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Abstract

A fundamental problem in biological and machine vision is visual invariance: how are

objects perceived to be the same despite undergoing transformations such as transla-

tions, rotations, and scaling? In this paper, we describe a Bayesian method for learn-

ing invariances based on Lie group theory. Previous approaches based on first-order

Taylor series expansions of inputs can be regarded as special cases of the Lie group

approach, which, in principle, can handle arbitrarily large transformations. Using a

matrix-exponential based generative model of images, we derive an unsupervised algo-

rithm for learning Lie group operators from input data containing infinitesimal trans-

formations. Our experimental results show that the Lie operators for translations, ro-

tations, and scaling can be learned directly from training images. We demonstrate that

these operators can be used to both generate and estimate transformations in images,

thereby providing a basis for achieving visual invariance.
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1 Introduction

The recognition of familiar objects in the presence of transformations such as trans-

lations, rotations, and scaling is a central problem in perception. The importance of

this problem was recognized early by vision researchers such as J. J. Gibson who hy-

pothesized that “constant perception depends on the ability of the individual to detect

the invariants” (Gibson, 1966). Pitts and McCulloch were among the first to propose

a computational method for perceptual invariance (“knowing universals”) (Pitts & Mc-

Culloch, 1947). A number of other approaches have since been proposed (Fukushima,

1980; Hinton, 1987; LeCun, Boser, Denker, Henderson, Howard, Hubbard, & Jackel,

1989; Olshausen, Anderson, & Essen, 1995; Tenenbaum & Freeman, 2000; Grimes &

Rao, 2003), some relying on pooling of activities in a feature-detector hierarchy (e.g.

(Fukushima, 1980)), others relying on temporal sequences of input patterns undergoing

transformations (e.g. (Földiák, 1991; Wiskott & Sejnowski, 2002)) and yet others utiliz-

ing modifications to the distance metric for comparing input images to stored templates

(e.g. (Simard, LeCun, & Denker, 1993)).

In this paper, we describe a Bayesian method for learning invariances based on the

notion of continuous transformations and Lie group theory. We show that previous

approaches based on first-order Taylor series expansions of images (Black & Jepson,

1996; Rao & Ballard, 1998) can be regarded as special cases of the Lie group approach.

Approaches based on first-order models can account only for small transformations due

to their assumption of a linear generative model for the transformed images. The Lie

approach on the other hand utilizes a matrix-exponential based generative model which

can in principle handle arbitrarily large transformations once the correct transforma-

tion operators have been learned. Using Bayesian principles, we derive an on-line
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unsupervised algorithm for learning Lie group operators from input data containing in-

finitesimal transformations. Although Lie groups have previously been used in visual

perception (Dodwell, 1983), computer vision (Van Gool, Moons, Pauwels, & Oost-

erlinck, 1995) and image processing (Nordberg, 1994), the question of whether it is

possible to learn these groups directly from input data has remained open. Our exper-

imental results suggest that the proposed method can learn the Lie group operators for

2D translations, rotations, and scaling with a reasonably high degree of accuracy, allow-

ing the use of these learned operators in transformation-invariant vision. Preliminary

results from this work were reported in (Rao & Ruderman, 1999).

2 Continuous Transformations and Lie Groups

Suppose we have a point (in general, a vector) I0 which is an element in a space F . Let

TI0 denote a transformation of the point I0 to another point, say I1. The transformation

operator T is completely specified by its actions on all points in the space F . Suppose

T belongs to a family of operators T . We will be interested in the cases where T is

a group i.e. there exists a mapping f : T × T → T from pairs of transformations to

another transformation such that (a) f is associative, (b) there exists a unique identity

transformation, and (c) for every T ∈ T , there exists a unique inverse transformation

of T . These properties seem reasonable to expect in general for transformations on

images.

Continuous transformations are those which can be made infinitesimally small. Due

to their favorable properties as described below, we will be especially concerned with

continuous transformation groups or Lie groups. Continuity is associated with both the

transformation operators T and the group T . Each T ∈ T is assumed to implement a

continuous mapping from F → F . To be concrete, suppose T is parameterized by a

3



single real number z. Then, the group T is continuous if the function T (z) : � → T

is continuous i.e. any T ∈ T is the image of some z ∈ � and any continuous variation

of z results in a continuous variation of T . Let T (0) be equivalent to the identity trans-

formation. Then, as z → 0, the transformation T (z) gets arbitrarily close to identity.

