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Abstract. Recent algorithms for sparse coding and independent component analysis

(ICA) have demonstrated how localized features can be learned from natural images.

However, these approaches do not take image transformations into account. As a

result, they produce image codes that are redundant because the same feature is

learned at multiple locations. We describe an algorithm for sparse coding based

on a bilinear generative model of images. By explicitly modeling the interaction

between image features and their transformations, the bilinear approach helps reduce

redundancy in the image code and provides a basis for transformation-invariant vision.

We present results demonstrating bilinear sparse coding of natural images. We also

explore an extension of the model that can capture spatial relationships between the

independent features of an object, thereby providing a new framework for parts-based

object recognition.

1. Introduction

Algorithms for redundancy reduction and efficient coding have been the subject of

considerable attention in recent years [6, 3, 4, 7, 9, 5, 12]. Although the basic ideas

can be traced to the early work of Attneave [1] and Barlow [2], recent techniques such

as independent component analysis (ICA) and sparse coding have helped formalize
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these ideas and have demonstrated the feasibility of efficient coding through redundancy

reduction. These techniques produce an efficient code by attempting to minimize the

dependencies between elements of the code by using appropriate constraints.

One of the most successful applications of ICA and sparse coding has been in the

area of image coding. Olshausen and Field showed that sparse coding of natural images

produces localized, oriented basis filters that resemble the receptive fields of simple cells

in primary visual cortex [6, 7]. Bell and Sejnowski obtained similar results using their

algorithm for ICA [3]. However, these approaches do not take image transformations

into account. As a result, the same oriented feature is often learned at different

locations, yielding a redundant code. Moreover, the presence of the same feature at

multiple locations prevents more complex features from being learned and leads to a

combinatorial explosion when one attempts to scale the approach to large image patches

or hierarchical networks.

In this paper, we propose an approach to sparse coding that explicitly models the

interaction between image features and their transformations. A bilinear generative

model is used to learn both the independent features in an image as well as their

transformations. Our approach extends Tenenbaum and Freeman’s work on bilinear

models for learning content and style [13] by casting the problem within probabilistic

sparse coding framework. Thus, whereas prior work on bilinear models used global

decomposition methods such as SVD, the approach presented here emphasizes the

extraction of local features by removing higher-order redundancies through sparseness

constraints. We show that for natural images, this approach produces localized, oriented

filters that can be translated by different amounts to account for image features at

arbitrary locations. Our results demonstrate how an image can be factored into a set

of basic local features and their transformations, providing a basis for transformation-
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invariant vision. We conclude by discussing how the approach can be extended to allow

parts-based object recognition, wherein an object is modeled as a collection of local

features (or “parts”) and their relative transformations.

2. Bilinear Generative Models

We begin by considering the standard linear generative model used in algorithms for

ICA and sparse coding [3, 7, 9]:

z =
m

∑

i=1

wixi (1)

where z is a k-dimensional input vector (e.g. an image), wi is a k-dimensional basis

vector and xi is its scalar coefficient. Given the linear generative model above, the goal

of ICA is to learn the basis vectors wi such that the xi are as independent as possible,

while the goal in sparse coding is to make the distribution of xi highly kurtotic given

Equation 1.

The linear generative model in Equation 1 can be extended to the bilinear case by

using two independent sets of coefficients xi and yi (or equivalently, two vectors x and

y) [13]:

z = f(x,y) =
m

∑

i=1

n
∑

j=1

wijxiyj (2)

The coefficients xi and yj jointly modulate a set of basis vectors wij to produce an

input vector z. For the present study, the coefficient xi can be regarded as encoding the

presence of object feature i in the image while the yj values determine the transformation

present in the image. In the terminology of Tenenbaum and Freeman [13], x describes

the “content” of the image while y encodes its “style.”

