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Abstract. Unit testing has become a common step in software development. Al-
though manually created unit tests are valuable, they are often insufficient; there-
fore, programmers can use an automatic unit-test-generation tool to produce a
large number of additional tests for a class. However, withouta priori specifica-
tions, programmers cannot inspect the execution of each automatically generated
test practically, cannot effectively isolate faults, or cannot easily understand the
characteristics of either the tests or the component under test (such as a Java
class). In this paper, we develop the observer abstraction approach for automat-
ically extracting observer abstractions of a class from unit-test executions, with-
out requiringa priori specifications. Programmers can inspect succinct observer
abstractions for correctness checking, fault isolation, test characterization, and
component understanding.
Given a class and a set of its manually or automatically generated tests, we iden-
tify nonequivalent concrete object states exercised by the tests and generate new
tests to augment these tests. We map each nonequivalent concrete object state to
an abstract state based on the return values of a set of observers (public meth-
ods with non-void returns) invoked on the object state. We automatically extract
observer abstractions, each of which is an object state machine (OSM): a state
in the OSM represents an abstract state and a transition in the OSM represents
a method call. We have implemented a tool, called Obstra, for the approach and
have applied the approach on complex data structures; our experiences suggest
that this approach provides succinct and useful information for programmers to
inspect unit-test executions.

1 Introduction

Automatic test-generation tools are powerful; given a class, these tools can generate a
large number of tests, including some valuable corner or special inputs that program-
mers often forget to include in their manual tests. When programmers write speci-
fications, some specification-based test generation tools [1–3] automatically generate
tests and check execution correctness against the written specifications. Withouta prior
specifications, some automatic test-generation tools [4] perform structural testing by
generating tests to increase structural coverage. Some other tools [5] perform random
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testing by generating random inputs. Withouta prior specifications, programmers rely
on uncaught exceptions or inspect the execution of generated tests for checking cor-
rectness. However, relying on only uncaught exceptions for catching bugs is limited
and inspecting the execution of a large number of generated tests is impractical. This
problem is also known as thetest oracleproblem.

When manually or automatically generated tests throw uncaught exceptions, pro-
grammers still need to understand the causes of the failures exhibited by the excep-
tions. This problem is also known asfault isolation. Programmers want to investigate
the fault-exposing conditions — once a test satisfies these conditions, it will expose the
fault in high probability.

Programmers need to understand the characteristics of a manually or automatically
generated unit-test suite. This problem is calledtest characterization. After understand-
ing the weakness of a test suite, programmers can enhance the test suite by giving guid-
ance to test generation tools or creating more manual tests. Residual structural coverage
is one way of showing the weakness of a test suite [6]. If programmers write down speci-
fications, specification coverage can also help programmers to understand the weakness
of a test suite.

When programmers intend to reuse a third-party component (such as a Java class)
whose implementation is not written by them or even is not accessible to them, they
usually read the accompanying formal specifications or informal documentation for the
component to understand how to use the component; however, formal specifications are
often unavailable and informal documentation is often incomplete or inconsistent with
the implementation. This problem is calledcomponent understanding.

In this paper, we develop theobserver abstractionapproach, a novel black-box
approach for summarizing and presenting the dynamic information from unit-test ex-
ecutions. The approach is totally automatic without requiringa priori specifications.
We use the approach to tackle the preceding four problems in unit testing and compo-
nent reuse: correctness checking, fault isolation, test characterization, and component
understanding.

A concrete object stateis characterized by the values of all the fields of an object.
An observeris a public method with a non-void return1. The observer abstraction ap-
proach abstracts a concrete object state exercised by a test suite based on the return
values of a set of observers that are invoked on the concrete object state. Anobserver
abstractionis an object state machine (OSM): a state in the OSM represents an abstract
state and a transition in the OSM represents a method call. We have implemented a
tool, called Obstra, for the observer abstraction approach. Given a Java class and a set
of unit tests for it, Obstra identifies nonequivalent concrete object states exercised by
the tests and generates new tests to augment these tests. Based on the return values of
a set of observers, Obstra maps each nonequivalent concrete object state to an abstract
state and constructs an OSM. Programmers can inspect these OSM’s for addressing the
preceding four problems. We have applied the approach on complex data structures and

1 We follow the definition by Henkel and Diwan [7]. The definition differs from the more com-
mon definition, which limits an observer to methods that do not change any state. We have
found that state-modifying observers also provide value in our approach.
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their automatically generated tests; our experiences suggest that this approach provides
succinct and useful information for inspecting test executions.

