
Managing Change in Large-Scale Data Sharing

Systems

Peter Mork Steven D. Gribble Alon Y. Halevy

Abstract

The problem of sharing data across multiple sources has received considerable at-
tention in recent years because of its relevance to enterprise data management, scientific
data management, and information integration on the WWW. However, the manage-
ment of updates in such systems has received very little attention. In a data sharing
system, the set of sources and clients is not fixed, and therefore the sources publishing
the updates do not necessarily know exactly who will consume them. Consequently,
the system needs to support a variety of update propagation strategies. In this paper,
our approach is based on identifying two kinds of objects of interest, which are treated
as first-class citizens in the system: updategrams, which are descriptions of updates
over base relations, and boosters, which complement updategrams to speed up the
processing of join views. We derive a complete set of rules governing the production,
combination, and reconciliation of updategrams and boosters over differing time inter-
vals. Our rules cover both GAV and LAV style mediation, as well as views involving
certain forms of aggregation. We show how to use our rules to produce efficient query
execution plans by extending the System-R style query optimizer, and present exper-
iments that evaluate several heuristics for pruning the search space of plans that use
updategrams and views for query evaluation.

1 Introduction

The problem of sharing data among multiple sources within or between enterprises has
received significant attention in research and in the commercial world. Over the years,
several data sharing architectures have been investigated, such as federated databases [35],
data integration systems [19, 25, 38], data exchange [10, 31] and peer-data management
systems [4, 17, 20, 22]. Abstractly, a data sharing system consists of a set of distributed
nodes, each serving one or more of the following roles: a data producer, a client issuing
queries, a mediator translating between schemas of other nodes, or a cache of materialized
views over other nodes’ data. Data producers may generate updates individually or in
batches, and at varying rates, perhaps even emitting a continuous data stream. While data
sharing has led to a rich body of research concerning architectural and semantic mapping
issues, the dynamic aspects of data in such systems has received much less attention. As
systems become more loosely coupled, and data is subject to frequent changes, the problem
of managing updates in these systems becomes more pronounced.

1

In this paper, we present a framework for managing updates in such data sharing systems.
We formalize updates to data sources as updategrams, a collection of insertions, removals,
and modifications to the data source. Applying an updategram to a data source updates
that source from an initial version to a more recent version. Our framework allows differ-
ent data sharing systems and applications to have differing policies for when to propagate
updategrams: eagerly at update time, lazily at query time, or using a hybrid policy.

In addition to the updates themselves, some nodes may publish auxiliary information to
speed up the computation of join queries. Previous literature [32] has proposed auxiliary
views that speed up the computation of certain views in a data warehouse. Here we introduce
update boosters, that are a refinement of auxiliary views in that they are built w.r.t. a
particular updategram. Specifically, suppose one node publishes an updategram over its
relation R, and suppose many other nodes rely on the join R 1 S. We formalize the subset
of S that is relevant to the update to R w.r.t. R 1 S as an update booster. Since boosters are
built w.r.t. an updategram, they are much smaller that an auxiliary view. Update boosters
may be published in order to speed up the computation of R 1 S, or to reduce the load
on the producers of S. As with updategrams, different nodes may have differing policies on
which boosters should be published, and when.

1.1 Motivating Scenarios

Our data sharing framework can support highly diverse systems, each with different policies
governing the production and distribution of updategrams and boosters. For example:
Data warehouses: In this simple scenario, there are a number of data providers who

publish updategrams and boosters according to a fixed schedule (e.g., daily or weekly), and
a data warehouse that maintains a collection of views over the data providers’ base relations.
Upon receipt of new updategrams and boosters, the data warehouse immediately updates its
views. Updating a view is equivalent to generating an updategram for it, using the provided
base relations’ updategrams and boosters.
Peer data management systems: In this more complex scenario, data providers

publish base relations and updategrams over their relations. Additionally, third parties
manage caches of materialized views (e.g., answers to popular queries) at strategic locations
across the system, though these materialized views may be out of date. When a new query
is issued, the system selects an appropriate cache to answer the query, and refreshes the
materialized views within the cache as necessary. Doing so requires the system to identify an
optimal refresh strategy, which may involve the base relations’ updategrams, or updategrams
and boosters produced and shared by other caches in the system.
Mobile peers: In this scenario, data providers again publish updategrams when their

base relations change. However, the clients in the system are mobile, occasionally establishing
connections to the data providers, but also occasionally establishing connections to each
other. Because of this, it is not possible to propagate changes eagerly to all participants.
Instead, some form of lazy or incremental propagation (such as epidemic propagation [36])
will be necessary. As the peers come into contact with each another, they can exchange
updategrams and boosters, helping each other gradually become up-to-date. Moreover, if
certain join conditions are particularly common within the peers’ query workload, it may be

2

economical for some peers to voluntarily promote themselves to become dedicated booster
providers, in a manner similar to how peers within file-sharing systems voluntarily promote
themselves to become “supernodes.” [21]

In all of these scenarios, treating updates as first-class objects facilitates update propaga-
tion, and sharing boosters helps to amortize the cost of view maintenance. This is especially
true in scenarios in which the base relations are not always accessible.

1.2 Contributions

Given a system that explicitly publishes updategrams and boosters, an obvious initial ques-
tion arises:

• Efficient query evaluation: Given a query at a node in the system, how can that
node use updategrams available to it to answer the query most efficiently?

This initial question has been studied in depth by the view-maintenance literature (see [15]
for a survey). However, a rich set of previously unanswered questions presents itself when
one considers updategrams and boosters within the spectrum of policies that are possible to
control their generation and publication in a distributed system. For example:

• Booster relevance and use: Boosters are often relevant not only w.r.t. the query
for which they were produced, but other current and future queries as well. When can
boosters be used to answer queries, and what is the most efficient way to use them?

• Updategram and booster creation: a node in the network may want to create
a set of updategrams and boosters to best support a particular set of queries. For
example, consider a node that serves as a gateway to a company providing boosters
and updategrams that are relevant to a small set of simple queries. How can these
be used to create new updategrams and boosters that are relevant for different, more
complex queries?

• Evaluating queries over previous time points: some applications may want to
support queries about previous versions of data. When and how can updategrams and
boosters of one version interval be used when answering a query on a different, but
related, interval?

• Other mediation formalisms: how can all of the above questions be answered under
various mediation languages (e.g., GAV, LAV, GLAV), or in the presence of aggregates?

The main contribution of this paper is to develop a set of rules governing the use of
updategrams and boosters. The rules demonstrate 1) how updategrams and boosters of
complex views can be computed from those of simpler views, 2) how to manage and reconcile
updategrams and boosters describing changes to data over different (possibly overlapping)
time intervals, and 3) they point out important properties for query optimization in the
presence of updategrams and boosters. Our rules consider several mediation languages,
including GAV, LAV, and their combination, GLAV; in fact, this is the first paper to discuss

3

updates in a LAV-based system. We describe extensions to the rules to support certain kinds
of grouping and aggregation.