Equation 2 can also be expressed as a linear equation in x for a fixed y:

z = f(x)|y =
m

∑

i=1





n
∑

j=1

wijyj



 xi =
m

∑

i=1

w
y
i xi (3)
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Figure 1. Examples of linear and bilinear features. A comparison of learned

features between a standard linear model and a bilinear model, both trained using

sparseness constraints to obtain localized, independent features. The two rows in the

bilinear case depict the translated object features w
y

i (see Equation 3) for different y

vectors of corresponding to translations of −3, . . . , 3 pixels.

The notation w
y
i signifies a transformed feature computed by the weighted sum shown

above of the bilinear features wi,⋆ by the values in a given y vector. Likewise, for a fixed

x, one obtains a linear equation in y. Indeed this is the definition of bilinear: given one

fixed factor, the model is linear with respect to the other factor. The power of bilinear

models stems from the rich non-linear interactions that can be represented by varying

both x and y simultaneously.

Note that the linear generative model can be seen as a special case of the bilinear

model when n = 1, and y = 1. A comparison between the learned features for the

linear generative model (Equation 1) and the bilinear model is provided in Figure 4.

Figure 1 illustrates the subsumption of the linear model, as the linear features are a

single example within the range of features that can be generated by the bilinear model

trained on identical data.
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3. Learning Sparse Bilinear Models

3.1. Learning Bilinear Models

Our goal is to learn from image data an appropriate set of basis vectors wij that

effectively describe the interactions between the feature vector x and the transformation

vector y. A commonly used approach in unsupervised learning is to minimize the sum

of squared pixel-wise errors over all images:

E1(wij ,x,y) = ||z−
m

∑

i=1

n
∑

j=1

wijxiyj||
2 (4)

= (z−
m

∑

i=1

n
∑

j=1

wijxiyj)
T (z−

m
∑

i=1

n
∑

j=1

wijxiyj) (5)

where || · || denotes the L2 norm of a vector. A standard approach to minimizing such a

function is to use gradient descent and alternate between minimization with respect to

{x,y} and minimization with respect to wij. Unfortunately, the optimization problem

as stated is underconstrained. The function E1 has many local minima and results from

our simulations indicate that convergence is difficult in many cases. There are many

different ways to represent an image, making it difficult for the method to converge to

a basis set that can generalize effectively.

A related approach is presented by Tenenbaum and Freeman [13]. Rather than

using gradient descent, their method estimates the parameters directly by computing the

singular value decomposition (SVD) of a matrix A containing input data corresponding

to each content class x in every style y. Their approach can be regarded as an extension

of methods based on principal component analysis (PCA) applied to the bilinear case.

The SVD approach avoids the difficulties of convergence that plague the gradient descent

method and is much faster in practice. Unfortunately, the learned features tend to be

global and non-localized similar to those obtained from PCA-based methods based on

second-order statistics. As a result, the method is unsuitable for the problem of learning
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local features of objects and their transformations.

The underconstrained nature of the problem can be remedied by imposing

constraints on x and y. In particular, we could cast the problem within a probabilistic

framework and impose specific prior distributions on x and y with higher probabilities

for values that achieve certain desirable properties. We focus here on the class of sparse

prior distributions for several reasons: (a) by forcing most of the coefficients to be

zero for any given input, sparse priors minimize redundancy and encourage statistical

independence between the various xi and between the various yj [7], (b) there is growing

evidence for sparse representations in the brain – the distribution of neural responses

in visual cortical areas is highly kurtotic i.e. the cell exhibits little activity for most

inputs but responds vigorously for a few inputs, causing a distribution with a high peak

near zero and long tails, (c) previous approaches based on sparseness constraints have

obtained encouraging results [7], and (d) enforcing sparseness on the xi encourages the

parts and local features shared across objects to be learned while imposing sparseness

on the yj allows object transformations to be explained in terms of a small set of basic

transformations.

