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Abstract

Ideally, applications in ubiquitous computing
environments help users accomplish their tasks in as
unobtrusive a way as possible by collecting and
processing various information about the users' context.
Such information is provided to the applications by a
large number of simple wireless sensors embedded
throughout the environment or carried by people. In
ubiquitous computing environments such as these, two
new problems arise. First, the wireless sensors are
designed to be inexpensive and low power. Thus, there
is minimal computation and communication within the
sensors themselves. Much of the computation needs to
be performed within the infrastructure where software
components running on more capable engines can
elaborate the data, make correlations, and discover
patterns of interest. As the number of impoverished
sensors and accompanying software components
increases, it becomes more difficult to configure and
manage them. Existing auto-configuration systems,
such as UPnP [28], were designed for much more
capable devices and are not directly applicable to this
environment. Second, the ubiquitous computing
applications we are developing want to access sensors
based on dynamic attributes, such as the closest user,
making it necessary to support rebinding between
applications, sensors, and their intermediate software
components as the situation changes. Unfortunately,
existing discovery systems do not support this fine-
grain automatic rebinding. We propose a new approach
for the configuration and management of small wireless
sensors and software service components that
efficiently supports dynamic rebinding to applications.
We also demonstrate that our approach is scalable and
fills the gaps left by existing auto-configuration and
discovery systems.

1 Introduction

Ideally, applications in ubiquitous computing
environments help users accomplish their tasks in as
unobtrusive a way as possible by collecting and
processing various information about the users' context.
To collect such information, various types of sensors
are deployed in every place in the environment, even in
the places where wiring is impossible. To make it easy
to deploy sensors in the environment, usually wireless
sensors are preferred. However, wireless sensors are
powered by battery or harvesting electronic power
parasitically from other sources around them [20, 22],
and they are designed to have minimal functionality to
minimize their power requirements. Thus, they do not
support any complex communication protocols or extra
computation, and the applications interested in the
sensor data rarely communicate directly with the
sensors as they might with more intelligent devices.
Instead, most of the sensors send data to a nearby base
station periodically or when an interesting event occurs
through a simple communication protocol, and much of
the computation needs to be performed within the
infrastructure where software components run on more
capable engines. The software components translate,
calibrate, fuse data together, and manipulate data in
various ways before delivering data to the applications.
All these sensor data processing components can be
integrated into each application as is typically done
today in mostly stove-piped one-off systems. It would
be much more desirable if the sensor data processing
components could be shared by multiple applications,
and the set of these processing components were
adaptable at run time as the situation changes. And, the
software components need to be upgraded and replaced
by new better components while the applications would
be expected to be kept running. Thus, it is more
efficient to make the sensor data processing



components as autonomous services and compose them
together dynamically at run time. As the number of
impoverished sensors and accompanying software
components increases, it becomes more and more
difficult to configure and manage them. Even though
there exist some systems that perform automatic
configuration of devices [26, 29], they are designed for
much more capable devices and are not directly
applicable to simple wireless sensors and
accompanying software service components.

The ubiquitous computing applications we are
developing [2, 16] want to access sensors based on
dynamic attributes such as where the sensors are
currently located, who are around the sensors, and so
on. For example, an application may want to keep
receiving the temperature data around a person
wherever the person is. The person may move from one
place to another, and as the personis location changes,
the application needs to access different sensors to get
the correct data. To make applications easy to write
and adaptable, the system should be able to rebind the
applications, sensors, and their intermediate software
components dynamically based on the dynamic
attributes of the sensors. Unfortunately, existing
discovery systems do not support this automatic
rebinding.

In this paper, we describe a new approach for
configuration and management of small wireless
sensors and software service components that
efficiently support the dynamic rebinding of sensors
and software components to applications. We also
describe the two applications that we built on top of
our new architecture.