This paper makes the following main contributions:
– We propose a new program abstraction, called observer abstraction.
– We present and implement an automatic approach for dynamically extracting ob-

server abstractions from unit-test executions.
– We apply the approach on nontrivial data structures to tackle correctness checking,

fault isolation, test characterization, and component understanding; our experiences
show that extracted observer abstractions provide succinct and useful information
for programmers to inspect.

2 Observer Abstraction Approach

We first discuss two techniques (developed in our previous work [8, 9]) that enable the
dynamic extraction of observer abstractions. We next describe object state machines,
being the representations of observer abstractions. We then define observer abstractions
and illustrate dynamic extraction of them. We finally describe the implementation and
present an example of dynamically extracted observer abstractions.

2.1 Concrete State Representation and Test Augmentation

The technique of concrete state representation identifies nonequivalent object states [8].
Based on the nonequivalent object states, the test augmentation technique improves an
existing test suite by generating new tests to exercise the nonequivalent object states
exhaustively [9]. We augment an existing test suite because the test suite might not in-
voke each observer on all nonequivalent object states; invoking observers on a concrete
object state is necessary for us to know the abstract state enclosing the concrete object
state. In addition, the observer abstractions extracted from the augmented test suite can
better help programmers to inspect dynamic behavior.

Each execution of a unit test creates several objects and invokes methods on these
objects. Behavior of a method invocation depends on the state of the receiver object and
method arguments at the beginning of the invocation. Amethod callis characterized
by the actual class of the receiver object, the method name, the method signature, and
the method argument values. Amethod executionis characterized by the method call
and a state representation of the receiver object at the beginning of the execution (called
method-entry state). The method execution produces a return value2 and a state repre-
sentation of the receiver object at the end of the execution (calledmethod-exit state).
When argument values or return values are not primitive values, we represent them
using state representations.

In previous work, we have developed the Rostra framework and five automatic tech-
niques to represent and detect equivalent object states [8]. This work focuses on using
one of the techniques for state representation: the WholeState technique. The technique
models a concrete object state as a graph: nodes represent objects and edges represent

2 A return value can be void.
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object fields. LetP be the set consisting of all primitive values, includingnull , inte-
gers, booleans, etc. LetO be a set of objects whose fields form a setF . (Array elements
are considered as object fields labelled with indices.)

Definition 1. A heapis an edge-labelled graph〈O, E〉, whereE = {〈o, f, o′〉|o ∈
O, f ∈ F, o′ ∈ O ∪ P}.

Definition 2. Theconcrete stateof an objectr is a rooted heap〈r, h〉, wherer is a root
object andh is a heap such that all nodes inh are reachable fromr.

We transform a concrete object state into a sequence using a linearization algo-
rithm [8], which has been applied in model checking for encoding states [10–12]. We
then determine whether two concrete object states are equivalent by checking sequence
equality. We determine whether two method calls are equivalent by checking the equiv-
alence of their corresponding characteristic entities, including the receiver-object class,
method name, method signature, and method-argument values. We determine whether
two method executions are equivalent by checking the equivalence of their correspond-
ing method calls and method-entry states, respectively.

After we execute an existing test suite, the concrete state representation technique
identifies a set of nonequivalent object states and nonequivalent method calls that ex-
ercised by the test suite. The test augmentation technique generates new tests to exer-
cise each possible combination of nonequivalent object states and nonequivalent non-
constructor method calls [9]. The test suite augmented with these new tests guarantees
that each nonequivalent object state is exercised by each nonequivalent non-constructor
method call at least once. The complexity of the test augmentation algorithm isO(|CS|∗
|MC|), whereCS is the set of the nonequivalent concrete states exercised byT and
MC is the set of the nonequivalent method calls exercised byT .