3.2. Probabilistic Bilinear Sparse Coding

Our probabilistic model for bilinear sparse coding follows a standard Bayesian MAP

(maximum a posteriori) approach. Thus we begin by factoring the conditional likelihood

P (xi, yi|zi) as such:

P (x,y,wij |z) =
P (zi|xi, yi,wij)P (xi)P (yi)

P (zi)
(6)

∝ P (zi|xi, yi,wij)P (xi)
αP (yi)

β (7)

Eq. 7 makes two modifications to Eq. 6 Firstly, the observation (image) likelihood prior

is assumed uniform and thus ignored. Secondly, in order to study the effects of the priors
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Figure 2. A probabilistic sparse coding prior. (a) shows the probability

distribution function for the Cauchy sparse coding prior. Although the distribution

appears similar to a Gaussian distribution, the Cauchy is super-Gaussian (highly

kurtotic). (b) shows the derived sparseness error function. (c) illustrates the non-

linearity introduced in the derivative of the sparseness function. Note that the function

differentially forces small coefficients towards zero, and only at some threshold are large

coefficients made larger.

on the bilinear basis, we allow the priors for both x and y to be weighted arbitrarily by

the respective factors α and β.

We assume the following priors for xi and yj :

P (xi) =
1

Qα

e−αS(xi) (8)

P (yj) =
1

Qβ

e−βS(yj) (9)

where Qα and Qβ are normalization constants, α and β are parameters that control

the degree of sparseness, and S is a “sparseness function.” For this study, we used

S(a) = log(1 + a2). As shown in Figure 2, our choice of S(a) corresponds to a Cauchy

prior distribution, which exhibits a useful non-linearity in the derivative S ′(a).

Within a probabilistic framework, the squared error function E1 summed over

all images can be interpreted as representing the negative log likelihood of the data

given the parameters: − log P (z|wij ,x,y) (see, for example, [7]). The priors P (xi) and

P (yj) can be used to marginalize this likelihood to obtain the new likelihood function:
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L(wij) = P (z|wij). The goal then is to find the wij that maximize L, or equivalently,

minimize the negative log of L. Under certain reasonable assumptions (discussed in

[7]), this is equivalent to minimizing the following optimization function over all input

images:

E(wij,x,y) = ||z−
m

∑

i=1

n
∑

j=1

wijxiyj||
2 + α

m
∑

i=1

S(xi) + β
n

∑

j=1

S(yj) (10)

The gradient of E can be used to derive update rules for the components xa and

yb of the feature vector x and transformation vector y respectively for any image z,

assuming a fixed basis wij :

dxa

dt
= −

1

2

∂E

∂xa

=
n

∑

q=1

wT
aq(z−

m
∑

i=1

n
∑

j=1

wijxiyj)yq +
α

2
S ′(xa) (11)

dyb

dt
= −

1

2

∂E

∂yb

=
m

∑

q=1

wT
qb(z−

m
∑

i=1

n
∑

j=1

wijxiyj)xq +
β

2
S ′(yb) (12)

Given a training set of inputs zl, the values for x and y for each image after convergence

can be used to update the basis set wij in batch mode according to:

dwab

dt
= −

1

2

∂E

∂wab

=
q

∑

l=1

(zl −
m

∑

i=1

n
∑

j=1

wijxiyj)xayb (13)

3.3. Algorithm for Learning Model of Translating Image Patches

We now present our algorithm which utilizes the above gradients with the goal of learning

localized features in natural image patches and their transformations with respect to

two-dimensional translations. A large class of algorithms is possible if one were to

minimize E by changing more than one variable per gradient step. Our experience shows

that obtaining convergence reliably is rather difficult in this situation. Fortunately it

appears unnecessary to minimize with respect to more than one variable at a time, and

further simply minimizing E with respect to a single variable until near convergence

yields good results, particularly when combined with a batch derivative approach. In



Bilinear Sparse Coding for Invariant Vision 9

(a)

(b)

3

1
No translation − "canonical"

2 31

2

Translation by +2

Translation by +1

Translation by −1

Translation by −2

y5

y2

y3

y4

y1

x3x2x1

Figure 3. Example training data from natural scene images. Training data

is formed by randomly selected patch locations from a set of natural images (a). As

shown in (b) the patch location is then transformed, in this example we use horizontal

translations of ±2. To achieve style/content separation a single x vector is assigned to

represent each column, and a y vector to each row.

our implementation we use a conjugate gradient method to speed the convergence in

minimizing E with respect to x and y.