Next, we describe how to use our rules to produce efficient query execution plans. In
particular, we describe a modification to a System-R style query optimizer that makes use of
available updategrams and boosters in query join enumeration. We describe two heuristics for
pruning the space of plans searched, and describe an experiment validating the effectiveness
of the heuristics. We show that our rules are complete, in the sense that they enable us
to explore the complete space of possible query execution plans that exploit a given set of
updategrams and boosters. Together, our rules and query optimization algorithms provide
a base set of mechanisms that enable the management of updates in a wide variety of data
sharing systems and policies.

The rest of this paper is organized as follows. Section 2 formally defines our problem
setting. Section 3 describes our rule set for GAV, and Section 4 describes the rules for LAV,
GLAV and aggregate views. Section 5 describes how a query optimizer can use updategrams
and boosters. Section 6 discusses related work, and Section 7 concludes.

2 Problem definition

Base relations:

N1: Genes(GeneID int, GeneName string, ChromosomeLocus string)
N2: Variants(VariantID int, GeneID int, Sequence string, Frequency double)
N3: Proteins(ProteinID int, VariantID int, ProteinName string)

View relations:

V 1: SELECT * FROM Genes, Variants

WHERE Genes.GeneID = Variants.GeneID

AND Frequency > .01;

V 2: SELECT * FROM Genes, Variants, Proteins

WHERE Genes.GeneID = Variants.GeneID

AND Variants.VariantID = Proteins.VariantID

AND Frequency > .01;

V 3: SELECT * FROM Variants, Proteins

WHERE Variants.VariantID = Proteins.VariantID;

Figure 1: An example data sharing system, in which three nodes publish base relations, and
the three publish view relations.

A data sharing system consists of a set of nodes. Nodes can perform one or more functions:
(1) they provide some base data, (2) they store data that is computed over other nodes (i.e.,
views), or (3) they do not contain any data, but serve only as logical mediators between
other sets of nodes. For example, data integration systems are an instance of such a system

4

where there is one node of type (3), called the mediator, and the rest are of type (1). In
a data warehouse context, the mediator node is of type (2) and stores views over the data
sources. Recently, there has been increased interest in peer-data management systems [17,
4, 20, 22, 29], where there is no single logical mediated schema, and peers in the system are
related by local semantic mappings. In this context any node can fulfill some or all of the
various roles.

We assume that participants use the relational data model, i.e., each peer has its own
relational schema. We assume that queries and view definitions are select-project-join (SPJ)
queries. Furthermore, for convenience we assume that the join and selection conditions in
the WHERE clause are already closed under logical deduction (e.g., if A = B and B = C
are in the clause, then so is A = C). (Note that closure can always be computed efficiently).

A major difference between data sharing systems is the particular formalism that is
used to describe the semantic relationships between different nodes. In the simplest case,
often referred to as global-as-view (GAV), there is a set of nodes with base data, and other
nodes’ contents are defined as views over the base data (or over other views). Hence, query
answering at any node can be performed by first unfolding all the view definitions, and
then evaluating the query over the base data. In the second formalism, called local-as-view
(LAV), the contents of the base data are defined as a view over the relations of other nodes.
Lenzerini [25] surveys the theoretical aspects of both formalisms, and [17] shows how (and
when) queries can be answered when the two formalisms can be combined in a network of
nodes. Together, these formalisms provide a rich language for specifying mappings between
highly heterogeneous data.

For brevity, we consider GAV mappings first and defer LAV mappings to Section 4.1.
We note that to the best of our knowledge, this is the first work that deals with updates in
a LAV context.

Here we are not concerned with the rich problem of which views to maintain at a par-
ticular node in the network, or with the problem of how the mappings between the nodes
are obtained (see [33] for a recent survey on that topic). For convenience, we assume there
is a shared meta-data repository containing all schema information for all nodes; this allows
the optimizer to know about all of the objects (relations/updategrams/boosters) in the sys-
tem. Finally, note that our results are applicable to both sets and multi-sets because the
information contained in updategrams and boosters is sufficient for the counting algorithm
presented in [16] for updating views.

Example 2.1 One of the domains driving our work is the ad-hoc sharing of data among
scientists. The following example, used throughout the paper, is extracted from that domain.
Consider a system with 6 nodes, three that each publish one base relation and three that
publish views defined over the base relations (see Figure 1). One node publishes a relation
Genes that tracks named genes and their locations on the human genome. Given that a
gene can appear in many forms (e.g., blue eyes vs. brown eyes), the second node publishes a
relation Variants that tracks known variants, including the frequency and DNA sequence of
each variant. Finally, a given gene variant can produce multiple proteins, so the third node
publishes a relation Proteins that maps variants to named proteins.

The view relations defined by the other three nodes are as follows. One node publishes
a view V1 that is of interest to a genetic counselor; V1 shows common variants that the

5

counselor might expect to see frequently. The second publishes V2 that is of interest to
a biochemist, who wants to determine which genes and proteins are related. Finally, the
third publishes V3 that is of interest to a genomics researcher, who wants to know for which
proteins a DNA sequence has already been identified. 2

2.1 Updategrams

As explained in the introduction, our goal is to support a variety of scenarios in which
updates need to be propagated from the data producers to clients. We achieve this goal by
treating updates as first class citizens, and separating between the policies governing their
production, and those governing their use.

In our discussion, updates originate from the owners of the base data and are initially
expressed in terms of changes to base relations. Nodes that export base relations publish
updates as they see fit, with a frequency and granularity chosen to suit the application.
For example, a node can choose to publish an update after every committed transaction, or
according to set schedule in which updates are published daily, regardless of the number of
transactions that have occurred. Updates are published in the form of updategrams , which
specify the tuples in the relation that have been inserted, deleted or modified. We note
that in some cases it is possible to determine that a view is independent of a particular
update [26], and therefore the update process can be skipped entirely. In our discussion, we
assume that our updategrams have already been checked for these conditions.

Version numbers and vectors: To define updategrams formally, we need to introduce
notation for tracking versions of relations and views. Different versions of relations are
denoted by version numbers . We use Rt to denote the t-th version of the relation R. The
version number is increased every time an updategram is published.

We use version vectors to specify the versions of a view. The version vector of a view
V contains a version number for each base relation on which V depends. Specifically, since
we are considering GAV mappings, we let V ′ be the unfolding of the definition of V that
refers only to the base relations, and let R1, . . . , Rm be the relations appearing in V ′. The
version vector of V contains m elements, where the i-th element refers to a version of Ri.
For example, the version vector V t1,t2,...,tm indicates that the current contents of V were
computed using the data in Rt1

1 , R
t2
2 , . . . , R

tm
m .

