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Abstract. The Location Stack is a set of design abstractions for lo-
cation systems for ubiquitous computing. Our contribution presented in
this paper is twofold. First, the Location Stack design abstractions them-
selves give the ubiquitous computing community a common vocabulary
and comparative framework for multi-sensor location systems. Second,
our implementation of the Location Stack employs novel probabilistic
techniques for fusing readings from multiple different sensor technologies
while providing a uniform programming interface to applications. Our
implementation is publicly available and supports many existing loca-
tion technologies.

1 Introduction

Location is essential information for many ubiquitous computing systems: We
want our home to learn and respond to its inhabitants’ movements. We want to
capture and optimize workflow in a factory. We need directions from one place
to another. We want to interact naturally with input-output devices casually
encountered in the environment. Yet despite the need for location information,
existing location-aware ubicomp systems could be improved in two areas:

1. Solid design abstractions can provide a common vocabulary and enable com-
parative evaluation of the many existing location systems.

2. Fusing readings from multiple different sensor technologies can exploit the
advantages of each technology while presenting a uniform location program-
ming interface to applications.

Our contribution is in both of these areas. Based on lessons from a previous
survey of location systems [4] we present the abstractions and an implementation
of the Location Stack, evocative of the Open System Interconnect (OSI) model
of computer networks. The Location Stack is a common vocabulary and general
framework for multi-sensor location-aware ubiquitous computing.

Section 2 presents the Location Stack abstractions. Section 3 then describes
our publicly available implementation. We implement the bottom four abstrac-
tion layers and are engaged in active collaborations to develop the remaining two.
In this paper, we give particular emphasis to our Fusion layer’s use of Bayesian



filter techniques, more specifically, particle filters and multi-hypothesis track-
ing to estimate location in real multi-sensor environments. Our implementation
supports many location sensor technologies including infrared proximity badges,
passive RFID tags, ultrasound ranging tags, active radio proximity tags, global
positioning system receivers, infrared laser range-finders, 802.11b wireless clients,
and, more importantly, any combination of these. Our architecture consists of
scalable distributed services communicating with asynchronous XML messages
and remote procedure calls, similar to many modern ubiquitous computing sys-
tems. Finally, Section 6 concludes with a discussion of the current state of our
work and its future directions.

2 The Location Stack Abstractions

Modern networking technology is easily understood largely thanks of the Open
Systems Interconnection (OSI) abstraction layers. A client application need not
worry about physical layer variations such as Ethernet versus 802.11 versus cellu-
lar packet radio. As long as it speaks HTTP, a web browser can post and retrieve
data from remote servers. Location-aware ubicomp systems need similar abstrac-
tions to provide a common vocabulary and to avoid common inefficiencies such
the tendency to create specialized sensing hardware for every new ubicomp sce-
nario. The Location Stack codifies such a set of abstractions based on classifiers
and properties identified in a previous survey of location systems [4]. Figure 1
shows the Location Stack (note that the layers are quite different then the OSI
model, which we only use as an evocative analogy).
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Fig. 1. The Location Stack abstractions are a general framework and common vocab-
ulary for location-aware ubiquitous computing systems.



We now briefly discuss the abstraction layers and the interfaces they provide.

2.1 Sensors

The Sensors layer consists of the sensing hardware for detecting a variety of
physical phenomena. The interface to this layer is usually very specific to par-
ticular sensing technologies; software drivers deliver raw data in a wide variety
of formats. Example outputs include blob pixels from a camera, ultrasonic time
of flight measurements, keystrokes from a computer login event, or a proximity
beacon event. Information flow is predominantly up the stack as sensors generate
new information about the changing state of the physical world.

2.2 Measurements

The Measurements layer transcribes raw sensor data into canonical measurement
types for use by higher level operators. For example, data reported by many
ubiquitous location sensors can be classified as distances, angles, proximities, or
positions. Each measurement may also have an uncertainty model derived from
the physical characteristics of the sensor and the environment. For example,
infrared badge and RFID sensors both produce proximity measurements with
respective uncertainty models based on the power of the infrared emitters and
the range and antenna characteristics of the radio. Information flow is again
predominantly up the stack as sensors generate new measurements about the
changing state of the physical world.

2.3 Fusion

The Fusion layer continually merges measurements into a probabilistic represen-
tation objects’ locations and presents a uniform programming interface to this
representation. The Fusion layer also often addresses the interlaced problem of
estimating objects’ identities in situations where explicit identity information is
not provide by the lower layers.

No particular representation or coordinate system is implied. Representations
could be symbolic room numbers, a simple two dimensional geometric coordi-
nate, or a highly complex state such as three dimensional position, pitch, roll,
yaw, and derivatives (speed, acceleration). Fusion implementations may choose
to use a standard map datum (e.g. NAD27 or WGS84 used by GPS and topo-
graphic maps), implement a custom coordinate system, or implement converters
allowing free representation in multiple coordinate frames.

