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Abstract 
Learning text patterns that suggest a desired type of 
information is a common strategy for extracting information 
from unstructured text on the Web.  In this paper, we introduce 
the idea that learned patterns can be used as both extractors (to 
generate new information) and discriminators (to assess the 
truth of extracted information).  We demonstrate 
experimentally that a Web information extraction system 
(KnowItAll) can be improved (in terms of coverage and 
accuracy) through the addition of a simple pattern-learning 
algorithm.  By using learned patterns as extractors, we are able 
to boost recall by 50% to 80%; and by using such patterns as 
discriminators we are able to reduce classification errors by 
28% to 35%.  In addition, the paper reports theoretical results 
on optimally selecting and ordering discriminators, and shows 
that this theory yields a heuristic that further reduces 
classification errors by an additional 19% to 35% – giving an 
overall error reduction of 47% to 53%. 

1. Introduction   
 A variety of recent work aimed at extracting information 
from free text uses a form of pattern learning (e.g.  
Soderland 1999; Riloff & Jones 1999; Lin, Yangarber, & 
Grishman 2003; Ravichandran & Hovy 2002).  Starting 
with a set of seed examples of a given class, pattern 
learning algorithms scan a corpus to discover contextual 
patterns in which instances of the class are commonly 
found.  The discovered patterns can then be used on the 
corpus as extractors to generate instances of the class.  
When pattern learning is applied to a large corpus (like the 
Web), the automatic creation of large knowledge bases 
becomes an exciting possibility (e.g. Agichtein & Gravano 
2000; Brin 1998). 
 A common problem with information extraction systems 
is that the quality of the extracted information is variable 
and can degrade as extraction progresses.  Inspired by 
Turney’s PMI-IR algorithm (Turney 2001), our recent 
work addressed this problem by using patterns as 
discriminators (Etzioni et. al 2004a).  We gather hit counts 
from Web search engines to compute the pointwise mutual 
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information (PMI) between an extraction and a 
discriminator for the class, and we use this “web-scale” 
statistic as an independent assessment of the veracity of the 
extraction.  For example, the hit count of the phrase 
“Boston and other cities” can be used to estimate the 
probability that “Boston” is in fact a city. 
 In this paper, we investigate applying a simple pattern 
learning algorithm (PL) to the task of Web information 
extraction.  Our primary contributions are: 
1.   As shown in Figure 1, we introduce the insight that PL 

can be used increase both coverage (by learning 
extractors) and accuracy (by learning discriminators). 

2.  We quantify the efficacy of this approach via 
experiments on multiple classes, and describe design 
decisions that enhance the performance of pattern 
learning over the Web. 

3.  We introduce a theoretical model of discriminator 
ordering and selection and show that, while the general 
problem is NP-hard, ordering discriminators by 
Marginal Utility (MU) is optimal in important special 
cases.  As suggested by the theory, MU is shown to be 
effective at increasing accuracy in practice. 

We use KnowItAll (Etzioni et. al 2004a), a Web 
information extraction system, as a baseline for our 
experiments.  The baseline KnowItAll system does not rely 
on pattern learning; it instead uses a set of domain 
independent patterns (cf. Hearst 1991) as both extractors 
and discriminators.  For example, the generic pattern “NP1 
such as NP2” indicates that the head of the noun phrase in 
NP2 is a member of the class named in NP1.  Instantiated 

Figure 1: The patterns that PL produces can be used as both 
extractors and discriminators. 
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for different classes (e.g. producing the pattern “cities such 
as <City>”) these patterns have been successful in 
generating large, high accuracy collections of facts from 
the Web.  The experiments in this paper compare the 
baseline KnowItAll system with an enhanced version that 
includes learned patterns in addition to domain 
independent patterns. 
 The method we use to learn patterns is described in 
Section 2.  We then describe our experience using learned 
patterns as extractors (Section 3) and as discriminators 
(Section 4).  Related work is discussed in Section 5, and 
we conclude with directions for future work in Section 6. 

2. Learning Patterns 
Our pattern learning algorithm (PL) proceeds as follows: 
(1) Start with a set I of seed instances generated by 

domain-independent extractors. 
(2) For each seed instance i in I:  

Issue a query to a Web search engine for i, and for 
each occurrence of i in the returned documents 
record a context string – comprised of the w words 
before i, a placeholder for the class instance 
(denoted by “<class-name>”), and the w words 
after i.  (Here, we use w = 4). 