Note that if a relation R appears multiple times in the expansion V ′, then it still has only
one entry in the version vector; we do not want to consider anomalous view versions that
depend on two different versions of the same base relation. For brevity, we will frequently
abbreviate the version vector t1, t2, . . . , tm as ~t. We will sometimes slightly abuse notation
and not distinguish between a version vector of length one and a version number. We can
now define updategrams formally:

Definition 2.1 (Updategrams) An updategram contains the list of changes (insertions,
deletions, and updates) necessary to advance a relation from one version number to a later
version number:µi,j

R contains the changes that must be applied to advance Ri to Rj. Similarly,
µ~ı,~

V advances V ~ı to V ~. 2

Whenever the old state and new state are obvious from the context, we will omit the
version numbers/vectors. Additionally, for the purposes of our discussion we do not specify

6

the format of an updategram. It is sufficient to assume that the size of the updategram is
(at most) proportional to the number of tuples affected by the update.

Example 2.2 Assume that our example system has been running for some time; the base
relations’ version numbers are Genes3, Variants7 and Proteins5. V 1 and V 2 are current with
V 1(3,7) and V 2(3,7,5), but V 3 has not been re-materialized recently, and has version vector
V 3(2,1).

As an example of an updategram, suppose that it has been decided that the gene formerly
known as ‘PRNC’ should be renamed, ‘AFKAP’. An updategram(µ3,4

Genes
) is published to

reflect this; its contents can be encoded as:
(Delete, <42,‘PRNC’,‘17q2’>)
(Insert, <42,‘AFKAP’,‘17q2’>) 2

2.2 Update Boosters

Updategrams can significantly speed up view maintenance because they save the query
processor from having to access the entire base relation. However, as the literature on view
self-maintenance shows (e.g., [14]), updategrams in isolation are only useful when queries do
not involve joins. If a view V involves a join of relations R1, . . . , Rn, and R1 has published
an updategram, then we still need to access the base relations R2, . . . , Rn to update V .

To speed up the recomputation of join views, we also publish boosters as first class citizens.
Consider a query V that joins R1, . . . , Rn, and assume R1 publishes an updategram. The
booster of R2 w.r.t. the updategram and V includes the set of tuples in R2 that (1) may
join with tuples mentioned in the updategram, and (2) satisfy the selection predicates in V .
Update boosters are a refinement of the concept of auxiliary views (or view indices [32]).
Whereas auxiliary views are the portion of R2 that is relevant to the computation of a
particular query, the booster is the part that is relevant w.r.t. a particular updategram and
query. As a result, a booster is likely to be much smaller than the corresponding auxiliary
view.

Example 2.3 Given that µ3,4
Genes

has been published, it may be desirable to update V 1.
This re-materialization can be speeded up if a booster w.r.t. V 1 and the new updategram
is available. This booster includes all the tuples of the relation Variant, where the GeneID
is 42 (corresponding to the tuples in µ3,4

Genes
), and whose Frequency is more than 0.01 (the

condition from V 1). 2

To formally define boosters, we need to define when a tuple is relevant to a query w.r.t.
an updategram. The notion of relevance depends on derivations of answers to the query.

Definition 2.2 (derivation) Let V be an SPJ view
whose FROM clause is R1, . . . , Rn, and let ā be an answer of V over a database D. A
derivation, d, of ā is a mapping that for every i, 1 ≤ i ≤ n, d(i) is a tuple in the relation
Ri in D, d(1), . . . , d(n) satisfy the join and selection predicates in V , and ā is the result of
applying the SELECT clause of V to d(1), . . . , d(n). 2

Note that an answer to V may have multiple derivations from a database.

7

Definition 2.3 (relevance) Let V be an SPJ view
whose FROM clause is R1, . . . , Rn. Let ā1 be a tuple from R1. We say that the tuple
ā2 of R2 is relevant to V w.r.t. ā1 if it is possible to construct a database D such that there
is some derivation d of an answer to V where d(1) = ā1 and d(2) = ā2. 2

Note that relevance is not defined w.r.t. a particular database instance. In a similar
fashion, we can define a tuple ā2 to be relevant to a set Ā1 of tuples from R1 if it is relevant
to any of the tuples in Ā1.
We can now define boosters formally:

Definition 2.4 (booster) Let V be an SPJ view definition whose FROM clause isR1, . . . , Rn,
let D be a database, and let µR1

be an updategram for R1. The booster of R2 w.r.t. µR1

and V is the subset of tuples of R2 in D that are relevant to some tuple mentioned in µR1
.

We denote the booster by βV (µR1
, R2); when V and µR1

are obvious, we abbreviate β(R2).
Any subset of R2 in D that is a superset of βV (µR1

, R2) is called a super-booster. 2

Example 2.4 Now consider updating V 2. It would be beneficial to have a booster w.r.t.
V 2 and µ3,4

Genes
defined over both Variants and Proteins (i.e., S1 = {Genes} and S2 = {Variants,

Proteins}). The tuples in this booster include all the tuples in the join of Variants and Proteins
for which the GeneID is 42 and the Frequency is more than 0.01. 2

A booster of the form βV (µR1
, R2) is clearly useful for computing V . Moreover, we

emphasize two properties of boosters that play an important role when we consider booster
production policies. First, as we will show, boosters can be computed as a side-effect of using
an updategram to update a view. Second, boosters are actually useful for a much larger set
of views than the one for which they are computed; the booster of R2 w.r.t. the updategram
of R1 and V will be useful for any view that joins R1 and R2 with a subset of the join and
selection predicates of V . We note that Definition 2.4 can easily be extended to the case
where R1 and R2 are replaced by two disjoint subsets S1 and S2.

3 Updategram and booster rules

We now describe a set of rules that governs the way updategrams and boosters can be used.
The rules answer the basic questions raised at the outset, such as: How are updategrams and
boosters produced and combined? How can they be used in query execution plans? When
can we prune unneeded updategrams and boosters? How do we deal with varying version
intervals? These rules can be used in a variety of settings, thereby being applicable to a
range of strategies for producing, storing, integrating and reconciling updates.

This section shows that the set of rules is complete in the context of GAV-style mediation;
it enables exploring all possible ways of using a given set of updategrams and boosters. The
next section considers LAV and mediation involving aggregation.

Our rules describe the operations that combine updategrams with relations, updategrams
with boosters, and boosters with boosters. Since boosters are relations, the latter operation
is simply a join. When we combine an updategram µR with a relation S or with a booster,
we also join the tuples in the updategram with those of the relation, but depending on the
desired result, we need to do some additional bookkeeping. If the result is a booster, then

8

the output includes the set of tuples in S that join with some tuple in µR. If the result is an
updategram, then we label every tuple in the result with the label of the tuple in µR that it
came from. For simplicity of exposition, we denote all these operations with the 1 symbol

despite the slight differences. We use the notation R
V
1 S to specify that we join R and S

using the join and selection conditions in the view V . In most cases, the left-hand side of
each rule describes the operations necessary to produce the right-hand side.

