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Abstract
We presentCatch, a protocol that encourages cooperation
in multi-hop wireless networks comprised of autonomous
nodes. While these nodes depend on each other to relay
packets, scarce bandwidth and energy resources may mo-
tivate some nodes to cheat and avoid packet forwarding.
Catch employs a novel technique based on anonymous
messages to significantly increase the difficulty of cheat-
ing with impunity. Existing routing protocols simply as-
sume that nodes will act cooperatively and have no mech-
anisms to encourage this behavior or punish cheaters.
Catch imposes minimal requirements and overheads on
the system, and so is broadly applicable across routing
protocols and system workloads. We show thatCatch
makes cheating counter-productive, thus encouraging the
cooperative behavior on which multi-hop wireless net-
works are predicated. We evaluateCatch on an 802.11
wireless testbed, as well as through simulation.

1 Introduction
Experience has shown that when systems rely on the
cooperation of autonomous nodes to achieve a commu-
nal goal, some fraction of the nodes will “cheat” by
consuming global resources without faithfully carrying
out their obligations to contribute. For example, mea-
surements of peer-to-peer file sharing systems show that
many users retrieve files without serving any [1, 33].
Cheating has also destroyed the popularity of commercial
online games [31] and has been a longstanding point of
contention for network congestion control [17, 18]. Ap-
proaches to preventing cheating have been of consider-
able interest in these arenas (for example, see references
for peer-to-peer systems [23, 30, 13, 36], congestion con-
trol [34, 21, 5, 24, 26], and online games [7]).

This paper addresses cheating in an emerging coopera-
tive environment – multi-hop wireless networks. There
has been a dramatic increase in the deployment of 802.11
networks over the past few years, with a growing boom in
WiFi hotspots and community networks [16]. Multi-hop
networks, in which nodes relay packets for each other,
are a natural next step. In infrastructure rich areas, relay-
ing packets can reduce dead spots, lower power consump-
tion [29], and increase network capacity [20]. Addition-
ally, multi-hop wireless networks can be deployed in in-
frastructure poor environments more readily and at lower

expense than traditional wireless networks. This is partic-
ularly important in rural or developing areas, but is also
valuable in buildings without appropriate cabling infras-
tructure. Research examples of multi-hop networks in-
clude MIT’s Roofnet [3], Microsoft’s MUP [2], the Digi-
tal Gangetic Plains Project [9], and UCAN [25].

Cheating in a multi-hop network means the failure to for-
ward packets for other nodes. Most existing designs for
these networks ignore this issue, and in fact may even re-
ward cheaters by routing traffic around them on the pre-
sumption that they have no useful connectivity to the rest
of the network. This has two negative effects. First, all
packet forwarding is concentrated through the coopera-
tive nodes, decreasing both individual and system band-
width and increasing their energy loads. Second, cheaters
may partition what would otherwise be a connected net-
work. Figure 1 illustrates this second effect in our 15
node testbed 802.11 system.1 Each line in the graph
shows the probability that the cooperative nodes are par-
titioned given varying numbers of cheating nodes (that
forward no packets) and minimal acceptable link qual-
ity (where only links with at least the given delivery rate
are considered useful). Figure 1 shows that even a few
cheaters are capable of severing high quality connectiv-
ity, and that rampant cheating will partition the network
even if the cooperative nodes try to use low quality links.

Prior work on preventing cheating in wireless networks
has concentrated on the use of incentives or pricing
schemes. However, we believe that each of the solutions
of which we are aware is unsuitable for use in practice.
Typically, they have employed some form of currency,
using it to force nodes to forward packets in return for the
right to have their own packets forwarded. There are two
major impediments to putting such schemes into prac-
tice. First, they impose strong requirements on the infras-
tructure, such as centralized clearance services [40, 32]
or trusted hardware [12]. Second, they are structurally
bound to some notion of fairness, typically that the num-
ber of packet forwarded for and by a node can differ by
only a small amount. This works well only when there are
uniform traffic rates among all node pairs [35]. Our chal-
lenge is to determine how to discourage cheating without
such restrictions or limitations.

1Our testbed infrastructure is described in more detail in Section 5.
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Figure 1:Probability that non-cheating nodes are partitioned
versus varying numbers of (randomly chosen) cheating nodes.
Only links with delivery rates at least Q are considered useful.
(15 nodes total in the testbed.)

Our goal is a protocol to discourage cheating using only
lightweight, unrestrictive, and generally applicable mech-
anisms. By doing so, our technique can be easily in-
tegrated with the rapidly evolving research results on
multi-hop wireless networking that solve other prob-
lems. Our approach is to sufficiently “raise the bar” on
cheaters, catching and punishing them quickly enough
that their own self-interest encourages cooperation rather
than cheating. Our solution is a protocol calledCatch.
Catch differs from earlier work in that it is statistical: it
does not prevent a cheater from dropping packets, but el-
evates the risk of doing so enormously by detecting such
behavior with high probability and punishing it. Addi-
tionally, the larger the percentage of packets dropped by
a cheater the quicker the detection, thus limiting the ben-
efit of any attempt to exploit the inherent statistical noise.
In return for the weaker (statistical) guarantees thatCatch
provides, it is much more widely applicable than existing
approaches.

We have implemented and evaluatedCatch on an in-
building 802.11b testbed. This setting includes the com-
plex link quality factors that affect actual wireless sys-
tems, such as the unpredictable relationship between dis-
tance and loss rate, loss rates that shift over time, and
asymmetric connectivities (where A can hear B, but B
cannot hear A). Such factors significantly complicate the
implementation of robust decision mechanisms where
nodes monitor the behavior of their neighbors. These as-
pects of the problem have received little attention in ear-
lier work, which is primarily based on simulation. We
find thatCatch is able to detect attempts at cheating by
individual nodes both quickly and with high accuracy.
The overhead for our scheme is modest, a nominal load
of roughly 24Kbps per node in our testbed. WithCatch
there is no space overhead or cryptographic operations
per data packet.

The rest of this paper is organized as follows. We
describe our problem setting in Section 2. Section 3

presents our approach, which is based on the use of
anonymous messages to estimate true reception rates and
infer wireless connectivity to a cheating node. Section 4
describesCatch, our protocol for discouraging cheating.
Section 5 describes our 802.11 testbed implementation,
and presents the results of experiments that measure the
detection accuracy, timeliness, and overhead ofCatch.
We analyzeCatch across a range of parameters through
the use of simulation in Section 6. Finally, Section 7
presents related work, and we conclude in Section 8.