Its effect on I0 can be written as (to first order in z): T (z)I0 ≈ (1 + zG)I0 for some

matrix G which is known as the generator of the transformation group. A macroscopic

transformation I1 = I(z) = T (z)I0 can be produced by chaining together a number of

these infinitesimal transformations. For example, by dividing the parameter z into N

equal parts and performing each transformation in turn, we obtain:

I(z) = (1 + (z/N)G)NI0 (1)

In the limit N → ∞, this expression reduces to the matrix exponential equation:

I(z) = ezGI0 (2)

where I0 is the initial or “reference” input. Thus, each of the elements of our one-

parameter Lie group can be written as: T (z) = ezG. The generator G of the Lie

group is related to the derivative of T (z) with respect to z: d
dz

T = GT . This suggests

an alternate way of deriving Equation 2. Consider the Taylor series expansion of a

transformed input I(z) in terms of a previous input I(0):

I(z) = I(0) +
dI(0)

dz
z +

d2I(0)

dz2

z2

2
+ . . . (3)

where z denotes the relative transformation between I(z) and I(0). Defining d
dz

I = GI

for some operator matrix G, we can rewrite Equation 3 as: I(z) = ezGI0 which is the

same as equation 2 with I0 = I(0). Thus, some previous approaches based on first-

order Taylor series expansions (Black & Jepson, 1996; Rao & Ballard, 1998) can be

viewed as special cases of the Lie group-based generative model.
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3 Learning Lie Transformation Groups

Our goal is to learn the generators (or operators) G of particular Lie transformation

groups directly from input data containing examples of transformations. Note that

learning the generator of a transformation effectively allows us to remain invariant to

that transformation (see below). We assume that during natural temporal sequences of

images containing transformations, there are “small” image changes corresponding to

deterministic sets of pixel changes that are independent of what the actual pixels are.

The rearrangements themselves are universal as in, for example, image translations.

The question we address is: can we learn the Lie group operator G given simply a

series of “before” and “after” images?

Let the n×1 vector I(0) be the “before” image and I(z) the “after” image containing

the infinitesimal transformation. Then, using results from the previous section, we can

write the following stochastic generative model for images:

I(z) = ezGI(0) + n (4)

where n is assumed to be a zero-mean Gaussian white noise process with variance σ2.

Since learning using this full exponential generative model is difficult due to multiple

local minima, we restrict ourselves to transformations that are infinitesimal. The higher

order terms then become negligible and we can rewrite the above equation in a more

tractable form:

∆I = zGI(0) + n (5)

where ∆I = I(z)−I(0) is the difference image. Note that although this model is linear,

the generator G learned using infinitesimal transformations is the same matrix that is

used in the exponential model. Thus, once learned, this matrix can be used to handle

larger transformations as well, as explored in the Results section.
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Suppose we are given M image pairs as data. We wish to find the n × n matrix G

and the transformations z which generated the data set. To do so, we take a Bayesian

maximum a posteriori approach using Gaussian priors on z and G. The negative log of

the posterior probability of generating the data is given by:

E(G, z) = − log P [G, z|I(z), I(0)]

=
1

2σ2
(∆I − zGI(0))T (∆I − zGI(0)) +

1

2σ2
z

z2 +
1

2
gT C−1g (6)

where σ2
z is the variance of the zero-mean Gaussian prior on z, g is the n2 × 1 vector

form of G and C is the covariance matrix associated with the Gaussian prior on G.

Extending this equation to multiple image data is accomplished straightforwardly by

summing the data-driven term over the image pairs (we assume G is fixed for all im-

ages although the transformation z may vary). For the experiments, σ, σz and C were

chosen to be fixed scalar values but it may be possible to speed up learning and improve

accuracy by choosing C based on some knowledge of what we expect for infinitesimal

image transformations (for example, we may define each entry in C to be a function

only of the distance between pixels associated with the entry and exploit the fact that C

needs to be symmetric).