2 Related Work

2.1 Ubiquitous Computing Environments

Our work is related to much of the research on
intelligent rooms [3, 10, 11, 13, 23] that are equipped
with various types of devices including large wall
displays, laptops, and handheld devices. The users in
the room use these devices to present information to
others or exchange information with each other. The
applications running in the intelligent rooms use
various devices depending on the situation, and the
infrastructure maps the needs of each application to the
most suitable devices for the current context, and sets
up the communication between the application and the
devices. This work focuses on how to coordinate the
use of output devices, especially large displays, and
does not address the issues of collecting context
information from sensors.

2.2 Automatic Configuration Systems

Automatic configuration is an important part of
approaches such as Jini [26] and UPnP [29]. In these
systems, when a device is connected to the local area
network, the device registers its existence i the
services it provides, the properties of those services,
and how other entities can access and interact with
them fi with a lookup service. Once the device is
registered with the lookup service, it can be used by
any clients that want to use the services provided by
that device. These systems assume that the devices are
intelligent enough to participate in their registration
and lookup protocols that can be rather complex. For
example, in Jini, the registration and lookup protocols
are based on Java RMI [25] that needs TCP/IP
protocol support and a Java virtual machine on the
device. However, these need complex computation and
storage, and are not good for simple wireless sensors
that should save battery power so that they can last for
long periods of time, possibly years. To use
impoverished devices in these systems, a proxy [27]
scheme has been proposed. Proxies allow simple
devices to communicate with other entities by giving
them a more powerful alter ego in the network. We can
make simple wireless sensors participate in the
automatic configuration system by using proxies for the
sensors. However, the sensors do not have any
automatic mechanism for connecting themselves with
their proxies, and the proxies need to be manually set
up so that they can correctly communicate with the
Sensors.

2.3 Dynamic Service Composition Systems

Among the many existing dynamic service composition
systems that compose several simple autonomous
services into a complex composite service [4, 5, 8, 14,
18], path-based systems [9, 14] are the most suitable
for our purposes because they compose services in
pipe-and-filter style that best catches the composition
pattern of the intermediate services in ubiquitous
computing environments. In Ninja Paths [9], a path fi a
sequence of services from a network service to a client
fi is constructed and the connections between the
services are established before the network service
starts communicating with the client. Network services
in Ninja Paths usually serve streaming data to and from
clients, and the examples of the intermediate services
include transcoding, translation, and protocol
conversion services. The idea of composing services
into a path is useful for ubiquitous computing
environments. However, it is still based on a
connection-oriented communication model that is not



suitable for the event-driven communication model
used by simple wireless sensors.

2.4 Discovery Systems

In existing discovery systems [1, 6, 26], a device or a
software service registers its description with the
discovery service. And, the application that wants to
use the device locates the device it wants to use
through the discovery service. Then, it establishes a
connection to the device and communicates with it by
sending requests and receiving replies. This model
works well when the descriptions of devices do not
change frequently. In ubiquitous computing
environments, however, the descriptions of devices
include the attributes that change as the situation
changes. If we use the existing discovery systems in
ubiquitous computing environments, each device needs
to acquire the changes in its attributes and re-register
its new description with the discovery service
whenever the situation changes. And, the applications
are responsible for locating and connecting to the
appropriate devices every time it wants to send a
request to the device. The late-binding discovery
mechanism [1] does this for the applications. However,
it does not fit well for the applications that want to
receive a series of data packets from sensors over a
relatively long period of time.

3 System Architecture

3.1 Overview

3.1.1 Event-driven communication between sensors
and applications

In the existing discovery systems, applications usually
communicate with devices through an RPC [24] style
request-reply protocol. An application first establishes
a connection to the device it is interested in and sends
requests and waits for replies. To establish a
connection, the application needs to obtain the address
of the device through the discovery service. This
requires that devices register themselves with the
discovery system.