(3) Output the best patterns according to some metric – a 
pattern is defined as any substring of a context string 
that includes the instance placeholder and at least one 
other word. 

 
 The goal of PL is to find high-quality patterns.  A 
pattern’s quality is given by its recall (the fraction of 
instances of the target class that can be found on the Web 
surrounded by the given pattern text) and its precision (the 
fraction of strings found surrounded by the pattern text that 
are of the target class).  The Web contains a large number 
of candidate patterns (for example, PL found over 300,000 
patterns for the class City), most of which are of poor 
quality.  Thus, estimating the precision and recall of 
patterns efficiently (i.e. without searching the Web for 
each candidate pattern) is important.  Estimating precision 
for patterns is especially difficult because we have no 
labeled negative examples, only positive seeds.  Instead, in 
a manner similar to (Lin, Yangarber, & Grishman 2003) 
we exploit the fact that PL learns patterns for multiple 
classes at once, and take the positive examples of one class 
to be negative examples for all other classes.  Given that a 
pattern p is found for c(p) distinct seeds from the target 
class and n(p) distinct seeds from other classes, we define:  

( ) ( )
( ) ( ) mpnpc

kpcprecisionEstimatedP
++

+
=  (1) 

( ) ( )
S

pcpecallEstimatedR =  (2) 

 where S is the total number of seeds in the target class, 
and k/m is a constant prior estimate of precision, used to 
perform a Laplace correction in (1).  This prior estimate 

was chosen based on testing extractions from a sample of 
the learned patterns using PMI Assessment. 

3. Learned Patterns As Extractors 
The patterns PL produces can be used as extractors to 
search the Web for new candidate facts.  For example, 
given the learned pattern “headquartered in <City>,” we 
search the Web for pages containing the phrase 
“headquartered in”. Any proper noun phrase occurring 
directly after “headquartered in” in the returned documents 
becomes a new candidate extraction for the class City. 
 Of the many patterns PL finds for a given class, we 
choose as extractors those patterns most able to efficiently 
generate new extractions with high precision.  The patterns 
we select must have high precision, and extractor 
efficiency (the number of unique instances produced per 
search engine query) is also important. 
 For a given class, we first select the top patterns 
according to the following heuristics: 
 H1:   As in (Brin, 1998), we prefer patterns that appear 
for multiple distinct seeds.  By banning all patterns found 
for just a single seed (i.e. requiring that EstimatedRecall > 
1/S in Equation 2), 96% of the potential rules are 
eliminated.  In experiments with the class City, H1 was 
found to improve the average efficiency of the resulting 
patterns by a factor of five. 
 H2:  We sort the remaining patterns according to their 
EstimatedPrecision (Equation 1)1.  On experiments with 
the class City, ranking by H2 was found to further increase 
average efficiency (by 64% over H1) and significantly 
improve average precision (from 0.32 to 0.58). 
 Of all the patterns PL generates for a given class, we 
take the 200 patterns that satisfy H1 and are ranked most 
                                                 
1 In the case of ties in EstimatedPrecision, we assume that longer 
patterns are more precise, similar to (Brin, 1998). 
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Figure 2: Unique instances of City and Film at precision 0.9.  
Pattern learning increases coverage by 50% to 80% over the 
baseline. 



highly by H2 and subject them to further analysis, applying 
each to 100 Web pages and testing precision using PMI 
assessment. 

Results 
We performed experiments testing our Baseline system 
(KnowItAll with only domain independent patterns) 
against an enhanced version, Baseline+PL (KnowItAll 
including extractors generated by pattern learning).  In 
both configurations, we perform PMI assessment to assign 
a probability to each extraction (using only domain 
independent discriminators).  We estimated the coverage 
(number of unique instances extracted) for both 
configurations by manually tagging a representative 
sample of the extracted instances, grouped by probability.  
In the case of City, we also automatically marked instances 
as correct if they appeared in the Tipster Gazetteer.  To 
ensure a fair comparison, we compare coverage at the 
same level of overall precision, computed as the proportion 
of correct instances at or above a given probability. 
 The results shown in Figure 2 show that using learned 
patterns as extractors improves KnowItAll’s coverage 
substantially, by 50% to 80% (we choose precision level 
0.9 as representative of high-quality extraction, although 
the results are qualitatively similar for precision levels 
between 0.80 and 0.95).  Examples of the most productive 
extractors for each class are shown in Table 1. 