2.2 Object State Machine

We define an object state machine for a class:3

Definition 3. An object state machine(OSM)M of a classc is a sextupleM = (I, O,
S, δ, λ, INIT ) whereI, O, andS are nonempty sets of method calls inc’s interface,
returns of these method calls, and states ofc’s objects, respectively.INIT ∈ S is
the initial state that the machine is in before calling any constructor method ofc. δ :
S × I → S∗ is the state transition function andλ : S × I → O∗ is the output function.
When the machine is in a current states and receives a method calla from I, it moves
to one of the next states specified byδ(s, a) and produces one of the method returns
given byλ(s, a).

An OSM can be deterministic or nondeterministic.

3 The definition is adapted from the definition of finite state machine [13]; however, an object
state machine is not necessarily finite.
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2.3 Observer Abstractions

The object states in an OSM can be concrete or abstract. We have defined the concrete
state of an object in Section 2.1 (Definition 2). Anabstract stateof an object is defined
by anabstraction function[14]; the abstraction function maps each concrete state to
an abstract state. The observer abstraction approach constructs abstraction functions to
map concrete states to abstract states in an OSM.

We first define an observer following previous work on specifying algebraic speci-
fications for a class [7]:

Definition 4. Anobserverof a classc is a methodob in c’s interface such that the return
type ofob is not void.

Given a classc and a set of observersOB = {ob1, ob2, ..., obn} of c, the observer
abstraction approach constructs an abstraction ofc with respect toOB. In particular,
a concrete statecs is mapped to an abstract stateas defined byn valuesOBR =
{obr1, obr2, ..., obrn}, where each valueobri represents the return value of method call
obi invoked oncs.

Definition 5. Given a classc and a set of observersOB = {ob1, ob2, ..., obn} of c, an
observer abstractionwith respect toOB is an OSMM of c such that the states inM
are abstract states defined byOB.

2.4 Dynamic Extraction of Observer Abstractions

We dynamically extract observer abstractions of a class from unit-test executions. The
number of the concrete states exercised by an augmented test suite is finite and the
execution of the test suite is assumed to terminate; therefore, the dynamically extracted
observer abstractions are also finite.

In a dynamically extracted observer abstractionM , we add additional statistical
information: the transition count for each nonequivalent method callmc from a states
to a states′, the emission count for each combination of a states and a nonequivalent
method callmc transited froms, and theabstraction ratiofor M . Thetransition count
for mc transiting froms to s′ is the number of nonequivalent concrete object states in
s that transit tos′ aftermc is invoked. Theemission countfor s andmc is the number
of nonequivalent concrete object states ins wheremc is invoked. Theabstraction ratio
for M characterizes the abstraction capability ofOB that is used to abstract concrete
states.

Definition 6. Given a set of observersOB and a test suiteT of a classc, theabstraction
ratio of an observer abstractionM with respect toOB andT is 1 - |AS|/|CS|, where
AS is the set of the abstract states inM andCS is the set of the nonequivalent concrete
states exercised byT .

Given a test suiteT for a classc, we first identify the nonequivalent concrete states
CS and method callsMC exercised byT . We then augmentT with new tests to ex-
erciseCS with MC exhaustively, producing an augmented test suiteT ′. We have de-
scribed these steps in Section 2.1.T ′ exercises each nonequivalent concrete state in
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CS with each method call inMC; therefore, each nonequivalent observer call inMC
is guaranteed to be invoked on each nonequivalent concrete state inCS at least once.
We then collect the return values of these observer calls for each nonequivalent con-
crete state inCS. We use this test-generation mechanism to collect return values of
observers, instead of inserting observer method calls before and after any call site toc
in T , because the latter does not work for state-modifying observers, which change the
functional behavior ofT .

