
The Office of the Past: Document Discovery and Tracking from Video

Jiwon Kim1 Steven M. Seitz1 Maneesh Agrawala2
1Department of Computer Science and Engineering 2Microsoft Research

University of Washington maneesh@microsoft.com

{jwkim|seitz}@cs.washington.edu

Technical Report UW-CSE-04-03-02

Abstract

This paper presents an approach for reconstructing the
physical state of documents and other objects on a desk
over time using an overhead video camera. The history of
the desktop is subsequently analyzed to enable a range of
interesting queries. A desktop object is discovered when it
first moves, and is tracked through the image sequence us-
ing change detection and motion segmentation techniques.
The space-time structure of the scene is represented by a
sequence of graphs where an “event”, or a change in the
state of the scene, is modeled as a transition between sub-
sequent graphs. We present two prototype applications that
are based on these desktop reconstruction techniques. The
first allows the user to browse the structure and history of
the desktop, and query documents of interest. The second
application is a virtual desktop interface where the user can
virtually manipulate the document stacks with mouse inter-
action.

1. Introduction

Despite the increasing prevalence of electronic documents,
management, the usage of paper still prevails in the of-
fice environment due to the unique advantages that physical
documents provide ([1], [2]). Consequently, it is common
for office workers to have large stacks of documents clut-
tered on their desks, frequently making it difficult to find
and organize them.

The Office of the Future project [3] addressed this prob-
lem in part by leveraging display technologies to project
onto walls or surfaces in the room, thereby minimizing the
need for paper. However, this approach requires a funda-
mental change to the facilities used, as well as the current
working practice. In this paper, we address the same prob-
lem but with the additional goal of designing an unobtrusive
system, i.e., a system that does not get in the way of the user.
To achieve this goal we simply augment the working envi-
ronment with a single video camera. The camera is set up

Figure 1: Experimental setup: A camera recording the desk-
top.

over the desk (see Figure 1), and records the changes in the
stacks of documents over time. Our software system then
analyzes the video stream to discover and track documents
as they move around the desk, and automatically indexes
them for the user. Our system does not make any assump-
tions about the initial state of the environment. Each docu-
ment is discovered after it first moves, so the desk is allowed
to be initially cluttered, as is common in real situations.

This analysis gives rise to a number of useful applica-
tions for managing paper documents. For example, the user
can ask the system to find his tax form that is buried some-
where in the stacks of documents on the desk. Alternatively,
the user can interactively browse the content of the docu-
ment stacks on a remote PC, providing an interface like a
virtual desktop. The user can annotate discovered docu-
ments, e.g., adding a link to an electronic version or a re-
lated web site, and this information remains attached to the
document as the desktop changes over time.

To support these queries, we must discover and track
the positions of the documents on the desk. In our system,

1

each document is discovered when it first moves. Then it is
tracked through the series of input images by detecting tem-
poral changes and estimating the motion. A top-to-bottom
hierarchy of the stack is maintained by reasoning about the
occlusion order. A sequence of graphs is used to represent
the evolution of the stacks over time. A change in the state
of the desktop, or anevent, corresponds to the transition be-
tween subsequent graphs. At each event, the most likely
event is selected based on the image analysis results, and is
used to update the graph.

The main novelty and contribution of this work is the
formulation and approach for reconstructing the state of the
desktop over time, as a sequence of graphs. Towards this
end, we adopt a number of existing low-level algorithms,
e.g., change detection, segmentation and matching as build-
ing blocks. We feel that the primary contributions of this
paper lie not in these individual steps, but rather in the over-
all analysis engine and its application to a novel real-world
problem domain.

The rest of the paper is organized as follows. First, we
discuss related work in the following section. Section 3 then
describes in detail how the system discovers and tracks doc-
uments. After demonstrating some results in section 4, the
paper concludes with a discussion and future work in sec-
tion 5.