2 Problem
Our goal is to deter cheating so that all nodes in the
network cooperate and forward packets for each other.
We make three assumptions. First, we assume that most
nodes are cooperative (in the sense that they run a proto-
col we define) and cheaters are uncommon. This seems
fitting for the problem domain since a reasonable level
of cooperation must exist to form a network in the first
place. We do not consider collusion amongst cheaters.
Second, we assume omni-directional radio transmitters
and antennas, so that nodes can overhear nearby com-
munications. This matches common 802.11 usage today.
Third, we assume that nodes have a long-lived identity
that they cannot change at will. Such a notion of iden-
tity is required by most incentive-based schemes in both
wireless and other domains. For current 802.11 hard-
ware, MAC addresses do not provide such an identity.
But mechanisms such as WPA in the upcoming 802.11i
standard (already implemented by many vendors) should
be sufficient for this purpose.

Note that we do not make assumptions regarding the
routing protocol, traffic workload, power management
scheme, or objective of the nodes (such as bandwidth
maximization or energy conservation). This is because
we wish our solution to work largely unchanged across
any of these variables.

Existing protocols do not solve this problem. There are
two simple ways in which a selfish node can cheat, one
at the forwarding level and one at the routing level. The
first way a node can cheat is by dropping all the packets
it receives for forwarding without any further process-
ing. Earlier work has suggested the use of a watchdog
that leverages the broadcast property of wireless trans-
missions to detect this problem, coupled with the avoid-
ance of these misbehaving nodes [27]. However, while
this prevents packets from being forwarded to misbehav-
ing nodes, it also means that the cheater has succeeded in
its goal of offloading work to others.

The second way for a node to cheat is to simply refuse to
send routing messages that acknowledge connectivity to
itself via more than one other node. Because of asymme-
try, other nodes that can hear the cheater cannot be sure
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that the cheater can hear them. The cheater will then ap-
pear to be a “dead-end,” and no traffic will be sent to it
for forwarding. We call this cheatlink concealment. It
is broadly applicable and, to the best of our knowledge,
no existing routing protocols or policing schemes defeat
it because the true connectivity of a node is known only
by the node itself.

3 The Use of Anonymity
In this section we describe the key elements of our ap-
proach. At a high-level, we encourage cooperation by de-
tecting and punishing nodes that cheat. One component
of detection is the watchdog technique [27] mentioned
earlier, which relies on the inherent broadcast nature of
wireless networks. When one node sends a packet to an-
other for forwarding, itlistens to the wireless medium
hoping to overhear whether the packet is in fact for-
warded. The fraction of packets for which forwarding
is observed is one of the inputs eventually used to decide
if the neighbor is cheating. If so, all the neighbors of a
cheating node punish it byisolation: all refuse to forward
its packets for some period, effectively disconnecting it
from the network.

This approach requires us to tackle two key problems:

1. Distinguishing a neighboring node that is cheating,
i.e., dropping packets deliberately, from one that is
not receiving them due to real wireless transmission
errors.

2. Communicating that a node is cheating to all of
its neighbors so that they can collectively punish
it, even when the only path to those neighbors is
through the cheater.

Each of these problems is difficult or impossible to solve
perfectly in the general case. For the first, only a given
node knows which packets it received and which it did
not – this information is not externally observable. For
the second, the cheater can simply refuse to forward mes-
sages it thinks are incriminating.

One insight of this paper is that anonymous messages,
in which the receiver cannot determine the identity of
the sender, can be combined with the threat of isolation
to address both problems. Anonymous messages can be
provided with current hardware by scrubbing the source
addresses on packets.2 This forces would-be cheaters to
engage in sophisticated games with signal strength mea-
surements if they are to infer the sender. For now, we
assume that anonymity can be provided. We return to the
impact of physical layer hints in Section 5.

2The source MAC address can be scrubbed for most current 802.11
cards.

The next two subsections describe how we tackle each
problem. For consistency with theCatch protocol de-
scription in Section 4 we refer to a node that is being
checked for cheating as atesteeand its neighbors which
are assumed to operate correctly astesters.

3.1 Anonymous Challenge Messages
Theanonymous challenge message(ACM) sub-protocol
allows a tester to estimate its true connectivity with the
testee. This then allows it to determine if its data packets
are being forwarded in good faith or deliberately dropped.
To understand the protocol observe that for a selfish testee
to stay connected at least one of its testers must be willing
to forward its packets. Call this other tester the gateway.

In the ACM protocol, each tester regularly but unpre-
dictably sends an anonymous challenge message to the
testee for it to rebroadcast. The tester can check whether
the testee does so because radio transmissions are broad-
cast and can be overheard by neighbors with reasonable
success [27]. Assume that the tester will refuse to for-
ward packets for the testee if it fails to overhear the re-
broadcasts (since it believes the testee either has no con-
nectivity or is cheating). Now, to preserve connectivity
with the gateway, the selfish testee must rebroadcast chal-
lenges sent by the gateway. But since all challenges are
anonymous, it cannot select only those of the gateway,
and must respond to all of them. This in turn allows the
other testers to determine that they have connectivity to
the testee. The protocol is difficult to undermine even
with weak anonymity because the likelihood of correctly
handling a series of challenges decreases exponentially
over time.

To use this protocol in practice, we must allow for wire-
less losses. Once we do so, the testee may drop some or
all anonymous challenge messages. However, it cannot
selectively inflate the loss rate on just some links because
the challenges are anonymous. To make the addition
of uniform loss counterproductive, testers look for gross
discrepancies in either direction between the anonymous
challenge loss rate and the estimated data packet loss rate.
That is, if cheaters add loss to all challenges then they
must also drop and retransmit their own data packets to
avoid detection, a losing proposition that marginalizes the
value of cheating in this manner.

3.2 Anonymous Neighbor Verification
The ACM protocol is not a complete solution because
a cheater may handle anonymous challenges correctly
but discard the data packets sent by some of its testers.
While these testers will refuse to relay packets for the
cheater, this is to no avail as long as the cheater has some
willing gateway. To prevent this, all testers must collec-
tively isolate a cheater. Theanonymous neighbor verifi-
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cation(ANV) sub-protocol allows testers to do so by ex-
changing information with each other via the testee, even
though the testee may prefer to discard incriminating in-
formation.

