
Learning Text Patterns for Web Information Extraction and Assessment
(Extended Version)

Doug Downey, Oren Etzioni, Stephen Soderland, and Daniel S. Weld

Department of Computer Science and Engineering
University of Washington

Seattle, WA-98195
 ddowney@cs.washington.edu, etzioni@cs.washington.edu, soderlan@cs.washington.edu, weld@cs.washington.edu

Abstract
Learning text patterns that suggest a desired type of
information is a common strategy for extracting information
from unstructured text on the Web. In this paper, we introduce
the idea that learned patterns can be used as both extractors (to
generate new information) and discriminators (to assess the
truth of extracted information). We demonstrate
experimentally that a Web information extraction system
(KnowItAll) can be improved (in terms of coverage and
accuracy) through the addition of a simple pattern-learning
algorithm. By using learned patterns as extractors, we are able
to boost recall by 50% to 80%; and by using such patterns as
discriminators we are able to reduce classification errors by
28% to 35%. In addition, the paper reports theoretical results
on optimally selecting and ordering discriminators, and shows
that this theory yields a heuristic that further reduces
classification errors by an additional 19% to 35% – giving an
overall error reduction of 47% to 53%.

1. Introduction
 A variety of recent work aimed at extracting information
from free text uses a form of pattern learning (e.g.
Soderland 1999; Riloff & Jones 1999; Lin, Yangarber, &
Grishman 2003; Ravichandran & Hovy 2002). Starting
with a set of seed examples of a given class, pattern
learning algorithms scan a corpus to discover contextual
patterns in which instances of the class are commonly
found. The discovered patterns can then be used on the
corpus as extractors to generate instances of the class.
When pattern learning is applied to a large corpus (like the
Web), the automatic creation of large knowledge bases
becomes an exciting possibility (e.g. Agichtein & Gravano
2000; Brin 1998).
 A common problem with information extraction systems
is that the quality of the extracted information is variable
and can degrade as extraction progresses. Inspired by
Turney’s PMI-IR algorithm (Turney 2001), our recent
work addressed this problem by using patterns as
discriminators (Etzioni et. al 2004a). We gather hit counts
from Web search engines to compute the pointwise mutual

Technical Report UW-CSE-04-05-01
May 2004

information (PMI) between an extraction and a
discriminator for the class, and we use this “web-scale”
statistic as an independent assessment of the veracity of the
extraction. For example, the hit count of the phrase
“Boston and other cities” can be used to estimate the
probability that “Boston” is in fact a city.
 In this paper, we investigate applying a simple pattern
learning algorithm (PL) to the task of Web information
extraction. Our primary contributions are:
1. As shown in Figure 1, we introduce the insight that PL

can be used increase both coverage (by learning
extractors) and accuracy (by learning discriminators).

2. We quantify the efficacy of this approach via
experiments on multiple classes, and describe design
decisions that enhance the performance of pattern
learning over the Web.

3. We introduce a theoretical model of discriminator
ordering and selection and show that, while the general
problem is NP-hard, ordering discriminators by
Marginal Utility (MU) is optimal in important special
cases. As suggested by the theory, MU is shown to be
effective at increasing accuracy in practice.

We use KnowItAll (Etzioni et. al 2004a), a Web
information extraction system, as a baseline for our
experiments. The baseline KnowItAll system does not rely
on pattern learning; it instead uses a set of domain
independent patterns (cf. Hearst 1991) as both extractors
and discriminators. For example, the generic pattern “NP1
such as NP2” indicates that the head of the noun phrase in
NP2 is a member of the class named in NP1. Instantiated

Figure 1: The patterns that PL produces can be used as both
extractors and discriminators.

Patterns
Pattern
Learner

(PL)

Extractors
(increase
coverage)
Discriminators
(increase
accuracy)

for different classes (e.g. producing the pattern “cities such
as <City>”) these patterns have been successful in
generating large, high accuracy collections of facts from
the Web. The experiments in this paper compare the
baseline KnowItAll system with an enhanced version that
includes learned patterns in addition to domain
independent patterns.
 The method we use to learn patterns is described in
Section 2. We then describe our experience using learned
patterns as extractors (Section 3) and as discriminators
(Section 4). Related work is discussed in Section 5, and
we conclude with directions for future work in Section 6.

2. Learning Patterns
Our pattern learning algorithm (PL) proceeds as follows:
(1) Start with a set I of seed instances generated by

domain-independent extractors.
(2) For each seed instance i in I:

Issue a query to a Web search engine for i, and for
each occurrence of i in the returned documents
record a context string – comprised of the w words
before i, a placeholder for the class instance
(denoted by “<class-name>”), and the w words
after i. (Here, we use w = 4).