Updategram and booster creation: the first set of rules tell us how to create boosters
and how to create updategrams for views. Recall that βV (µR, S) is a booster for S w.r.t. the
updategram µR and the view V .

A1. µR
V
1 S = µ

R
V
1S

A2. µR
V
1 βV (µR, S) = µ

R
V
1S

A3. Πattributes(S)(µR
V
1 S) = βV (µR, S)

Rule A1 is the basic rule specifying how updategrams are used. If the goal is to update

R
V
1 S (i.e., to produce µ

R
V
1S
), then one can join µR with S. A2 shows that the same result is

achieved by using the booster βV (µR, S) instead of the entire relation S. Rule A3 shows how
boosters are created by combining updategrams with a relation, followed by the appropriate
projection. (Under multi-set semantics, it is necessary to count the number of times a tuple
appears in S; the booster must contain the same count.) Hence, A3 implies that a booster
can be created as a side-effect of using the updategram, which is important when we consider
the tradeoffs involved in creating and maintaining boosters.

A4. βV (µR, S)
V
1 βV (µR, T) = βV (µR, S

V
1 T)

A5. (µR
V
1 βV (µR, S))

V
1 βV (µR, T) =

µR
V
1 (βV (µR, S)

V
1 βV (µR, T))

Rule A4 shows that two boosters w.r.t. the same updategram can be combined in order
to create a booster for a view. Rule A5 shows that combining updategrams and boosters is
an associative operation. This rule is key to the join enumeration algorithm we present later
– the rule entails that during the join enumeration algorithm, we do not have to keep plans
for a sub-expression V1 of V if we have a booster for V1 that is cheaper to access or compute.

Example 3.1 Consider the scenario in which µ3,4
Genes

and β = βV 2(µ
3,4
Genes

,Variants) have been
published. One plan to recompute V 2 is to join µ3,4

Genes
with Variants, and then to join that

result with Proteins. A more attractive alternative might be to join µ3,4
Genes

with β, and then
join the result with Proteins. 2

Using super-boosters: one of the key benefits of boosters is that they can be used across
queries. That is, a booster created as a result of updating V1 may be useful for a subsequent
view V2. However, the booster created for V1 may not be exactly a booster w.r.t. V2, but
rather be a superset of the booster of V2, i.e., a super-booster. The following rules show how

9

super-boosters are used. In the rules, we use (R
V
1 S) ⊆ (R

W
1 S) to denote that the query

(R
V
1 S) is contained in the query (R

W
1 S) (i.e., produces a subset of the tuples for any

given database instance).

A6. Let W be a view such that (R
V
1 S) ⊆ (R

W
1 S).

Then, µR
V
1 βW (µR, S) = µ

R
V
1S

A7. If (S
V
1 T) ⊆ (S

U
1 T) and (S

V
1 T) ⊆ (S

W
1 T),

then βU(µR, S)
V
1 βW (µR, T) ⊇ βV (µR, S

V
1 T).

Rule A6 tells us that a booster created for a more general view can still be used to create
an updategram (i.e., generalizes rule A2). Rule A7 says that if we join two boosters, each
constructed for a query containing V (U and W), then the result is a super-booster for V .

Boosters for overlapping intervals: at a given point in time, there may be several
updategrams available for a particular relation R, each associated with different start and end
versions of R. Similarly, boosters will be created w.r.t. these updategrams with corresponding
version intervals. The following rules show how to use and combine multiple updategrams
and boosters over related intervals:

A8. If i ≤ j < k ≤ l, then µj,k
R

V
1 βV (µ

i,l
R , S) = µj,k

R
V
1S

A9. If (m = max(i, k)) < (n = min(j, l)),

then βV (µ
i,j
R , S)

V
1 βV (µ

k,l
R , T) =

βW (µ
m,n
R , S

V
1 T) where V ⊆ W

Rule A8 says that we can use a booster for a containing interval. Rule A9 says that
if we combine two boosters of overlapping intervals, then we get a super-booster of their
intersection interval.

Coalescing updategrams and boosters: Finally, one can bundle multiple updategrams
and boosters into objects that span larger time intervals. In the following rules, we use the
union symbol for coalescing, though the actual operation requires some simple additional
bookkeeping:

A10. µi,j
R ∪ µ

j,k
R = µi,k

R

A11. If V ⊆ W,V ⊆ X and i < k ≤ j < l,

then βW (µ
i,j
R , S) ∪ βX(µ

k,l
R , S) =

βY (µ
i,l
R , S) where V ⊆ Y

Rule A10 allows us to merge the contents of adjacent updategrams. Rule A11 says that
boosters can also be merged, although the bookkeeping required depends on whether one is
considering set or multi-set semantics (for example, UNION ALL cannot be used because this
may inflate the multiplicity of certain tuples).

The following theorem shows that our rules are complete in that they enable exploring
the entire space of possible plans that exploit a set of updategrams and boosters.

10

Fig. 3a

3,1
Rµ),(3,1 SRV µβ

),(3,1 TRV µβ�

�#2

#1

2,1
Rµ �

�

U

3,2
Rµ �

�

#3 #3

#4 #5

),(3,1 SRV µβ),(3,1 TRV µβ),(3,1 SRV µβ),(3,1 TRV µβ

U

2,1
Rµ S

T
�

�

3,2
Rµ S

T
�

�

P1

P2
Fig. 3b

Figure 2: The figure shows three equivalent plans for updating V = R 1 S 1 T . The plan at the

top-right is the canonical plan.

Equivalence (Rule) Description

#1= µ1,3
R1S (A2)

(a) P1 can be transformed into the canonical

plan by splitting it into two updates.
#2= µ1,3

V (A2)

= µ1,2
V

⋃

µ2,3
V (A10)

#3= β(S 1 T) (A4)
(b) P2 can be transformed into the canonical

plan by reordering operations.
#4= µ1,2

V (A8)

#5= µ2,3
V (A8)

Figure 3: The figure demonstrates how to transform plans P1 to the canonical plan (upper half)

and P2 to the canonical plan (lower half).

Theorem 3.1 Let V be a view over relations R1, . . . , Rn, and let µi,j
R1

be an updategram for

R1. Let P1 and P2 be two (possibly bushy) query trees for computing µi,j
V , using the base

relations or boosters. Then, using the equivalences in rules A1–A11 and the commutativity
and associativity of joins, we can transform P1 to P2 and vice versa.