ANV operates in two phases. In the first (“ANV Open”)
phase, the testers anonymously advertise their existence
to each other. They send the cryptographic hash of a
token that the testee is required to rebroadcast. As be-
fore, anonymous messages are used to prevent the tes-
tee from selectively excluding testers. If the testee does
not rebroadcast these messages, the testers assume that it
does not have connectivity or is cheating and do not relay
packets for it.

In the second (“ANV Close”) phase, each tester releases
their token and reveals their identity as long as the tes-
tee has forwarded its packets correctly, according to the
ACM protocol. Assuming that it is not feasible to in-
vert the hash, a token can only be released by the tester
who encrypted it. If each tester does not eventually hear
all of the tokens it expects then it concludes that some
other tester has incriminating information. This causes
the cheater to be isolated by all testers. Thus, the testee
must forward packets for all testers, because any of them
can withhold its token. Note that it is crucial to the pro-
tocol that failure of the testee be signaled in the ANV2
step through theabsenceof a message. This prevents a
cheater from interfering with such signaling, as it would
be able to if we used a more straightforward positive sig-
naling mechanism.

We make two further observations. First, as before, drop-
ping messages in the first phase to exclude particular
testers and their data packets is unlikely to succeed be-
cause the likelihood of correctly matching anonymous
messages to testers decreases exponentially over time.
Second, interference in the second phase of protocol by
the testee is clearly unproductive because it can only lead
to its isolation.

4 TheCatch Protocol
Catch builds on the anonymous techniques above, adapt-
ing them for use in real, wireless networks.

4.1 Overview
Catch operates as a sequence of protocol epochs run be-
tween atesteenode and its neighbors, who act astesters.
Figure 2 provides two illustrations of the per-epoch pro-
tocol steps, one when the testee is cooperating and the
other when it is cheating.

Epochs are delimited by EpochStart packets broadcast by
the testee. During the epoch testers send data packet for
the testee to forward and estimate link loss rates using the
ACM sub-protocol. Testee’s behavior during an epoch is

protocol packet data packet
broadcast protocol packet overheard data packet

Tester Cooperative Testee
EpochStart

.

..        data

data
ACM (anonymous)

 ACM (anonymous)      data

 ANV1 (anonymous)

data

1

   2

3

6

   SignExchange

ANV2

4

5

Tester Cheating Testee
EpochStart

.

..        data

data
ACM (anonymous)

 ACM (anonymous)      data

ANV1 (anonymous)

1

   2

3

6

   SignExchange
4

5

dropped

dropped

ANV2 not released

dropped
data

Figure 2:Protocol flow. Packet exchange between a tester and
a cooperative (left side) or cheating (right side) testee. Numbers
on the left of the time sequence correspond to the protocol steps.

evaluated at the end of that epoch. This evaluation and
that of a small number of preceding epochs is used by
the testers to judge whether the testee is cheating. Should
they conclude that it is cheating, they punish it for an in-
terval during which they all refuse to forward its packets.

1. Epoch-Start. The testee broadcasts an EpochStart
packet that includes its identity and an epoch iden-
tifier. Nodes that receive this request participate as
testers for this epoch.

2. Packet Forwarding and Accounting.During packet
forwarding, testers use a watchdog [27], listening
in promiscuous mode for forwarding transmissions
of their packets, and count both the number of data
packets sent and the number of forwarding transmis-
sions overheard. During this period the testers also
run the ACM sub-protocol (Section 3.1), sending
anonymous challenges and counting their rebroad-
casts.

3. Anonymous Neighbor Verification Open (ANV1).
Each tester “opens” the two-phase ANV sub-
protocol (Section 3.2) by sending an anonymous
packet containing a hashed token to the testee for
rebroadcast.

4. Tester Information Exchange.Each tester compares
the fraction of its data packets it has heard the tes-
tee forward during the epoch to the fraction of its
challenges it has heard reflected. It obtains a one-bit
(“sign”) result depending on which is greater: 0 for
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challenges and 1 for data packets. It then sends its
sign bit and identity to the testee for rebroadcast.

5. Epoch Evaluation and ANV Close (ANV2).Each
tester determines whether the testee is operating cor-
rectly using its observations and the data from other
testers. This is done with a pair of statistical tests
described in the next subsection. If both tests pass
and the testee correctly rebroadcast the one-bit re-
sult above, then the tester closes the ANV protocol
by releasing its token.

6. Isolation Decision. An epoch fails for a tester if
either of the tests above fail or it does not receive
all of the tokens it expects. If too many epochs fail
too quickly (Section 4.3) then the tester decides that
the testee is cheating and punishes it by dropping its
packets for a fixed number of epochs. By virtue of
the protocol, all testers decide to punish a cheater at
(nearly) the same time, so that it is isolated.

We increase the likelihood of all testers seeing all control
packets (EpochStart, ANV1, SignExchange and ANV2)
in two ways. First, we use retransmissions, e.g., if a tester
does not hear the rebroadcast. Second, we use cumulative
broadcasts, where the testee sends all of the information
it has received on every transmission.

4.2 The Per-Epoch Tests
Each tester applies two statistical tests per epoch to de-
termine whether a testee is behaving correctly. Each test
is designed to be sensitive to distinct cheating strategy.
The key challenge in both is to avoid mistaking volatile
wireless conditions for misbehavior.

One cheating strategy for the testee is to drop packets
from a particular tester in the hope that the consensus
across neighbors will be that the cheater has passed the
epoch, since all other testers should find its behavior ac-
ceptable. To detect this, each tester aggregates informa-
tion about the testee’s data packet forwarding and con-
nectivity as estimated using anonymous challenges for
the last three epochs. It then compares these two rates
using thez test [28]. We found that quite high confidence
levels (99% and higher), coupled with the hysteresis pro-
vided by using measurements from multiple epochs, pro-
vide a good balance between quick detection of cheat-
ing and a low rate of false accusations where cooperative
nodes are accused of cheating.