The most significant contribution of our implementation presented in Sec-
tion 3 is at the Fusion layer. We apply Bayesian filter techniques including par-
ticle filters and multi-hypothesis tracking to both the basic sensor fusion problem
and the problem of simultaneous identity estimation.



2.4 Arrangements

The Arrangements layer provides operators to relate the current probabilistic
location estimates of multiple objects which are individually locatable using the
Fusion layer interface. Example operators include tests for multi-object proxim-
ity, containment in a region, or for specific geometric formations. The operators
often produce probabilistic output, for example, a pairwise confidence matrix
that a given group of objects are within 4 meters of one another or the proba-
bility that 4 people are in a given room.

2.5 Contextual Fusion

The Contextual Fusion layer combines location or arrangement information with
other non-location contextual information such as personal data (schedules,
email threads, contact lists, task lists), temperature, light level, and galvanic
skin response. The interface allows applications to recognize interesting states
or sequences that may be useful to a variety of applications.

2.6 Activities

Applications are concerned with users’ activities. The reason to capture location
and other context data is typically not for direct use but to enable task-level
reasoning. For example, ubiquitous applications want to respond a certain way
when all residents of a house are asleep for the night, a presentation on zoology
is starting in Conference Room B and certain participants are missing, or an
Alzheimer patient has deviated significantly from their daily routine.

The Activities layer categorizes context information into semantic states
defining an application’s interpretation of the world. The interface to the Ac-
tivities layer is application specific. A common implementation is a set of rule-
based triggers driving particular application scenarios or supporting common
user tasks.

3 Implementation

Our implementation of the Location Stack is a publicly available Java package
containing a useful framework for operating a multi-sensor location system in
a ubiquitous computing environment. Our implementation is deployed in our
laboratory and workspace and is used by other other research projects as a re-
liable source of object location information. The implementation is typical of a
modern ubiquitous computing system: the architecture consists of a set of reli-
able distributed services communicating using asynchronous XML messages and
remote procedure calls. Services are connected using dynamic service discovery
capability provided by the middleware. Key services include the following:



1. Each sensor technology has one or more custom driver services implement-
ing a standard interface. Device drivers interact with sensor hardware and
multicast sensor measurements to other interested services such as fusion
services and logging services.

2. The database services manage objects and provides administrative function-
ality to group objects into hierarchies. For example, our experiments rely
on physical track packs consisting of two infrared badges and an ultrasonic
ranging tag. Managing these packs as a hierarchical group of sensors makes it
convenient to dynamically associate and disassociate the packs with people
and test subjects.

3. The fusion service runs the sensor fusion algorithms. Multiple fusion services
running simultaneously can provide higher performance, enhanced reliability,
and be used to comparatively evaluate different fusion algorithms on real-
time data.

4. A simulator service allows us to replay measurement sequences either cap-
tured by the logging services or synthesized algorithmically in order to eval-
uate improvements to the sensor fusion algorithms or to replay application
scenarios.

3.1 Sensors and Measurements

Our implementation has driver implementations for many common ubicomp
location technologies including infrared proximity badges, passive RFID tags,
ultrasound ranging tags, active radio proximity tags, global positioning system
receivers, infrared laser range-finders, and 802.11b wireless clients. Each sensor
driver discretizes and classifies the data produced into measurements of type
Distance, Angle, Proximity, or Position as well as several aggregate types such
as Scan (a distance-angle combination). Each measurement has an uncertainty
model derived from the physical characteristics of the sensor and the environ-
ment. This measurement likelihood model p(z | x) describes the probability of
observing a certain sensor measurement z given a location x of the person or
object. Such a model consists of two types of information: First, the sensor noise
and, second, a map of the environment. The problem of constructing maps of
indoor environments has already received substantial attention in the robotics
research community [11] and is not the focus of our research. Fig. 2(a)–(c) illus-
trate sensor models for ultrasound tags, infrared badges, and laser range-finders,
respectively.

Fig. 2(a) shows the likelihood model at all locations in the environment for
a 4.5 meter ultrasound distance measurement. The likelihood function is a ring
around the location of the sensor where the width of the ring is the uncertainty
in the measured distance. Such noise may be represented by a Gaussian distri-
bution centered at the measured distance. Furthermore, since ultrasound sensors
frequently produce measurements that are far from the true distance due to re-
flections, all locations in the environment have some likelihood, as indicated by
the gray areas in the map. White areas indicate locations blocked by obstacles.
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Fig. 2. Measurement likelihood models for (a) ultrasound tags, (b) infrared badges,
and (c) laser range-finders. Darker areas represent higher likelihoods in (a) and (b)
while the individual laser beams and the detected person are shown in (c).