Given an augmented test suiteT ′ and a set of observersOB = {ob1, ob2, ..., obn},
we go through the following steps to produce an observer abstractionM in the form
of OSM. Initially M is empty. During the execution ofT ′, we collect the following
tuple for each method execution inc’s interface:(css,m, mr, cse), wherecss, m, mr,
and cse are the concrete method-entry state, method call, return value, and concrete
method-exit state, respectively. Ifm’s return type is void, we assign− to mr. If m’s
execution throws an uncaught exception, we also assign− to mr and assign the name
of the exception type tocse, called anexception state. The concrete method-entry state
of a constructor isINIT , called aninitial state.

After the test executions terminate, we iterate on each distinct tuple(css,m, mr, cse)
to produce a new tuple(ass, m, mr, ase), whereass andase are the abstract states
mapped fromcss and cse based onOB, respectively. Ifcse is an exception state,
its mapped abstract state is the same ascse, whose value is the name of the thrown-
exception type. Ifcss is an initial state, its mapped abstract state is stillINIT . If cse

is not exercised by the tests before test augmentation but exercised by the new tests, we
mapcse to a special abstract state denoted asN/A, because we have not invokedOB
oncse yet and do not have a known abstract state forcse. By default, an OSM does not
displayN/A states and the transitions leading toN/A states.

After we produce(ass, m, mr, ase) from (css,m, mr, cse), we then addass

and ase to M as states, and put a transition fromass to ase in M . The transition
is denoted by a triple(ass,m?/mr!, ase). If ass, ase, or (ass,m?/mr!, ase) is al-
ready present inM , we do not add it. In addition, we increase the transition count
for (ass, m?/mr!, ase), denoted asC(ass,m?/mr!,ase), which is initialized to one when
(ass,m?/mr!, ase) is added toM at the first time. We also increase the emission
count forass andm, denoted asC(ass,m). After we finish processing all distinct tu-
ples(css,m, mr, cse), we postfix the label of each transition(ass,m?/mr!, ase) with
[C(ass,m?/mr!,ase)/C(ass,m)]. The complexity of the extraction algorithm for an ob-
server abstraction isO(|CS|∗|OB|), whereCS is the set of the nonequivalent concrete
states exercised byT andOB is the given set of observers.

2.5 Implementation

We have developed a tool, called Obstra, for the observer abstraction approach. Obstra
is implemented based on the Rostra framework developed in our previous work [8].
We use the Byte Code Engineering Library (BCEL) [15] to rewrite the bytecodes of
a class at class-loading time. Objects of the class under test are referred ascandidate
objects. We collect concrete object states at the entry and exit of each method call from
a test suite to a candidate object; these method calls are referred ascandidate method
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calls. We do not collect object states for those method calls that are internal to candidate
objects.

To collect concrete object states, we use Java reflection mechanisms [16] to re-
cursively collect all the fields that are reachable from a candidate object, an argument
object, or a return object of candidate method calls. We also instrument test classes to
collect method call information that is used to reproduce object states in test augmen-
tation. We also use Java reflection mechanisms [16] to generate and execute new tests
online. We export a selected subset of tests in the augmented test suite to a JUnit [17]
test class using JCrasher’s functionality of test-code generation [5]; we select and ex-
port a test if it exercises at least one previously uncovered transition in an observer
abstraction. Each exported test is annotated with its exercised transitions as comments.
We display extracted observer abstractions by using the dot program, which is part of
graphviz [18].

By default, Obstra generates one OSM for each observer (in addition to one OSM
for all observers) and outputs a default grouping configuration file; programmers can
manipulate the configurations in the file to generate OSM’s based on multiple ob-
servers.

2.6 Example

We use a class of Binary Search Tree (named asBSTree ) as an example of illustrat-
ing observer abstractions. This class was used in evaluating Korat [2] and the Rostra
framework in our previous work [8]. Parasoft Jtest (a commercial tool for Java) [3]
generates 277 tests for the class. The class has 246 non-comment, non-blank lines of
code and its interface includes eight public methods (five observers), some of which
are a constructor (denoted as[init]() ), boolean contains(MyInput info) , and
boolean remove (MyInput info) whereMyInput 4 is a class that contains an in-
teger fieldv .