(3) Output the best patterns according to some metric – a
pattern is defined as any substring of a context string
that includes the instance placeholder and at least one
other word.

 The goal of PL is to find high-quality patterns. A
pattern’s quality is given by its recall (the fraction of
instances of the target class that can be found on the Web
surrounded by the given pattern text) and its precision (the
fraction of strings found surrounded by the pattern text that
are of the target class). The Web contains a large number
of candidate patterns (for example, PL found over 300,000
patterns for the class City), most of which are of poor
quality. Thus, estimating the precision and recall of
patterns efficiently (i.e. without searching the Web for
each candidate pattern) is important. Estimating precision
for patterns is especially difficult because we have no
labeled negative examples, only positive seeds. Instead, in
a manner similar to (Lin, Yangarber, & Grishman 2003)
we exploit the fact that PL learns patterns for multiple
classes at once, and take the positive examples of one class
to be negative examples for all other classes. Given that a
pattern p is found for c(p) distinct seeds from the target
class and n(p) distinct seeds from other classes, we define:

() ()
() () mpnpc

kpcprecisionEstimatedP
++

+
= (1)

() ()
S

pcpecallEstimatedR = (2)

 where S is the total number of seeds in the target class,
and k/m is a constant prior estimate of precision, used to
perform a Laplace correction in (1). This prior estimate

was chosen based on testing extractions from a sample of
the learned patterns using PMI Assessment.

3. Learned Patterns As Extractors
The patterns PL produces can be used as extractors to
search the Web for new candidate facts. For example,
given the learned pattern “headquartered in <City>,” we
search the Web for pages containing the phrase
“headquartered in”. Any proper noun phrase occurring
directly after “headquartered in” in the returned documents
becomes a new candidate extraction for the class City.
 Of the many patterns PL finds for a given class, we
choose as extractors those patterns most able to efficiently
generate new extractions with high precision. The patterns
we select must have high precision, and extractor
efficiency (the number of unique instances produced per
search engine query) is also important.
 For a given class, we first select the top patterns
according to the following heuristics:
 H1: As in (Brin, 1998), we prefer patterns that appear
for multiple distinct seeds. By banning all patterns found
for just a single seed (i.e. requiring that EstimatedRecall >
1/S in Equation 2), 96% of the potential rules are
eliminated. In experiments with the class City, H1 was
found to improve the average efficiency of the resulting
patterns by a factor of five.
 H2: We sort the remaining patterns according to their
EstimatedPrecision (Equation 1)1. On experiments with
the class City, ranking by H2 was found to further increase
average efficiency (by 64% over H1) and significantly
improve average precision (from 0.32 to 0.58).
 Of all the patterns PL generates for a given class, we
take the 200 patterns that satisfy H1 and are ranked most

1 In the case of ties in EstimatedPrecision, we assume that longer
patterns are more precise, similar to (Brin, 1998).

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Baseline Baseline +
PL

Baseline Baseline +
PL

City Film

N
um

be
r o

f I
ns

ta
nc

es

Not in Baseline

In Both

In Baseline

Figure 2: Unique instances of City and Film at precision 0.9.
Pattern learning increases coverage by 50% to 80% over the
baseline.

highly by H2 and subject them to further analysis, applying
each to 100 Web pages and testing precision using PMI
assessment.

Results
We performed experiments testing our Baseline system
(KnowItAll with only domain independent patterns)
against an enhanced version, Baseline+PL (KnowItAll
including extractors generated by pattern learning). In
both configurations, we perform PMI assessment to assign
a probability to each extraction (using only domain
independent discriminators). We estimated the coverage
(number of unique instances extracted) for both
configurations by manually tagging a representative
sample of the extracted instances, grouped by probability.
In the case of City, we also automatically marked instances
as correct if they appeared in the Tipster Gazetteer. To
ensure a fair comparison, we compare coverage at the
same level of overall precision, computed as the proportion
of correct instances at or above a given probability.
 The results shown in Figure 2 show that using learned
patterns as extractors improves KnowItAll’s coverage
substantially, by 50% to 80% (we choose precision level
0.9 as representative of high-quality extraction, although
the results are qualitatively similar for precision levels
between 0.80 and 0.95). Examples of the most productive
extractors for each class are shown in Table 1.