2. Related work

Some researchers have looked at enhancing the office space
with the use of camera. DigitalDesk [4] augments the phys-
ical desktop with a camera and a projector, allowing the
user to interact with the projected image on the desk. How-
ever, the emphasis was more on the interaction than track-
ing physical objects. Tele-graffiti [5] is a sketch-based re-
mote communication system that also utilizes cameras and
projectors. Again, the main concern is tracking not the pa-
per itself, but the changes on the paper the user makes. In
The Office of the Future project [3], they envisioned an en-
tirely new office environment, using a number of cameras
and projectors to construct and transmit the 3D models of
the environment. Instead, our goal is to be as unobtrusive as
possible, leaving the office as it is, except for the additionof
a single camera. ObjectSpaces [6] is a general framework
for classifying and recognizing physical objects and associ-
ated human activities. It uses hand recognition and requires
manual registration of objects. Our system is specialized for
the discovery and tracking of desktop objects, and is able to
automatically discover them without pre-registration. More
recently, [7] explored an idea for tracking stacked objects
using stereo vision. But they use the physical height of stack
to detect changes in stack, and therefore their technique is
not applicable to the general case of paper documents.

The Self-Organizing Desk [8] attempts to track papers

on the desk with a camera, and is most similar to our work.
However, their system imposes a few key restrictions on the
objects and the scene, e.g., all desktop objects must be stan-
dard size papers, and they are only allowed to translate. We
overcome these limitations and present more convincing ex-
perimental results. Some advantages of their work include
text-based document clustering using character recognition
techniques and allowing underlying documents to slightly
shift during movement, which we leave as future work.

Much research effort has been put into developing tagged
ID technologies, many of which have already become com-
monplace. Some examples include barcodes, RF tags and
IR tags. These technologies require a specialized reader,
and are not suitable for accurate detection of object loca-
tion in a stack. They also require attaching a physical tag
to the object, which must be done beforehand and takes up
physical space on the object.

In the computer vision and AI communities, a large body
of work exists for objects tracking and recognition. In par-
ticular, layer extraction ([9] and subsequent papers) is an
area relevant to our work, as the document stack is by na-
ture a layered structure. As we focus on documents, we are
able to use somewhat specialized appearance-based track-
ing techniques. Also, the layered structure not only repre-
sents multiple objects with different motions, but also the
complex spatial hierarchy of the documents on the desk.

Most closely related to the approach adopted in this pa-
per is Object Discovery [10]. They propose a method to
discover objects over time as they enter and leave the scene,
by analyzing the temporal history of each pixel of the image
sequence. It attempts to explain the temporal evolution of
a scene with relatively infrequent object motions, and pro-
vided the major inspiration for this paper. However, our
work differs from it in a few important aspects. First, in
Object Discovery, the scene must satisfy the clean world
assumption, i.e., each object must both enter and leave the
scene. In contrast, we allow the objects to freely enter and
leave the scene without such constraint. We also combine
temporal and spatial information instead of doing a pure
temporal analysis, and are able to recognize a group of pix-
els as an object, as well as track its location over time. And
while they focus on theory with very limited experimental
results, our objective is to build a practical system that can
reconstruct the state of the desk, and we present two appli-
cations built on top of this system.

Finally, our work differs from most research in document
analysis and recognition, where they focus primarily on al-
gorithms and applications for analyzing a given document
(e.g., OCR), rather than tracking and discovery of docu-
ments. In the future, we may want to integrate our system
with such techniques.

2

3. Document discovery and tracking
In this section, we present a detailed description of how
the system discovers and tracks documents from the input
video. We first give a problem definition using relevant no-
tations, then explain the actual algorithm used to solve the
problem in detail.

3.1. Problem definition
The goal can be briefly stated as follows: given an input
video of a desktop where various objects enter, leave and
change position on a regular basis, reconstruct the configu-
ration of objects on the desk at each instance in time. Note
that the system is not restricted to tracking only documents;
documents are modeled as a special case of an object. The
input video is recorded from a video camera mounted high
above the desk in a straight looking down pose, as illus-
trated in figure 1. The camera may be mounted on a tripod,
or attached to the ceiling.