Our algorithm enforces style and content separation by iteratively holding x, then

y fixed in a particular order related to the presentation of the images (see Figure 3).

This separation seeks to minimize the effects of style transformations on x, and similarly

the effect of content changes on y. We first initialize a matrix Y which contains a set

of vectors describing each style. In order to regularize Y and avoid overfitting any

particular patch (or set of patches) we slowly adapt Y over time. Specifically we find

an initial x vector that describes the content of a randomly selected patch, then for

each transformation adapt the corresponding y vector slowly based on the parameter ǫ.
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Finding the initial x vector relies on having a reference y. Thus we refer to one of the

transformations as “canonical”, often the identity transformation. This special ycan is

thus used for bootstrapping, but besides this use is adapted exactly like the rest of the

style vectors in Y .

One difficulty in the sparse coding formulation of Eq. 10 is that the algorithm can

trivially minimize the sparseness function by making x or y very small and increasing the

wij basis vector norms to maintain the desired output range. Therefore as suggested

by Olshausen and Field [7], in order to keep the basis vectors from growing without

bound, we adapt the L2 norm of each basis vector in such a way that the variances of

the xi and yj were maintained at a fixed desired level (σ2
g). Simply forcing the basis

vectors to have a certain norm can lead to instabilities, thus a more robust method

“soft” variance normalization is employed. The element-wise variance of the x vectors

is tracked in the vector xvar and adapted according to the parameter ε. A gain term (see

algorithm lines 23-24) xgain indicates a multiplicative factor for adapting the norm of a

particular basis vector. An additional complication in the bilinear case is that ||wij||2

is related to the variance of both xi and yj. One method we used was to compute

the joint gain J as the geometric mean of the elements in the gain vectors xgain and

ygain. However, if sparseness is desired for x but not y the variance of y will rapidly

increase, as the variance of x rapidly increases, and no changes of the length of basis

vectors wij will solve this problem. Thus we developed a method which performs soft

variance normalization directly on the evolving y vectors, and bases the scaling of the

basis vectors only on the variance of x.

In the following algorithm all capital letters indicate matrices containing column

vectors, indexed using Matlab style slicing. I is a matrix containing all training images

arranged into columns. T is 2× r matrix containing the translation parameters for each
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r transformations to be learned. The ⋆ indicates the element wise product. cidx denotes

the index of the canonical transformation.

LearnSparseBilinearModel(I, T, α, β, ǫ, ε, η, γ, σ2
g)

1 W ← RandNormalizedVectors(k,m, n)

2 Y ← RandNormalizedVectors(n, r)

3 ycan ← Y (:, cidx)

4 for iter ← 1 to maxIter

5 P ← SelectPatchLocations(I, q)

6 Zcan ← ExtractPatches(I, P )

7 X ← CGSparseFit(W,ycan, Zcan, α)

8 dW ← Zeros(k, m, n)

9 for i← 1 to r

10 Z ← ExtractPatches(I,Transform(P, T (:, i)))

11 Ybatch ← CGSparseFit(W,X,Z, β)

12 Y (:, i)← (1− ǫ)Y (:, i) + ǫ · SampleMean(Ybatch)

13 yvar ← (1− ε)yvar + ε · SampleVar(Ybatch)

14 ygain ← ygain ⋆

(

yvar

σ2
g

)γ

15 Y (:, i)← NormalizeVectors(Y (:, i),ygain)

16 if i = cidx

17 then ycan ← Y (:, cidx)

18 dW ← dW +
(

1
r

)

dEdW (Z, W, X, Y (:, i))

19 W = W + ηdW

20 xvar ← (1− ε)xvar + ε · SampleVar(X)