The n×n generator matrix G can be learned in an unsupervised manner by perform-

ing gradient descent on E, thereby maximizing the posterior probability of generating

the data:

Ġ = −α
∂E

∂G
= α(∆I − zGI(0))(zI(0))T − αc(G) (7)

where α is a positive constant that governs the learning rate and c(G) is the n×n matrix

form of the n2 × 1 vector C−1g. The learning rule for G above requires the value of

z for the current image pair to be known. We can estimate z by performing gradient
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descent on E with respect to z (using a fixed previously learned value for G):

ż = −β
∂E

∂z
= β(GI(0))T (∆I − zGI(0)) − β

σ2
z

z (8)

If the prior distribution of z is uniform, we can estimate z directly using the matrix

pseudoinverse method:

z = [(GI(0))TGI(0)]−1(GI(0))T∆I (9)

The learning process thus involves alternating between the fast estimation of z for

the given image pair and the slower adaptation of the generator matrix G using this

z. Figure 1A depicts a possible network implementation of the proposed approach

to invariant vision. The implementation, which is reminiscent of the division of labor

between the dorsal and ventral streams in primate visual cortex (Felleman & Van Essen,

1991), uses two parallel but cooperating networks, one estimating object identity and

the other estimating object transformations. The object network is based on a standard

linear generative model of the form: I(0) = Ur + n0 where U is a matrix of learned

object “features” and r is the feature vector for the object in I(0) (see, for example,

(Olshausen & Field, 1996; Rao & Ballard, 1997)). Perceptual constancy is achieved

due to the fact that the estimate of object identity remains stable in the first network as

the second network attempts to account for any transformations being induced in the

image, appropriately conveying the type of transformation being induced in its estimate

for z (see (Rao & Ballard, 1998) for more details).

The estimation rule for z given above is based on a first-order model (Equation 5)

and is therefore useful only for estimating small (infinitesimal) transformations. A more

general rule for estimating larger transformations is obtaining by performing gradient

descent on the optimization function given by the matrix-exponential generative model
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Figure 1: Network Architecture. (A) An implementation of the proposed approach

to invariant vision involving two cooperating recurrent networks, one estimating trans-

formations and the other estimating object features. The latter supplies the reference

image I(0) to the transformation network based on a set of basis vectors U and their

coefficients r (I(0) = Ur). More details on this approach can be found in (Rao &

Ballard, 1998). (B) A locally recurrent elaboration of the transformation network for

implementing Equation 10. The network computes ezGI(0) = I(0)+
∑

k(z
kGk/k!)I(0).
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(Equation 4):

ż = γ(ezGGI(0))T (I(z) − ezGI(0)) − γ

σ2
z

z (10)

Figure 1B shows a locally recurrent network implementation of the matrix exponential

computation required by the above equation. This implementation assumes that the

dynamics of the network is more rapid than the rate at which the image changes.

4 Results

4.1 Training Paradigm and Interpolation Function

For the purpose of evaluating the algorithm, we generated synthetic training data by

subjecting a randomly generated image (containing uniformly random pixel intensities)

to a known transformation. Consider a 1-D image I with N pixels given by I[j], j =

0, . . . , N−1. To be able to continuously transform I sampled at discrete pixel locations

by infinitesimal (sub-pixel) amounts, we need to employ an interpolation function. We

make use of the Shannon-Whittaker theorem (Marks II, 1991) stating that any band-

limited signal I[j], with j being any real number, is uniquely specified by its sufficiently

close equally spaced discrete samples.

If we assume that the signal is periodic i.e. I[j + N ] = I[j] for all j, the Shannon-

Whittaker theorem in one dimension (Marks II, 1991) states that:

I[j] =
N−1∑

m=0

I[m]
∞∑

r=−∞
sinc(π(j − m − Nr)), (11)

where sinc(x) = sin(x)/x. After some algebraic manipulation and simplification, this

can be reduced to:

I[j] =
N−1∑

m=0

I[m]Q(j − m), (12)
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where the interpolation function Q is given by:

Q(x) = (1/N)[1 + 2
N/2−1∑

p=1

cos(2πpx/N)]. (13)

Figure 2A shows this interpolation function for interpolating 1-D images with N =

20 pixels. Note that the function shown spans the range from -20 to +20 pixels to

allow its use in Equation 12. Note also that the shape of the interpolation function

reflects our assumption of a periodic signal. Other interpolation functions which do not

assume periodicity may also be used, although they may not offer the same favorable

properties as the interpolation function above prescribed by the Shannon-Whittaker

theorem (Marks II, 1991).