However, applications do not necessarily have to
establish explicit connections to sensors to get sensor
data. Usually, sensors generate data periodically or
when an interesting event occurs, and many
applications want to receive data only when the sensors
generate it. The publish/subscribe model [19] fits well
for this type of interaction. In this model, the data
receivers do not have to establish connections to the
sender. Instead, they are listening for a particular event

type, and the infrastructure delivers the events to the
receiver when the events occur. Some applications may
want to receive sensor data through request-reply
semantics. But, in ubiquitous computing environments
where applications are written to react to external
events generated in the environment, the
publish/subscribe style of event-driven interaction is
prevalent [15].

In our architecture, the communication between
sensors and applications follows the publish/subscribe
model, and the sensors do not register themselves or
their proxies with the discovery service. Instead of
establishing a connection to sensors, applications just
register their interests with the infrastructure. When the
sensor data is generated, the infrastructure determines
which applications will receive the data and routes the
data to them. Thus, the data generated by sensors must
be self-describing and include meta-information to be
used by the infrastructure to determining the
appropriate receivers.

3.1.2 Path-based, per event basis service composition

The raw data generated by sensors is not directly
consumed by applications. The raw sensor data is
translated, calibrated, fused with other data, and
manipulated in various ways before it is actually used
by applications. We cannot expect applications to be
written for a specific set of sensors. They must be able
to evolve over time. Thus several layers of abstraction
will be needed. Some of the lower will consist of
services that will aggregate, smooth, and calibrate
sensor data.

For example, the raw sensor data generated by a
temperature sensor is just a series of bytes. It should be
first translated into calibrated values so that it
represents the actual temperature value that
applications really care about. Also, the temperature
value from one sensor may be fused with other
temperature readings from other sensors in the same
room. When the user moves to another room with
different types of temperature sensors, the application
needs different translation and calibration components.
Integrating the sensor data processing components into
each application is not efficient for two reasons: the
components are shared by multiple applications; the
data processing steps for each application may change
dynamically as the situation changes. The components
should be made as autonomous services and composed
dynamically at run time.

The composition pattern of the sensor data
processing services follows the pipe-and-filter
architectural style [7]. A componentis input data comes
from the previous componentis output, and the output



of the component goes to the next componentis input,
and so on. We borrow this idea from the path-based
systems that compose services into a path fi an ordered
sequence of services through which data flows. In path-
based systems, a path is constructed and the
connections between the services are established before
the network service starts sending streaming data to the
client. However, in ubiquitous computing environments
with small wireless sensors that emit data
intermittently, the composition information is not
available until the sensor data is generated, and the
compositions change frequently. Therefore, the
connection-oriented path mechanisms do not catch the
characteristics of these environments.

We extend the path-based service composition idea
with an event-driven communication model. Services
do not use connections to form a path. Instead, services
are composed on a per event basis and the composition
information is carried within each data event.

3.1.3 Using dynamic attributes in the discovery
process

The meta-information attached to the sensor data by
sensors includes only static information about the
sensor data that can be known at manufacturing time
such as the type of the data, sensor ID, and so on.
However, the interests registered by applications
include not only the static attributes of the sensors, but
also the dynamic attributes such as where the sensors
are currently located, who are around the sensors, and
so on. The infrastructure should bridge the gap
between these two and deliver the sensor data to
appropriate applications.

We extend the function of existing discovery systems
by making the discovery service consult the association
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service that maintains the dynamic attributes of the
sensors and other objects in the environment when they
are matching incoming sensor data with applications.

3.2 Putting Them All Together

All the intermediate software services and applications
register their descriptions and interests with the
infrastructure. They can afford to do this because they
are running on a wired infrastructure and do not have
power constraints as do the impoverished sensors. The
intermediate  service  description includes the
information on the input data, output data, and the
operation the service performs on the input data. The
application interest includes the information on the data
the application is interested in, and the association
parameters that specify the dynamic attributes.