21 xgain ← xgain ⋆

(

xvar

σ2
g

)γ

22 W ← NormalizeVectors(W,xgain)



Bilinear Sparse Coding for Invariant Vision 12

4. Results

4.1. Training Methodology

We tested the algorithms for bilinear sparse coding on natural image data. The natural

images we used are distributed by Olshausen and Field [7], along with the code for

their algorithm. The training set of images consisted of 10 × 10 patches randomly

extracted from ten 512 × 512 source images. The images are pre-whitened to equalize

large variances in frequency, and thus speed convergence. We choose to use a complete

basis where m = 100 and we let n be somewhat less than the number of transformations

(including the no-transformation case). The sparseness parameters α and β were set to

approximately 20 and 1.5, and the effects of these parameters are discussed in further

detail later. In order to assist convergence all learning occurs in batch mode, where

the batch consisted of q = 100 image patches. The W step size η for gradient descent

using Equation 13 was set to 0.05. Variance normalization used ε = 0.25, and γ = 0.05,

and σ2
g = 0.1. These parameters are not necessarily the optimum parameters, and the

algorithm is robust with respect to significant parameters changes. Generally only the

amount of time required to find a good sparse representation changes with untuned

parameters. In the case presented here the algorithm converged after approximately

2500 iterations. The transformations were chosen to be 2D translations in the range

[−4 : 4] pixels in both the axes. The style/content separation was enforced by learning

a single x vector to describe an image patch regardless of its translation, and likewise a

single y vector to describe a particular style given any image patch content.
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Figure 4. Representing natural images and their transformations with a

sparse bilinear model. The representation of an example natural image patch, and

of the same patch translated to the left. Note that the bar plot representing the x

vector is indeed sparse, having only three significant coefficients. The code for the style

vectors for both the canonical patch, and the translated one is likewise sparse. The

wij basis images are shown for those dimensions which have non-zero coefficients for

xi or yj .

Canonical features Translated (+3,+3) features

Figure 5. Localized, oriented set of learned basis features. The full 100

features learned with the sparse bilinear model. A sample translation of three pixels

in both dimensions is also shown.
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Figure 6. Translating a learned feature to multiple locations. The two rows

of eight images represent the individual basis vectors wij for two values of i. The

yj values for two selected transformations for each i are shown as bar plots. y(a, b)

denotes a translation of (a, b) pixels in the Cartesian plane. The last column shows

the resulting basis vectors after translation.

4.2. Bilinear Sparse Coding of Natural Images

Figures 4 and 5 show the results of training on natural image data. Both show simple,

localized, and oriented features, and the bilinear method is able to model the same

features under different transformations. In this case, the range [−3, 3] horizontal

translations were used in the training of the bilinear model. Figure 4 provides an

example of how the bilinear sparse coding model encodes a natural image patch and the

same patch after it has been translated. Note that in this case both the x and y vectors

are sparse.

Figure 6 shows how the model can account for a given localized feature at different

locations by varying the y vector. As shown in the last column of the figure, the

translated local feature is generated by linearly combining a sparse set of basis vectors

wij.
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4.3. Effects of Sparseness on Representation

The free parameters α and β play an important role in deciding how sparse the

coefficients in the vectors x and y are. Likewise, the sparsity of the vectors is intertwined

with the desired local and independent properties of the wij bilinear basis features. As

noted in other research on sparsity [6] both the attainable sparseness and independence

of features also depend on the model dimensionality, in our case the parameters m and

n. In all of our experiments we use a complete basis (in which m = k) for content

representation, assuming that the style transformations do not affect the number of

basis needed for representation. We believe this is justified also by the very idea that

changes in style should not change the intrinsic content.

However, might also desire that the y style vector use a sparse representation as

well. In the case of affine transformations using a complete basis for y means using a

large value on n. From a practical perspective this is undesirable as it would essentially

equate to the tiling of features at all possible transformations. Thus in most of our

experiments we use low values or zero for the value of β, and set n low (between 4 and

8). This setup allows for learning sparse, independent content features while taking

advantage of dimensionality reduction in the coding of transformations.