4. Patterns As Discriminators
Learned patterns can also be used as discriminators to
perform PMI assessment. Any pattern D can be used as a
discriminator on extraction E by computing the PMI of D
and E defined as:

() ()
()E

EDEDPMI
Hits

 Hits, +
= (3)

 where D + E is the discriminator pattern with the
extraction substituted for the instance placeholder. For
example, (“city of <City>” + “Chicago”) indicates the
phrase “city of Chicago”.
 The PMI scores for a given extraction are then used as
features in a Naïve Bayes classifier. In the experiments
below, we show that learned discriminators provide

stronger features than domain independent discriminators
for this classifier, improving the classification accuracy
(the percentage of extractions classified correctly) of the
PMI assessment.
 Once we have a large set of learned discriminators,
determining which discriminators are the “best” in terms of
their impact on classification accuracy becomes especially
important, as we have limited access to Web search
engines. In the baseline KnowItAll system, the same five
discriminators are executed on every extraction. However,
it may be the case that a discriminator will perform better
on some extractions than it does on others. For example,
the discriminator “cities such as <City>” has high
precision, but appears only rarely on the Web. While a
PMI score of 1/100,000 on “cities such as <City>” may
give strong evidence that an extraction is indeed a city, if
the city itself appears only a few thousand times on the
Web, the probability of the discriminator returning a false
zero is high. For these rare extractions, choosing a more
prevalent discriminator (albeit one with lower precision)
like “<City> hotels” might offer better performance.
Lastly, executing five discriminators on every extraction is
not always the best choice. For example, if the first few
discriminators executed on an extraction have high
precision and return true, the system’s resources would be
better spent assessing other extractions, the truth of which
is less certain.
 Below, we express the problem of choosing which
discriminators to execute on which extractions as an
optimization problem, and give a heuristic method that
includes the enhancements mentioned above. We show
that the heuristic has provably optimal behavior in
important special cases, and then verify experimentally
that the heuristic improves accuracy.

The Discriminator Ordering Problem
We define the discriminator ordering problem as an
optimization problem in which the goal is to obtain an
accurate assessment of the probabilities of a given set of
extractions using a limited number of resources.
Specifically, the problem is defined by a set of extractions

{ }Mφφ ,...,1=Φ , and a set of
discriminators { }Nδδ ,...,1=∆ . We assume that the
precision and recall of each discriminator are known. The
system can apply a given discriminator to any extraction –
we define this set of possible actions as (){ }jiA φδ= for all

Φ∈∆∈ ji φδ , . Each action can be performed at most

once. Executing an action ()ji φδ returns to the system a
binary assessment (true or false) of the truth of the
extraction jφ . Also, each action has a cost ()()jic φδ .

 We denote the system’s current belief in extraction iφ
by () []1,0∈ib φ , where ()ib φ is the system’s estimate of

the probability that iφ is true. After executing an action

Extractor Pattern Correct
Extractions

Precision

the cities of <City> 5215 0.80
headquartered in <City> 4837 0.79
for the city of <City> 3138 0.79
in the movie <Film> 1841 0.61
<Film> the movie starring 957 0.64
movie review of <Film> 860 0.64

Table 1: Three of the most productive extractors for City
and Film, along with the number of different correct
extractions produced by each extractor, and the extractor’s
overall precision (before assessment).

()ji φδ , the system changes its belief in jφ using a Naïve
Bayes update; we assume that the outcomes of actions

()ji φδ are conditionally independent given the actual

truth-value of jφ . The goal of the system is to choose
actions in such a way that its final beliefs correspond as
accurately as possible to the actual state of the world.
Specifically, the reward function to be maximized is

() ()∑∑ −=
φφ
φβφ

falsetrue
bbR (4)

 where β is a penalty factor for falsely asserting that an
extraction is true. As mentioned above, each action has a
cost associated with it, and the system’s goal is to
maximize R subject to a cost constraint C. Because
transitions between states are probabilistic, the
optimization problem is to find a policy mapping belief
states to actions that maximizes the total expected
reward []RE at cost less than or equal to C.
 The discriminator ordering problem is identical to the
problem of active classification, in which an object to be
classified has a set of unknown attributes, each of which
can be obtained by performing tests of varying costs
(Heckerman, Breese, & Rommelse 1994; Turney 2000).
In a similar formulation also using a Naïve Bayes
classifier, (Guo 2002) shows that the problem of finding an
optimal policy for the special case of classifying a single
object can be mapped onto a partially-observable Markov
Decision Process (POMDP). Finding optimal policies for
POMDPs is known to be PSPACE-complete
(Papadimitriou & Tsitsiklis, 1987); however, the particular
POMDPs produced by Guo’s mapping have special
structure, and Guo asks if polynomial time algorithms for
this particular problem may exist. However, below we
state that in fact the single-object classification task is NP-
hard – we then detail assumptions relevant to KnowItAll
that allow the construction of a provably optimal policy.
 In the following we reason about two subproblems of
the discriminator ordering problem – the single-extraction,
multiple discriminator ordering problem (the original
problem with 1=Φ) and the multiple extraction, single-
discriminator ordering problem (the original problem with