4. Patterns As Discriminators 
Learned patterns can also be used as discriminators to 
perform PMI assessment.  Any pattern D can be used as a 
discriminator on extraction E by computing the PMI of D 
and E defined as: 

( ) ( )
( )E

EDEDPMI
Hits

 Hits, +
=  (3) 

  where D + E is the discriminator pattern with the 
extraction substituted for the instance placeholder.  For 
example, (“city of <City>” +  “Chicago”) indicates the 
phrase “city of Chicago”. 
 The PMI scores for a given extraction are then used as 
features in a Naïve Bayes classifier. In the experiments 
below, we show that learned discriminators provide 

stronger features than domain independent discriminators 
for this classifier, improving the classification accuracy 
(the percentage of extractions classified correctly) of the 
PMI assessment. 
 Once we have a large set of learned discriminators, 
determining which discriminators are the “best” in terms of 
their impact on classification accuracy becomes especially 
important, as we have limited access to Web search 
engines.  In the baseline KnowItAll system, the same five 
discriminators are executed on every extraction.  However, 
it may be the case that a discriminator will perform better 
on some extractions than it does on others.  For example, 
the discriminator “cities such as <City>” has high 
precision, but appears only rarely on the Web.  While a 
PMI score of 1/100,000 on “cities such as <City>” may 
give strong evidence that an extraction is indeed a city, if 
the city itself appears only a few thousand times on the 
Web, the probability of the discriminator returning a false 
zero is high.  For these rare extractions, choosing a more 
prevalent discriminator (albeit one with lower precision) 
like “<City> hotels” might offer better performance.  
Lastly, executing five discriminators on every extraction is 
not always the best choice.  For example, if the first few 
discriminators executed on an extraction have high 
precision and return true, the system’s resources would be 
better spent assessing other extractions, the truth of which 
is less certain. 
 Below, we express the problem of choosing which 
discriminators to execute on which extractions as an 
optimization problem, and give a heuristic method that 
includes the enhancements mentioned above.  We show 
that the heuristic has provably optimal behavior in 
important special cases, and then verify experimentally 
that the heuristic improves accuracy. 

The Discriminator Ordering Problem 
We define the discriminator ordering problem as an 
optimization problem in which the goal is to obtain an 
accurate assessment of the probabilities of a given set of 
extractions using a limited number of resources.  
Specifically, the problem is defined by a set of extractions 

{ }Mφφ ,...,1=Φ , and a set of 
discriminators { }Nδδ ,...,1=∆ . We assume that the 
precision and recall of each discriminator are known.  The 
system can apply a given discriminator to any extraction – 
we define this set of possible actions as ( ){ }jiA φδ=  for all 

Φ∈∆∈ ji φδ , .  Each action can be performed at most 

once.  Executing an action ( )ji φδ  returns to the system a 
binary assessment (true or false) of the truth of the 
extraction jφ .  Also, each action has a cost ( )( )jic φδ . 

 We denote the system’s current belief in extraction iφ  
by ( ) [ ]1,0∈ib φ , where ( )ib φ  is the system’s estimate of 

the probability that iφ  is true.  After executing an action 

Extractor Pattern Correct 
Extractions 

Precision 

the cities of <City> 5215 0.80 
headquartered in <City> 4837 0.79 
for the city of <City> 3138 0.79 
in the movie <Film> 1841 0.61 
<Film> the movie starring 957 0.64 
movie review of <Film> 860 0.64 

Table 1: Three of the most productive extractors for City 
and Film, along with the number of different correct 
extractions produced by each extractor, and the extractor’s 
overall precision (before assessment). 



( )ji φδ , the system changes its belief in jφ  using a Naïve 
Bayes update; we assume that the outcomes of actions 

( )ji φδ  are conditionally independent given the actual 

truth-value of jφ .  The goal of the system is to choose 
actions in such a way that its final beliefs correspond as 
accurately as possible to the actual state of the world.  
Specifically, the reward function to be maximized is 