The second strategy a cheating testee can employ is to
uniformly drop some fraction of the packets received
from each tester, making it hard for any one of them to
conclude that cheating has taken place. To detect this,
we employ the sign test [28] using the one-bit results ex-
changed by all testers. The sign test is based on the idea

that if the testee is not cheating, its perceived forwarding
and connectivity rates should have identical means. Thus,
random fluctuations in each epoch should yield about as
many results in which one exceeds the other as the op-
posite. Each tester accumulates the one-bit results for all
epochs in which it has participated, and applies the sign
test to decide if the balance is reasonable.

4.3 The Isolation Decision
Isolation of a testee is decided by all testers in parallel.
An epoch fails if any of the testers fail the above tests;
each tester knows if it failed the tests and learns if another
tester failed when an ANV2 token is withheld. We do not
isolate after a single failed epoch because, while it could
indicate cheating, it could as well indicate an anomalous
condition such as changed wireless conditions or con-
trol packets that were lost despite retransmissions and
rebroadcasts. To allow for this, we require three failed
epochs to isolate a testee. We do not use three consecu-
tive epochs as a test because this would allow a cheater to
succeed for two-thirds of the time. Instead, we use a three
state finite state automaton (FSA) that moves to the right
when an epoch fails and the left when an epoch passes. If
the FSA falls off the right edge, the testee is isolated.

4.4 Protocol Fail-safes
BecauseCatch is designed to operate when some nodes
act in an adversarial manner, we are as concerned about
what happens when the protocol is not followed as when
it is. In Appendix A we provide a short analysis by mes-
sage type that shows cheaters cannot undermine the pro-
tocol in the absence of collusion.

5 Experimental Evaluation
This section describes our experiments withCatch on
an 802.11b testbed. The purpose of this exercise is to
testCatch under realistic wireless characteristics, such as
the complicated packet loss behavior these systems ex-
hibit [22].

5.1 The Testbed
In this section, we describe our testbed infrastructure and
our implementation ofCatch. The results of our experi-
ments are presented in Section 5.2.

5.1.1 Physical Infrastructure
Our testbed is composed of 15 PCs running Linux 2.4.26.
We use NetGear MA311 PCI network adapters (Prism 2.5
chipset), operating in the ad-hoc mode using thehostap
driver. Each node also has a wired Ethernet interface to
facilitate remote management of the experiments.

The testbed is located on a single floor of an office build-
ing, as shown in Figure 3. Apart from the usual sources
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Figure 3: Our wireless testbed, consisting of fifteen 802.11b
nodes. The node locations are marked with circles.

of noise and interference in an office environment, the
building has its own dense deployment of wireless ac-
cess points, including ten on the same floor as our testbed.
These access points operate on 802.11b channels 1, 6 and
11. Our testbed operates on channel 1, thus competing
with other wireless transmissions in the building. Such a
setting, while noisy, is also realistic. The growing use of
WiFi means that most 802.11 networks will be competing
with each other in any public deployment [4].

We use static routing between nodes to factor out ef-
fects that stem mainly from the routing protocols. Wire-
less routing protocols are currently an open area of re-
search [14].

Our system exhibits all the well-known real-world char-
acteristics of wireless networks, including error rates that
are not a simple function of distance, that are strongly
asymmetric, and that vary widely over time. Figure 4
gives a static summary of these effects. It shows the aver-
age one-way delivery rate in each direction for each pair
of nodes for which we observed a successful transmission
in at least one direction. We computed the delivery rate
by having each node broadcast 500 1000-byte packets
over two minutes. The other nodes counted how many of
those packets they received. The wide range of inter-node
delivery rate shown in the figure, rather than a binary state
of connectedness, has been previously observed for wire-
less environments by other researchers [4, 39].

5.1.2 Catch Implementation
We implementedCatch at user-level using the Linuxnet-
filter framework to monitor and manipulate the packets
sent, received, and forwarded by a node. The watchdog
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Figure 4: For each node pair in the testbed, the fraction of
sent packets successfully received in each direction. There are
105 pairs total in the testbed. Only node pairs with a non-zero
delivery rate between them in at least one direction are shown.

component ofCatch also needs to overhear all packets
sent by the node’s neighbors regardless of their intended
destination. To capture these packets, we operate our
wireless network adapters in promiscuous mode and use
the Linux pcap framework. TheCatch protocol itself is
written in ruby.

The watchdog mechanism needs to account for 802.11
MAC-level retransmissions while assessing the testee’s
data forwarding rate. Consider a tester judging whether
the testee forwarded a particular data packet. The quality
of the link between the testee and the recipient determines
the number of retransmissions done by an honest testee,
which in turn changes the probability that the tester will
overhear this packet. To overcome this recipient-based
variation, we measure the data forwarding rate using only
the first transmission. A bit in the 802.11 MAC header
enables us to distinguish original transmissions from re-
tries. We mimic a similar behavior with ACM messages
by broadcasting their responses only once.

We use the following parameters values for our evalua-
tion, based on experiments across multiple settings. The
length of an epoch is set to one minute. This provides a
compromise between cheating detection speed and pro-
tocol overhead. There are fifteen anonymous ACM mes-
sages per epoch. This number is chosen to be sufficiently
large for statistical decisions but small enough to add very
little overhead. The confidence interval for thez test is
99.999%, and that for the sign test is 99.995%. Both ex-
periments and simple analysis showed that very high con-
fidence values are most effective. The size of ACM mes-
sages is 1500 bytes, which is the same as the MTU (max-
imum transmission unit) used by our network adapters.
With smaller data packets such as TCP acknowledge-
ments, the data loss rate can be less than that of the ACM
messages. Our current implementation checks for the up-
per bound. We plan to explore tighter bounds using the
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Figure 5:Time to transfer 6MB from node 8 in Figure 3 by four
other nodes via direct and multi-hop connections. The x-axis
label gives the delivery rate of the direct connection with node
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The client nodes, from left to right, are 4, 6, 14, and 9.

measured relationship between packet size and loss rate
in the future.

5.1.3 Multi-Hop Performance

To convey a general sense of how our testbed behaves, as
well as show that multi-hop routing is useful even when
direct connectivity is available, we compared the perfor-
mance of a single, centrally located access point (AP)
setup to that of multi-hop routing. We simulate this con-
dition by transferring a large file from one node, which
acts as the AP, to four client nodes. In one set of experi-
ments, those nodes communicate directly with the AP. In
the other, they use multi-hop routes.