1=∆).
 Theorem 1: The single-extraction, multiple
discriminator ordering problem is NP-hard in the number
of discriminators.
 Proof2: Given an instance of the knapsack optimization
problem with a set of items I (each having an integral
value iv and a weight it) and knapsack weight limit L, the
goal is to find a subset K of I such that the sum of the

2 Although we give the proof in terms of our active
classification model, it can also be directly adapted to the
POMDP model given in (Guo 2002).

values of the items in K is as large as possible, given that
the total weight of the items in K is less than L.
 The reduction from the knapsack problem to the single-
extraction discriminator ordering problem is
straightforward, except for one technical detail – in the
knapsack problem, rewards (i.e. values) are additive; in
discriminator ordering, the expected reward from
executing a particular discriminator can change depending
on the results of other discriminator executions. We solve
this by reducing knapsack to a discriminator ordering
problem where discriminators have precision equal to one
(so as soon as one discriminator returns true, the system
knows the extraction is true and reward R is one)3 and
discriminator recall is proportional to value but small
enough that the additive property of knapsack is preserved.
Specifically, we reduce an instance of the knapsack
problem to the single-fact discriminator ordering problem
as follows: first, set { }1φ=Φ and 1=β , and set the initial

belief () 2
1

1 =φb (when computing expectations, we take

belief as our estimate of probability, so the probability that

1φ is true is () () 2
1

11 == φφ bP). For each item i in I, we

create a discriminator iδ with cost ()()1φδ ic = it ,

precision () 1=iδπ , and recall ()
222 IV

vi
i =δω , where

()ivV max= . Note that the reduction to this single-
extraction discriminator ordering problem is polynomial-
time.
 The discriminator ordering problem returns a policy
mapping states to actions; however, with () 1=iδπ for all
i, this policy amounts to an optimal set K of discriminators
that has total cost < L and maximizes expected reward
[]RE for the system. The system executes the

discriminators from K, and if one returns true, the
extraction must be true. In this case the system assigns
belief 1=trueB and receives reward R = 1. If no
discriminator returns true, the system will assign a belief
value of falseB based on a Naïve Bayes update:

{ }()
{ }() ()

{ }() () { }() ()
()()

()()∏

∏

∈

∈

−+

−

=

∈¬+¬¬∈¬

∈¬
=

∈¬=

Ki
ii

Ki
ii

ii

i

ifalse

PKiPPKiP

PKiP

KiPB

δω

δω

φφδφφδ

φφδ

δφ

11

1

|:|:

|:

:|

1111

11

1

3 Note that this is a significantly simplified version of the
discriminator ordering problem; in particular, it includes
assumption A2 described below.

The expected reward of executing the set of discriminators
K is

[] () { }()()
{ }()

() false

falsei

truei
K

BP

BKiP
BKiP

PRE

1

1

1
1 |:

|:1

φ

φδ
φδ

φ

¬−

⎥
⎦

⎤
⎢
⎣

⎡
∈¬+
∈¬−

=

With algebra we have:

[]
()()

()()∏

∏

∈

∈

−+

−−

=

Ki
i

Ki
i

KRE
δω

δω

122

11
 (5)

We will prove the reduction by showing that whenever K
is a higher-value set of knapsack items than K’ i.e.

() ()∑∑
′∈∈

>
Kj

j
Ki

i δωδω

it must be the case that
()() ()()∏∏

′∈∈

−<−
Ki

i
Ki

i δωδω 11 ,

which by Equation 5 implies that [] []KK RERE ′> .
Because the ()iδω ’s are sufficiently small, we can

expand the product ()()∏
∈

−
Ki

iδω1 and bound the sum of

the terms including more than one ()iδω . Specifically,

()()

() () () () ()∏∑ ∑∑

∏

∈∈ −∈∈

∈

−+−+−

=−

Ki
i

K

Ki iKj
ji

Ki
i

Ki
i

δωδωδωδω

δω

1...1

1

}{

It can be shown that the terms of this telescoping series are
decreasing in absolute value, so that

()() () ()∏ ∑
∈ ∈

−+=−
Ki Ki

ii KQ δωδω 11

with

()
22

2

22

2
2
max

8

1

222 IVIV

VIK
KQ =

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤ ω

Note that this is true for all K, so ()KQ ′ is also less than

228

1

IV
. Since the values iv are positive integers, if

() ()∑∑
′∈∈

>
Kj

j
Ki

i δωδω , the difference between ()∑
∈Ki

iδω

and ()∑
′∈Kj

jδω must be at least
222

1

IV
. So in particular:

() ()

() () () ()∑∑

∑∑

′∈∈

′∈∈

−′+<−+⇒

+>+−

Kj
j

Ki
i

Kj
j

Ki
i

KQKQ

IVIV

δωδω

δωδω

11

8

1

8

1
2222

()() ()()∏∏
′∈∈

−<−⇒
Ki

i
Ki

i δωδω 11

[] []KK RERE ′>⇒

We have shown that whenever () ()∑∑
′∈∈

>
Kj

j
Ki

i δωδω it

must be the case that [] []KK RERE ′> . Thus, a solution to
the discriminator ordering problem is a set of
discriminators K for which the total cost is less than L, and
the sum ()∑

∈Ki
iδω is no less than ()∑

′∈Ki
iδω for any other

K’ with total cost less than L. Because ()iδω is
proportional to iv , the set K is also an optimal solution to
the knapsack problem, completing the reduction.
 As a corollary to Theorem 1, the general discriminator
ordering problem is NP-hard.

