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Abstract

As databases undergo a paradigm shift from stand-alone applications to an architecture that
supports data sharing on a global scale, they have to increasingly cope up with a fundamental
problem: that of handling uncertainty and lack of information. Users often have to formulate
queries over unfamiliar data sources: quite often they don’t understand their schema, or their
particular representation of data values.

Probabilistic methods have been used for a long time in the AI community to model un-
certainties in knowledge bases, but a similar treatment is missing in databases and database
queries. The goal of this report is to propose the use of queries on probabilistic databases to
cope with uncertainties resulting from the schema and data heterogeneity in global data sharing
and exchange.

1 Introduction

During the last few years, as information systems have become increasingly distributed and ‘global’,
the challenges of data integration have increased. The volume of data, the variety of data formats,
and users’ velocity requirements for access to information have all increased dramatically.

A study [7] has shown that the volume of structured data on the web is around 500 times
larger than the unstructured data that search engines index. Increasing magnitudes of content-rich
databases from universities, libraries, associations, government agencies and businesses around the
world is becoming publicly available. The freedom of information act passed by U.S. legislation
requires data underlying all federally-funded research projects to be published upon request [4].
Data sharing is being made a condition for publication by scientific journals [28, 38] and funding
agencies [39].

A prime challenge in integrating the data is the presence of heterogeneity. The data sources have
different data models, schemas and data representations. They vary in the quality and reliability
of their content, and are often inconsistent. Hence, data integration systems have to deal with
uncertain and incomplete information.

The approach taken by databases towards queries is inadequate to deal with uncertainties.
While database queries have a rich structure and a precise semantics, making it possible for users
to formulate complex queries, it requires the users to have a detailed knowledge and understanding
of data and its structure. This is seldom true in a data integration setting.

The Information Retrieval community, on the other hand, has taken a philosophically different
approach to queries to meet these challenges. A query in Information Retrieval (IR) is just a set
of keywords and is easy to formulate. IR queries offer two important features that are missing in
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databases: the results are ranked and the matches may be uncertain, i.e. the answer may include
documents that do not match all the keywords in the query.

Applications that retrieve data from global information sources have diverse needs. Some ap-
plications like managing bank accounts or airline booking require high precision while some ap-
plications, like searching for used vehicles or library catalogs, prefer high recall over accuracy. To
support these broad spectrum of applications, a data integration system needs to understand the
uncertainties that are inherent in it and their implications on query answers. Thus, there is a need
for a framework for data integration systems to manage uncertain information.

Probabilistic methods have been used for a long time in the AI community to model uncertainties
in knowledge bases. However, relatively little work has been done on uncertainties in databases.
In this thesis proposal, I show that a data integration system can provide better functionality
with a query-semantics based on relevances. Towards this end, I propose the use of a probabilistic
framework to solve the range of problem arising in global data sharing.

Organization: This report is organized as follows. In section 2, I provide a survey of the sources
of uncertainties that arise in data integration using examples of specific data integration scenarios.
In section 3, I describe existing techniques for reasoning with uncertain and incomplete knowledge.
In section 4, I identify the main challenges in managing uncertain information in data integration.
In section 5, I conclude with a list of relevant research problems and deliverables for the thesis.

2 Uncertainties in Data Integration

In this section, I motivate the problem by giving examples of data integration scenarios that require
reasoning about uncertain or incomplete information.

2.1 Queries over Unfamiliar Databases

Many data integration systems use a mediator architecture to provide uniform information access
across heterogeneous information sources. Mediators provide a global schema to the users and then
translate user queries from the global schema to individual source schemas.

Figure 1 describes a book-search mediator over two online bookstores, Amazon(www.amazon.com)
and BN(www.barnesandnoble.com). The mediator provides the users with a global schema con-
sisting of two tables, author and category. Users formulate their queries over this schema and are
translated to the individual sources by mediator for execution.