Figure 1 shows the observer abstraction of BSTree with respect to an observer
contains(MyInput info) (including two observer instances:add(arg0.v:7;) 5

andadd(arg0:null;) and augmented Jtest-generated tests. The top state in the fig-
ure is marked withINIT , indicating the object state before invoking a constructor. The
second-to-top state is marked with the observer instances and theirfalse return val-
ues. This abstract state encloses those concrete states such that when we invoke these
two observer instances on those concrete states, their return values arefalse . In the
rightmost state, the observers throw uncaught exceptions and we put the exception-type
nameNullPointerException in the positions of their return values. The bottom
state is marked with the exception-type nameNullPointerException . An object is
in such a state after a method call throwing theNullPointerException .

Each transition from a starting abstract state to an ending abstract state is marked
with method calls, their return values, and some statistics. For example, the generated
test suite contains two tests:

4 The original argument type isObject ; we change the type toMyInput so that Jtest can be
guided to generate better arguments.

5 arg i represents theith argument andarg i.v represents thev field of the ith argument.
Argument values are specified following their argument names separated by: and different
arguments are separated by; .
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Fig. 1. contains observer abstraction of BSTree

Fig. 2. exception observer abstraction of BSTree
Test 1 (T1): Test 2 (T2):

BSTree b1 = new BSTree(); BSTree b1 = new BSTree();
MyInput m1 = new MyInput(0); b1.remove(null);
b1.add(m1);
b1.remove(null);

The execution ofb1.remove(null) in T1 does not throw any exception. Both be-
fore and after invokingb1.remove(null) in T1, if we invoke the two observer in-
stances, their return values arefalse ; therefore, there is a state-preserving transi-
tion on the second-to-top state. (To present a succinct view, by default we do not
show state-preserving transitions.) The execution ofb1.remove(null) in T2 throws
a NullPointerException . If we invoke the two observer instances before invoking
b1.remove(null) in T2, their return values arefalse ; therefore, given the method
execution ofb1.remove(null) in T2, we extract the transition from the second-to-top
state to the bottom state and the transition is marked withremove(arg0:null;)?/- .
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In the mark of a transition, when return values arevoid or method calls throw un-
caught exceptions, we put- in the position of their return values. We put? after the
method calls and! after return values if return values are not- . We also attach two
numbers for each transition in the form of[N/M] , whereN is the transition count and
M is the emission count. If these two numbers are equal, the transition is determinis-
tic, and is indeterministic otherwise. Because there are two different transitions from
the second-to-top state with the same method callremove(arg0:null;) (one transi-
tion is state-preserving being extracted from T1), the transitionremove(arg0:null;)

from the second-to-top state to the bottom state is indeterministic, being attached with
[1/2] . We draw thicker edges for nondeterministic transitions so that programmers can
easily identify them based on visual effect.

To present a succinct view, by default we combine multiple transitions that have
the same starting and ending abstract states, and whose method calls have the same
method names and signatures. When we combine multiple transitions, we calculate the
transition count and emission count of the combined transitions and show them in the
bottom line of the transition label. When a combined transition contains all nonequiva-
lent method calls of the same method name and signature, we addALL ARGS in the
bottom line of the transition label. One example of such a combined transition is the
rightmost transition from the rightmost state to the bottom state.

To focus on understanding uncaught exceptions, we create a specialexception ob-
serverand construct an observer abstraction based on it. Figure 2 shows the exception-
observer abstraction of BSTree extracted from augmented Jtest-generated tests. The
exception observer maps all concrete states except forINIT and exception states to
an abstract state calledNORMAL. The mapped abstract state of an initial state is
still INIT and the mapped abstract state of an exception state is still the same as the
exception-type name.