The MU Heuristic
We have stated that the discriminator ordering problem is
NP hard for even a single extraction. Here we define the
MU heuristic, a policy that always chooses as the next
action the one with highest expected marginal utility (MU),
and we state conditions under which it gives provably
optimal performance – the MU heuristic was shown to
have similar properties for a different problem in (Etzioni
1991).
 Definition: The expected marginal utility (MU) of
applying a discriminator ∆∈iδ to an extraction Φ∈jφ
is defined as the expected increase in reward, R, as a result
of ()ji φδ , divided by the cost ()()jic φδ . We can compute

()()jiMU φδ given the precision and recall of iδ and the

current belief ()jb φ :

()() ()()

()()()
()()()

()()()
()()() ⎟

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

¬+

¬−

¬¬−
=

−

+

−

+

bP

bP

bP

bP

cMU

jji

jji

jji

jji

ji
ji

φφδ

φφδβ

φφδβ

φφδ

φδφδ

,

,

,

,

1 (6)

where +b (resp. −b) stands for the change in the belief
value of jφ when ()ji φδ returns true (false), and

()()jjiP φφδ ¬, , for example, is the probability that the

discrimination action ()ji φδ returns true but the extraction

jφ is in fact false. The probabilities used to compute MU

can be obtained for discriminator iδ and extraction jφ
using the discriminator’s recall ()()jjiP φφδ | and

precision ()()jijP φδφ | along with the belief in the

extraction ()jb φ , which as an estimate of ()jP φ .
 MU achieves the enhancements in choosing
discriminators mentioned above by being extraction-
sensitive in two ways. First, as the system becomes more
certain of the classification of jφ (i.e. belief approaches

zero or one), it can be shown that ()()jiMU φδ tends to
decrease – that is, MU prioritizes uncertain extractions.
Secondly, when computing MU we can use the hit count of

jφ to adjust the expected outcome of ()ji φδ . This allows
MU to account for the fact that rare extractions, even if
true, are likely to have a PMI of zero for discriminators
that also appear rarely. As an example of how this is
implemented, take the case of estimating a discriminator’s
recall by testing the discriminator iδ on a set of positive
seed extractions. For extractions that are not rare, the
portion of positive seeds for which iδ returns “true” (i.e.
those jφ for which ()jiPMI φδ , is above a threshold τ
set based on seed data) is taken to be the discriminator’s
recall, or ()()φφδ |iP for a random φ . However, for rare
extractions, this estimate can be inaccurate. Note that for
an extraction kφ , the smallest non-zero PMI score possible
is ()kφHits1 ; this is obtained when () 1Hits =+ ki φδ . If

kφ is rare and iδ also appears rarely, this minimal
positive PMI score can be much larger than τ . In this
case, it is likely (even if kφ is true) that the PMI between

iδ and kφ will fail to exceed the threshold τ by the large
margin represented by a PMI score of ()kφHits1 . In other
words, often we would expect to observe a hit count of
zero for +iδ kφ , even if kφ is true. Thus, naively
estimating ()()φφδ |iP based on non-rare seeds with PMIs
below ()kφHits1 tends to overstate the actual recall

()()kkiP φφδ | of the discriminator on kφ . The heuristic
solution to this problem we use here is to compute recall
based on the PMI scores for seeds jφ we would expect if

the seeds had the same hit count as kφ . In particular, for

those jφ with PMIs less than ()kφHits1 , we assume that

if jφ had the same hit count as kφ then the discriminator
would return a non-zero hit count a fraction of the time
equal to () ()ijk PMI δφφ ,Hits . In this way we obtain an

estimate for ()()kkiP φφδ | that takes the rarity of kφ into
account.
 There are two assumptions that make ordering
discriminators in KnowItAll simpler than the general
formulation of the discriminator ordering problem. First,