Consider a user who is interested in a list of authors who have written books on ‘Machine
Learning’. She poses the following query to the book-search mediator:

ϕ(auth) := author(Author,Book), category(Book,‘Machine Learning’)

One of the fundamental problems the user has to face is her lack of knowledge of how various
sources represent book categories. The above query returns no answers as none of the databases
have a category ‘Machine Learning’.

Amazon database has a category ‘CS→AI→Machine Learning’ that corresponds to the query
but does not match verbatim. The BN database does not have a corresponding category but it
has related categories: ‘Data Mining’, ‘Robotics’ and ‘Algorithms’.

Thus, mediator has to solve the difficult problem of determining if a tuple in a arbitrary database
satisfies the predicate in user query. There are several techniques it can employ to match for this
purpose including edit distances, ontology-based distances [42], IDF-similarity and QF-similarity [3]
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Figure 1: A Book-search Mediator

and lexicons like Wordnet [1]. However, the techniques only serve as evidences for matches and
give the mediator degrees of confidences 1.

Thus, a mechanism is needed for translating the confidences in these matches into confidences
in answering queries that can give relevance to query answers.

2.2 Data Mappings

Often, a data integration system has to combine information from multiple sources that talk about
same objects. The differences in data representation leads to the problem of identity uncertainty.
Identity uncertainty arises when objects are not labeled with unique identifiers globally or when
these identifiers cannot be perceived. For instance, different sources refer to the same person by
”John Doe”, ”Doe, John”, ”J. Doe” etc. It is a pervasive problem in real-world data analysis and
is studies independently in different contexts, e.g. determining whether two citations refer to same
publication, called citation matching [41], and whether two tuples from different databases refer to
same entity, called record linkage [23].

To search data in such environments, people have proposed [33, 27] the use of mapping tables
that store the correspondence between values. Such mappings are widely used in biological domains
[14].

As an example, consider a data integration problem with two bookstores, S1 and S2. S1

contains information about books and authors, while S2 stores books and categories. Assume that
the mappings are specified using local-as-view (LAV), i.e. each data source is represented as a
view over the global schema. We show the view definitions when all data sources use the same
identifier for books (Ideal World Scenario) and how to represent mapping tables when each data
source chooses a different book representation (Real World Scenario).

Ideal World Scenario: In this case, the global schema consists of a table T (B,A, C) containing
tuples of books, authors and categories. The sources are defined by views as follows:

1In the terminology for knowledge bases, it is called degrees of beliefs
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S1(B,A) := T (B,A, C)
S2(B,C) := T (B,A, C)

Common World Scenario: Here, the global schema consists of a table T (B,A, C) along with
two tables M1(B1, B) and M2(B2, B). Table M1(B1, B) represents how a book symbol B1 that
appear in the source S1 maps to the actual book entity B. M2 represents the corresponding map
for S2. The view definitions for the sources now become:

S1(B1, A) := T (B,A, C),M1(B1, B)
S2(B2, C) := T (B,A, C),M2(B2, B)

Mapping table represents the following view:

M(B1, B2) := M1(B1, B),M2(B2, B)

There are two important points to make note of. First, although mapping tables are viewed
traditionally as materialized tables, they can also be considered as an abstraction to think about
the problem of identity uncertainty. For instance, in the above example, M(B1, B2) can also be
used to represent an algorithm that, given two books, returns their similarity. Second, mapping
tables have been used traditionally only as lookup tables to translate queries from one source to
another. For instance, given a book in source S1, the mapping table can be used to find information
about the same book in S2. However, by using view definitions described about, all the queries
that can be posed in ‘Ideal World’ can now be posed in ‘Common World’, as users can now ask
arbitrary queries on the table T (B,A, C).

It is been suggested [27] that mapping tables should not only store the associations but also the
confidence in this associations. In some domains, mapping tables are created by domain specialists
as they require expert knowledge. Domain experts have varying level of expertise and therefore,
need a mechanism for specifying their confidence in the mappings. Often, the process has to be
automated because of the ubiquitous need for mappings and the sheer volume of data that needs
to be integrated. Numerous algorithms [11, 41] for identity matching exist and use techniques
ranging from simple string matching to Relational Probability Models and Markov Chain Monte
Carlo inferencing. The algorithms ascertain matches with probabilities associated with them.

