the routing protocol. A
sensor communicates data to a nearby sensor towards an access-
point and the forwarding continues until the data reaches the
access-point. The exact choice of route depends on the routing
algorithm used [7]. We route the data through the minimum
energy path [7]. This optimizes the average energy consumption
(within the ad-hoc network domain); though may not optimize
the hotspot usage. Energy requirements for route maintenance

8]t is assumed that there are no buffer overflows and all the sensed data is
transferred to MULEs.
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are ignored, therefore, the energy computed here is only a lower
bound on the overall energy requirements.

A custom simulator was used to compute the energy require-
ments using the above methodology. Sensor network topolo-
gies were generated by placing sensors randomly over a plane
of dimensions 2km*2km. There was one access-point and was
placed at a cornet of the topology. Results were averaged over
100 random simulations.
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Fig. 9. Energy comparison of MULE vs Ad-hoc network approach as a function
of sensor density

Results

Figure 9(a) shows the Average Energy Ratio as a function of
the sensor density.

When the sensor density is low, the MULE architecture has
over a factor of 100 less average energy consumption than the
ad-hoc network approach. This is primarily because with few
sensors the average distance between two sensors is large. Since
the communication energy increases as the fourth power of dis-
tance, this leads to enormous energy consumption in the ad-hoc
network. The benefits decrease as the sensor density is increased
and eventually saturate with the average energy ratio around ten.
This highlights that even for high sensor density the MULE ar-
chitecture is more efficient. This is because in the ad-hoc net-
work the data traverses multiple hops. So, although the energy
required per hop is a dense ad-hoc network is comparable to the
MULE architecture, the total energy required is much more.

Figure 9(b) shows the Hotspot Ratio as a function of the sen-
sor density. Same trend as in the Average Energy Ratio is ob-
served. The Hotspot usage in the ad-hoc network is much more
than the MULE architecture. This indicates that the life-time
in the MULE architecture will be much longer than the ad-hoc
network.

Additionally, the Hotspot Ratio is over an order of magni-
tude higher than the Average Energy Ratio. This indicates that
in an ad-hoc network the maximum energy consumption (mea-
sure of the hotspot usage) is much more than the average energy
consumption in it®. This is because the sensors near the access-
points have to forward much more data than others. On the other
hand in the MULE architecture all sensors have the same energy
consumption.

These results are not surprising and are somewhat biased be-
cause in the MULE architecture there is an additional energy

9This was also verified explicitly by computing the distribution of the energy
consumption at various sensors in the ad-hoc network. The maximum energy
was found to be much more than the average energy.



consumption at the MULEs. However, MULEs are assumed to
be entities with renewable energy whereas sensors are energy
constrained and the primarily bottleneck of the system.

IX. ENHANCEMENTS

The basic MULE system offers several interesting areas of
investigation to increase its applicability and performance. In
this section we outline and discuss some of these aspects.

« Reducing sensor duty cycle

Reducing sensor duty cycle saves energy, but as discussed in
section VII-E, also affects the system performance as the sen-
sors may not discover a nearby MULE. However, the probabil-
ity of discovering a MULE can be improved by increasing the
contact time (Equation 12), thereby allowing a reduction in the
duty cycle without affecting performance.

The basic idea involves MULES using longer range radios to
transmit discovery messages. Sensors then have the opportunity
to hear the message for a longer period of time, thereby increas-
ing the effective contact time (section VI1I-D). Once the sensor
hears the discovery message, it can keep the radio-on and wait
for the MULE to come within the communication range of the
sensor radio.

However, there is a possibility that a MULE will take a path
that is outside the communication range of the sensor but is
within the range needed for the long-range discovery radio. This
causes the sensor to awake unnecessarily. This can be modeled
by a probability of false alarm and can be traded off with the
probability of not discovering a MULE. This strategy also in-
creases the energy consumption of MULEs.