Figure 5 shows the results. We used node 8 (Figure 3)
as the AP, and nodes 4, 6, 9, and 14 as the clients. Each
client downloaded a 600KB file ten times. Each multi-
hop route used a single intermediary node: 4:5:8, 6:7:8,
14:10:8, and 9:10:8. Thex-axis labels in the figure give
the delivery rate of the direct links, averaged over the two
directions. The parenthesized numbers give an estimate
of the quality of the two-hop path, computed as the prod-
uct of the delivery rate of the individual links. In total, the
use of multi-hop paths reduced download time by 16%,
with per-node benefits ranging from 30% to -2%. The
better performance of the multi-hop routes is due in part
to the lower packet loss rates they enjoy. De Coutoet al.
have studied these issues in more detail [15, 14].

5.2 Catch Evaluation
In this section, we describe experiments that evaluate
Catch for its speed and accuracy in detecting cheaters,
its overhead, its impact on the throughput obtained by the
cheating nodes, and the impact of subverting anonymity
using signal strength.
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Figure 6: The number of epochs required to detect cheaters
in the testbed versus the fraction of packets a cheater failed to
forward. Each point is the average of 10 experiments. Vertical
bars represent the inter-quartile range.

5.2.1 Detecting Cheaters
Our first experiment measures the speed with which
Catch detects cheating. The more quickly a cheater is
detected the less attractive cheating becomes.

To construct a base case for detecting cheating, we se-
lected triplets of nodes such that both the first and the
third node had a reasonable (>75%) delivery rate to the
second node. The first and third nodes exchanged pack-
ets through the second node, which was configured to act
as a cheater. The cheater randomly dropped a fraction of
packets that it received for forwarding. We experimented
with cheating ratesof 10%, 15%, 20%, 25%, 50%, 75%
and 100%. Cheating rates less than 100% mimic a sit-
uation in which the cheater tries to evade detection by
appearing to be a cooperative but poorly connected node.

In our experiment, the first node acted as a client, and
downloaded randomly selected files ranging from 1KB
to 3MB in size from the third node. We started multiple
download sessions in parallel so that even in the presence
of a high cheat rate and TCP backoff dynamics, a min-
imum amount of traffic (roughly ten packets per epoch)
is generated for the statistical tests.3 Another download
session was started soon after one of them finished.

The line “Cheat against both” in Figure 6 presents the re-
sults for the case when the cheater drops packets from
both neighbors. It shows the average number of epochs
required to detect (and so isolate) a cheater for varying
cheat rates.Catch reacts quickly to cheating, and its re-
action time decreases with cheat rate. Detection is al-
most immediate for very high cheat rates; recall from
Section 4.3 that the minimum number of epochs that must
fail before isolation is three. Even at the low cheat rate
of 10%,Catch isolates the cheater in under 9 epochs on
average.

3When the tester is not sending enough application packets, it can
send real-looking dummy packets to examine the testee’s behavior.
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The curve labeled “Cheat against one” in Figure 6 shows
the results for the case where the cheater dropped packets
only for the client. We consider cheating against only one
neighbor to evaluate whether a single victim can cause
the cheater to be isolated. We chose the client as the
victim because it sends smaller packets (download re-
quests and TCP acknowledgements) and uses the loss
rate of bigger ACM-probes to infer cheating. This is a
challenging scenario for detection. We find that for high
cheat rates the detection speed is just as fast as the “both”
case. It is slower at lower cheat rates, but even at the low
cheat rate of 10% the average detection time is less than
30 epochs. Thus, a cheater that persistently cheats even
against one neighbor at a very low rate is eventually be
caught and punished.

5.2.2 False Accusations
In this section, we check that the rapid detection of
cheaters does not come at the cost of falsely accusing co-
operative nodes of cheating, whether due to volatile wire-
less conditions or other factors.

We ran two five hour experiments in which all nodes
were cooperative. Each node repeatedly downloaded
files (from the same set as above) from randomly cho-
sen servers, maintaining five simultaneous download ses-
sions. This workload is high enough to saturate our net-
work, stressing the accuracy of inference and increasing
the probability of false accusations. We observed no false
positives in the first experiment and a single false positive
in the second. Node 8 incorrectly inferred that node 1 was
cheating. It is difficult to measure the true rate of false
accusations because they are rare events, but nevertheless
we find this encouraging.

5.2.3 Coordinated Isolation
Detection is an effective deterrent inCatch only if all
the well-connected neighbors of a cheater detect cheating
at roughly the same time. If detection events are stag-
gered, the cheater will remain connected to the network
through a subset of its neighbors. In this section, we eval-
uate whether wireless conditions hinder the ability of the
testers to reach a decision to isolate at roughly the same
time.

In this experiment, we randomly selected 3 (20%) nodes
as cheaters, who dropped all the packets they received
for forwarding. All nodes executed a workload similar
to the one in the previous section with the exception that
cooperative nodes selected file servers only from the set
of other cooperative nodes. We evaluated whether the
non-cheaters were successful in isolating cheaters in a co-
ordinated manner by observing the throughput obtained
by the cheaters. Coordinated response implies that the
throughput of the cheaters goes down to near zero.
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Figure 7:Average throughput of cooperative nodes (solid line)
and cheaters (dashed line) as a function of time. Throughput
was calculated using one minute intervals. There were three
cheaters. The punishment interval is 30 minutes.

Figure 7 plots the average throughput obtained by the
cheating and cooperative nodes. It shows that the
cooperative nodes were successful in shutting out the
cheaters. Roughly eight minutes into the experiment, all
the cheaters were identified and isolated. The cheaters
were allowed to send traffic again after the punishment
interval of 30 minutes. The average throughput of the
cheaters appears to recover before 30 minutes because
different cheaters were isolated and released at different
times.

5.2.4 Protocol Overhead
We report on the overhead ofCatch in this section. We
have made no attempt to optimize the protocol because
its requirements are already modest.

Consider the activity for a pair of neighboring nodes
in an epoch, both playing the role of tester and testee.
The packet overhead ofCatch comes from its messages
which have different sizes and frequencies: StartEpoch
(40 bytes), ACM challenges and responses (1500 bytes,
15 times per epoch), ANV open and close (100 bytes),
and sign exchanges (40 bytes). These packets come to
a total of 0.6 packets or 758 bytes per neighbor per sec-
ond. Our testbed has less than four well-connected neigh-
bors per node on average, which means that the protocol
overhead is less than 2.4 packets or 24 Kb per second
per node. This is roughly 0.2% of the 802.11b capacity
(11 Mbps) and 0.04% of 802.11a/g capacity (54 Mbps).