( ) ( )∑∑ −=
φφ
φβφ

falsetrue
bbR  (4) 

 where β  is a penalty factor for falsely asserting that an 
extraction is true.  As mentioned above, each action has a 
cost associated with it, and the system’s goal is to 
maximize R subject to a cost constraint C.  Because 
transitions between states are probabilistic, the 
optimization problem is to find a policy mapping belief 
states to actions that maximizes the total expected 
reward [ ]RE  at cost less than or equal to C. 
 The discriminator ordering problem is identical to the 
problem of active classification, in which an object to be 
classified has a set of unknown attributes, each of which 
can be obtained by performing tests of varying costs 
(Heckerman, Breese, & Rommelse 1994; Turney 2000).  
In a similar formulation also using a Naïve Bayes 
classifier, (Guo 2002) shows that the problem of finding an 
optimal policy for the special case of classifying a single 
object can be mapped onto a partially-observable Markov 
Decision Process (POMDP).  Finding optimal policies for 
POMDPs is known to be PSPACE-complete 
(Papadimitriou & Tsitsiklis, 1987); however, the particular 
POMDPs produced by Guo’s mapping have special 
structure, and Guo asks if polynomial time algorithms for 
this particular problem may exist.  However, below we 
state that in fact the single-object classification task is NP-
hard – we then detail assumptions relevant to KnowItAll 
that allow the construction of a provably optimal policy. 
 In the following we reason about two subproblems of 
the discriminator ordering problem – the single-extraction, 
multiple discriminator ordering problem (the original 
problem with 1=Φ ) and the multiple extraction, single-
discriminator ordering problem (the original problem with 

1=∆ ). 
 Theorem 1: The single-extraction, multiple 
discriminator ordering problem is NP-hard in the number 
of discriminators. 
 Proof2: Given an instance of the knapsack optimization 
problem with a set of items I (each having an integral 
value iv  and a weight it ) and knapsack weight limit L, the 
goal is to find a subset K of I such that the sum of the 
                                                 
2 Although we give the proof in terms of our active 
classification model, it can also be directly adapted to the 
POMDP model given in (Guo 2002). 

values of the items in K is as large as possible, given that 
the total weight of the items in K is less than L. 
 The reduction from the knapsack problem to the single-
extraction discriminator ordering problem is 
straightforward, except for one technical detail – in the 
knapsack problem, rewards (i.e. values) are additive; in 
discriminator ordering, the expected reward from 
executing a particular discriminator can change depending 
on the results of other discriminator executions.  We solve 
this by reducing knapsack to a discriminator ordering 
problem where discriminators have precision equal to one 
(so as soon as one discriminator returns true, the system 
knows the extraction is true and reward R is one)3 and 
discriminator recall is proportional to value but small 
enough that the additive property of knapsack is preserved.  
Specifically, we reduce an instance of the knapsack 
problem to the single-fact discriminator ordering problem 
as follows: first, set { }1φ=Φ  and 1=β , and set the initial 

belief ( ) 2
1

1 =φb  (when computing expectations, we take 

belief as our estimate of probability, so the probability that 

1φ  is true is ( ) ( ) 2
1

11 == φφ bP ).  For each item i in I, we 

create a discriminator iδ  with cost ( )( )1φδ ic  = it , 

precision ( ) 1=iδπ , and recall ( )
222 IV

vi
i =δω , where 

( )ivV max= .  Note that the reduction to this single-
extraction discriminator ordering problem is polynomial-
time. 
 The discriminator ordering problem returns a policy 
mapping states to actions; however, with ( ) 1=iδπ  for all 
i, this policy amounts to an optimal set K of discriminators 
that has total cost < L and maximizes expected reward 
[ ]RE  for the system.  The system executes the 

discriminators from K, and if one returns true, the 
extraction must be true.  In this case the system assigns 
belief 1=trueB  and receives reward R = 1.  If no 
discriminator returns true, the system will assign a belief 
value of falseB  based on a Naïve Bayes update: 
  

{ }( )
{ }( ) ( )

{ }( ) ( ) { }( ) ( )
( )( )

( )( )∏

∏

∈

∈

−+

−

=

∈¬+¬¬∈¬

∈¬
=

∈¬=

Ki
ii

Ki
ii

ii

i

ifalse

PKiPPKiP

PKiP

KiPB

δω

δω

φφδφφδ

φφδ

δφ

11

1
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1111

11

1

 
                                                 
3 Note that this is a significantly simplified version of the 
discriminator ordering problem; in particular, it includes 
assumption A2 described below. 



The expected reward of executing the set of discriminators 
K is  

[ ] ( ) { }( )( )
{ }( )

( ) false

falsei

truei
K

BP

BKiP
BKiP

PRE

1

1

1
1 |:

|:1

φ

φδ
φδ

φ

¬−

⎥
⎦

⎤
⎢
⎣

⎡
∈¬+
∈¬−

=
 

With algebra we have: 

[ ]
( )( )

( )( )∏

∏

∈

∈

−+

−−

=

Ki
i

Ki
i

KRE
δω

δω

122

11
  (5) 

We will prove the reduction by showing that whenever K 
is a higher-value set of knapsack items than K’ i.e.  