The interpolation function described above allows one to generate images with arbi-

trary sub-pixel transformation. For example, to translate a 1-D image I by an infinites-

imal amount x ∈ �, we may use:

I[j + x] =
N−1∑

m=0

I[m]Q(j + x − m). (14)

Figure 2B illustrates this operation by showing the specific interpolation function Q for

determining the pixel value in location j = 9 for a 0.5-pixel rightward translation of a

1-D image with N = 20 pixels (here, x = −0.5). To translate, rotate or scale a 2-D

image, we used 2-D variations of the 1-D interpolation equation above.

In addition to enabling images with known transformations to be generated, the

interpolation function also allows one to derive an analytical expression for the Lie

operator matrix directly from the derivative of Q. This allows us to evaluate the results

of learning. For example, the analytical Lie operator for 1-D translation is given by

d
dx

as applied to the interpolation function Q(x). Figure 3A shows this operator (in the

form of the matrix G) for translation of 20-pixel images (bright pixels = positive values,
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Figure 2: Interpolation Functions. (A) The general interpolation function Q used

to generate training data (assuming periodic, band-limited signals). (B) Example of

specific interpolation function used for determining the pixel value in location 9 for a

rightward shift of 0.5 pixels in a 20-pixel 1-D image (see Equation 14).
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dark = negative). Also shown alongside is one of the rows of G (row 10) representing

the analytical Lie operator centered on pixel location 10.

4.2 Learning 1-D Translations

We used Equation 7 and 50, 000 training image pairs to learn the generator matrix for

1-D translations in 20-pixel images. Training image pairs were obtained by translating

a randomly generated first image left or right by 0.5 pixels. We used C−1 = 0.0001.

The learning rate α was initialized to 0.4 and was decreased by dividing it with 1.0001

after each training pair.

Figure 3B shows the results. As expected, the rows of the learned G matrix are iden-

tical except for a shift: the same differential operator (shown in Figure 3B) is applied at

each image location. The results suggest that the learning algorithm was able to learn a

good approximation of the true generator matrix (to within an arbitrary multiplicative

scaling factor).

To evaluate the learned matrix G, we translated a given reference image I(0) using

both the analytical and the learned G matrix (Figure 4). We computed the percentage

error between pairs of transformed images obtained using the analytical and learned

matrices respectively as the total sum of squared pixel-wise errors between the two

images divided by the sum of squared pixel values for the analytically-predicted image.

As shown in Figure 4C and as quantified in Figure 4D, the learned matrix performs

well for translations up to +/-5 pixels but introduces some minor artifacts for larger

transformations. We believe this is due to amplification of noise in the learned matrix

after applying the matrix exponentiation operation in the generative model (Equation 4).

This behavior also occurs for other learned transformation matrices. Possible remedies

are discussed in Section 5.
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Figure 3: Learned Lie Operators for 1-D Translations. (A) Analytically-derived

20 × 20 Lie operator matrix G and the operator for the 10th pixel (10th row of G). (B)

Learned G matrix and a plot of the 10th operator. In the two matrix images, bright

pixels denote positive value while dark pixels denote negative values.
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Figure 4: Translating Images using Analytical and Learned 1-D Operators. (A)

Original reference image I(0) containing 10 pixels. (B) Images showing the result of

translating I(0) by amounts in the range of -2 to -10 and +2 to +10 pixels. These

images were generated using the exponential generative model (Equation 2) with the

analytical translation matrix G shown in Figure 3A. (C) Images generated using the

learned matrix for translation (Figure 3B) instead of the analytical matrix for the same

values of translations as above. (D) Plot showing the percent total squared pixelwise

error between the images in (B) and (C) as a function of translation amount.
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4.3 Learning 2-D Translations

To test the applicability of the learning algorithm to the 2-D case, we generated image

pairs by translating an original random image either horizontally or vertically by 0.5

pixels. The images were of size 10 × 10 pixels. These training image pairs were used

to learn separate Lie operators for translation along the x- and y- axis.