We found the processor consumption ofCatch to also
be very reasonable. Informally observed usingtop dur-
ing our experiments, it took at most 10% of the CPU on
Pentium-IV 3 GHz nodes. Much of this is an artifact of
our ruby, user-level implementation ofCatch where each
packet that passes through the local machine or is promis-
cuously overheard crosses the user-kernel boundary once
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Figure 8: The fraction of forwarding load avoided if a node
adopts a signal strength cheating strategy. (We assume forward-
ing load is proportional to the number of neighbors.)

or twice. In fact, before moving to a PC-based testbed for
OS reliability reasons, we had successfully experimented
with Catch on a testbed composed of 10 iPAQs.

5.2.5 Attacks on Anonymity
Catch relies on the ability of nodes to send anonymous
messages. If a testee can undermine this property,Catch
may be compromised. At the MAC level, anonymity
is a reasonable assumption, since it is possible to send
packets with an arbitrary source address and contents us-
ing commonly available 802.11 hardware [38, 8]. At
the physical level, however, strong anonymity cannot be
guaranteed against a determined adversary: the source of
a packet might be estimated, or at least classified, from
the wireless signal’s strength or direction. Empirical re-
ports of wireless network conditions [37, 39, 22] and lo-
calization schemes based on received signal strength [6]
illustrate the difficulties that are involved, however.

Signal strength cheats are a level of escalation beyond the
attacks we have defended against thus far.4 Nonetheless,
in this section we study the potential leverage of such
attacks. We show that even in its present formCatch
is useful in protecting the cooperative nodes and is by
far preferable to doing nothing. Taking specific steps in
Catch to discourage signal strength based attacks is the
subject of future work.

To better understand the threat posed by this kind of at-
tack we consider a cheater that uses signal strength to
differentiate among its neighbors, with the goal of con-
necting to as few of them as possible. The cheater does

4Measuring signal strength required modifications to the network
interface driver that enable it to output signal strength data simultane-
ously with receiving and sending application traffic. The driver-specific
modifications to gain access to the signal strength of individual pack-
ets raises the barrier to cheating, which is no longer a simple matter of
installing a firewall rule. Our hardware cannot give information about
signal source direction, nor can any commodity hardware (fitted with
an omnidirectional antennae) of which we are aware.
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Figure 9: Probability that the cooperative nodes are parti-
tioned versus varying numbers of (randomly chosen) cheating
nodes when running with (dotted lines) and without (solid lines)
Catch. UnderCatch the cheaters use a signal strength based
attack. Only links with delivery rates at least Q are considered
useful.

this by listening to all packets on the air for a short period
of time, measuring their signal strengths and sources (for
data packets). It then chooses a signal strength thresh-
old for incoming packets that allows it to appear coop-
erative to neighbors whose packets arrive with strengths
above the threshold, and to appear to be a legitimate non-
neighbor to all other nodes. It does this by simply ignor-
ing packets with strengths below the threshold and acting
cooperatively to those above.5 Using this procedure, a
cheater may end up cooperating with between just one
and all of its legitimate neighbors. The cheater prefers
the former, but, whenCatch is run, overlap in the received
signal strengths from multiple neighbors may force it to
admit its presence to all of them.

Figure 8 shows the benefits that would be gained by
cheating in our testbed using this signal strength ap-
proach. For each of the 15 nodes we plot the fraction
of forwarding traffic that would be avoided, assuming
that forwarding loads are proportional to the number of
neighbors, or zero if a cheater manages to establish only
a single neighbor. Just under half the time a cheater can
escape forwarding entirely, while just over half it avoids
none or only a modest amount. Of course, if no proto-
col is run to protect against cheating, all nodes can cheat
100%, leading to a tragedy of the commons.

Even though a cheater may expect to reduce its forward-
ing load by about half using signal strength information,
running Catch still provides benefits to the cooperative
nodes. Figure 9 shows thatCatch greatly improves con-

5In theory, the cheater can pick an arbitrary signal strength range
rather than limiting itself to the top end. But our measurements show
that the degree of overlap among neighbors in the middle and bottom
part of the range would preclude this behavior. Additionally, better sig-
nal strength roughly translates to better connectivity, providing an in-
centive to pick such neighbors.
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Figure 10:Average amount of data transferred per node
when cheating is discouraged and when it is not. For the
former, we assume that no nodes cheat. For the latter,
nodes 7, 14 and 15 make use of the communal resources
but do not forward any packets. The data transferred for
the cheaters is 7316KB with the latter policy.

nectivity for those nodes, relative to taking no measures
against cheating. It plots the probability that a (randomly
selected) set of such cheaters would partition the cooper-
ative nodes when running with and withoutCatch. Be-
causeCatch forces many cheaters to admit to multiple
neighbors, and so to be available for packet forwarding,
it significantly reduces the odds that the network is par-
titioned. For example, when 20% (3) of the nodes cheat,
that probability is lowered from about 60% to about 10%
when using the highest quality links. At a 75% link de-
livery rate threshold, the odds of network a partition are
reduced from about 30% to zero.

5.2.6 Summary Effect on Performance
We conclude this section by illustrating the performance
benefits of implementing a policy that discourages cheat-
ing. Without such a policy, any node that cares to do so
can simply fail to forward packets while itself present-
ing a forwarding load to others. In contrast, if an effec-
tive cheating policy is implemented it is self-defeating to
cheat, and so we can reasonably expect all nodes that care
to connect to the network to cooperate.

In this experiment, we randomly selected 3 nodes as
cheaters. All nodes were trying to download randomly
selected files from randomly selected servers. Figure 10
illustrates the average amount of data transferred under
the two scenarios – “cheating discouraged,” which re-
sults in all nodes behaving cooperatively, and “cheating
allowed,” where nodes inclined to cheat do so. Both sce-
narios were run for 35 minutes. The two bars on the left
average the per-node results for twelve nodes that acted
cooperatively in both scenarios, while the bars on the
right average results for the three cheaters (nodes 7, 14,

and 15). The right bar for each group gives the average
data transferred in a system that does not protect against
cheating. The left bar gives the data transferred when
policy induces all nodes to behave cooperatively.