( ) ( )∑∑
′∈∈

>
Kj

j
Ki

i δωδω   

it must be the case that  
( )( ) ( )( )∏∏

′∈∈

−<−
Ki

i
Ki

i δωδω 11 ,  

which by Equation 5 implies that [ ] [ ]KK RERE ′> .   
Because the ( )iδω ’s are sufficiently small, we can 

expand the product ( )( )∏
∈

−
Ki

iδω1  and bound the sum of 

the terms including more than one ( )iδω .  Specifically,  

( )( )

( ) ( ) ( ) ( ) ( )∏∑ ∑∑

∏

∈∈ −∈∈

∈

−+−+−

=−

Ki
i

K

Ki iKj
ji
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i

Ki
i

δωδωδωδω

δω

1...1
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It can be shown that the terms of this telescoping series are 
decreasing in absolute value, so that  

( )( ) ( ) ( )∏ ∑
∈ ∈

−+=−
Ki Ki

ii KQ δωδω 11  

with 

( )
22

2

22

2
2
max

8

1

222 IVIV

VIK
KQ =

⎟⎟
⎟

⎠

⎞
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⎜

⎝

⎛
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤ ω  

Note that this is true for all K, so ( )KQ ′  is also less than 

228

1

IV
.  Since the values iv  are positive integers, if 
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>
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j
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( )( ) ( )( )∏∏
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[ ] [ ]KK RERE ′>⇒  

We have shown that whenever ( ) ( )∑∑
′∈∈

>
Kj

j
Ki

i δωδω  it 

must be the case that [ ] [ ]KK RERE ′> .  Thus, a solution to 
the discriminator ordering problem is a set of 
discriminators K for which the total cost is less than L, and 
the sum ( )∑

∈Ki
iδω  is no less than ( )∑

′∈Ki
iδω  for any other 

K’ with total cost less than L.  Because ( )iδω  is 
proportional to iv , the set K is also an optimal solution to 
the knapsack problem, completing the reduction.  
 As a corollary to Theorem 1, the general discriminator 
ordering problem is NP-hard. 

The MU Heuristic 
We have stated that the discriminator ordering problem is 
NP hard for even a single extraction.  Here we define the 
MU heuristic, a policy that always chooses as the next 
action the one with highest expected marginal utility (MU), 
and we state conditions under which it gives provably 
optimal performance – the MU heuristic was shown to 
have similar properties for a different problem in (Etzioni 
1991). 
 Definition: The expected marginal utility (MU) of 
applying a discriminator ∆∈iδ  to an extraction Φ∈jφ  
is defined as the expected increase in reward, R, as a result 
of ( )ji φδ , divided by the cost ( )( )jic φδ .  We can compute 

( )( )jiMU φδ  given the precision and recall of iδ  and the 

current belief ( )jb φ : 

( )( ) ( )( )

( )( )( )
( )( )( )

( )( )( )
( )( )( ) ⎟

⎟
⎟
⎟
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⎠

⎞

⎜
⎜
⎜
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⎜
⎜

⎝
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¬¬−
=

−

+

−

+
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bP
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φφδ

φφδβ

φφδβ

φφδ

φδφδ

,

,

,

,

1  (6) 

where +b  (resp. −b ) stands for the change in the belief 
value of jφ  when ( )ji φδ  returns true (false), and 

( )( )jjiP φφδ ¬, , for example, is the probability that the 

discrimination action ( )ji φδ  returns true but the extraction 

jφ  is in fact false.  The probabilities used to compute MU 

can be obtained for discriminator iδ  and extraction jφ  
using the discriminator’s recall ( )( )jjiP φφδ |  and 



precision ( )( )jijP φδφ |  along with the belief in the 

extraction ( )jb φ , which as an estimate of ( )jP φ . 
 MU achieves the enhancements in choosing 
discriminators mentioned above by being extraction-
sensitive in two ways.  First, as the system becomes more 
certain of the classification of jφ  (i.e. belief approaches 

zero or one), it can be shown that ( )( )jiMU φδ  tends to 
decrease – that is, MU prioritizes uncertain extractions.  
Secondly, when computing MU we can use the hit count of 