When a sensor generates data, it forwards the data
along with its meta-information to a nearby gateway.
The meta-information attached to the data packet
includes the device ID and data-type ID. When the
gateway receives a data packet from a sensor, it
attaches its gateway ID into the meta-information field
and forwards it to the infrastructure. The meta-
information that comes with the data has only static
attributes of the sensor data. To obtain dynamic
attributes of the data, the infrastructure consults the
association service. The association service may use
the meta-information to figure out the dynamic
attribute of the sensor data. Once the infrastructure
finds out the dynamic attributes of the data, it figures
out which application should receive the data and
which intermediate software services should be used to
transform the raw sensor data into the appropriate type
of data the application is expecting. The result is a path
i a sequence of intermediate services from the sensor
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Figure 1. The composer receives data from sensors and generates a path for the data.



to the application. Multiple paths can be produced if
more than one application is interested in the same
sensor data.

Once a path is produced, the path information is
attached to the data packet, and the data packet visits
the intermediate services in the order specified in the
path information. When an intermediate service
receives the data, it processes the data, puts the result
into the data packet, and forwards it to the next service
in the path information. The last item in the path
information is the application. When the data packet
reaches the application, the data has been already
processed by the intermediate services and transformed
into the appropriate forms that the application can
directly use.

4 Prototype Implementation

4.1 Sensors

The wireless sensors are implemented using UC
Berkeley motes [12] that have been programmed to
simply broadcast their data over their radios to a
nearby base station either periodically or whenever an
interesting event occurs i depending on the sensor
type. When sending data, each mote includes its ID and
the type of the sensor generating the data.

Mote gateways are running on the machines to which
mote base stations are connected. The mote base
station forwards the radio data packet to the mote
gateway through the serial port of the machine. The
mote gateway converts the radio data packet into a data
message and sends it to the software infrastructure. The
mote gateway adds its own ID into the meta-
information of the message.

Figure 2. Mote sensor.

4.2 Intermediate Services and Applications

The software infrastructure is implemented on top of
Rain [21], an asynchronous event-based
service/messaging system developed at Intel Research
Seattle. Messages in Rain are XML fragments and the
format of the message can be easily changed. The only
required fields are sender and recipient tags. All the
software entities in the environment are Rain services.
And, data, path information, and meta-information are
encoded as XML elements and composed into a
message. Rain has been implemented in several
different languages, and we use the Java
implementation for this work.

Services and applications register their descriptions
and interests with the infrastructure. In our first
prototype implementation, we have simplified the
contents of the description in a similar way to existing
path-based systems [9, 14]. An intermediate service is
described by its input data-type and output data-type.
The semantics of the serviceis functionality are
described by these input and output types. An
application interest includes its input data-type and
association parameters that are attribute-value pairs.
Examples of attributes include location, person, and
other physical object. For example, an application may
want temperature data in the living room. In this case,
the input data type of the application is &emperaturei
and the association parameter is ¢&ocation=living
roomi.

The lifetime of the descriptions are controlled by a
leasing mechanism [8]. Descriptions are updated by
periodic advertisement messages from services and
applications. Descriptions are deleted from the
infrastructure if they cease to be advertised.

When a service receives a data message, it is
delivered to the message handler of the service. The
message handler processes the data and puts the result
into the message. Then, the message containing the
result is forwarded to the next service in the path.

4.3 Composer

In the center of the infrastructure is a service named the
composer. The composer maintains all the descriptions
of the intermediate services and interests of the
applications in the environment. Its implementation can
be centralized or distributed for fault tolerance. Service
descriptions are stored as a directed graph. In the
graph, nodes represent data-type names, and arcs
represent services. The starting node of an arc is the
input data-type of the service, and the ending node
represents the output data-type of the service.
Application interests are stored in a table.
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Figure 3. Temperature data of the living room is delivered to the application interested in it. 1) The mote
sensor sends a series of bytes to the gateway. 2) The gateway packs the data into a Rain message and forwards
it to the composer. 3) The composer gets the association information (location = living room), and finds a path
to the application. The path found is the ordered sequence of the mote temperature translator service, mote
temperature calibrator service, and the application. The composer forwards the data to the first service of the
path attaching information about the remainder of the path to the data. 4) The mote temperature translator
service translates the raw data into an integer value and forwards the result to the next service i the mote

temperature calibrator N in the path. 5) The mote temperature calibrator service determines the actual
temperature from the calibration data and forwards it to the anolication.