This data illustrates two important points. First, there is
a very large incentive to cheat: the cheaters improve their
throughput by 400% relative to when they are forced to
cooperate. This indicates that there is considerable poten-
tial motivation for nodes to behave selfishly in these en-
vironments if they can do so without retribution. Second,
the improved situation for the cheaters comes at the ex-
pense of cooperative nodes. The performance of the co-
operative nodes is decreased by 25% when 20% of their
fellow nodes cheat.

6 Extended Analysis
In this section we extend our analysis ofCatch, using
simulation to explore issues difficult or impossible to ad-
dress in the testbed.

6.1 Simulation Testbed and Metrics

We built a simulator to perform this analysis. This simu-
lator does not model the details of packet delivery, but in-
stead generates packet loss and reception counts for each
epoch and uses them to drive the protocol state machine.
The protocol state machine is parameterized by the neigh-
borhood topology, its loss rates, thez and sign statistical
test parameters, and the structure of the isolation FSA.
We focus on packets that are subject toCatch’s statisti-
cal tests and ignore other (control) packets. Our basic
setting includes a single cheater with 6 neighbors. The
epoch duration in the simulations is one minute. We set
the confidence levels for thez and sign tests (Section 4.2)
to 99.999% and 99.995% respectively.

To assess the effectiveness ofCatch, we useAverage Time
to Isolation(ATI) as the metric. ATI is measured in units
of epochs. An ideal policy would exhibit ATI values of 1
for nodes that cheat (at any rate), and infinite ATI values
for those that do not.

6.2 Physical Environment Effects
We first evaluateCatch’s robustness to two characteris-
tics of the physical environment, packet loss and network
density. To model cheating, use a straightforward strat-
egy in which the cheater drops data packets randomly
with fixed probability. Because the packet losses due to
the wireless network are also modeled as a random pro-
cess, this cheating strategy is arguably difficult for our
statistical tests to detect.
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Figure 11:Average time to isolation versus cheat rate, for var-
ious background network loss rates.(Y-axis on a log scale.)

6.2.1 Packet Loss

We would expect higher wireless loss rates to make it
more difficult to detect cheating. Figure 11 shows ATI
results as a function of cheat rate for three different back-
ground network loss rates. Each data point shows the
average of 40 runs. When there is no cheating (the y-
axis), there is a large isolation time – an average of around
26,000 epochs (about 18 days). These times fall steeply
as the cheat rate grows, to under 10 epochs for cheat rates
of 10-20%. The results for loss rates in the range of 10%-
25% are in line with those observed in our testbed (Fig-
ure 6), except that the homogeneous link qualities in the
simulation environment result in much longer false accu-
sation times than in the more variable testbed. Thus, the
impact of high wireless loss rates onCatch is quite small.
Even at a loss rate of 50%Catch isolates a cheater that
drops 25% of the packets it needs to forward in 7 epochs
on average, which is only 4 epochs more than the smallest
possible.

6.2.2 Network Density

We would expectCatch to perform better in higher den-
sity networks because larger neighborhoods are more
likely to make correct statistical decisions. Figure 12 ex-
amines the impact of the number of neighbors on detec-
tion and false accusation times. We show results for non-
cheaters (the top line) as well as for cheating at rates from
10-50%. Increasing the number of neighbors from 6 to 10
yields a small decrease in the time to detect cheaters, as
might be expected: already at 6 neighbors there is little
room for improvement. More surprisingly, reducing the
number of neighbors by a factor of three, to only two,
increases detection time by only a few epochs. Addition-
ally, the rate at which non-cheaters are falsely accused is
essentially unaffected over the entire range. Thus,Catch
seems to be robust, working well in both high and low
density networks.
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Figure 12:Average time to isolation versus number of neigh-
bors. (Y-axis on a log scale.)

6.3 More Sophisticated Cheaters

We now consider the issue of robustness to more complex
attacks. Thus far, we have analyzed a simple cheating
model in which the cheater randomly drops data packets
it is meant to forward. Here, we use our knowledge of the
statistical tests to construct cheating variations that target
potential weaknesses. While we cannot prove the nega-
tive result that there are no attacks that might be effective
againstCatch, we can show that these attacks yield only
very limited success.

One variation is targeted cheating, in which the cheater
drops packets from a time-varying subset of neighbors,
rather than uniformly from all. This stresses thez test in
Catch, whereas we know that the basic cheater is most
often detected by the sign test. We call this approach “ro-
tation.” A second variation attacks the FSA used to make
isolation decisions. Since three consecutive failed epoch
tests are required to isolate a node, a cheater may attempt
to escape isolation by cheating on, say, alternate epochs,
keeping the FSA out of its decision state. We call this
the “on-off” strategy. Finally, both attacks may be used
at once.

Figure 13 plots the number of epochs to isolation for
these strategies against the number of nodes targeted, for
the difficult environment where the loss rate is as large
as the cheat rate. (Both were set to 20%.) The graph
suggests that these custom-built strategies are only very
modestly successful. The most effective strategy for the
cheater is to obtain its overall average cheat rate of 20%
by dropping 60% of the packets from 2 of its 6 neighbors,
while rotating that pair each epoch. Using that strategy,
the cheater is isolated in 9 epochs on average, compared
to 5 epochs for the base cheating strategy.

As another variation of the basic cheating model, we ex-
perimented with cheaters that drop packets in a determin-
istic pattern, rather than randomly. The threat here is that
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the reduction in variance will help cheaters avoid detec-
tion. In fact, the opposite happened:Catch was more
effective.

6.4 Assessing Effectiveness

To complete this section, we consider how much better
it might be possible to makeCatch. This is a difficult
question to answer. We address it by comparingCatch
to an unrealistically powerful alternative, theDetection
Oracle, that serves as an informal upper bound on what
might be possible by any technique.

The Detection Oracle hears all packet transmissions ev-
erywhere in the network, without loss, and so has reliable
knowledge of all externally visible events. Additionally,
it retains infinite history information, enabling it to apply
theCatch statistical tests over this maximal pool of data.6

In contrast, the nodes in any real system have only im-
precise information (due to losses), each one is directly
aware of only a subset of the global information, and his-
tory information must be devalued because the highly dy-
namic environment is likely to produce anomalous peri-
ods that must eventually be forgiven. For these reasons,
we believe the Detection Oracle provides a useful heuris-
tic upper bound on what a real system could achieve.