A more detailed problem definition is as follows. An
“event” is defined as a change in the state of the desk, in-
dexed bye, and lette denote the time immediately before
the evente occurred. Each objecto is represented as a
bitmap image and its position and orientation at each timet.
The state of the desktop at each timet is described by a di-
rected acyclic graph (DAG)G(t) that represents the occlu-
sion order between objects, which we call thescene graph1,
and a set of objectsO(t) that have been discovered up to
that time, which we call theobject database. An object is
discovered the first time it moves. Each nodeno of G(t)
represents an objecto, and an edgeno → np exists if o

occludesp and there is no other objectq that occludesp
and is occluded byo. G(t) is assumed to have no cycle be-
cause our experience is that cyclic occlusion is uncommon
in stacks of documents. An event can be described as a tran-
sition fromG(te) to G(te+1), combined with an update of
O(te+1) with O(te) ∪ o if a new objecto is discovered.

Given this representation, the objective of the system can
be restated as (1) detecting events by analyzing the input
video, and (2) reconstructing the sequence of DAG’s ex-
plaining the events. Then the system can answer queries
such as “where is my tax form?” by returning its cur-
rent location stored in the current scene graph and the ob-
ject database. Figure 2 provides a pictorial description of
the representation. We chose DAGs as our representation
since they can encode complex overlaps between document
stacks such as those shown in the figure. DAGs cannot rep-
resent visibility cycles, but we assume that such cases are
rarely encountered in practice.

1Note that our use of graphs for the scene representation differs from
the scene graphs in computer graphics community, which are commonly
used to represent the 3D transformation hierarchy of objects in the scene,
rather than object occlusion as in our system.

G:

O:

(a) (b)

Figure 2: (a) The actual desktop. (b) Representation of the
desktop.

In this paper, the following set of simplifying assump-
tions are made. It is assumed that at each event exactly one
object moves, and only objects that are on top ofG(te) can
move, i.e., objects that are not occluded by any other object.
The type of the motion is one of 3 possible cases: position
change, entry, or exit. Note that an object is allowed to
enter the scene without having to leave, or vice versa, as
opposed to the clean world assumption in [10]. It is further
assumed that when an object changes position, its motion is
a combination of 2D translation and rotation, i.e. there is
no change in scale or 3D pose. As the camera is positioned
far from the desk, it is reasonable to assume that change in
the height of stack causes negligible scale change. In ad-
dition, its straight looking down pose ensures that there is
minimal change in object shapes. The objects are assumed
to have distinct enough appearances for the camera to tell
them apart by comparing color values. However, objects
need not be of a particular shape, e.g., rectangles.

3.2. Discovery and Tracking Algorithm
Given the image frames from the input video, events are first
detected by extracting frames representing the state of the
desktop before and after the event. For each event, the be-
fore and after image pair are analyzed to determine the type
(move, entry and exit) and parameter of the event (which
object moved and how it moved). Finally, the scene graph
is updated according to the event. An overview of the al-
gorithm is illustrated in figure 3. Note that a number of
parameters are used throughout the algorithm whose values
were largely determined by experiment.

3.2.1 Event frame extraction

To detect events, we extract a pair of input frames that cor-
respond to the state of the desktop before and after the event
by a simple frame differencing technique. More precisely,
we take the image frames{I1, I2, · · · , Int

} as input, and
produce{Ie−, Ie+|e = 0, · · · , ne − 1} as output, where
nt is the number of input frames andne is the number of
events. First, we compute the frame difference between
each input frameIt and the following imageIt+1. If the

3

Input

frames

(a) Extract

 event

 frames

before after

... ...