Proof Sketch: The proof proceeds by showing that both P1 and P2 can be transformed to
and from a canonical series of left-linear join trees that reference only the base relations and
original update (see Figure 2). Each subsequent tree increments the version number by one.
To show this, first expand each updategram that spans multiple versions into a collection of
updategrams across incremental versions (using rules A10 and A11); this produces a series
of incremental plans. Next, expand each booster in a plan P so it references a single base
relation (using rules A4, A7 and A9), and then transform P into a left-linear join tree (using
rule A5). Finally, replace each booster with the corresponding base relation (with rules A1,
A2, A6 and A8). 2

Example 3.2 Figure 3 demonstrates the equivalence of two sample plans P1 and P2 (shown

11

in Figure 2). Using rules A2 and A10, we can transform P1 to/from the canonical plan by
splitting the plan into two updates. Using rules A4 and A8, we can similarly transform P2

to/from the
canonical plan by reordering operations. 2

4 Extended mediation languages

Building on the rules presented in the previous section, we now describe how to handle
updategrams and boosters in LAV-style mediation (Section 4.1), and mediation involving
grouping and aggregation (Section 4.2).

4.1 Schema mediation with LAV

The preceding section assumed that the relationships between data sources were described
using the GAV formalism, i.e., there is a set of nodes providing base data, and other nodes
are defined as views over the base nodes (perhaps with a hierarchy of views). In the local-as-
view formalism (LAV), the relationships are described in reverse—the contents of base data
nodes are described as views over the schemas of other nodes. LAV’s key advantage is that
it is easier to map a large set of data sources into a mediated schema, because they can be
mapped independently of each other.

Example 4.1 Consider a mediator node that does not store any data, but just contains
mappings to a set of other nodes that provide data. Suppose the mediator node has two
relations: GeneNames(GeneID int, GeneName string) and GeneLoci(GeneID int, Locus string).
Given this virtual schema, we may describe the data in Genes as:

SELECT N.GeneID, GeneName, Locus AS ChromosomeLocus

FROM GeneNames AS N, GeneLoci AS L,

WHERE N.GeneID = L.GeneID

In this example, when Genes is updated, both GeneNames and GeneLoci may need up-
dating. For example, if µGenes is the insertion of a single tuple (with non-null GeneID), the
appropriate action (under multi-set semantics) is to add one new tuple to each of the virtual
relations. 2

In general, LAV and GAV mappings can be combined into a network of mappings (see [17]
for a precise analysis of the restrictions we need to impose on such combinations in order to
still be able to answer queries efficiently). We now extend our rule set to handle LAV-style
mappings. Because we reduce LAV to GAV, we can also accommodate GLAV [11, 10], a
formalism that combines the benefits of LAV and GAV.

Given the rules we have already described, the key to handling LAV is to reformulate the
mappings using inverse rules [9]. Given a view V , we can use inverse rules to rewrite V as a
non-recursive datalog program V ′ over the relations of the nodes with the base data1. The
program V ′ provides a basis for extending the notation of version vectors – any relation that

1In general, if we consider functional dependencies, then the datalog program resulting from the inverse-
rule technique may be recursive [8]. However, we do not consider functional dependencies here.

12

appears as a base relation in V ′ is part of the version vector of V . As the following example
shows, it is important we express V in terms of the base relations, and not just the relations
over which it is expressed:

Example 4.2 Continuing the previous example, assume the view is:

CREATE VIEW V AS

SELECT N.GeneID, GeneName, Locus AS ChromosomeLocus

FROM GeneNames AS N, GeneLoci AS L,

WHERE N.GeneID = L.GeneID

When expressed in terms of the actual base data, V is just SELECT * FROM Genes. As
such, µGenes can be used to update V directly. However, if we consider V to be dependent on
GeneNames and GeneLoci, then it will appear as if two relations have been changed. One may
be tempted to apply each updategram in succession by joining µGeneNames with GeneLociold

and then joining µGeneLoci with GeneNamesnew. This will produce the correct result, but it is
much more expensive. 2

Since V ′ is non-recursive, we only need to extend our rules to deal with views that involve
unions. Hence, we provide the following rule, that combines the updategrams of a set of views
to an updategram for their union:

A12. If V = V1 ∪ V2 ∪ . . . ∪ Vn, then
⋃n

k=1 µ
~ı,~
Vk
= µ~ı,~

V

This rule indicates that an update to a union of views is the union of the updates to the
respective views. Note that elements of the µ~ı,~

Vk
’s may interact: if µ~ı,~

Vk
inserts a tuple that is

deleted from one or more other updategrams, then the net is that the tuple is inserted by
the updategram. When multi-set semantics are considered, we also need to keep track of the
multiplicities to get the final result.

4.2 GAV with Aggregation

Queries with grouping and aggregation are very useful in large-scale data sharing systems.
We now describe how to extend our rules for GAV-style mediation where some views involve
grouping and aggregation. For brevity, we assume the grouping and aggregation are over a
single relation, but in practice that relation may result from a join query as well.

The key to extending our rules is the intuition that a booster is the subset of an auxiliary
view that is relevant w.r.t. an update. Recall that auxiliary views were introduced in the
view-maintenance literature in order to allow views to be self-maintainable [32]. Auxiliary
views can be thought of as boosters relevant to all updates. Auxiliary views have been
extended to include views with cumulative aggregates (SUM, COUNT, AVG) [28] and also
top-k queries (including MAX, MIN) [39]. To illustrate, consider the view V , defined as
follows:

SELECT A, AVG(C) FROM R GROUP BY A, B;

The auxiliary view VA would be the following, designed to keep track of the sum and count
on the C column:

13

SELECT A, B, SUM(C) AS D, COUNT(C) AS E

FROM R GROUP BY A, B;

Given a grouping query V defined over R, auxiliary view VA and an update µ
i,j
R , we define

a grouping booster, γV (µ
i,j
R), to be the subset of VA that is relevant to the update. In our

example, when (a, b, c) is inserted into R, the appropriate grouping-booster is:

SELECT A, D, E FROM VA WHERE A=a AND B=b;

With this information, we can compute an updategram for V (as well as an updategram
for VA): delete (a, d/e) from V and insert (a, (d+ c)/(e+ 1)).

A more interesting use of grouping boosters arises when we consider top-k views. In
order to support deletions, the auxiliary view for a top-k view is a top-k ′ view, where k′ > k.
When the maximum value is deleted, the k-th value can be extracted from the auxiliary view.
The auxiliary view now contains k′ − 1 values. We can choose not to refresh the auxiliary
view, or we can retrieve the k′-th value from some other location (or the base relation). This
affords great flexibility: nodes can maintain various windows, which are refilled according to
differing policies. Any peer with a larger window can be used to refill a peer with a smaller
window.

The following rules formalize the properties of grouping
boosters. In the rules, Vg denotes the grouping columns of V and Va denotes its aggre-
gate columns. Rule A13 indicates how grouping-boosters can be used in place of auxiliary
views (note that in this case we overload the join operator to mean ‘can be computed’ as
in the preceding examples). Rules A14–A16 generalize rules presented in section 3. Finally,
rule A17 captures the intuition of the preceding example.