applying a discriminator currently requires issuing a single
query to a Web search engine (assuming that the hit count
of the extraction itself is known); thus, the cost of all
actions is the same. We formalize this assumption as:
 A1: The cost ()()jic φδ = 1 for all Φ∈∆∈ ji φδ , .
 This assumption allows us to make the following
theoretical guarantee:
 Theorem 2: Given assumption A1, the MU heuristic is
optimal for the multiple-extraction, single-discriminator
ordering problem.
 Proof: Given that the system is in a state with
consumed cost c, let C’ be the greatest integer less than the
remaining cost C – c. Since all actions have unit cost (by
A1), in this case the system can only choose a set of C’
extractions on which to execute the discriminator. The
expected reward of this set of actions is equal to the sum of
the expected reward of each individual action, and this sum
is maximized when the expected reward of each of the C’
individual actions is as large as possible. By A1, the
expected reward of an action is equal to its MU value, so
the optimal policy is to execute the C’ actions with
maximal MU.
 A further assumption comes from the fact that the
discriminators PL finds often dominate one another for a
given extraction; that is, if one discriminator has higher
MU than another for an extraction at some belief level, it
will tend to have higher MU for that extraction at other
belief levels. Formally:
 A2: If ()() ()()kjki MUMU φδφδ > when () hb k =φ , then

for all ()kbh φ=′ , ()() ()()kjki MUMU φδφδ > .
 Theorem 3: Given assumptions A1 and A2, the MU
heuristic is optimal for the single-extraction, multiple-
discriminator ordering problem.
 Proof: Define the current state as follows: the belief in
fact 1φ is b, there is a set D of discriminators that have yet
to be executed on 1φ , and a total cost of c has been
consumed so far. Let C’ be the greatest integer less than
the remaining cost C – c. Since all actions have unit cost
(by A1), the system can execute a total of C’
discriminators. We will prove that the optimal policy is
always to execute the C’ discriminators from D with
highest MU (and that these C’ discriminators are always
the same irrespective of both the outcome of previously
executed discriminators and the initial belief b in fact 1φ)
by induction on C’.
 For the base case, note that by A1, the MU of an action
is equal to the expected reward of executing that action.
So for C’ = 1, the action with maximal MU is exactly the
action with maximal expected reward, i.e. the optimal
action. It remains to prove that the action with maximal
MU is always the same irrespective of both the outcome of
previously executed discriminators and the initial belief b
in fact 1φ . By the Naïve Bayes assumption, the optimal
action is the same for any given belief b and does not vary

for different particular outcomes of previous
discriminators; further, by assumption A2, the optimal
action does not depend on b.
 Now take 1+=′ nC . Let δ be the first discriminator
executed by the optimal policy. By the inductive
hypothesis, after executing δ the optimal policy is to
execute a set G containing the n remaining discriminators
with greatest MU value (and we need only consider one
such set G, because G is the same irrespective of the
outcome of δ). However, the expected reward of
executing δ followed by G is the same as that of
executing G followed by δ . This implies that executing G
followed by δ is also an optimal policy. However, if that
is the case (by the reasoning for the base case given above)
there must be no discriminator in the set D – G with higher
MU than δ . Thus, the set of discriminators G { }δ∪
executed by the optimal policy is in fact the n + 1
discriminators in D with the highest MU value.
 Given assumptions A1 and A2, we have shown that the
MU heuristic offers provably optimal performance in the
multiple-extraction, single-discriminator and single-
extraction, multiple-discriminator cases. However, in
general we are interested in the multiple-extraction,
multiple-discriminator case (the MU heuristic can be
shown to give suboptimal performance in a case with at
least two extractions and two discriminators). Also, the
assumption A2 is true often, but not always. Given the
strong assumptions needed to prove its optimality, we
experimentally validate the performance of the MU
heuristic below.

Experimental Results
We tested the performance of PMI assessment under four
different configurations – using either domain independent
patterns (“Baseline”) or learned patterns (“Baseline+PL”)
as discriminators, and ordering the execution of
discriminators by either MU (with 1=β) or a baseline