Application specific knowledge can also be used to reduce

duty cycle. For example, if a sensor is aware of a MULE’s ar-
rival schedule then it can simply start listening at an appropriate
time. Another possibility is to adapt the duty cycle based on
buffer occupancy. Here a sensor keeps the radio totally off un-
til a fraction of sensor’s buffer get filled. After that the sensor
switches to the normal mode of periodic listening. This would
work particularly well when a sensor has relatively large buffers
and latency is not important.
« End to End Reliability A simple method to achieve relia-
bility is to incorporate acknowledgements (acks). This would
cause sensors to wait for an ack before deleting the data from
their buffers. This increases the sensor buffer requirements and
places an emphasis on quick delivery of acks.

The main challenge is to determine when the sensors should
retransmit their data. There is a trade-off, as retransmitting data
too early may cause unnecessary transmissions that increase en-
ergy consumption; whereas, delaying retransmission may lead
to buffer overflow and increased latency. The problem is partic-
ularly acute because of large and highly variable latencies. To
improve the delivery of acks, a MULE can carry all acks, i.e,
whenever a MULE reaches an access-point it picks up all acks,
including acks for the data delivered earlier by other MULEs.
This results in increased, but likely manageable, buffer occu-
pancy at MULEs.

o« MULE to MULE communication It is possible that a par-
ticular MULE may not be in the range of an access-point often
enough. This can be addressed by having MULEs, that come
within range of each other, exchange data. Later, if any of the
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MULEs reach an access-point the data will be delivered. The
issues here are similar to epidemic routing [11, 3]. The primary
trade-off is reduced latency at the expense of increased energy
and memory consumption on the MULEs. This also poses the
question of which data to exchange when MULES meet.

« Unreachable Sensors: Sensor Islands This addresses situa-
tions in which some sensors may be out of reach of a MULE; for
example in a forest. A sensor island is defined as a group of sen-
sor(s) which are physically close enough to each other to form
an ad-hoc network, such that at least one sensor comes within
the range of a MULE occasionally. These reachable sensors act
as transfer points so that the unreachable sensor’s data may be
transmitted to a MULE. The challenge here is to identify appro-
priate islands and the role of each sensor in that island without
causing a hotspot detrimental to network lifetime.

X. CONCLUSION

This paper describes the MULE architecture, a three-tiered
design, to enable energy efficient data collection in large and
sparse wireless sensor networks. The key idea is to exploit the
presence of mobile nodes in the environment by using them as
forwarding agents. This approach extends the lifetime of the
network by minimizing the communication responsibility of the
resource-constrained sensors. A detailed analytical model based
on queuing theory was presented that aids in understanding the
limits and performance trade-offs inherent in the MULE archi-
tecture. Through simulation we confirmed that energy savings
of up to two-orders of magnitude (and even larger increases in
network lifetime) can be achieved with MULES as compared to
the traditional ad-hoc network approach. We also address the
issue of efficient sensor discovery by MULEs.

Our MULE architecture is limited to applications that have
some specific properties. First, the application must have an ap-
propriate mobile agent that can be scaled easily to the require-
ments of data delivery. Second, it is applicable only for applica-
tions that do not have real-time requirements

This work is only a first step in understanding the feasibil-
ity of using mobility in sensor networks. It is clear that much
more work remains to be done to fully understand the cost-
effectiveness of this approach. We plan to investigate some of
the enhancements discussed earlier, such as reliability and using
MULE-to-MULE communication. Issues surrounding naming,
network layer, and end-to-end connectivity semantics also needs
to be addressed. Here we hope to leverage work from a recently
proposed network architecture called the Delay Tolerant Net-
work [38]. Other directions include a more detailed simulation
and specific application experiments to demonstrate the feasi-
bility of the MULE approach.