Figure 14 compares the Detection Oracle withCatch.
This graph suggest thatCatch does nearly as well as pos-
sible. The oracle’s advantage exceeds a 5 epoch reduc-
tion in detection time only in the case of high network
loss rate (50%) and relatively low (5-25%) cheat rates.

6The oracle is also provided with knowledge that average loss and
cheat rates in the model do not vary over time, something not known to
Catch.
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Figure 14: Comparison of the time to isolation withCatch
and the Detection Oracle as a function of cheat rate for 10%
and 50% network loss rates.(Y-axis on a log scale.)

7 Related Work
Approaches to discourage selfish behavior in wireless
networks can be classified into three broad categories.

Incentive-based approaches discourage cheating by mak-
ing compliance more attractive. Nodes accumulate vir-
tual currency or credits by forwarding for others, which
they can then use for sending their own packets. Exam-
ples include Nuglets [12], Sprite [40] and priority for-
warding [32]. These schemes rely on a trusted central
authority7 to ensure the integrity of the currency, and to
redistribute wealth in the network so that even nodes that
are not in a position to forward for others can send their
packets.Catch does not rely on any central authority and
its operation is completely distributed. Incentives also
fail to encourage forwarding in nodes that have very little
data of their own to send. This can lead to a disconnected
network when light-senders are located at strategic points
in the topology.

Game-theoretic approaches formulate the forwarding de-
cision such that forwarding at a certain rate becomes the
Nash equilibrium [19] for the network. This means that
deviation from the recommended forwarding behavior
can only result in situations that are worse for the de-
viant node. Generous Tit-for-Tat (GTFT) is an exam-
ple of such an approach [35]. Like GTFT,Catch relies
on the mechanics of Tit-for-Tat by assuming cooperation
and punishing cheaters. However, while GTFT requires
knowledge about the utilities of all the nodes in the net-
work, Catch relies only on information collected in the
one-hop neighborhood of individual nodes.

Catch belongs to the class of enforcement-based mech-
anisms that discourage cheating through the fear of de-
tection and punishment. Part of our detection mecha-
nism – snooping wireless transmission of neighbors –

7For schemes employing per-node trusted hardware, we consider the
central authority to be the maker of that hardware.
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was originally proposed by Martiet al. [27], and also
used by CONFIDANT [11]. It is our use of it in con-
junction with anonymity to detect misbehavior that is
novel. We also note that existing enforcement-based pro-
tocols [27, 11, 10] rely on reputation spreading to deal
with cheating nodes. This requires global flooding, while
Catch limits information spread to single-hop neighbor-
hoods. Moreover, simple flooding requires network re-
dundancy – cheating nodes will not forward reputation
packets that implicate them.Catch uses anonymity and
one-way hash functions to reliably communicate with the
neighbors of cheating nodes.

8 Conclusions
We have presentedCatch, a protocol to encourage co-
operation in multi-hop wireless networks comprised of
autonomous nodes.Catch is much more widely appli-
cable than existing approaches, needing no central au-
thority and placing no restrictions on workloads, rout-
ing protocols or node objectives. It uses novel strategies
based on anonymous messages and statistical tests to de-
tect cheaters with high likelihood and punish them with
periods of isolation.Anonymous challenge messagesare
used to estimate true loss rates, even when dealing with
untrusted and uncooperative nodes.Anonymous neighbor
verificationis used to compel a node to forward packets,
even when the data being carried is contrary to its inter-
ests. These techniques are central toCatch, and we hope
they will be useful in other applications as well.

We implementedCatch in Linux and performed what is to
our knowledge the first evaluation of cooperative routing
protocols in an 802.11 wireless testbed. We showed that
Catch works well despite volatile wireless conditions and
requires little bandwidth overhead (and negligible CPU
overhead). In our experiments, cheaters are quickly iso-
lated from the network (and more rapidly for more egre-
gious cheating) and cooperative nodes are rarely accused
of cheating. Simulations confirm this finding over a wide
range of conditions. We quantified the impact of cheat-
ing by showing that the presence of even a few cheaters
can partition the network. In one experiment, their pres-
ence led to a 25% overall performance degradation for
the cooperative nodes. We also explored the leverage of
signal strength attacks, and found that even without any
measure to actively thwart such attacks,Catch provides
worthwhile protection. ExtendingCatch to defeat these
attacks is part of our future work.
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A Catch Fail-safes
In this appendix we briefly reconsider each step ofCatch
in light of possible, intentional violations by the cheater.
Our goal is to show that a cheater cannot defeat the proto-
col by manipulating messages in unanticipated ways. We
assume that there is no collusion between cheating nodes.

Epoch-Start. Each node must periodically send
EpochStart messages or it is deemed uncooperative by
its neighbors and is ignored.

Packet Forwarding and Accounting. The testee can
drop some or all of the challenges. However, we argued
in Section 3.1 that because the challenges are anonymous
it cannot selectively inflate the loss rate on just some
links, and has to waste its own resources if it chooses to
uniformly inflate the loss rate on all links.

Anonymous Neighbor Verification Open (ANV1).The
testee can drop some fraction of the ANV1 messages it
receives. However, we argued in Section 3.2 that because
of anonymity this will result in the detection in a reason-
ably short time.

Tester Information Exchange. The testee is unable to
interfere with the exchange because it is relying on all of
the testers to release their tokens.

Epoch Evaluation and ANV Close (ANV2). It is in
the testee’s best interest to forward these messages, since
they are required for it to pass the epoch evaluation.

Isolation Decision. The tester must drop the cheater’s
data packets to isolate it. To prevent this punishment from
being circumvented we require that some notion of long-
lived identity be present in the system and transmitted
with the data packets, so that the cheater cannot simply
assume another identity.

Deliberate False AccusationsA different style of attack
is for a cheatingtester to falsely accuse a cooperative
testee of cheating, causing it to be isolated. This could
be attractive because the cheating node would no longer
need to relay packets for its isolated neighbor. To dis-
courage this, we require cooperative testees that are un-
fairly isolated to cause isolation of their attacker so that
the attacker looses network connectivity. This is the well-
known TIT-FOR-TAT strategy that is often used to en-
courage cooperation [19].
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