The analytical Lie operators for 2-D translation along the x and y directions are

given by ∂
∂x

and ∂
∂y

respectively applied to the interpolation function Q(x, y). Figure 5

shows that the learned Lie operators for horizontal and vertical translation approximate

the corresponding analytically derived operators. To directly compare the analytical

with the learned operator, we translated a reference image by varying amounts hori-

zontally and vertically using the x- and y-operators respectively, and diagonally using

both the operators. The resulting images are shown in Figures 6A, 6B and 7A. The per-

centage error between transformed images obtained using the analytical versus learned

matrices was computed as in the previous section. The errors were negligible (less than

1%) for horizontal and vertical translations from -2 to +2 pixels and less than 2% for

diagonal translations from -3 to +3 pixels (see Figures 6C, 6D, and 7B).

4.4 Learning 2-D Rotations

For learning image plane rotations, training image pairs were generated by infinitesi-

mally rotating 2D images containing random pixel intensities 0.1 radians clockwise or

counterclockwise. The Lie operator matrix was then learned from these image pairs.

The analytical operator for rotations is given by −y ∂
∂x

+ x ∂
∂y

applied to the in-

terpolation function Q(x, y). Figure 8 compares the learned operator matrix with the

analytical matrix for rotation. The accuracy of the learned matrix was tested by using it

in Equation 2 for various rotations θ. As shown in Figure 9A for the 10 × 10 case, the
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Figure 5: Learned Lie Operators for 2-D Translations. (A) Analytical and learned

Lie operator matrices for horizontal translation in 10 × 10 images. (B) Analytical and

learned Lie operator matrices for vertical translation in 10 × 10 images. Bright pixels

denote positive values while dark pixels denote negative values.
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(A) Comparison of the performance of the analytically-derived and learned 2-D op-

erator for translating images in the X-direction. An original image (labeled 0) was

translated horizontally in the range -2 to +2 pixels using Equation 2. (B) Comparison

of the performance of the analytically-derived and learned 2-D operators for vertical

translation. Results of using Equation 2 are shown for vertical translations in the range

-2 to +2 pixels. (C) & (D) Percent total squared pixelwise error between corresponding

images generated by using the analytical and learned operators for X- and Y-directions

respectively, plotted as a function of translation amount in pixels.
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Analytical Learned
Rotation

Figure 8: Lie Operators for Rotation. The figure shows the analytical and learned Lie

rotation matrices for 10 × 10 images.

learned matrix appears to be able to rotate a given reference image between −90◦ and

+90◦ about an initial position. For the larger rotations, some minor artifacts begin to

appear but the percentage squared error between the transformed images produced by

the analytical and learned matrices remained less than 1.5% for the range of rotations

studied (Figure 9B).

4.5 Learning 2-D Scaling

The Lie operator for scaling was learned from training image pairs generated by in-

finitesimally scaling random pixel images using the interpolation function Q(x, y). The

analytical operator for scaling is given by x ∂
∂x

+y ∂
∂y

applied to Q(x, y). As seen in Fig-

ure 10, the learned operator matrix for scaling approximates the analytically-derived

matrix closely. The accuracy of the learned matrix was tested by using it in Equation 2

to generate images with different degrees of scaling starting from a given reference im-
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Figure 9: Rotating 2-D Images using Analytical and Learned 2-D Operators. (A)

A reference image (labeled 0) depicting a dark horizontal bar on a white background

was rotated in the range −90◦ to +90◦ using both the analytically-derived Lie operator

matrix (top panel) and the learned matrix (bottom panel). (B) shows the percent squared

error between images generated using the analytical matrix and the learned matrix,

plotted as a function of rotation value.

20



Analytical Learned
Scaling

Figure 10: Lie Operators for Scaling. The analytical and learned Lie matrices for

scaling are shown for 10 × 10 images.

age. As shown in Figure 11A, the learned matrix performs favorably when compared

to the analytical matrix. The percent squared error between corresponding images pro-

duced by the analytical and learned matrices remained below 5% for scaling values up

to 2 (Figure 11B).