A13. µR
V
1 R = µR

V
1 VA = µR

V
1 γV (µR) = µV

A14. Let W be an aggregation query such that Wg ⊆ Vg and Wa = Va. Then, µR
W
1

γV (µR) = µW .

A15. If i ≤ j < k ≤ l, then µj,k
R

V
1 γG(µ

i,l
V) = µj,k

V .

A16. If i < k ≤ j < l, then γV (µ
i,j
R) ∪ γV (µ

k,l
R) = γV (µ

i,l
R)

A17. If V and W are top-k queries and VA ⊂ WA, then µR
V
1 γW (µR) = µVA

.

In summary, the rules we describe allow a wide range of propagation policies in data
sharing systems with mediation rules in GAV, LAV and aggregation views.

5 Computing updates

In this section we show how our rules can actually be used to optimize the propagation of
updates. Any system that uses updategrams and boosters will face a variant of the following
problem: given a set of views (with specified version vectors), base relations, updategrams,
and boosters, compute an efficient plan for using the base relations, updategrams, and boost-
ers to update one or more of the views. The point at which the optimization problem is

14

addressed and the particular variant depends on the strategy the system uses to propagate
updates.

In this section, we describe a System-R style join enumeration algorithm to make use of
updategrams and boosters. We first consider the case in which we need to advance a view
from one version to the next one, and then describe how to find a plan that advances a view
over multiple versions. We discuss here only the case of updategrams to a single relation;
the extension to multiple relations is conceptually similar.

5.1 Advancing a single step

We begin with the case where we want to compute the updated version of a view, V , after one
of the relations on which it depends, R, has published an updategram µR. In addition to the
updategram, some set of boosters with respect to that updategram may also be published.
The goal of optimization is to calculate the cheapest plan for updating V (i.e., for producing
µV) given µR, the base relations, and a set of boosters w.r.t. µR.

Calculating the cheapest plan can be done using System-R-style dynamic program-
ming [34]. With no boosters, finding the cheapest plan can be done simply by replacing
R by µR in the System-R algorithm (under the reasonable assumption that accessing µR is
cheaper than accessing the entire relation R). In the presence of boosters, the System-R
algorithm needs to be modified to be able to use them. Specifically, Rule A5 implies that
a plan for a sub-expression S of the view V can be replaced by a plan for a booster of S
w.r.t. µR. Hence, the algorithm needs to be modified to consider the boosters, and to create
such boosters (using Rule A3). Next, we explain the augmented algorithm by contrasting
it to the System-R algorithm. We note that the same principles of our algorithm apply
to a top-down or transformational optimizer. In addition, we assume that selections and
projections are pushed as a later phase and do not consider them further. Our execution
model assumes that joins are performed at the querying node, and hence we do not consider
a full distributed query processing scenario where semi-joins can be performed anywhere. In
our description, we assume that relation R1 has been updated with updategram µ1.

The System-R join enumeration algorithm finds the best join order for a query involving a
join of n relations, say R1, . . . , Rn. In its initial iteration, the algorithm finds the best access
path to each of the relations mentioned in the FROM clause. The augmented algorithm, in
addition, also finds the best access paths to µ1, and to each of the boosters in B that are
over a single relation. If the algorithm finds that there exists a booster for Rk w.r.t. µ1 and
it is cheaper to access than Rk itself, then it need not consider Rk any further.

In the k-th iteration, the System-R algorithm finds the best plan for joining any sub-
expression consisting of k relations in the FROM clause. It does so by trying all possible
ways of joining plans of size k − i with non-overlapping plans of size i (or considers only
i = 1 if it is restricting the search to left-linear trees). The key point is that the algorithm
saves a single plan for every sub-expression of size k.2 The augmented algorithm computes
the following in the k-th iteration, also saving only one plan for each construct:

2More precisely, it saves one plan for every interesting order on the result, but this is orthogonal to our
discussion.

15

Sub-expressions of size k: in the same way as before, except that if we already have a
booster for a sub-expression S that is cheaper than all the plans for S, we do not consider
the plans for S any further (Rules A5,A2).

Updategrams for sub-expressions of size k that include R1: by combining updategrams
of size k − i with either boosters or sub-expressions of size i (Rules A1,A2).

Boosters for sub-expressions of size k w.r.t. µ1 and don’t include R1: these boosters are
either already in B, or can be created by combining boosters for sub-expressions of size k− i
with boosters for sub-expressions of size i (Rule A4).

We note that super-boosters, which may have been computed for a related view, can
always be used instead of boosters at any point in the algorithm. Super-boosters may be
more expensive to send than a real booster, but it may still be less expensive than using no
boosters.

Note that the running time of the augmented algorithm is no different than that of the
basic algorithm. Only one plan is saved for every sub-expression: if the sub-expression
includes R1, the plan will be for an updategram, and if the sub-expression does not include
R1 it will be for the sub-expression or a booster. Furthermore, each booster in B is only
considered once during the algorithm.

5.2 Advancing several steps

Our goal now is to advance a view V from version t1, . . . , tk, . . . , tn to version t1, . . . , t
′

k, . . . , tn,
where t′k may be arbitrarily larger than tk. We again leverage dynamic programming; the
algorithm creates plans for wider steps from the plans of smaller steps. For ease of exposition,
assume that V is currently in version 0 and that we need to update it to version x (that is,
tk = 0 and t

′

k = x).
In the first phase, we identify the best plan (using the algorithm described above) for

updating V from version 0 to version 1. In the second phase, we identify the best plan for
updating V from version 0 to version 2. This can be accomplished by using µ0,2

Rk
to transition

directly, or by using µ1,2
Rk
to transition from version 1. In phase i, we identify the best plan

for updating V from 0 to i. This requires considering every updategram that transitions to
i (from any earlier version). To prune the search space, we only consider version intervals
that involve landmark versions. Landmark versions are defined by the following procedure.
In the procedure, L(U) is the set of ending points of updategrams in the set U .

Let U be the set of available updategrams
while U changes

for each u in U of the form (t1, t2)
if t1 is not in L(U), remove u from U

return L(U)

5.3 Optimization tradeoffs

In general, the utility of updategrams and boosters when computing updates efficiently
depends on the particular context in which they are used, and is therefore beyond the scope

16

of this paper. Our goal is to identify optimization challenges that are novel in the presence
of updategrams and boosters.

To get a feel for the optimization tradeoffs, we implemented the algorithms described
above and tested them under a variety of conditions. We observed the following trends. As
the number of updategrams and boosters available to the system grew, our optimization
algorithm produced plans with lower expected cost. In many cases, the resulting plans
were more efficient because boosters enabled the optimizer to create bushy plans with small
intermediate results, rather than left-linear plans. Our experiments revealed that the most
significant factor in the expected cost of a plan was its length: an execution plan to advance
a view V from version x to version y may go through several intermediate versions. The
number of intermediate versions (+1) is called the length of the plan. We observed that the
estimated cost of a plan is proportional to its length; longer plans end up scanning the same
relations multiple times compared to the shorter plans.