jφ  to adjust the expected outcome of ( )ji φδ .  This allows 
MU to account for the fact that rare extractions, even if 
true, are likely to have a PMI of zero for discriminators 
that also appear rarely.  As an example of how this is 
implemented, take the case of estimating a discriminator’s 
recall by testing the discriminator iδ  on a set of positive 
seed extractions.  For extractions that are not rare, the 
portion of positive seeds for which iδ  returns “true” (i.e. 
those jφ  for which ( )jiPMI φδ ,  is above a threshold τ  
set based on seed data) is taken to be the discriminator’s 
recall, or ( )( )φφδ |iP  for a random φ .  However, for rare 
extractions, this estimate can be inaccurate.  Note that for 
an extraction kφ , the smallest non-zero PMI score possible 
is ( )kφHits1 ; this is obtained when ( ) 1Hits =+ ki φδ .  If 

kφ  is rare and iδ  also appears rarely, this minimal 
positive PMI score can be much larger than τ .  In this 
case, it is likely (even if kφ  is true) that the PMI between 

iδ  and kφ  will fail to exceed the threshold τ  by the large 
margin represented by a PMI score of ( )kφHits1 .  In other 
words, often we would expect to observe a hit count of 
zero for +iδ kφ , even if kφ  is true.  Thus, naively 
estimating ( )( )φφδ |iP  based on non-rare seeds with PMIs 
below ( )kφHits1  tends to overstate the actual recall 

( )( )kkiP φφδ |  of the discriminator on kφ .  The heuristic 
solution to this problem we use here is to compute recall 
based on the PMI scores for seeds jφ  we would expect if 

the seeds had the same hit count as kφ .  In particular, for 

those jφ  with PMIs less than ( )kφHits1 , we assume that 

if jφ  had the same hit count as kφ  then the discriminator 
would return a non-zero hit count a fraction of the time 
equal to ( ) ( )ijk PMI δφφ ,Hits .  In this way we obtain an 

estimate for ( )( )kkiP φφδ |  that takes the rarity of kφ  into 
account. 
 There are two assumptions that make ordering 
discriminators in KnowItAll simpler than the general 
formulation of the discriminator ordering problem.  First, 

applying a discriminator currently requires issuing a single 
query to a Web search engine (assuming that the hit count 
of the extraction itself is known); thus, the cost of all 
actions is the same.  We formalize this assumption as:  
 A1: The cost ( )( )jic φδ  = 1 for all Φ∈∆∈ ji φδ , . 
 This assumption allows us to make the following 
theoretical guarantee: 
 Theorem 2: Given assumption A1, the MU heuristic is 
optimal for the multiple-extraction, single-discriminator 
ordering problem. 
 Proof:  Given that the system is in a state with 
consumed cost c, let C’ be the greatest integer less than the 
remaining cost C – c.  Since all actions have unit cost (by 
A1), in this case the system can only choose a set of C’ 
extractions on which to execute the discriminator.  The 
expected reward of this set of actions is equal to the sum of 
the expected reward of each individual action, and this sum 
is maximized when the expected reward of each of the C’ 
individual actions is as large as possible.  By A1, the 
expected reward of an action is equal to its MU value, so 
the optimal policy is to execute the C’ actions with 
maximal MU.  
 A further assumption comes from the fact that the 
discriminators PL finds often dominate one another for a 
given extraction; that is, if one discriminator has higher 
MU than another for an extraction at some belief level, it 
will tend to have higher MU for that extraction at other 
belief levels.  Formally: 
 A2: If ( )( ) ( )( )kjki MUMU φδφδ >  when ( ) hb k =φ , then 

for all ( )kbh φ=′ , ( )( ) ( )( )kjki MUMU φδφδ > . 
 Theorem 3: Given assumptions A1 and A2, the MU 
heuristic is optimal for the single-extraction, multiple-
discriminator ordering problem. 
 Proof:  Define the current state as follows: the belief in 
fact 1φ  is b, there is a set D of discriminators that have yet 
to be executed on 1φ , and a total cost of c has been 
consumed so far.  Let C’ be the greatest integer less than 
the remaining cost C – c.  Since all actions have unit cost 
(by A1), the system can execute a total of C’ 
discriminators.  We will prove that the optimal policy is 
always to execute the C’ discriminators from D with 
highest MU (and that these C’ discriminators are always 
the same irrespective of both the outcome of previously 
executed discriminators and the initial belief b in fact 1φ ) 
by induction on C’. 
 For the base case, note that by A1, the MU of an action 
is equal to the expected reward of executing that action.  
So for C’ = 1, the action with maximal MU is exactly the 
action with maximal expected reward, i.e. the optimal 
action.  It remains to prove that the action with maximal 
MU is always the same irrespective of both the outcome of 
previously executed discriminators and the initial belief b 
in fact 1φ .  By the Naïve Bayes assumption, the optimal 
action is the same for any given belief b and does not vary 