4.6 Estimating Transformations Directly from Image Pairs

Given a pair of input images containing a transformation, the transformation value z

can be estimated using the equations derived in Section 3. We examined the efficacy

of these equations in two regimes: (a) the sub-pixel regime, wherein the first-order

approximation can be expected to hold true, and (b) the large transformation regime,

wherein the full exponential model is required.
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(A) A reference image consisting of a dark circle on a white background was scaled

up to twice its original size using both the analytically-derived matrix (top panel) and

the learned matrix (bottom panel) for scaling. (B) shows the percent squared error

between images generated using the analytical matrix and the learned matrix, plotted

as a function of the scaling factor.
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4.6.1 Estimating Sub-Pixel Transformations

We compared the performance of the gradient descent method (Equation 8) and the

direct method (Equation 9) for estimating subpixel transformations in pairs of input

images. Figure 12 shows three pairs of images and the optimization surfaces deter-

mined by Equation 6 as a function of the transformation parameter z. For simplicity,

uniform priors were used for all the parameters, allowing the optimization surface to

be viewed as an “error surface” reflecting only the first term in Equation 6. All three

surfaces have a single global minimum (z = 0.1) which was found by both the gradient

descent method and the direct (matrix pseudoinverse) method. The table in Figure 13

compares actual transformation values with those estimated using the direct method

and the gradient descent method for the transformations depicted in Figure 12. Both

the direct method and the gradient descent method recover values close to the actual

value used to the generate the pair of input images.

4.6.2 Estimating Large Transformations

An advantage of the Lie approach is that the the learned generator matrix can be used

to estimate not just subpixel transformations but also larger translations using gradient

descent based on the matrix exponential generative model (see Equation 10). Unfor-

tunately, the optimization function in this case often contains multiple local minima.

Figure 14 shows examples of optimization surfaces for three pairs of images contain-

ing relatively large transformations (downward translation of 2 pixels in Figure 14A,

clockwise rotation of 1 radian in Figure 14B, and scaling by 2 in Figure 14C). In all

these cases, the optimization function contains a global minimum and one or more (typ-

ically shallower) local minima representing alternate (often cyclic) solutions. The two

images on the bottom left of each panel in Figure 14A, 14B, and 14C show the trans-
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Figure 12: Examples of Subpixel Transformations and the Corresponding Opti-

mization Surfaces. (A) An original image was translated vertically by 0.1 pixels (pair

of images on the left). The plot shows the error function defined by the first term in

Equation 6 for this pair of images. (B) The pair of images on the left illustrate a rota-

tion of 0.1 radians. The plot on the right shows the corresponding error surface. (C)

The pair images on the left depict a scaling of 0.1 (i.e. 1.1 times the original image).

The corresponding error surface is shown on the right. Note that for all three subpixel

transformations, the error surface contains a unique global minimum.
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Type
Tranformation

Value
Actual Analytical Estimate

Direct Direct

Learned Estimate

Grad. Desc. Grad. Desc.

Rotation

Scaling

Translation

0.1

0.1

0.1

0.098

0.1001

0.099

0.1

0.1

0.1001

0.098

0.089

0.099

0.09

0.0980.098

Figure 13: Estimating Subpixel Transformations. The table compares actual trans-

formation values with estimates obtained using the analytically-derived and the learned

Lie operator matrices for the image transformations in Figure 12.

formed images corresponding to these minima in the optimization surfaces. Except

for Figure 14A (where the second minimum is a cyclic solution), the local minima are

shallower and generate transformed images with greater distortion.

To find the global minimum, we performed gradient descent with several equally

spaced starting values centered near zero. We picked the transformation estimate which

yielded the best (smallest) value for the optimization function. Figure 15 illustrates the

performance of this method for estimating large translations in 1-D images using the

learned Lie operator matrix for 1-D translations (Figure 3B). As seen in Figure 15, the

gradient descent estimates are typically close to the actual values used to the generate

the pair of input images, although the search time is longer than in the subpixel trans-

formation case due to the need for exhaustive search from multiple starting points. The

table in Figure 16 compares actual transformation values with the estimates provided

by the gradient descent method for a data set of 2-D image pairs containing one of three

types of transformations (translation, rotation, or scaling). Once again, the gradient de-

scent estimates using either the analytical or the learned matrix can be seen to be close

to the actual transformation values used to generate the image pair.
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Figure 14: Examples of Large Transformations and the Corresponding Optimiza-

tion Surfaces. (A) Example of large translation. The top two images on the left illus-

trate a downward translation of 2 pixels obtained by using the interpolation function

in Figure 2. The plot on the right shows the error function derived from applying the

exponential generative model to these two images. The images representing the two

local minima of this function are shown on the left at the bottom. (B) & (C) Examples

of large rotation and large scaling respectively. The images on the left and the plot on

the right follow the scheme in (A).
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x = −8.979 (−9)

x = 7.980 (8)

x = −15.978 (−16)

x = −19.978 (−20)

x = −2.980 (−3)

x = −26.978 (−27)

x = 1.978 (2)

x = 18.980 (19)

x = −4.977 (−5)