measure (precision). In each configuration, we run a total
of 600 discriminators on a set of 300 extractions from each
of the classes Film and City (drawn from the experiments
with learned rules in Section 3). The baseline ordering
always executes the same two discriminators on each
extraction. The MU ordering, by contrast, dynamically
chooses the discriminator and extraction with highest
expected marginal utility, and may choose to execute more
discriminators on some extractions and one or zero on
others. Because our theory assumes the precision and
recall of the discriminators are known, for this experiment
we estimate these quantities using a hand-labeled training
set (disjoint from the test set) of 100 extractions.
 We used one training and test set to choose settings that
maximized performance for each of our methods; we then
evaluated the methods with three cross-validation runs.
The average results of these cross-validation runs are
shown in Figure 3. Adding pattern learning (PL) always
improves accuracy, and ordering by marginal utility (MU)
is always better than the baseline ordering. When ordered
properly, the domain-independent discriminators perform
especially well on the class City, mostly due to the
particularly useful discriminator “cities <City>.”
 We explored two heuristics to ensure that our
discriminators are as conditionally independent as
possible, as assumed by our Naïve Bayes Classifier. We
tried requiring that no two discriminator phrases executed
on the same extraction are substrings of each other, and
also that left- and right-handed discriminators alternate for
any given extraction (a left-handed discriminator is one in
which the instance placeholder appears at the right side of
the pattern, with text on the left, e.g. “the film <Film>”).
Adding both of these enhancements reduced error by an
average of 9% for the MU-ordered configurations. The
heuristics decreased performance slightly for the precision-
ordered configurations when executing only two
discriminators per fact (and are therefore not employed for
those configurations in Figure 3).
 While we have chosen the metric of classification
accuracy to compare our methods, it represents only one
point on the precision/recall curve, and performance at
different precision/recall points can vary. In particular,
ordering discriminators by precision tends to give superior
performance at lower levels of recall. Also, as we would
expect, MU offers the most benefit in cases where
resources (i.e. discriminators executed) are scarce. If we
increase the number of discriminators to 1200, ordering by
MU offers only a small accuracy benefit (however, for this
data set, increasing the number of discriminators to 1200
does not increase maximum achievable accuracy). Finally,
the increase in accuracy found by ordering discriminators
with MU as opposed to precision suggests that other
metrics combining recall and precision would also perform
well. Indeed, in experiments similar to those in Figure 3,
we have found that ordering discriminators by their F-
measure (with beta=1) results in accuracy closer to that of
MU (although MU(Baseline+PL) still provides a 30% error
reduction over the F-measure ordering on the Film class).

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Film City

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Baseline MU(Baseline+PL)
Baseline+PL MU(Baseline+PL)

Figure 3: Classification accuracy for the classes Film and
City. Adding pattern learning (PL) always improves
accuracy, and ordering by marginal utility (MU) is always
better than the baseline ordering (precision). The
performance difference between the best method
(MU(Baseline+PL)) and the Baseline method is statistically
significant for each class (p < 0.01, chi-square test).

5. Related Work
PL is similar to existing approaches to pattern learning, the
primary distinction being that we use learned patterns to
perform PMI-IR (Turney 2001) assessment as well as
extraction. PL also differs from other pattern learning
algorithms in some details. (Riloff & Jones 1999) uses
bootstrapped learning on a small corpus to alternately
learn instances of large semantic classes and patterns that
can generate more instances; similar bootstrapping
approaches that use larger corpora include Snowball
(Agichtein & Gravano 2000) and DIPRE (Brin 1998). Our
work is similar to these approaches, but differs in that PL
does not use bootstrapping (it learns its patterns once from
an initial set of seeds) and uses somewhat different
heuristics for pattern quality. Like our work,
(Ravichandran & Hovy 2002) use Web search engines to
find patterns surrounding seed values. However, their goal
is to support question answering, for which a training set
of question and answer pairs is known. Unlike PL, they
can measure a pattern’s precision on seed questions by
checking the correspondence between the extracted
answers and the answers given by the seed. As in other
work (e.g. Thelen & Riloff 2002), PL uses the fact that it
learns patterns for multiple classes at once to improve
precision. The particular way we use multiple classes to
estimate a pattern’s precision (Equation 1) is similar to that
of (Lin, Yangarber, & Grishman 2003). A unique feature
of our approach is that our heuristic is computed solely by
searching the Web for seed values, instead of searching the
corpus for each discovered pattern.
 A variety of work in information extraction has been
performed using more sophisticated structures than the
simple patterns that PL produces. Wrapper induction
algorithms (e.g. Kushmerick, Weld, & Doorenbos 1997;
Muslea, Minton, & Knoblock 1999) attempt to learn
wrappers that exploit the structure of HTML to extract
information from Web sites. Also, a variety of rule-
learning schemes (e.g. Soderland 1999; Califf & Mooney
1999; Ciravegna 2001) have been designed for extracting
information from semi-structured and free text. In this
paper, we restrict our attention to simple text patterns, as
they are the most natural fit for our approach of leveraging
Web search engines for both extraction and PMI
assessment. For extraction, it may be possible to use a
richer set of patterns with Web search engines given the
proper query generation strategy (Agichtein & Gravano
2003); this is an item of future work.
 Lastly, the work described in this paper is an extension
of previous results showing that learning extractors can
increase the coverage of the KnowItAll system (Etzioni et.
al 2004b). Here, we extend those results by applying PL to
learn discriminators, adding a theoretical model for
choosing which discriminators to apply, and showing
experimentally that pattern learning and the theoretical
results have positive impacts on accuracy.