3 Experiences

We have used Obstra to extract observer abstractions from a variety of programs, most
of which were used to evaluate our previous work in test selection [19], test minimiza-
tion [8], and test generation [9]. Many of these programs manipulate nontrivial data
structures. Because of the space limit, in this section, we illustrate how we applied Ob-
stra on two complex data structures and their automatically generated tests. We applied
Obstra on these examples on a MS Windows machine with a Pentium IV 2.8 GHz pro-
cessor using Sun’s Java 2 SDK 1.4.2 JVM with 512 Mb allocated memory.

3.1 Binary Search Tree Example

We have described the BSTree in Section 2.6 and two of its extracted observer ab-
stractions in Figure 1 and 2. Jtest generates 277 tests for BSTree. These tests exer-
cise five nonequivalent object states in addition to the initial state and one exception
state, 12 nonequivalent non-constructor method calls in addition to one constructor call,
and 33 nonequivalent method executions. Obstra augments the test suite to exercise 61
nonequivalent method executions. The abstraction ratios for the OSM’s in Figure 1 and
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Figure 2 are 0.29 and 0.58, respectively. The elapsed real time for test augmentation
and abstraction extraction is 0.4 and 4.9 seconds, respectively.

Figure 2 shows thatNullPointerException is thrown by three nondeterminis-
tic transitions. In fault isolation, we want to know in what conditions the exception is
thrown. If the exception is thrown because of illegal inputs, we can add necessary pre-
conditions to guard against the illegal inputs. Alternatively, we can perform defensive
programming: we can add input checking at method entries and throw more informa-
tive exceptions if the checking fails. However, we do not want to add over-constrained
preconditions, which prevent legal inputs from being processed. For example, after in-
specting the exception OSM in Figure 2, we should not consider all arguments foradd ,
thenull argument forremove , or all arguments forcontains as illegal arguments, al-
though doing so indeed prevents the exceptions from being thrown. After we inspected
thecontains OSM in Figure 1, we gained more information about the exceptions and
found that callingadd(arg0:null;) after calling the constructor leads to an undesir-
able state: callingcontains on this state deterministically throws the exception. In ad-
dition, callingremove(arg0:null;) also deterministically throws the exception and
callingadd throws the exception with a high probability of 5/6. Therefore, we had more
confidence on consideringnull as an illegal argument foradd and preventing it from
being processed. After we preventedadd(arg0:null;) , two remove(arg0:null;)

transitions still throw the exception: one is deterministic and the other is with 1/2 prob-
ability. We then considerednull as an illegal argument forremove and prevented it
from being processed. We did not need to impose any restriction on the argument of
contains .

In test characterization, we found that there are three different arguments foradd

but only two different arguments forcontains , although these two methods have the
same signatures. We could add a method call ofcontain(arg0.v:0;) to the Jtest-
generated test suite; therefore, we could have three observer instances for thecontains

OSM in Figure 1. In the new OSM, the second-to-top state includes one more ob-
server instancecontains(arg0.v:0)=false and the indeterministic transition of
remove(arg0:null;)?/-[1/2] from the second-to-top state to the bottom state is
turned into a deterministic transitionremove(arg0:null;)?/-[1/1] . In general,
when we add new tests to a test suite and these new tests exercise new observer in-
stances in an OSM, the states in the OSM can be refined, thus possibly turning some
indeterministic transitions into deterministic ones. On the other hand, adding new tests
can possibly turn some deterministic transitions into indeterministic ones.

3.2 Hash Map Example

A HashMap class was given injava.util.HashMap from the standard Java libraries
[20]. A repOK and some helper methods were added to this class for evaluating Korat
[2]. We also used this class in our previous work for evaluating Rostra [8]. The class has
597 non-comment, non-blank lines of code and its interface includes 19 public meth-
ods (13 observers), some of which are[init]() , void setLoadFactor(float f) ,
void putAll(Map t) , Object remove(MyInput key) , Object put(MyInput

key, MyInput value) , andvoid clear() . Jtest generates 5186 tests for HashMap.
These tests exercise 58 nonequivalent object states in addition to the initial state and
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Fig. 3. exception observer abstraction andrepOk observer abstraction of HashMap

Fig. 4. get observer abstraction of HashMap

one exception state, 29 nonequivalent non-constructor method calls in addition to one
constructor call, and 416 nonequivalent method executions. Obstra augments the test
suite to exercise 1683 nonequivalent method executions. The elapsed real time for test
augmentation and abstraction extraction is 10 and 15 seconds, respectively.