APPENDICES

A. Glossary of notation and symbols

SB The total buffer capacity on a sensor (in
bytes)
A Mean data generation rate
~ Duty cycle of sensor. Fraction of time a

sensor is listening to discover MULEs



DT Discovery Time. Time to discover a sensor

by a MULE

Contact Time. The average amount of time

the MULE is in the radio range of sensor

Q Random variable denoting the queue

length at a particular sensor when a MULE

arrives

Probability that @) equals j

Amount of data (in bytes) that can be trans-

ferred between a MULE and a sensor dur-

ing one contact

r Radio range within which sensor and
MULE can communicate

cT

{U(t),t >0}  The renewal process counting the total
amount of data generated at a given sensor
till time ¢. Also called the data generation
process

{S(t),t > 0} The renewal process counting the total
number of MULEs that have visited a
given sensor till time ¢

X Random variable denoting the inter-arrival
time for renewal process {5 (¢)}

I Average MULE arrival rate at a sensor

Oms Variance of X

E[B™°] Average number of MULEs that arrive at
a sensor while a data unit is in the queue.
E[B™°] excludes the MULE which serves
the data unit itself

{R(t),t > 0} The renewal process counting the number
of access points that a MULE has visited
till time ¢

o Average rate at which a MULE visits ac-
cess points

o Variance of the inter-arrival time distribu-
tion of {R(¢),t > 0}

DSR Data Success Ratio

w1 Average queueing delay

wm Average time spent by data on MULE

w Average latency

B. Residual life theorem

Consider a renewal process {C(t),t > 0}. Residual life
(r(t)) of C(t) is defined as the time measured from ¢ to the next
renewal instant after time ¢. The average residual life is E[r(t)]
ast — oo.

Theorem -B.1: Consider a renewal process {C(¢),t > 0}.
Let u. be its average renewal rate and o, be the variance of its
inter-arrival time distribution. Then, the average residual life
E[r(t)] is (Chapter 7 of [36]),

iuco—c + 1

E[r(t)] =
Corollary -B.1.1: As a special case |f the process {C(t), t

0} is a poisson process, the average residual life simplifies to

(14)

Blr(t)] = ﬂi (15)

C
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This is because for a poisson process the distribution of inter-

arrival times is exponential with mean -= . And for an exponen-

tial distribution, o, = .

C. Proof of result for DSR. Result 2
Result 2: Data Success Ratio (DSR) is given by:

. H(EJ 0.7P+ZJ K+1KP)
a A
Proof: DSR is the ratio of data delivered to the access-

points to the amount of data generated in time ¢ as t — oo. By
our assumptions once a MULE picks up the data it is delivered to
the access-point. Therefore, DSR is the ratio of the data picked
up by the MULEs in time ¢ to the total data generated in time ¢.

_ P(t) .. P(t)
DSk = lim 75 = im =~

U@,

(lim )

t—oo ¢
Here U(t) is the total amount of data generated at the sensor and
P(t) is the total amount of data picked up by the MULEs. Also
recall, S(t) is the number of arrivals of MULEs in time ¢.

Now,

lim w lim 5(t)

lim P(t) —7
t— 00 (t) t—oo

t—oo ¢
By definition 1imHoo 50—y and limy o 28 = ),
The term S( represents the average amount of data trans-

ferred when a MULE visits the sensor. Let L be the amount of
data picked up by a MULE at the sensor. Then,

lim @ =
O

E[L]
Since only a maximum of K data units can be transferred,
L = min(K, Q)
Since, P; is the probability @ equals j,

Z]P+ Z KP;

J=K+1

E[L] =
Putting everything together, we get the result.

D. Expression for E[B™°]

’—571 1 jK+K-1

>3 5

i=(K)

Proof: E[B™°] is the average number of MULEs that ar-
rive at a sensor while a data unit is in the queue. This depends on
the distribution of queue length at the instant a new data is ac-
cepted in the queue. To compute this we define P} which is the
probability that the queue length is j at the instant a new packet

E[Bno]



is accepted in the queue (excluding the new data unit itself). Pf
can be related to P; by (Theorem 4.1 of [34])

min(j+K,SB) P
P = d
’ Z E(L)
i=j7+1
Jj=>SB

0<j<SB

P =0

The B™° of a new data unit is 4 iff the queue length (exluding the
packet itself) is between i K and i K + K — 1. This is because
a single MULE arrival removes K data units from the queue.
This gives,
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