The above observation raises an optimization challenge. Exploring the space of plans
of all lengths would require using rules A10 and A11, which allow us to coalesce adjacent
updategrams and overlapping boosters. However, exploring the complete space of plans with
these rules may be prohibitively expensive, and the opportunities for exploiting them grow
with the number of updategrams and boosters available. In what follows we describe two
heuristics for pruning the search space and describe a set of experiments that validate their
impact. We consider two heuristics:

Coalesce: this heuristic first uses the algorithm in Section 5.2 to identify a plan that moves
through multiple versions. We then modify the chosen plan by coalescing updates whenever
possible, and we choose the cheaper plan of the two.

Greedy: this heuristic greedily explores the set of plans in a way that is biased towards
shorter plans. Specifically, instead of considering every possible path to a given version, only
the largest possible transition is considered. For example, suppose we are updating from
version 1 to 3. After building a plan for interval (1,2), the greedy heuristic will not consider
the interval (2,3) if an updategram for (1,3) exists. The important property of this heuristic
is that the cost of optimization only depends on the size of the interval, and not on the
number of updategrams and boosters available.

5.3.1 Experimental setup

To test the impact of these two heuristics we ran experiments over a 0.1 scale TPC-H bench-
mark, which defines 8 base relations and 22 queries over these relations. Our experiments
did not consider aggregation, so the 12 TPC-H queries involving aggregation were converted
to related SPJ queries that could be used to answer the original query.

We generated 200 updates to the relation LineItem. For each update, we generated
boosters for each relation that shares a key with the updated relation (i.e., Orders, Parts and
Suppliers). Each update is published as a separate updategram. As we explain shortly, the
different experiments will add updategrams to this basic set.

On the query side, we generated 100 version intervals whose end-points lie in the range
[0-200]. For each interval, we ran the augmented System-R optimizer to find the optimal plan
for advancing each query in our collection across the interval. That is, for a given interval

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120 140 160 180

Length of Best Plan (in # intervals)

E
st

im
at

ed
 C

o
st

 (
vs

. W
o

rs
t

C
as

e)

Figure 4: Effect of Plan Length—This figure shows the estimated cost of plan execution as a
function of the number of versions through which the plan transitions. Plans with fewer transitions

are cheaper (even if the transitions are large).

(x, y), we assume that the queries are consistent with LineItemx and we wish to refresh them
to reflect the contents of LineItemy.

We report the average optimization times for the query, and the ratio of the estimated
cost of execution to the estimated cost of re-materializing the query from scratch. In our
cost model, we assume that all data sources, updategrams and boosters are remote. Note
that the sizes of the base relations, updategrams and boosters are available to the optimizer.

5.3.2 Experimental results

The first two graphs illustrate the challenge our heuristics are facing. Figure 4 shows that the
estimated cost of plan execution increases as a function of the number of versions through
which the plan transitions, i.e., the plan length. These results are reported as a fraction
of the worst case, which is recomputing the view from scratch. Figure 5 shows that as the
number of updategrams increases, the optimizer is able to find shorter plans.

Hence, as the number of updategrams available grows, the opportunities for finding
shorter plans increase, but searching the entire space of plans may be prohibitively ex-
pensive. The results of employing our heuristics are shown in Figures 6 and 7. Figure 6
plots the expected cost of the plans produced by our optimizer as a function of the number
of updategrams available. The “Base” line in the figure shows the performance for the al-
gorithm described in Section 5.2. The graph shows that the expected execution time drops
off dramatically with the number of updategrams available. For example, with 2000 random
updategrams available, the cost of execution is a factor of ten less than the case with only
the single-step updategrams available.

The “Coalesce” line shows the performance for our first heuristic. The expected cost of

18

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000 14000

Number of Updategrams Available

L
en

g
th

 o
f

B
es

t
P

la
n

Figure 5: Average plan length as a function of the number of updategrams available.

0

0.02

0.04

0.06

0.08

0.1

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Updategrams Available

E
st

im
at

ed
 C

o
st

 (
vs

. W
o

rs
t

C
as

e) Base Coalesce Greedy C+G

Figure 6: Estimated cost of execution as a function of the number of updategrams available.
Coalescing produces more efficient plans; the greedy heuristic identifies only slightly less efficient

plans.

19

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Updategrams Available

T
im

e
(i

n
 m

s)

Base Greedy

Figure 7: Actual cost of optimization as a function of the number of updategrams available. The
greedy algorithm does not depend on the number of updategrams available.

“Coalesce” is ≈28% of the expected cost for “Base”.
The “Greedy” line shows that the greedy heuristic quickly identifies plans of minimal

length. This allows the algorithm to find reasonable plans, but not necessarily optimal plans.
The figure shows that the plans produced by “Greedy” are ≈30% more expensive than those
produced by “Base”. Figure 7 illustrates the advantage of “Greedy.” The optimization
cost depends only on the length of the interval; it is constant in the number of available
updategrams (since only one plan is considered for each landmark).

Finally, we include the combination of both heuristics. These results are shown as “C+G”
in Figure 6. The same trends hold when comparing “C+G” to “Coalesce” or “Greedy”:
“C+G” exhibits better execution times than “Greedy” and better optimization costs than
“Coalesce” (in Figure 7 this curve coincides with the curve for “Greedy” since only one
additional plan is considered).

In summary, while our experiments are not comprehensive, they suggest that with our
two heuristics it is possible to efficiently obtain short, low-cost plans even in the presence of
a large number of updategrams and boosters.

6 Related Work

Our work builds on the rich literature on view maintenance and updates. The key novel-
ties in our work arise from the fact that we are interested in open architectures in which
updategrams and boosters are published and updates can be propagated using a variety
of strategies. Hence, we focus on the questions of creating and reusing updategrams and
boosters and on their use in optimization.

20

Surveys of view maintenance are given in [37, 15]. Mohan [27] surveys the related area
of using data replication to increase availability. Several techniques for efficiently computing
updates are described (e.g., [16, 5, 1]). In the context of data integration or warehousing, the
focus has been on methods that would enable a view to be updated without having to access
the base relations, i.e., to guarantee that views are self-maintainable. In general, [14] shows
that without knowledge of keys, views that join two or more relations cannot be updated
without some external knowledge (i.e., the contents of the other relations). In [32] it was
shown how to slightly modify a view definition to make it self-maintainable, and in [23],
it was shown which other auxiliary views should be maintained in a warehouse in order to
speed view maintenance.