In fault isolation, we found that the exception OSM of HashMap (with the abstrac-
tion ratio of 0.95) contains one deterministic transitionputAll(arg0:null;) from
NORMALto NullPointerException , as is shown in the left part of Figure 3. There-
fore, we considerednull as an illegal argument forputAll . We checked the Java API
documentation for HashMap [20] and the documentation states thatputAll throws
NullPointerException if the specified map is null. This description confirmed our
judgement. In other observer abstractions, to provide a more succinct view, by default
Obstra does not display any deterministic transitions leading to an exception state in the
exception OSM.

In correctness checking, we found an error insetLoadFactor(float f) , a method
that was later added to facilitate Korat’s test generation [2]. The right part of Figure 3
shows therepOk OSM of HashMap (with the abstraction ratio of 0.95).repOk is a
predicate used to check class invariants [14]. If callingrepOk on an object state returns
false , the object state is invalid. By inspecting therepOK OSM, we found that call-
ing setLoadFactor with all arguments deterministically leads to an invalid state. We
checked the source code ofsetLoadFactor and found that its method body is simply
loadFactor = f; , whereloadFactor is an object field. The comments for a private
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field threshold states that the value ofthreshold shall be(int)(capacity *

loadFactor) . Apparently this property is violated when settingloadFactor without
updatingthreshold accordingly. We fixed this error by appending a call to an exist-
ing private methodvoid rehash() in the end ofsetLoadFactor ’s method body;
rehash updatesthreshold using the newloadFactor .

Figure 4 shows theget OSM of HashMap (with the abstraction ratio of 0.94). In
the representation of method returns on a transition or in a state,return represents the
non-primitive return value andreturn.v represents thev field of the non-primitive
return value. We next walk through the scenario in which programmers could inspect
Figure 4 for correctness checking and component understanding. During inspection,
programmers might focus their exploration of an OSM on transitions. Three such tran-
sitions areclear , remove , andput . Programmers are not surprised to see thatclear

or remove transitions cause a nonempty HashMap to be empty, as is shown by the tran-
sitions from the top or bottom state to the central state. But programmers are surprised
to see the transition ofput(arg0:null;arg1:null) from the top state to the central
state, indicating thatput can cause a nonempty HashMap to be empty. By browsing
the Java API documentation for HashMap [20], programmers can find that HashMap
allows either a key or a value to benull ; therefore, thenull return ofget does not
necessarily indicate that the map contains no mapping for the key. However, in the
documentation, the description for the returns ofget states: “the value to which this
map maps the specified key, or null if the map contains no mapping for this key.” After
reading the documentation more carefully, they can find that the description forget

(but not the description for the returns ofget ) does specify the accurate behavior; This
finding shows that the informal documentation for the returns ofget is not accurate or
consistent with the description ofget .

Three observers of HashMap, such asCollection values() , have a low abstrac-
tion ratio of 0.28; thus, their OSM’s are large and difficult to inspect. In future work,
we plan to display a portion of their OSM’s based on user-specified filtering criteria.