Fig. 2(b) illustrates the sensor model for the infrared badge systems. Such sen-
sors provide only proximity information, so likelihood is a circular region around
the sensor location. Fig. 2(c) show scans taken from two laser range-finders.
Since these sensors are placed at fixed positions, it is straightforward to detect
sensor beams that return unexpectedly short measurements indicating the pres-
ence of people. The likelihood for such detected features is usually represented
by a Gaussian distribution with small uncertainty.

3.2 Fusion Layer

Our Fusion layer implementation applies Bayesian filtering techniques to the
problem of location estimation. We present two scenarios to illustrate the ca-
pabilities of our fusion implementation. First, we show fusion of two represen-
tative location technologies: infrared proximity badges and ultrasonic time-of-
flight tags. Our hardware is the commercial VersusTech infrared badge sys-
tem (http://www.versustech.com) and MIT’s Cricket ultrasound tags [8]. Second,
we present a present a novel approach to multi-object tracking that combines the
accuracy benefits of anonymous sensors like scanning laser range finders with the iden-
tification certainty of less accurate infrared and ultrasonic ID-sensors. Our anonymous
sensor hardware is the LMS200 180 degree scanning laser range-finder from SICK, Inc
(http://www.sick.com). Figure 3 shows a photo inside our multi-sensor environment.

Multiple Inaccurate ID Sensors In this example we illustrate how we estimate
the location of a person using multiple inaccurate ID sensors such as the ultrasound
and infrared badges. Due to these sensors’ low accuracy, the belief over the person’s
location is typically very uncertain and multi-modal, hence we apply a Bayesian filter
techniques called particle filters which is commonly used in robot localization and is
optimized for this type of scenario. Particle filters can naturally integrate information
from different sensors. Refer to [3] for an in depth treatment of particle filters and
Monte Carlo statistical techniques.

Fig. 4 shows snapshots from a typical sequence projected onto a map of the en-
vironment. The person is wearing an infrared badge and ultrasound tag and starts in
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Fig. 3. A photo of the environment where our applications are deployed. Our sens-
ing hardware for these examples is VersusTech infrared badge system, MIT’s Cricket
ultrasound tags scanning laser range finders from SICK, Inc.

Initial Infrared Ultrasound Infrared

Fig. 4. Sensor fusion of infrared and ultrasound sensors. Density of the particles reflects
the probability posterior of the person’s location.



the upper right corner of the lab, as indicated by the icon. Since the start location is
unknown to the system, the particles are spread uniformly throughout the free-space
of the environment. The second picture shows the location probability after the per-
son moved out of the cubicles and into the upper hallway. At this point, the samples
are spread over different locations, which is due to the inaccurate sensor information.
After the person is detected by an ultrasound sensor, the location can be estimated
more accurately, as shown in the third picture in Fig. 4. Later, after moving down the
hallway on the left, the samples are spread over a larger area, since this area is only
covered by infrared sensors, which only provide very coarse location information.

Initial Infrared Ultrasound Infrared

Fig. 5. Sensor fusion of infrared and ultrasound sensors using particle filters constrained
to a Voronoi graph.

Particle filters can be used more efficiently by constraining the possible locations
of a person to locations on a Voronoi graph of free space that naturally represents
typical human motion along the main axes of the environment. The sequence shown
in Fig. 5 is based on the identical data as the one using unconstrained particle filters.
In experiments we found that such Voronoi graph tracking results in better estimates
with less computation. Furthermore, the Voronoi graph structure can be used to learn
high-level motion patterns of a person. For example, the graph can capture information
such as “Joe typically goes into room 22 when walking down hallway 9”. More details
on using Voronoi graphs with particle filters and on applying high-level learning can
be found in [6,9].

Combination of Anonymous and ID Sensors One of the disadvantages of
common ID sensors such as ultrasound badges is their limited accuracy. One the other
hand, sensors such as laser range-finders provide highly accurate location estimates,
but do not provide information about a person’s identity. In this example we show how
to combine information from both types of sensors to get accurate location and ID
information.