Setting α requires some additional analysis. Ideally we desire to maximize

statistical independence of the bilinear basis. Figure 7 illustrates the effect of the

spareness likelihood weighting term β on the sparseness error for the x content

representation. For each value of β ten trials of the learning algorithm. The sparseness

error shown is the sum of the sparseness function S(xij) over all m dimensions of

1000 vectors generated from a random sample of natural image patches, after training.

Figure 8 illustrates how the sparsity, kurtosis, and obtaining localized, independent basis

vectors are related.
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Figure 7. Sparseness weighting term vs. sparseness. As the sparseness term

in the likelihood function is more highly weighted than the reconstruction term the

sparseness error is reduced. The reduction in error represents a more efficient core

characterized by less redundancy in features. Note that the reconstruction error is

effectively unchanged, even as the spareness term is weighted twenty times more

heavily, thus illustrating that the sparse code doesn’t result in a loss of representational

fidelty.

4.4. Style and Content Invariance

A series of experiments were conducted to analyze the invariance properties of the sparse

bilinear model. These experiments looked at how the style and content representations

change when the actual style and content of the input changes. In this case we looked

at how shifting and selecting various patches affects the x and y vectors. Since x and

y are arbitrary dimensional vectors we used the norm of the vector difference as our

metric for representation change. The input is transformed (smoothly in the case of

style, discretely in the case of content) from one iteration to the next, and the change

is measured as:

∆xi = |xi − xi−1| ∆yi = |yi − yi−1| (14)
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xi coefficient distribution, and (b) a subset of the corresponding bilinear basis vectors.
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Figure 9 shows the result of vertically shifting the patch location and recording

the subsequent representation changes. Likewise figure 10 shows the result of selecting

random patches and translating each in an identical way. Both figures show a strong

degree of invariance of representation. These previous figures look at sample runs,

and give a qualitative result of the invariance properties of the model. Figures 11

and 11 quantify (on average after 100 runs) how much changing style affects content

representation, and vice versa.

4.5. Interpolation for Continuous Translations

Although transformations are learned as discrete style classes, we found that the

sparse bilinear model can handle continuous transformations. Interpolation in the

style space can obtain a representation of some content at a translation in between

two discrete translations that were learned during initial model training. Figure 13(a)

shows the values of the six dimensional y vector for each learned translation. The

circular point are values that were learned in model training, plus markers indicate

interpolated style vectors. Note that for the most part the coefficients vary smoothly

with respect to the translation amount. This property allows simple linear interpolation

between styles, similar to the method of locally linear embedding [11]. As sub-

pixel translations are difficult to illustrate, a model was trained with only the

transformations −4,−2, 0, +2, +4. The style representation vectors learned are shown

in Figure 13(b). Figure 13(c) shows the reconstructed patches for both neighboring

styles and the interpolated style, as well as mean squared error (MSE) values for the

reconstructions. Note that while the interpolation MSE values are somewhat higher than

the reconstructions at learned translations, they are still in the same neighborhood.



Bilinear Sparse Coding for Invariant Vision 19

10 15 20 25 30 35 40 45 50 5551Index

Value

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

4

Iteration

T
ra

ns
la

tio
n 

(p
ix

el
s)

, N
or

m
 C

ha
ng

e

style
|∆ x|
|∆ y|

(a)

−2.0 −0.3 +1.9 +1.7 −1.8 −2.3 +0.1 +2.6 +2.5 0.00.0 +2.0

(b)

Figure 9. Transformation invariance property of the sparse bilinear model.

(a) shows a randomly selected natural image patch transformed by an arbitrary non-

linear sequence of vertical translations. (b) shows the effects of the transformations

on the style (y) and content (x) vectors. Note that the magnitude of the change in y

is directly correlated to the magnitude of the vertical translation, while the change in

x is insignificant (mean |∆x| = 0.04), thus illustrating the transformation invariance

property of the bilinear model.