When a mote gateway receives a data packet from a
mote sensor. It puts the data into a data message and
forwards it to the composer. Upon receipt of the
message, the composer first refers to the association
service, another infrastructure service that figures out
the dynamic attributes from the meta-information of the
data. In our prototype, the association service
determines the location or proximity based on the

gateway ID that receives the sensor data. For example,
the association service may return €ocation=living
roomi from the gateway ID. The association service
many use different information depending on the
association mechanism deployed in the environment.
Once the composer gets all the association information
for the data, it looks for applications whose association
parameters match the dynamic attributes of the



incoming data. For each of the matching applications,
the composer finds the shortest path between the data-
type of the incoming data and the input data-type of the
application from the directed graph. If the composer
finds a path, it attaches the list of services in the path to
the data message and forwards it to the first service in
the path.

4.4 Error Handling

The service description information maintained in the
composer is kept being refreshed by periodic
advertisement ~ messages. However, obsolete
descriptions may be present until timeout, and the path
may include an unavailable service. When a service
cannot forward the message to the next service in the
path, the service sends the message back to the
composer with the error information giving the
composer the opportunity to find a different path for
the message and update the service description
information.

5 Applications

5.1 PlantCare

The PlantCare system provides autonomous care of
plants in home and office environments [16]. It collects
data such as current temperature, moisture, and light
level through small wireless sensors, decides what
actions to take, and sends appropriate commands to a
small mobile robot that waters the plants and recharges
sensors. The PlantCare system is typical of future
ubiquitous computing applications with its many small
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wireless sensors both on plants and the environment
and software services that are both local (sensor
calibration) and remote (plant care encyclopedia).

Although, the original PlantCare system was
implemented without our infrastructure, we have re-
implemented it so that we could better learn from the
comparison between the two approaches. The
PlantCare system is composed of many services fi
fifteen different types of Rain services, and we will
describe only a part of the system that is related to
sensor data collection. Each mote sensor is equipped
with four sensors for temperature, moisture, light, and
current battery level. The mote sensor collects all these
readings, packs them together into one data packet, and
periodically sends it to a nearby gateway. The mote
translator service translates the raw sensor data by
unpacking into a much longer XML description that
would have cost the sensor extra energy to transmit
directly. The mote translator exports four event
handlers for each different type of sensor. For example,
the temperature data event handler extracts only
temperature reading from the raw sensor data and
translates it into a value. So, we can think of it as four
closely related translator services instantiated as one
combined service. There are four calibration services
for each of the sensor data types.

The calibration service -calibrates sensor data
readings using previously collected calibration data.
For example, the temperature calibration service
converts the temperature reading value 145 (out of the
0-255 range of the A/D converter on the mote) into
68°F. The tables for making this correspondence are
built by the robot as it visits sensors and compares their
readings to its own higher-quality pre-calibrated
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Figure 4. The flow of sensor data in the PlantCare application.



sensor. The robotis readings are also forwarded to the
calibration service [17].

The mechanic application monitors the battery level
of mote sensors and may cause the robot to visit a plant
to recharge its sensors. The gardener application
collects environmental data, consults plant care
encyclopedia service, and sends appropriate commands
to the robot to water the plant. The temperature logging
application stores temperature data for future use by
other applications. For example, a proper plant
positioning application may suggest to the user other
spaces where a particular type of plant may find a more
appropriate environment in terms of temperature and
light levels.