Thus, techniques are required for answering queries using views when there are probabilities
associated with tuples in the views.

Let us see the implications of mapping tables on query rewritings. Consider a query that asks
for a list of authors who have written a book on databases. It can be formulated as the following
query on the global schema:

ϕ(A) := T (A,B, databases)

Under Ideal World Scenario, the query can be answered using the following rewriting:

ϕ′(A) := S1(B,A), S2(B, databases)
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This query plan gives all the certain answers to the user query, i.e. answers that hold in all the
databases consistent with the views.

However, the same query, in Real World Scenario, has no certain answers under open-world
assumption. It can be observed that the rewriting below does not return certain answers:

ϕ′′(A) : S1(B1, A), S2(B2, databases),M(B1, B2)

To see this, consider three tuples S1(b1, a), S2(b2, databases) and M(b1, b2). The three tuples
lead to a as an answer to the query. However, the views may represent the following database:
T (b, a, AI), T (b′, a′, databases), M1(b′, b1), M1(b, b1), M2(b′, b2).

In general, an object in one source can get mapped to several objects in another source (with
various probabilities). While there are no certain answers, probabilistic methods are required to
return meaningful answers.

2.3 Database Consistency

Sometimes certain integrity constraints are believed to hold in the global system. For instance,
every person has a unique address and every paper is published in a unique conference. These
integrity constraints are used in the generation of the query plan. There are situations where
without integrity constraints no query plan can be generated [17, 22].

These global constraints are often violated due to inconsistencies in data sources. Even in the
presence of consistent data sources, a global system that integrates them may become inconsistent.
A taxpayer database and a voter registration database may have conflicting addresses for the same
person. Each of those databases separately satisfies the functional dependency that associates a
single address with each person, and yet together they violate this dependency.

As an illustrative example, consider a data integration scenario where the global schema consists
of the following relations:

affiliation(Person, Organization)
location(Organization, Location)

The first relation describes the organization where a person works and the second relation
describes the locations of organizations. A person only works in a single organization and each
organization has a single location. Therefore, we have the following constraints on the global
schema

affiliation : Person → Organization
location : Organization → Location

Suppose we have the following data sources:

s1(P,O) : − affiliation(P,O)
s2(P,L) : − affiliation(P,O), locations(O,L)

s1 stores part of affiliation table while s2 stores, for each employee, its work location. Assume
a user wants to know the location of the organization ‘UW’:
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ϕ(L) := location(‘UW’, L)

The following plan would answer it:

ϕ′(L) := s1(P, ‘UW’), s2(P,L)

If s1 contains a tuple (‘person1’, ‘UW’) and s2 contains a tuple (‘person1’, ‘Seattle’),
we can infer that ‘UW’ is in ’Seattle’. Note that the integrity constraints on the global schema
play a crucial role in the correctness of the above plan. Without the constraints, the query cannot
be answered using the two sources.

Now suppose we access a third source s3 with the same schema as s2, i.e. it also stores the work
locations of employees. However, it contains a tuple (‘person1’, ‘Google’). This information
is inconsistent with source s2. Current semantics for query answering using views are not robust
to dealing with inconsistencies. In this example, there cannot be any global database that satisfies
the integrity constraints and is consistent with all the sources. Thus, no query could be answered.

Inconsistencies are a part and parcel of data integration. Often, sources update their data
at different frequencies and hence contains outdated data. Many systems use automated tools to
extract data from unstructured sources on the web and are prone to errors. For instance, systems
like Citeseer automatically extract paper information from research papers. A major source of
inconsistencies is the errors in schema matching. If some of the attributes of a source are incorrectly
matched, all the data from that source could possibly be inconsistent with other sources.