Fig. 6 illustrates the main problem of tracking multiple people with anonymous
and ID-sensors. Initially, the identity of the two people is not known. As they walk, the
anonymous sensor observes their locations frequently. In the beginning, the people are
far enough apart so that their positions can be tracked reliably using the anonymous
sensor. However, until they reach ID-sensor areas 3 and 4, both trajectories have the
same probability of belonging to either person A or B. Hence there are two different
hypotheses for the ID’s of the two trajectories. After passing through the coverage of
ID-sensors 3 and 4, the ambiguity is resolved and the ID’s of both trajectories are
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Fig. 6. The blue shaded circles indicate areas covered by infrared receivers. Since these
sensors provide no information about the person’s location within the area, two people
in the same area can not be distinguished. A laser range-finder scans the entire scene
and provides accurate location information at a high-rate, but no information about
their identities.
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Fig. 7. Our mixed ID-anonymous approach can track the trajectories and identities of
six people moving through the environment.



determined. Then, after the paths cross there is confusion about the continuation of
the two tracks. When the people leave the light gray area, the anonymous sensor can
not determine which observations to associate with which trajectory. This is called
the data association problem in the multitarget tracking community [2]. If there are
no ID-sensors, it would be impossible to resolve this ambiguity. In our approach the
ambiguity can be resolved as soon as the people reach the areas covered by ID-sensors
5 and 6. To do so, however, it is necessary to maintain the hypotheses for both possible
track continuations, A going down and B going up, or B going down and A going up.

To solve this problem we use a combination of particle and Kalman filters, closely
related to multi-hypothesis tracking. We track individual persons using Kalman filters,
which is possible due to the accuracy of laser range-data (see Fig. 2(c)), and main-
tain multiple hypotheses regarding the identities of people using a particle filter. Each
particle is one hypothesis for the identity of a tracked person: a collection of Kalman
filters annotated with identities. Refer to [10] for more details. The resulting approach
is able to track several people and their identities in real-time as shown in Fig. 7. The
duration of the log in this example is 10 minutes. During this time the six individual
people moved between 230 and 410 meters each. In this challenging log, people’s paths
frequently cross and there are situations in which up to 4 people are occluded to the
laser range-finders by other people, yet our approach can successfully estimate both
the location and identity of each person.

4 Arrangements

We currently provide two operators to relate the probability posteriors of multiple
objects which are individually locatable using the Fusion layer interface. We provide
the ability to test for multi-object proximity given a specified distance and to test for
object containment with a predefined region of a map. Because we operate on the
location probability posteriors, the results of these tests can also be probabilistic and
specify the confidence that the test is true. For example the proximity test produces
a pairwise confidence matrix that a given group of objects are within 4 meters of one
another. Taken together, these operators provide a probabilistic implementation of the
“programming with space” metaphor as used with great success in AT&T Sentient
Computing project [1]. Future work in our implementation of the Arrangements layer
is to provide an additional operator to test for more general geometric formations of
multiple objects.

5 Context and Activities

Our implementation of the Context and Activities layers is in its infancy because these
abstraction layers are largely unexplored. Few ubiquitous computing systems have been
deployed which take sensor information all the way up to the level of human activity
inference. To make inroads, we are collaborating with the Assisted Cognition research
group, a group seeking to create novel computer systems that will enhance the quality
of life of people suffering from Alzheimer’s Disease and similar cognitive disorders
[5]. Our goal for this collaboration is to design general interfaces for the Context and
Activities layer based on usage patterns of the existing Fusion and Arrangements layers
in support of these higher level learning tasks. An example project of the Assisted
Cognition group is the Activity Compass, a location-aware hand-held computer which



assists Alzheimer sufferers in carrying out their daily routine [7]. Its user interface is a
simple arrow directing the user to a location based on the inferred goal. The Activity
Compass approach is to learn a model of daily activities from long term data logs of
location and other information.

6 Conclusion

Our publicly available implementation of the Location Stack abstractions can perform
sensor fusion of multiple common location technologies, provides useful operators to
reason about location, and has the potential, with further investigation, to estimate and
learn the activities of people and what their next goals might be. Our implementation
operates 24x7 in our laboratory and workspace and is used by other other research
projects to provide reliable object location capabilities.

A single sensor fusion service running on a modern PC (1.8 GHz with 512 MB
memory) can perform real-time multi-sensor probabilistic tracking of more than 40
objects at a sustainable rate of 2 measurements per second per object. Objects are
tracked using generalized particle filters in 7 dimensions (x, y, z, pitch, roll, yaw, and
linear velocity). Higher performance (more objects or a faster measurement rate) can
be realized by reducing the state space to two dimensions or through more advanced
techniques such as our technique of constraining the particle filters to Voronoi graphs of
the environment. We expect to be able to achieve an order of magnitude improvement
using these optimizations. Another way to increase performance is to distribute objects
across multiple fusion services, although applying certain Arrangements layer operators
to distributed objects presents additional challenges which we are investigating.

In summary, the Location Stack abstractions structure location systems into a
layered architecture with robust separation of concerns. The Location Stack enables
evolution of our systems as we deploy new technologies, supports comparative evalu-
ations of location systems, and allows us to partition the work and research problems
appropriately.
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