4.6. Towards Parts-Based Object Recognition

The bilinear generative model in Equation 2 uses the same set of transformation values yj

for all the features i = 1, . . . ,m. Such a model is appropriate for global transformations

that apply to an entire image region such as a shift of p pixels for an image patch or a

global illumination change.
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Figure 10. Invariance of style representation to content. (a) shows a sequence

of randomly selected patches (denoted “Can.”) and their horizontally shifted versions

(denoted “Trans.”). (b) shows the change in the estimated y for the translated version

of each patch. Note that the content representation fluctuates wildly, while the style

vector changes very little.

Consider the problem of representing an object in terms of its constituent parts. In

this case, we would like to be able to transform each part independently of other parts

in order to account for the location, orientation, and size of each part in the object
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Figure 11. Translational effects on content representation. The average

relative change in x versus translation over 100 experiments in which image 12x12

patches were shifted by varying degress. Note that translations in the range (−3, +3)

the relative change in x is small, yet as more and more features are shifted into the

patch the representation must change.

image. The standard bilinear model can be extended to address this need as follows:

z =
m

∑

i=1

(
n

∑

j=1

wijy
i
j)xi (15)

Note that each object feature i now has its own set of transformation values yi
j. The

double summation is thus no longer symmetric. Also note that the standard model

(Equation 2) is a special case of Equation 15 where yi
j = yj for all i.

We have conducted preliminary experiments to test the feasibility of Equation 15

using a set of object features learned for the standard bilinear model. Figure 14 shows

the results. These results suggest that allowing independent transformations for the

different features provides a rich substrate for modeling images and objects in terms of

a set of local features (or parts) and their individual transformations.
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Figure 12. Changing content effects on style representation. The average

relative change in y for random patch content over 100 experiments in which various

transformations were performed on a randomly selected patch. No discernible pattern

seems to exist which would suggest that some transformations are more sensitive to

content. The bar shows the mean relative change for each transformation.

5. Related Work and Discussion

FIXME, Insert bunches of references here.

6. Summary and Conclusion

A fundamental problem in vision is to simultaneously recognize objects and their

transformations [8, 10]. Bilinear generative models provide a tractable way of addressing

this problem by factoring an image into object features and transformations using

a bilinear equation. Previous approaches used unconstrained bilinear models and

produced global basis vectors for image representation [13]. In contrast, recent research
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Figure 13. Interpolating in the style space allows for handling of continuous

transformations. See section 4.5 for details.
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Figure 14. Modeling independently transformed features. (a) shows the

standard bilinear method of generating a translated feature by combining basis vectors

wij using the same set of yj values for two different features (i = 57 and 81). (b) shows

four examples of images generated by allowing different values of yj for the two different

features. Note the significant differences between the resulting images, which cannot

be obtained using the standard bilinear model.

on image coding has stressed the importance of localized, independent features derived

from metrics that emphasize the higher-order statistics of inputs [6, 3, 7, 5]. This paper

introduces a new probabilistic framework for learning bilinear generative models based

on the idea of sparse coding.

Our results demonstrate that bilinear sparse coding of natural images produces

localized oriented basis vectors that can simultaneously represent features in an image
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and their transformation. We showed how the learned generative model can be used

to translate a basis vector to different locations, thereby reducing the need to learn the

same basis vector at multiple locations as in traditional sparse coding methods. We also

proposed an extension of the bilinear model that allows each feature to be transformed

independently of other features. Our preliminary results suggest that such an approach

could provide a flexible platform for adaptive parts-based object recognition, wherein

objects are described by a set of independent, shared parts and their transformations.

The importance of parts-based methods has long been recognized in object recognition

in view of their ability to handle a combinatorially large number of objects by combining

parts and their transformations. Few methods, if any, exist for learning representations

of object parts and their transformations directly from images. Our ongoing efforts

are therefore focused on deriving efficient algorithms for parts-based object recognition

based on the combination of bilinear models and sparse coding.
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