When the gateway receives a data packet from a mote
sensor, it forwards the sensor data to the composer.
The composer converts the mote ID and the gateway
ID into a location name using the association service.
Then, the composer looks for applications interested in
the sensor data. The mechanic application is interested
in the mote battery level, the gardener application is
interested in the temperature, light, and moisture data,
and the temperature logging application is interested in
the temperature data. So, the composer forwards 5
separate messages with different path information. For
example, the path information of the message destined
to the mechanic is <mote translator service (battery
level event handler), battery level calibration service,
mechanic application>. Each of the 5 messages travels
through the intermediate services specified in the path
information and is finally delivered to the application.

Adding a mote sensor into the environment is as
simple as just turning on the sensor. Users do not have
to stop other services or applications to reconfigure the
environment. Once the mote sensor is turned on, the
data generated by the sensor is delivered to the
appropriate applications by the infrastructure. If the
user wants to introduce a new type of sensor into the
environment, all she needs to do is to start the
translator service and calibration service for the new
type of sensor. Applications do not have to be modified
or even restarted for the new sensor. We are also
investigating how to lookup and start these services
automatically on the appropriate local or remote
servers. The data generated by the new sensor will be
routed through the new translator service and the new
calibration service by the infrastructure. Upgrading a
software service is also simple. It is done by starting
the new upgraded service and stopping the old service.
Other services or applications interacting with this
service are not affected by it. In connection-oriented
systems, replacing existing components often requires
restarting interacting components.

5.2 Labscape

Labscape is an experiment capture system for a cell
biology laboratory [2]. In a typical biology laboratory,
various experimental instruments are scattered around
several workbenches, and the biologist moves around
the workbenches during her experiment session. The
Labscape application follows the biologist (moves its
user interface to the screen nearest them) and helps
record the experiment as she moves among
workbenches. Each workbench is equipped with a
tablet computer and a barcode reader or an RF tag
reader. The tablet computer is used for presenting the
evolving record of the current experiment to the
biologist. A barcode reader and/or RF tag reader is
used for scanning the identification tag of each entity
involved in the experiment. A body-worn short-range
infrared badge is used to determine the useris location.

A user starts her experiment session by starting the
guide application. The guide application guides the
user through the experiment by showing the experiment
procedure and recording data generated during the
experiment. The guide application migrates from one
tablet computer to another following the user as the
user moves from one workbench to another. The tag
scan events generated at the useris current workbench
are translated and delivered to the useris guide
application.

The Labscape system was first implemented prior to
our work, and we describe the version implemented
using our infrastructure. When the user is at workbench
X that has a barcode reader, her guide application is
running on tablet computer X. A barcode scan event at
workbench X is first sent to the barcode translator.
Then, the translated data is sent to the next service that
converts the tag data into an entity name. The entity
name is delivered to the useris guide application on
computer X. When the user moves to workbench Y, the
user uses an RF tag scanner instead of barcode reader.
The RF tag scan event passes through different services
from the barcode scan event before delivered to the
guide service that has now also migrated to computer
Y. The association between the scanning events and the
user is provided by the location service that detects the
user through their badge at the workbenches
corresponding to the reader.

In this example, the user uses two different types of
sensors (barcode reader and RF tag reader) to generate
the same type of data (tag data). The guide application
cannot anticipate which reader the user is going to use
until the user actually uses the reader. Other service
composition schemes that compose services together
before sending or receiving data do not work well in
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Figure 3. Dynamic composition in Labscape.

this situation. In our architecture, applications do not
have to worry about this kind of dynamic change that is
the norm in ubiquitous computing environments. The
infrastructure handles this dynamic change by
composing services at the moment the data is
generated. Another interesting point is that the guide
application is migrating to another computer while it is
still running. Because service composition and
communication is done in an event-driven fashion
without explicit connections in our architecture, there
is no need for reconnecting broken connections.