4 Related Work

Ernst et al. use Daikon to dynamically infer likely invariants from test executions [21].
Invariants are in the form of axiomatic specifications. These invariants describe the ob-
served relationships among the values of object fields, method arguments, and method
returns of a single method in a class interface, whereas observer abstractions describe
the observed state-transition relationships among multiple methods in a class interface
and use the return values of observers to represent object states, without explicitly re-
ferring to object fields. Henkel and Diwan discover algebraic specifications from the
execution of automatically generated unit tests [7]. Their discovered algebraic speci-
fications present a local view of relationships among two methods, whereas observer
abstractions present a global view of relationships among multiple methods. In ad-
dition, Henkel and Diwan’s approach cannot infer local properties that are related to
indeterministic transitions in observer abstractions; our experiences show that these
indeterministic transitions provide useful information during inspection. In summary,
observer abstractions is a useful form of inferred properties, complementing invariants
or algebraic specifications inferred from unit-test executions.
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Whaley et al. extract Java component interfaces from system-test executions [22].
The extracted interfaces are in the form of multiple finite state machines, each of which
contains the methods that modify or read the same object field. Observer abstractions
are also in the form of multiple finite state machines, each of which is with respect to
a set of observers (containing one observer by default). Whaley et al. map all concrete
states that are method-exit states of the same state-modifying method to the same ab-
stract state. Our approach maps all concrete states on which observers’ return values
are the same to the same abstract state. Although Whaley et al.’s approach is applica-
ble on system-test executions, it is not applicable on the executions of automatically
generated unit tests, because their resulting finite state machine would be a complete
graph of methods that modify the same object field. Ammons et al. mine protocol spec-
ifications in the form of a finite state machine from system-test executions [23]. Their
approach faces the same problem as Whaley et al.’s approach when being applied on
the execution of automatically generated unit tests. In summary, neither Whaley et al.
nor Ammons et al.’s approaches capture object states as accurate as our approach does
and neither of them can be applied on the executions of automatically generated unit
tests.

Given a set of predicates, predicate abstraction [24–27] maps a concrete state to an
abstract state that is defined by the boolean values of these predicates on the concrete
state. Given a set of observers, observer abstraction maps a concrete state to an abstract
state that is defined by the return values (not limited to boolean values) of these ob-
servers on the concrete state. Concrete states considered by predicate abstractions are
usually those program states between program statements, whereas concrete states con-
sidered by observer abstractions are those object states between method calls. Predicate
abstraction is mainly used in software model checking, whereas observer abstraction in
our approach is mainly used in helping inspection of test executions.

Turner and Robson use finite state machines to specify the behavior of a class [28].
The states in a state machine are defined by the values of a subset or complete set of
object fields. The transitions are method names. Gallagher and Offutt extend the finite
state machines of a single class to multiple classes in integration testing [29]. These
previous approaches specify specifications in form of finite state machines and generate
tests based on the specifications, whereas our approach extracts observer abstractions in
form of finite state machines without requiringa priori specifications. In future work,
we plan to use extracted observer abstractions to guide test generation using existing
finite-state-machine-based testing techniques [13] and use new generated tests to further
improve observer abstractions. This future work fits into the feedback loop between test
generation and specification inference proposed in our previous work [30].

Kung et al. statically extract object state models from class source code and use
them to guide test generation [31]. An object state model is in form of a finite state ma-
chine: the states are defined by value intervals over object fields, which are derived from
path conditions of method source; the transitions are derived by symbolically executing
methods. Our approach dynamically extracts finite state machines based on observers
during test executions. Grieskamp et al. generate finite state machines from executable
abstract state machines [1]. Manually specified predicates are used to group states in
abstract state machines to hyperstates during the execution of abstract state machine. Fi-
nite state machines, abstract state machines, and manually specified predicates in their
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approach are corresponding to observer abstractions, concrete object state machines,
and observers in our approach, respectively. However, our approach is totally automatic
and does not require programmers to specify any specifications or predicates.

5 Conclusion

It is important to provide tool support for programmers as they inspect the executions
of unit tests. We have proposed the observer abstraction approach to aid inspection of
test executions. We have developed a tool, called Obstra, to extract observer abstrac-
tions from unit-test executions automatically. The observer abstraction approach can
help address correctness checking, fault isolation, test characterization, and component
understanding. We have applied the approach on a variety of programs, including com-
plex data structures; our experiences show that extracted observer abstractions provide
succinct and useful information for programmers to inspect.
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