for different particular outcomes of previous 
discriminators; further, by assumption A2, the optimal 
action does not depend on b.   
 Now take 1+=′ nC .  Let δ  be the first discriminator 
executed by the optimal policy.  By the inductive 
hypothesis, after executing δ  the optimal policy is to 
execute a set G containing the n remaining discriminators 
with greatest MU value (and we need only consider one 
such set G, because G is the same irrespective of the 
outcome of δ ).  However, the expected reward of 
executing δ  followed by G is the same as that of 
executing G followed by δ .  This implies that executing G 
followed by δ  is also an optimal policy.  However, if that 
is the case (by the reasoning for the base case given above) 
there must be no discriminator in the set D – G with higher 
MU than δ .  Thus, the set of discriminators G { }δ∪  
executed by the optimal policy is in fact the n + 1 
discriminators in D with the highest MU value.   
 Given assumptions A1 and A2, we have shown that the 
MU heuristic offers provably optimal performance in the 
multiple-extraction, single-discriminator and single-
extraction, multiple-discriminator cases.  However, in 
general we are interested in the multiple-extraction, 
multiple-discriminator case (the MU heuristic can be 
shown to give suboptimal performance in a case with at 
least two extractions and two discriminators).  Also, the 
assumption A2 is true often, but not always.  Given the 
strong assumptions needed to prove its optimality, we 
experimentally validate the performance of the MU 
heuristic below. 

Experimental Results 
We tested the performance of PMI assessment under four 
different configurations – using either domain independent 
patterns (“Baseline”) or learned patterns (“Baseline+PL”) 
as discriminators, and ordering the execution of 
discriminators by either MU (with 1=β ) or a baseline 

measure (precision).  In each configuration, we run a total 
of 600 discriminators on a set of 300 extractions from each 
of the classes Film and City (drawn from the experiments 
with learned rules in Section 3).  The baseline ordering 
always executes the same two discriminators on each 
extraction.  The MU ordering, by contrast, dynamically 
chooses the discriminator and extraction with highest 
expected marginal utility, and may choose to execute more 
discriminators on some extractions and one or zero on 
others.  Because our theory assumes the precision and 
recall of the discriminators are known, for this experiment 
we estimate these quantities using a hand-labeled training 
set (disjoint from the test set) of 100 extractions. 
 We used one training and test set to choose settings that 
maximized performance for each of our methods; we then 
evaluated the methods with three cross-validation runs.   
The average results of these cross-validation runs are 
shown in Figure 3.  Adding pattern learning (PL) always 
improves accuracy, and ordering by marginal utility (MU) 
is always better than the baseline ordering.  When ordered 
properly, the domain-independent discriminators perform 
especially well on the class City, mostly due to the 
particularly useful discriminator “cities <City>.”   
 We explored two heuristics to ensure that our 
discriminators are as conditionally independent as 
possible, as assumed by our Naïve Bayes Classifier.  We 
tried requiring that no two discriminator phrases executed 
on the same extraction are substrings of each other, and 
also that left- and right-handed discriminators alternate for 
any given extraction (a left-handed discriminator is one in 
which the instance placeholder appears at the right side of 
the pattern, with text on the left, e.g. “the film <Film>”).  
Adding both of these enhancements reduced error by an 
average of 9% for the MU-ordered configurations.  The 
heuristics decreased performance slightly for the precision-
ordered configurations when executing only two 
discriminators per fact (and are therefore not employed for 
those configurations in Figure 3). 
 While we have chosen the metric of classification 
accuracy to compare our methods, it represents only one 
point on the precision/recall curve, and performance at 
different precision/recall points can vary.  In particular, 
ordering discriminators by precision tends to give superior 
performance at lower levels of recall.  Also, as we would 
expect, MU offers the most benefit in cases where 
resources (i.e. discriminators executed) are scarce.  If we 
increase the number of discriminators to 1200, ordering by 
MU offers only a small accuracy benefit (however, for this 
data set, increasing the number of discriminators to 1200 
does not increase maximum achievable accuracy).  Finally, 
the increase in accuracy found by ordering discriminators 
with MU as opposed to precision suggests that other 
metrics combining recall and precision would also perform 
well.  Indeed, in experiments similar to those in Figure 3, 
we have found that ordering discriminators by their F-
measure (with beta=1) results in accuracy closer to that of 
MU (although MU(Baseline+PL) still provides a 30% error 
reduction over the F-measure ordering on the Film class). 
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Figure 3: Classification accuracy for the classes Film and 
City.  Adding pattern learning (PL) always improves 
accuracy, and ordering by marginal utility (MU) is always 
better than the baseline ordering (precision).  The 
performance difference between the best method 
(MU(Baseline+PL)) and the Baseline method is statistically 
significant for each class (p < 0.01, chi-square test). 