6 Discussion

6.1 Configurability

In other systems, an application first establishes a
connection to the device it wants to use. Then, the
application communicates with the device through the
connection. To make applications be able to locate and
connect the devices, they are required to be configured
i getting a network address and setting up appropriate
parameters for the network i and registered with the
discovery service. In our architecture, however, by
using the event-driven communication model and
making sensor data self-describing, we could eliminate
the need for configuring sensors. Sensors do not have
to configure themselves nor do they need to establish
connections directly to their proxies or other
applications. They can start generating and forwarding
data without any pre-registration or configuration. So,
adding a new sensor is as easy as just turning it on.
This feature is especially useful in environments with

=\
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lots of small wireless sensors. Updating configuration
information by hand for each of them is practically
infeasible when their numbers reach hundreds or more
and we want to consider them as consumer devices.

Configuring software services is also an important
issue, and adding, removing or upgrading software
services should be simple, too. In our architecture,
services are dynamically composed in a per message
basis, and there is no connections established between
services and application. Thus, adding, removing, or
upgrading services does not break any other existing
services or require stopping other services.

6.2 Evolvability and Portability

Ubiquitous computing environments have different
types of sensors and devices, and the applications
written for one environment are often hard to port to
another. Introducing new types of sensors into an
environment may cause the applications to stop
running. That is because the application is written to
use specific types of sensors and devices. In our
architecture, applications do not specify which type of
sensors to use. Instead, they specify high-level data
types [1], and the intermediate services in the
environment transform the specific sensor data to the
high-level data types usable by applications. By
separating environment-dependent information from
the applications, we make the applications more
portable and more adaptable thereby supporting system
evolution.

6.3 Support for Dynamic Rebinding

Ubiquitous computing applications often need to
change their data sources as the situation changes. It
requires that the applications keep monitoring the
situation and change the connections to the sensors. In
our architecture, the infrastructure does this job for
applications by using the event-driven communication
model and using dynamic attributes in the discovery
process. Applications just specify their interests that
include both static and dynamic attributes of the data
sources, and the infrastructure handles the rebinding
process and delivers the correct sensor data to the
applications.

6.4 Performance

We have measured the performance overhead of our
composition infrastructure. We have used desktop
machines with Intel Pentium III processors at 1.2 GHz,
512 MB of RAM, and running Windows 2000. First,
we measured the overhead of computing paths. In

Table 1, the path computing time is the time spent by
the composer to find paths for an incoming sensor data
message. The composer latency is the time for a sensor
data message to travel from a gateway to the first
service in the path generated by the composer. So, the
composer latency is the sum of the path computing
time and the communication latency. From our
experiences on several ubiquitous computing
applications including the two described in section 5,
we have found that in most cases the length of the path
is less than 4 and that the number of services in an
environment is usually not greater than hundred. In the
test set, the graph formed by the intermediate services
is a tree with depth of 4, and the length of the path
generated by the composer is also 4. As the result
shows, the composer latency is dominated by the
communication overhead, and finding paths does not
take appreciable time. Also, the number of services
registered in the composer does not affect the time
taken for finding paths. So, the composer overhead is
not too large and can be considered as adding
approximately one more hop to the message path.

Table 1. Composer overhead.

Number of services | Path computing | Composer
registered time latency
50 2.3 ms 6.7 ms
100 2.5 ms 7.3 ms
150 2.4 ms 7.0 ms
200 2.9 ms 6.6 ms