In the Heraclitus [12] System, updates are also treated as first-class citizens, but there it
was for the purpose of accommodating hypothetical queries over possible different states of
the data. In the Propagation Manager [7] component of SIES, updates are transformed and
propagated using scripts whereas we consider declarative views.

The issue of developing policies for guaranteeing fresh data has also received attention.
For example, Vista [37] identifies two basic strategies that guarantee fresh data: immediate
and deferred updates. An alternative that does not guarantee freshness is periodic updates.
Our work is agnostic towards these distinctions, allowing data providers to choose the fre-
quency with which materialized views are refreshed and updates published. A analysis of
performance implications can be found in [18].

There is a large body of work that uses data replication to increase availability (see [27]
for a recent tutorial). All such systems face the problem of keeping replicas consistent.
Strategies for doing so include primary-copy approaches [2, 30], in which clients write to
a primary master, only interacting with slave nodes for reads or on failure of the primary,
and lazy strategies (e.g., [24]), in which operations are loosely ordered (i.e., consistency is
not strictly guaranteed). In [36] any replica can be updated; conflicts are resolved using
anti-entropy, during which replicas progress towards reaching eventual consistency. Some
systems keep all replicas synchronously up-to-date; the performance implications of doing
so are discussed in [13]. In our work, we assume updates to base data only originate in one
place, and therefore, there is no need for complex consistency protocols.

A common technique for ensuring data consistency is to use triggers. An algorithm for
automatically constructing triggers for updating views can be found in [6]. This assumes
that the base relations are aware of the views that will require maintenance. In our context,
however, it is not possible in general to make that assumption.

Finally, two related areas that we have not touched upon include choosing which views
to materialize at a particular node, and the treatment of streaming data. Streams can be
viewed as an extreme case of update propagation in which there are a stream of updategrams.
The value of boosters in such a context is hinted at in [3]. However, the application of our
techniques to streams is future work.

7 Conclusions and Future Work

The efficient management and propagation of updates is a crucial component of large-scale
data sharing. This paper lays the foundation for update management in a variety of system

21

scenarios, by proposing a framework in which updategrams and boosters are published as
first-class objects. We described a set of rules that guides the use of these constructs and
covers both GAV and LAV mediation formalisms, as well as views with aggregation. We
then described an optimization algorithm that is able to use updategrams and boosters to
produce efficient view update plans, and described practical heuristics for pruning the search
space of query plans, while producing near optimal plans.

There are several directions we plan to pursue next. First, we will study the question
of which views to store on nodes in the network in order to increase data availability and
improve performance. Second, we plan to apply our framework and methods to a specific
data sharing architecture.

8 Acknowledgements

We would like to thank Rachel Pottinger for her comments on earlier drafts of this paper.

References

[1] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. Wiener. Incremental maintenance
for materialized views over semistructured data. In VLDB, 1998.

[2] P. A. Alsberg and J. D. Day. A principle for resilient sharing of distributed resources.
In ICSE, 1976.

[3] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Record,
30(3):109–120, 2001.

[4] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and
I. Zaihrayeu. Database Management for Peer-to-Peer Computing: A Vision. In Pro-
ceedings of the International Workshop on the Web and Databases (WebDB), 2002.

[5] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently updating materialized views.
In SIGMOD, pages 61–71, 1986.

[6] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In
VLDB, 1991.

[7] C. Constantinescu, U. Heinkel, R. Rantzau, and B. Mitschang. A system for data
change propagation in heterogeneous information systems. In Int. Conf. on Enterprise
Information Systems, 2002.

[8] O. Duschka, M. Genesereth, and A. Levy. Recursive query plans for data integration.
Journal of Logic Programming, special issue on Logic Based Heterogeneous Information
Systems, 43(1):49–73, 2000.

[9] O. M. Duschka and M. R. Genesereth. Answering recursive queries using views. In
Proc. of PODS, pages 109–116, Tucson, Arizona., 1997.

22

[10] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. In ICDT, 2003.

[11] M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration. In
Proceedings of AAAI, 1999.

[12] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevating deltas to be first-
class citizens in a database programming language. ACM TODS, 21(3):370–426, 1996.

[13] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution.
In SIGMOD, pages 173–182, 1996.

[14] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-maintainable
views. In EDBT, pages 140–144, 1996.

[15] A. Gupta and I. Mumick, editors. Materialized Views: Techniques, Implementations
and Applications. The MIT Press, 1999.

[16] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally
(extended abstract). In SIGMOD, pages 157–166, 1993.

[17] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In Proc. of ICDE, 2003.

[18] E. N. Hanson. A performance analysis of view materialization strategies. In SIGMOD,
1987.

[19] R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In
Proc. of PODS, pages 51–61, Tucson, Arizona, 1997.

[20] P. Kalnis, W. Ng, B. Ooi, D. Papadias, and K. Tan. An adaptive peer-to-peer network
for distributed caching of OLAP results. In SIGMOD, 2002.

[21] Kazaa. Homepage: http://www.kazaa.com, November 2003.

[22] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer systems:
Semantics and algorithmic issues. In Proc. of SIGMOD, 2003.

[23] W. Labio, D. Quass, and B. Adelberg. Physical database design for data warehouses.
In ICDE, pages 277–288, 1997.

[24] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using lazy
replication. ACM Transactions on Computer Systems, 10(4), 1992.

[25] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS, 2002.

[26] A. Y. Levy and Y. Sagiv. Queries independent of updates. In VLDB, pages 171–181,
1993.

23

[27] C. Mohan. Caching technologies for web applications – a tutorial. In Proc. of VLDB,
2001.

[28] M. K. Mohania and Y. Kambayashi. Data and Knowledge Engineering, 32(1):87–109,
2000.

[29] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Peerdb: A p2p-based system for dis-
tributed data sharing. In ICDE, Bangalore, India, 2003.

[30] E. Pacitti and E. Simon. Update propagation strategies to improve freshness in lazy
master replicated databases. VLDB Journal, 8(3–4), 2000.

[31] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating web
data. In VLDB, 2002.

[32] D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making views self-maintainable for
data warehousing. In PDIS, pages 158–169, 1996.

[33] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, 10(4):334–350, 2001.

[34] P. G. Selinger, M. M. Astrahan, D. D. Chamberlain, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In SIGMOD, pages
23–34, 1979.

[35] A. P. Sheth and J. A. Larson. Federated database systems for managing, distributed,
heterogenous, and autonomous databases. ACM Computing Surveys, 22(3):183–236,
September 1990.

[36] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in Bayou, a weakly connected replicated storage
system. In SOSP, pages 172–183, 1995.

[37] D. Vista. Optimizing Incremental View Maintenance Expressions in Relational
Databases. PhD thesis, University of Toronto, 1997.

[38] G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, pages 38–49, 1992.

[39] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of materialized top-k
views. In ICDE, 2003.

24