It-1 It It+1 It+2

(b) Interprete

 event O(e):

A B C "B moved from

(x1,y1) to (x2,y2)"

(c) Update

 scene

 graph

A

B

C

G(e) G(e+1)

A

B

C

Figure 3: An overview of the document discovery and track-
ing algorithm. (a) For each event, we extract a pair of im-
ages corresponding to the state of the desk before and after
the event. (b) Then, these images are analyzed to determine
what type of event occurred to which object. (c) Finally, the
scene graph is updated accordingly.

difference is above a given threshold, we assume that an
event is occurring at timet. For each event,Ie− is the input
frame immediate before the event starts (i.e.,Ite

), andIe+

is the input frame immediately after the event finishes.

3.2.2 Event interpretation

OnceIe− andIe+ are extracted for each event, they are an-
alyzed to interpret the event, i.e., determine the type and
parameter of the event as well as the object the event in-
volves.

This task is in turn divided into a few substeps. First,
we extractevent region, the region of the image where a
significant change occurred across the event. Then, a set
of measures are computed within this event region under
the hypothesis of each type of event, and the foreground
region is segmented accordingly. Finally, the values of these
measures are analyzed to determine the type of event that
actually took place, as well as the object that moved.

A. Event region extraction

The event regionERe is identified by frame differenc-
ing. Ie− andIe+ are first blurred to reduce noise. Then, the
RGB difference betweenIe−(p) andIe+(p) is thresholded
to produce a binary per-pixel labelevente(p) whose value
is 1 if the pixel is within the event region, i.e.p ∈ ERe, and
0 otherwise. The event regionERe is finally post-processed
to remove holes and small speckles. An example result of

(a) (b)

(c)

(d) (e)

Figure 4: An example event. (a) Image before event. (b) Im-
age after event. (c) Corresponding event region. (d) Fore-
ground region, segmented using graph cuts and refined. (e)
Oriented bounding box.

event region detection is shown in figure 4.

B. Hypothesizing event

Once the event region is detected, each type of event is
hypothesized in order, to determine the type and parameter
of the event. By default, we first hypothesize the event as a
position change event. If the computed score is too small,
then the event is considered an entry/exit event, and the al-
gorithm proceeds to determine whether it is an entry or an
exit event.

B.1. Position change event

In case of a position change, a search is performed to
find the optimal 2D transformationT that best explains the
foreground motion, by computing a pixel-based matching
error betweenIe− and Ie+. The matching errorE(T) is
defined as follows:

E(T) =
∑

p∈ERe

e(p, T) ∗
1

|ERe|

e(p, T) is the per-pixel matching error for pixelp under
the transformationT , and is further explained later. We de-
fine overlap(T) as the ratio of pixels in the event region
that remain within the event region after being transformed

4

by T . If overlap(T) is below a given threshold, we con-
siderT a bad solution and assign it a large constant value to
penalize it.

overlap(T) =

∑
p∈ERe

evente(p) ∗ evente(Tp)

|ERe|

In other words,E(T) is the average matching error for a
pixel in the event region, under the condition thatT trans-
forms most of the pixels within the event region. This
condition is necessary to prevent false solutions with low
matching error, such as the example shown in figure 5.

Each pixel in the event region belongs to one of two cat-
egories: (1) a pixel on the object before the event, and (2) a
pixel on the object after the event. Therefore, the per-pixel
matching errore(p, T) is defined as the minimum of two
cases, (1) difference betweenIe−(p) andIe+(Tp), and (2)
difference betweenIe−(T−1p) andIe+(p). This is illus-
trated in figure 6.

e(p, T) = min(eT , eT−1)

eT = D(Ie−(p), Ie+(Tp))

eT−1 = D(Ie−(T−1p), Ie+(p))

D(I(p), J(q)) is the difference operator between two
pixels I(p) and J(q). Each pixel is defined as a vector
(H, S, V, E), whereH, S, V corresponds to the color, and
E = 1 if gradient> threshold, 0 otherwise. We found that
HSV is more reliable than RGB under changing illumina-
tion. If p or q is outside the image frame (as is possible
when one is a transformation of the other),D is assigned a
large constant value to penalize the transformation.