We also measured the latency of our composition
infrastructure and two alternatives that bound its
performance #i direct connection and the pure
publish/subscribe model. In the best case, using a direct
connection, each service is pre-configured and knows
the next service to which it is to forward messages
without referring to the path information in the data
message, and each message visits the minimum number
of nodes before it gets to the final application. In our
infrastructure, a data message first visits the composer
before traveling to the final application. So, each data
message Vvisits one more service than in the direct
connection case. And, each service needs to process the
path information in the message. In the pure
publish/subscribe model, a message is always sent to
the central message queue that dispatches each
message to its receivers. So, each message visits twice
as many nodes as in the direct connection. Table 2
shows the latencies for each case. The composer
overhead and path processing overhead is relatively



large when the path length is short and message size is
small. However, the overhead is mitigated as the path
length becomes longer and the message size becomes
larger. The publish/subscribe model needs more than
twice the time of the direct connection approach in
every case, as expected. The composition infrastructure
has more than 20% performance overhead over direct
connection. But, the ease of configuration and
management of services it provides seems more than
worth the cost for most non-real-time applications.

Table 2. Latencies for 3 message delivering
mechanisms.

Method 10-byte message 5000-byte message

2 hop 4 hop 2 hop 4 hop
Direct 10.5ms | 21.8 ms | 145.8 ms | 298.7 ms
Composition | 19.1ms | 34.5ms | 221.4ms | 365.6 ms
Pub/sub 24.5ms | 50.7ms | 300.1 ms | 640.8 ms

6.5 Application Experience

The comparison of the two different implementations fi
one using our infrastructure, the other not i of each of
the two applications in section 5 shows the usefulness
of our infrastructure in ubiquitous computing
environments.

In the original version of the PlantCare application,
direct connection is used for connecting services, that
is, each service knows the next service to which it is to
forward its messages. Some of the services use the
discovery service, but they use it just for mapping
servicesi names into servicesi addresses. This severely
limits the systemis flexibility in that whenever a service
is added, the services that will need to use it must be
explicitly modified. The new implementation using our
infrastructure solves this problem, and we can add or
remove services at any time without affecting other
services. The connections between them are handled
completely by the composer.

In the original version of the Labscape application,
the components that process sensor data are integrated
into the guide application. Sensor data generated by
barcode readers and RF tag scanners is directly
delivered to the guide application. In this
implementation, adding a new type of sensor (tag
scanner) requires the guide application to be rewritten
so that it can understand the data generated by the new
type of tag scanner. In the implementation using our
infrastructure, the guide application does not have to be
modified at all. All that is required is starting a new

translator service that can translate the new type of data
into tag data that the composer with then automatically
routes (along with its association parameters) to the
guide application.

7 Conclusion and Future Work

Ubiquitous computing environments consist of large
numbers of small wireless sensors and dynamically
composed software services. As the number of sensors
and software services increases, it becomes more
difficult to configure and manage them efficiently. In
addition to that, ubiquitous computing applications
want to access sensors based on the dynamic attributes
of the sensors and rebind to different sensors as the
situation changes. In this paper, we described a new
approach for configuring and managing these sensors
and services that efficiently supports dynamic
rebinding between applications and sensors. Event-
driven communication and self-describing sensor data
enable small wireless sensors to be integrated into the
environment without any explicit configuration.
Dynamic service composition that occurs on a per
message basis makes management of software services
easy and simple. And, the use of dynamic attributes in
the discovery process coupled with event-driven
communication supports dynamic rebinding efficiently.

The next step is to research the service description
methods. In our prototype implementation, we use the
input data-type and output data-type for describing a
service. This has worked well for the applications we
have implemented up to this point. However, the input
data-type and output data-type are not enough for
describing the semantics of more complex services or
those that require the aggregation of data from a
collection of sensors. Therefore, we are investigating
more expressive description methods for describing the
semantics of more complex services.

In the current architecture, each message carries its
list of services through which it must travel. Instead of
a simple list of services, we want to add logic to the
path information so that the composition can be
optimized. This idea comes from the active networking
community [28], and we are exploring the possibility
of applying this idea to our infrastructure.

Also, we are investigating how to manage the large
number of services in the environment: starting the
necessary services on appropriate machines to enable
an application on demand; stopping unused or obsolete
services; and adjusting workloads to manage storage,
performance, and bandwidth requirements and
constraints.
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