I(0)
I(x)

Figure 15: Estimating Large 1-D Translations. Comparison of estimated translation

values with actual values (in parenthesis) for different pairs of reference (I(0)) and

translated images (I(x)) shown in the form of a table.

Type
Tranformation Analytical Estimate

(by grad. desc.)Value
Actual Learned Estimate

(by grad. desc.)

Rotation

Translation

Scaling
2

1

2

3.14

1.83

1.41

2.001

3.140

0.998

1.406

2.001

1.832

2.002

3.142

0.991

1.392

2.041

1.850

Figure 16: Estimating Large Transformations in 2-D Images. The table compares

actual transformation values with estimates obtained using the analytically-derived and

the learned Lie operator matrices for an arbitary set of image transformations.
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5 Discussion and Conclusions

Our results suggest that it is possible for an unsupervised network to learn visual invari-

ances by learning operators (or generators) for the corresponding Lie transformation

groups. We demonstrated that operators for the three prominent image plane transfor-

mations, i.e., translations, rotations, and scaling, can be learned directly from train-

ing image pairs containing examples of a given transformation. The learned operators

closely resemble their analytically-derived counterparts. These operators can be used in

conjunction with a matrix exponential-based generative model to transform (or “warp”)

images by relatively large amounts. Conversely, the generative model allows estima-

tion of transformation values directly from pairs of input images containing a given

transformation.

The results presented in the paper used simple binary images to illustrate the per-

formance of the Lie group operators. However, these operators can be applied to model

transformations in arbitrary grayscale images of naturalistic scenes, as demonstrated in

Figure 17. This opens up the possibility of applying the Lie group-based generative

model to some of the hard problems in computer vision such as motion estimation in

naturalistic scenes, simultaneous tracking and recognition of moving objects, and im-

age stabilization. Efforts are currently underway to investigate the applicability of the

model in these cases.

An important issue during estimation of large transformations based on the expo-

nential generative model is how local minima can be avoided. Several possibilities

exist. First, we may impose a prior on the transformation estimate z that favors small

values over bigger values; this helps in avoiding solutions that are larger cyclic counter-

parts of the desired solution that is closest to zero. This is in fact already implemented
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Figure 17: Examples of Transformations on Naturalistic Grayscale Images. (A)

shows examples of using the exponential Lie generative model to translate a grayscale

image of an automobile rightwards (positive values, shown on the left) and leftwards

(negative values, shown on the right). (B) shows examples of rotating a grayscale image

of an object clockwise (on the right) and anti-clockwise (on left) using the exponential

Lie generative model.
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in the model with the zero-mean Gaussian prior on z and the restriction of search to

a region around zero. A second possibility is to use coarse-to-fine techniques, where

transformation estimates obtained at a coarse scale are used as starting points for es-

timating transformations at finer scales (see, for example, (Black & Jepson, 1996)).

The coarse-to-fine approach may also help in alleviating the problem of noise in the

learned matrices. As noted in the Results section, small amounts of noise in the learned

matrices tend to get amplified for larger transformations due to the matrix exponentia-

tion operation. A coarse-to-fine multiscale strategy could help in correcting these noise

artifacts using information from higher scales.

A final research direction worthy of further study is developing more sophisti-

cated generative models such as those that can handle multiple transformations in

a given image. One potential candidate is the generative model given by: I(z) =

e
∑m

i=1
ziGiI(0) + n, where Gi is the generator for the ith type of transformation and zi

is the value of that transformation in the input image. This model extends the Taylor-

series based approach for multiple types of transformations introduced in (Rao & Bal-

lard, 1998). Such a model could potentially allow a set of domain-specific Lie operators

to be learned directly from natural video images. We expect the methods and results

presented in this paper to be extremely useful in guiding our future research in this

direction.
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