Current approaches [37, 8, 32] to answering queries in inconsistent databases are based on
the concept of a repair. They consider all minimal ways of repairing the database to restore its
consistency. All of the resulting databases are considered as a possibility and they are used to
define certain answers to the queries. As a result, only the tuples that correspond to the ‘consistent
part’ of the database contribute to the query answers and all other tuples are winnowed out.

There are several reasons why this approach is not suitable for data integration. First, as we
discussed earlier, inconsistencies are a rule rather than exception. Often a substantial fraction of
the data participates in inconsistencies but still contains useful information. For instance if two
sources return two different conferences for the same paper, there is a high chance that one of them
is the actual conference. A technique that associates degrees of confidences to query answers can
leverage this information. Another limitation of repair based approaches is that they ignore the
fact that data sources differ in their quality and reliability. In practice, there are sources that are
more trusted than others and schema matching algorithms have varying amount of confidences on
the mappings they output on different sources.

2.4 Uncertainties in Schema Matching

Schema matching had traditionally been done by domain experts, which is a tedious, time-consuming
and expensive approach and limited to environments where sources are small and stable. Scaling up
data integration applications to a global scale requires automated tools for matching schemas and is
an active area of current research. Several systems [34, 16, 40] for automated schema matching have
been developed. A schema matching algorithm makes use of various basic similarity measures like
1) similarity in element names based on edit distances, N-grams and lexicons like Wordnet, 2) data
types of various attributes in the schema, e.g. integers, strings and dates, 3) text descriptions or
documentations, if available and 4) data associated with elements, e.g. addresses have a particular
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format. These similarity measures are combined using techniques like rule-based logic and machine
learning.

However, the similarity measures used by algorithms are only heuristics. Often element names
are abbreviated or synonyms are used, text descriptions are not available, same data types have
different representations and so on. Thus, matching algorithms produce mappings with various
level of confidences.

Consider the following two schemas:

S1(PersonName, OfficeAddress, HomeAddress)
S2(name, r addr, o addr)

A schema matcher recognizes that ‘PersonName’ maps to ‘name’. Both ‘HomeAddress’ and
‘OfficeAddress’ either map to ‘r addr’ or ‘o addr’. Thus, it considers following two matchings:

M1 : PersonName→ name, OfficeAddress→ r addr, HomeAddress→ o addr

M2 : PersonName→ name, OfficeAddress→ o addr, HomeAddress→ r addr

The system places a higher confidence in M2 because o addr is possibly an abbreviation for
OfficeAddress. Confidences can vary even across different parts of the same matching, e.g.
PersonName→name is a certain match in both matchings.

More generally a schema matching algorithm over large schemas can produce several matchings
with various degrees of confidence. An incorrect mapping can cause queries to return empty answers
and lead to relevant tuples not being retrieved. Alternatively, it can result in incorrect answers and
possible inconsistencies with other data sources. Thus, query answering algorithm need a tighter
integration with the schema matching algorithms.

2.5 Incomplete Information

A problem closely related to uncertain matchings is that of incomplete matchings. Sources do
not always contain enough information to answer a query exactly. Queries are posed over global
schema and global schema contains the union of attributes of all sources. As a result, exact query
translations are often not possible. For instance if one of the predicates in the query refers to
the attribute price, it cannot be answered by a source that only contains price ranges or does not
contain prices at all.

A sufficiently rich query may leave a large fraction of data sources untouched and consequently
return very few or no answers. In such cases, to retrieve data from these sources, approximate
query translations must be used. A case study [10] of a real-world data integration scenario shows
that around 70% of query translations must rely on approximations to retrieve information and
hence, are critical for real-world applications.

While an exact query can return no answer, a loose approximation can result in a lot of irrelevant
answers. Thus, query answering requires calculations of the relevance of answers when queries use
approximations.

The problem has been consider in limited settings. Chang et al. [10] use mapping tables that
store the recall and precision with each mapping to generate the closest query translation using
multiple closeness criteria like minimal-superset and maximal-subset. Florescu et al [20] consider the
use of probabilistic knowledge in form of overlap between collections, overlap between information
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sources and coverage of information sources. They address the problem of ordering accesses to the
sources to maximize the likelihood of obtaining the answers as early as possible. However, current
techniques do not consider the effect of approximations on the relevance of query answers.