D(I(p), J(q)) =
||IHSV (p) − JHSV (q)||

V arHSV
+

|IE(p) − JE(q)|

V arE

Instead of doing a brute-force search over all possible 2D
transformations(u, v, θ), a hierarchical scheme is adopted
where a coarse level search computes matching error at
coarse grids of the search space, and a fine level search tra-
verses the “candidate” grids, a small percentage of coarse
grids with low matching error. We use an octree to recur-
sively subdivide and search each candidate grid. The fine
level search result with the lowest matching error is chosen
as the final transformation.

B.2. Entry/exit event

If the matching error as a position change event is above
a given threshold, the event is considered an entry/exit
event.

before after

Figure 5: Example of an incorrect transformation with low
matching error, due to a uniform background (computed
foreground is outlined in both images). Note that in this
solution, most pixels in the event region (figure 4(c)) are
not transformed onto the event region.

p
q

p'

q'

Figure 6: Two pointsp andq in the event region shown in
figure 4 (c). Each pixel in the event region has two possible
explanations: a transformationT (p) = p′ of a point in the
before image, or an inverse transformationT−1(q) = q′ of
a point in the after image.

If the entry/exit occurred on top of a known stack struc-
ture, we can determine the event type by first comparing
the event region ofIe+ with the image of the stack under
the document on top. If they match, it means that the top
document exited. Otherwise, we decide that it is an entry
event.

If the event occurred inside an “empty” area of the desk,
i.e., where the stack structure is not discovered yet, it is con-
sidered the entry/exit of a new object. To determine the
event type, we adopt an approach suggested in [10], where
the strong edges ofIe− andIe+ are compared with the ob-
ject boundary. If it is an entry, the edges ofIe+ should con-
tain the object boundary, butIe− should not, and vice versa
for an exit event. Figure 7 shows an example. We mea-
sure the alignment between the edges and object boundary
by computing the average distance from a boundary pixel
to its closest edge pixel. We denote this alignment measure
for Ie− andIe+ by EBe− andEBe+, respectively. Object
boundary is obtained from the boundary of the event region.
The boundary is computed by eroding the event region and
taking the difference from the original event region. Canny
edge detector is used to preserve strong edges and suppress
non-boundary edges.

C. Foreground segmentation

5

(a) (b)

(c) (d)

(e) (f)

Figure 7: An example of an entry event. (a) Image before
event. (b) Image after event. (c) Event region. (d) Border
pixels. (e)(f) Edge detection results of (a) and (b). Border
pixels in (d) align better with edge pixels in (f).

Once the measures are computed for each type of event,
the foreground region is segmented under each hypothesis.

Given the optimal transformationT for a position
change event, the foreground is segmented using the graph
cuts technique described in [11]. The data term for la-
beling a pixel (x, y) as foreground is simply given by
D(Ie−(p), Ie+(Tp)). In case of a background pixel, it ei-
ther remains the same across an event or is occluded by
the foreground object. Therefore, the data term is de-
fined as the minimum of two cases,D(Ie−(p), Ie+(p)) and
D(Ie−(T−1p), Ie+(p)). The smoothing term is a small
constant across the event region boundary, and a larger con-
stant elsewhere in the image. The segmented foreground is
further refined by removing small speckles and filling holes.
If there is more than one blob, the largest blob is taken, to
satisfy the assumption that only one object moves at each
event. An example segmentation result is shown in figure 4
(d).

For an entry or exit event, the foreground is simply given
by the event region if there is only one blob. Otherwise, the
largest blob is taken.

Lastly, an oriented bounding box is fit to the foreground
region by computing 2 major axes of orientation and lengths
along these axes, following the technique described in [12].
See figure 4 (e) for an example result. This makes it easier
to match the foreground against objects in the database and

identify which object it is.