5. Related Work 
PL is similar to existing approaches to pattern learning, the 
primary distinction being that we use learned patterns to 
perform PMI-IR (Turney 2001) assessment as well as 
extraction.  PL also differs from other pattern learning 
algorithms in some details.  (Riloff & Jones 1999) uses 
bootstrapped learning on a small corpus to alternately 
learn instances of large semantic classes and patterns that 
can generate more instances; similar bootstrapping 
approaches that use larger corpora include Snowball 
(Agichtein & Gravano 2000) and DIPRE (Brin 1998).  Our 
work is similar to these approaches, but differs in that PL 
does not use bootstrapping (it learns its patterns once from 
an initial set of seeds) and uses somewhat different 
heuristics for pattern quality.  Like our work, 
(Ravichandran & Hovy 2002) use Web search engines to 
find patterns surrounding seed values.  However, their goal 
is to support question answering, for which a training set 
of question and answer pairs is known.  Unlike PL, they 
can measure a pattern’s precision on seed questions by 
checking the correspondence between the extracted 
answers and the answers given by the seed.  As in other 
work (e.g. Thelen & Riloff 2002), PL uses the fact that it 
learns patterns for multiple classes at once to improve 
precision.  The particular way we use multiple classes to 
estimate a pattern’s precision (Equation 1) is similar to that 
of (Lin, Yangarber, & Grishman 2003).  A unique feature 
of our approach is that our heuristic is computed solely by 
searching the Web for seed values, instead of searching the 
corpus for each discovered pattern. 
 A variety of work in information extraction has been 
performed using more sophisticated structures than the 
simple patterns that PL produces.  Wrapper induction 
algorithms (e.g. Kushmerick, Weld, & Doorenbos 1997; 
Muslea, Minton, & Knoblock 1999) attempt to learn 
wrappers that exploit the structure of HTML to extract 
information from Web sites.  Also, a variety of rule-
learning schemes (e.g. Soderland 1999; Califf & Mooney 
1999; Ciravegna 2001) have been designed for extracting 
information from semi-structured and free text.  In this 
paper, we restrict our attention to simple text patterns, as 
they are the most natural fit for our approach of leveraging  
Web search engines for both extraction and PMI 
assessment.  For extraction, it may be possible to use a 
richer set of patterns with Web search engines given the 
proper query generation strategy (Agichtein & Gravano 
2003); this is an item of future work. 
 Lastly, the work described in this paper is an extension 
of previous results showing that learning extractors can 
increase the coverage of the KnowItAll system (Etzioni et. 
al 2004b).  Here, we extend those results by applying PL to 
learn discriminators, adding a theoretical model for 
choosing which discriminators to apply, and showing 
experimentally that pattern learning and the theoretical 
results have positive impacts on accuracy. 

 6. Conclusions & Future Work 
The addition of pattern learning (PL) improves both the 
coverage and accuracy of our baseline system.  Learned 
patterns boost coverage by 50% to 80%, and decrease the 
classification errors of PMI assessment by 28% to 35%.  
Also, as suggested by theoretical results, the MU heuristic 
reduces classification errors by an additional 19% to 35%, 
for an overall error reduction of 47% to 53%. 
 The work presented here offers several directions for 
future work, most notably generalizing PL to extract 
patterns for N-ary predicates and developing improved 
methods for automatically estimating the precision and 
recall of patterns.  Also, the success of the MU heuristic 
for discriminator ordering suggests avenues for improving 
information extraction systems in general.  A similar 
framework could be used to optimize choices between 
executing extractors, discriminators, or performing pattern 
learning, depending on the constraints and objectives of 
the information extraction system. 
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