 6. Conclusions & Future Work
The addition of pattern learning (PL) improves both the
coverage and accuracy of our baseline system. Learned
patterns boost coverage by 50% to 80%, and decrease the
classification errors of PMI assessment by 28% to 35%.
Also, as suggested by theoretical results, the MU heuristic
reduces classification errors by an additional 19% to 35%,
for an overall error reduction of 47% to 53%.
 The work presented here offers several directions for
future work, most notably generalizing PL to extract
patterns for N-ary predicates and developing improved
methods for automatically estimating the precision and
recall of patterns. Also, the success of the MU heuristic
for discriminator ordering suggests avenues for improving
information extraction systems in general. A similar
framework could be used to optimize choices between
executing extractors, discriminators, or performing pattern
learning, depending on the constraints and objectives of
the information extraction system.

Acknowledgements

This research was supported in part by NSF grants IIS-
0312988 and IIS-0307906, DARPA contract
NBCHD030010, ONR grants N00014-02-1-0324 and
N00014-02-1-0932, and a gift from Google. Google
generously allowed us to issue a large number of queries to
their XML API to facilitate our experiments. We thank
Jeff Bigham, Tal Shaked, Ian Simon, and Alex Yates for
comments on previous drafts.

References

Agichtein, E., and Gravano, S. 2000. Snowball: Extracting
relations from large plain-text collections. Proc. 5th ACM Intl.
Conf. on Digital Libraries.
Agichtein, E., and Gravano, S. 2003. Querying Text Databases
for Efficient Information Extraction. Proc. ICDE-2003.
Brin, S. 1998. Extracting patterns and relations from the WWW.
Proc. 1998 Intl Wkshp. on the Web and Databases.
Califf, M. and Mooney, R. 1999. Relational learning of pattern-
match rules for information extraction. Proc. AAAI-99.
Ciravegna, F. 2001. Adaptive information extraction from text by
rule induction and generalisation. Proc. IJCAI-2001.
Etzioni, O. 1991. Embedding Decision-Analytic Control in a
Learning Architecture. Artificial Intelligence 49(1-3): 129-159.
Etzioni, O.; Cafarella, M.; Downey, D.; Kok, S.; Popescu, A.;
Shaked, T.; Soderland, S.; Weld, D.; and Yates, A. 2004a. Web-
scale information extraction in KnowItAll. Proc. WWW-2004.
Etzioni, O.; Cafarella, M.; Downey, D.; Popescu, A.; Shaked, T.;
Soderland, S.; Weld, D.; and Yates, A. 2004b. Methods for
domain-independent information extraction from the Web: An
Experimental Comparison. Proc. AAAI-2004
Guo, A. 2002. Active Classification with Bounded Resources.
Proc AAAI 2002 Symp. on Information Refinement and Revision
for Decision Making.

Hearst, M. 1992. Automatic acquisition of hyponyms from large
text corpora. Proc 14th Intl. Conf. on Computational Linguistics,
539-545.
Heckerman, D.; Breese, J. S.; and Rommelse, K. 1994.
Troubleshooting under uncertainty. Technical Report MSR-TR-
94-07, Microsoft Research.
Kushmerick, N.; Weld, D.; and Doorenbos, R. 1997. Wrapper
induction for information extraction. Proc. IJCAI-97, 729-737.
Lin, W.; Yangarber, R.; and Grishman, R. 2003. Bootstrapped
learning of semantic classes. Proc. ICML-2003 Wkshp on The
Continuum from Labeled to Unlabeled Data.
Muslea, I.; Minton, S.; Knoblock, C. 1999. A Hierarchical
Approach to Wrapper Induction. Proc. 3rd Intl. Conf on
Autonomous Agents.
Papadimitriou, C. and Tsitsiklis, J. 1987. The complexity of
Markov decision processes. Mathematics of Operations
Research, 12(3):441 – 450.
Ravichandran, D., and Hovy, D. 2002. Learning surface text
patterns for a question answering system. Proc 40th ACL Conf.
Riloff, E., and Jones, R. 1999. Learning dictionaries for informa-
tion extraction by multi-level bootstrapping. Proc. AAAI-99.
Soderland, S. 1999. Learning information extraction rules for
semi-structured and free text. Machine Learning 34(1-3):233-
272.
Thelen, M., and Riloff, E. 2002. A bootstrapping method for
learning semantic lexicons using extraction pattern contexts.
Proc. 2002 Conf. on Empirical Methods in NLP.
Turney, P. 2000. Types of cost in inductive concept learning.
Proc. Wkshp. on Cost Sensitive Learning at ICML-2000.
Turney, P. 2001. Mining the Web for synonyms: PMI-IR versus
LSA on TOEFL. Proc. 12th European Conf. on Machine
Learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