D. Identifying event type and object

Given the various measures computed for each hypoth-
esis, the most likely hypothesis is chosen and the object is
identified as follows:

1. Identify event type.

• If E(T) < threshold, then position change;

• Otherwise,

– If the current scene graph is empty in the
event region,

∗ If EBe− < EBe+, exit;

∗ Otherwise, entry

– Otherwise,

∗ If the event region inIe+ matches the
object under the top object in the event
region, exit;

∗ Otherwise, entry

2. Identify object.

• If position change or exit, match foreground
against all objects on top ofG(te);

• Otherwise, match against all objects inO(te).

• If none of them matches, updateO(te) by adding
the new object, along with its oriented bounding
box.

3.2.3 Updating scene graphs

Once the event is interpreted, the final step is to construct
the new scene graphG(t), and if a new object has been dis-
covered, update the previous scene graphsG(0), · · · , G(t−
1) accordingly.

G(te) is constructed by simply making a copy of
G(te−1) and updating it according to the interpreted event.
The position change of an objecto requires removing edges
no → np for all objectsp that have been disoccluded by
o, and adding edgesno → nq for all objectsq that have
become directly occluded byo. For the entry of an object
o, new edgesno → np are added for all objectsp that o
occludes directly. A similar procedure is applied in the case
of an exit. Note thatG(te−1 + 1), · · · , G(te − 1) can be
constructed by simply copyingG(te−1).

If o is a newly discovered object, all previous scene
graphs are also updated. A node representingo, and edges
np → no for all objectsp that would have directly occluded
o, are added to each previous scene graph.

6

4. Results
In this section, we demonstrate two example applications.
The first one is a prototype of a generic interface to our
system supporting a set of basic queries, i.e., locating a
physical document and querying about document related
information. The second is a “virtual desktop” applica-
tion, which allows the user to virtually browse the document
stack with mouse interaction. A demo of both applications
is provided in the supplemental video.

Both applications are demonstrated using the input se-
quence shown in figure 8. The original video was captured
at 320x240 resolution and 1 frame per second. Each event
took 2-3 minutes to process on a regular PC. The sequence
contains 11 events and 8 objects, including 7 documents and
a cellular phone. Note that multiple documents overlap with
each other in a complex manner, giving rise to the graphical
structure shown in figure 9 (b), rather than clean stacks of
documents.

Figure 9 shows a screenshot of the prototype query in-
terface, with accompanying descriptions of each interface
component. It allows the user to visualize the current desk
state, as well as the history and some simple statistics. The
user can query about a document of interest by selecting it
from the list of objects shown on top right. If any document
related information is stored in the system (e.g., a PDF ver-
sion of the document), the user may access it by clicking on
the relevant links.

The second application enables the user to interactively
search the virtual desktop with mouse interaction. The user
is provided with an image of the current desktop. The ob-
jects in the image can be interactively moved around with
the mouse, allowing the user to virtually browse the content
of the stack on the desk. This may be particularly useful
when the user is accessing a desk in a remote location. Fig-
ure 10 shows a screenshot of the interface, but we recom-
mend watching the video to get a better sense of how the
interface works.

5. Discussion and future work
There are a number of future directions for improving and
extending the current work. First of all, although we have
shown the possibility of a desktop document tracking sys-
tem by implementing prototype applications, we need to ex-
tend the capability of the vision system to handle more re-
alistic situations. One such extension would be to add the
capability to track multiple hypotheses, to cope with uncer-
tainties in tracking and recognition. Allowing the user to
provide feedback when necessary may help the system to
make better decisions as well. We also think that a feature-
based matching technique such as [13] may be better suited
for differentiating documents with similar appearance, and
making the system perform in real-time.

Figure 10: Screenshot of the virtual desktop application.
Note that the objects have been click-and-dragged out of
their places by the user to reveal the object under them. The
original state of the desk is shown in the last image of figure
8. See the supplemental video for a live demo.

Secondly, we would like to extend the user interface to
provide easier ways of interacting with the system, as well
as support a wider set of queries. For instance, the user may
use the system to find all documents that he did not use for
the past 30 days, to help him clean his desk. The system
needs to support ways to specify implicit search criteria,
rather than forcing the user to manually traverse the list of
objects and select the document(s) of interest. To look up
certain information related to a document in hand, it may
be easiest for the user to simply “show” the document to
the camera. A related interesting query is dealing with writ-
ten annotations on documents. By detecting changes on the
document surface, the system may be able to automatically
“lift” these annotations and store them for the user.

Finally, this work could be extended to domains outside
of the office environment that may also benefit from a sim-
ilar tracking and recognition system with a video camera.
Examples include bookshelves (e.g., library, bookstore),
CD/DVD racks, bulletin boards, laboratories, warehouses,
and kitchen counters.

References

[1] A. J. Sellen and R. H. R. Harper,The Myth of the Paperless
Office. Cambridge, Massachusettes: The MIT Press, 2002.

[2] A. Kidd, “The marks are on the knowledge worker,” inProc.
of CHI-94, Boston, MA, 1994, pp. 186–191.

[3] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and
H. Fuchs, “The office of the future: A unified approach
to image-based modeling and spatially immersive displays,”

7

initial state after event 1 after event 2 after event 3

after event 4 after event 5 after event 6 after event 7

after event 8 after event 9 after event 10 after event 11

Figure 8: Example input sequence. Time progresses from upper left to lower right, first left to right, then down.

Input sequence List of discovered documents

Segmented

foreground

 object

Statistics
Selected document

Document

 related

information

Desk visualizationEvent history of selected document

(a) (b)

Figure 9: (a) Screenshot of a prototype query interface. Theuser selects the document of interest from the list of discovered
objects on top right. The desk visualization expands the stack containing the selected document and highlights it. The history
of the selected document’s location change is shown on bottom left. The statistics window shows the frequency of events
in each image location, encoded as pixel intensity. The usermay access document related information by clicking on the
appropriate links. See the supplemental video for a live demo. (b) The scene graph corresponding to the most recent stateof
the desk.

8

Computer Graphics, vol. 32, no. Annual Conference Series,
pp. 179–188, 1998.

[4] P. Wellner, “Interacting with paper on the DigitalDesk,”
Communications of the ACM, vol. 36, no. 7, pp. 86–97,
1993.

[5] N. Takao, J. Shi, and S. Baker, “Tele-graffiti: A
camera-projector based remote sketching system with hand-
baseduser interface and automatic session summarization,”
International Journal of Computer Vision, vol. 53, no. 2, pp.
115–133, 2003.

[6] D. Moore, I. Essa, and M. Hayes, “Object spaces: Context
management for human activity recognition,” inProc. of the
2nd Annual Conference on Audio-Visual Biometric Person
Authentification, 1999.

[7] K. Fujii, J. Shimamura, K. Arakawa, and T. Arikawa, “Tan-
gible search for stacked objects,” inProceedings of CHI
2003, 2003, pp. 848–849.

[8] D. Rus and P. deSantis, “The self-organizing desk,” Dart-
mouth College, Department of Computer Science, Tech.
Rep. PCS-TR97-305, 1997.

[9] J. Y. A. Wang and E. H. Adelson, “Representing Moving
Images with Layers,”The IEEE Transactions on Image Pro-
cessing Special Issue: Image Sequence Compression, vol. 3,
no. 5, pp. 625–638, September 1994.

[10] B. C. Sanders, R. C. Nelson, and R. Sukthankar, “Dis-
covering objects using temporal information,” University
of Rochester Department of Computer Science, Tech. Rep.
772, Apr. 2002.

[11] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate en-
ergy minimization via graph cuts,” inICCV (1), 1999, pp.
377–384.

[12] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A
hierarchical structure for rapid interference detection,” Com-
puter Graphics, vol. 30, no. Annual Conference Series, pp.
171–180, 1996.

[13] D. G. Lowe, “Object recognition from local scale-invariant
features,” inProc. of the International Conference on Com-
puter Vision ICCV, Corfu, 1999, pp. 1150–1157.

9