Approximate query translation involves managing probabilistic schema mappings. These are
fundamentally different from the uncertain schema mappings that we discussed in the previous
section. The former involves statements like ”90% of books on ‘Information Systems’ in source
S1 are present under ’Databases’ category in source S2”. The latter involves statements like ”there
is a 90% chance that all books of category ‘Information Systems’ in S1 are under ’Databases’ in
source S2”.

2.6 Query Secrecy

So far, we have looked at the problem of query answering. A different problem associated with
global data sharing is the problem of query secrecy. The problem is defined as follows: given
a set of views V1, V2, · · · that a source wants to publish over its data, do they logically disclose
any information about a query S that it wants to keep secret? Miklau et al. [35] consider the
problem of perfect query secrecy and consider it as a fundamentally different problem from query
answering. Quantifying the amount of information that views leak about secret queries remains an
open problem.

Surprisingly, the techniques used for answering queries with uncertainties also apply to mea-
suring query secrecy as both involve reasoning with incomplete information. A query answer with
complete certainty corresponds to perfect query answering and an answer with zero certainty cor-
responds to perfect query secrecy.

We illustrate the need for measuring the information leakage using following example. Con-
sider a source that contains employee data with schema employee(Name,Dept, Phone,Email) and
following query secrecy problems:

Problem1 :
V1(Name, Phone) : − employee(Name, ‘CSE’ , Phone, Email)
S(Name, Phone) : − employee(Name, ‘EE’ , Phone, Email)

Problem2 :
V2(Dept, Name) : − employee(Name, Dept , Phone, Email)
V3(Dept, Phone) : − employee(Name, Dept , Phone, Email)
s(Name, Phone) : − employee(Name, Dept , Phone, Email)

Problem3 :
V4(Name, Email) : − employee(Name, Dept , Phone, Email)
S(Name, Phone) : − employee(Name, Dept , Phone, Email)

The query S is secret in problem 1, but not in problems 2 and 3. In problem 2, suppose a
department has five people. Then, the two views separately provide a list of five names and five
phone numbers in that department. An attacker can randomly guess the phone number of anyone
with a 20% probability of success. In problem 3 the a priori probability that a random name and
phone is an answer to S is extremely small. The probability can increase if the view V4 reveals the
name to be in the database. We see that amount of information gained about S is quite different
in each case. Its zero for problem 1, very small for problem 3 and substantial for problem 2.
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3 Existing Techniques for Handling Uncertainty

In this section, we describe the existing work on reasoning with uncertain knowledge and its relation
to data integration.

3.1 Possible Worlds Semantics

To represent uncertainties arising in data integration, we saw the need for modeling two kinds of
statements. The first kind deals with statements like ”15% of all CS papers are DB papers”. These
statements represent statistical knowledge also known as chance setups in Knowledge Representa-
tion. It represents a chance setup where a randomly chosen CS paper has 0.15 probability of being
a DB paper.

The second kind are statements like ”the given paper has 0.15 probability of being a DB paper”.
This describes the confidence of the system on a statement, known as degree of belief in Knowledge
Representation. The statement describes the existence of a number of possibilities, or possible
worlds, in some of which the given paper is a DB paper. The first statement assumes that there is
only one possible world, and in this world, there is some probability distribution over the set of CS
papers.

The possible worlds semantics, originally put forward by Kripke [29] for modal logics, is com-
monly used for representing statements about degrees of beliefs. Halpern [25] has shown how First-
Order logic can be extended to support probabilities with possible worlds semantics which we de-
scribe here. A first-order logic consists of a set or predicates, like JournalPaper(x) or Teaches(x,y),
which are mappings from individuals to truth values. Statements in first-order logic are constructed
using logical operators(∨,∧, ¬, ∃, ∀) and variable symbols2 on the predicates. Under normal inter-
pretation (non-probabilistic), there is a unique world that determine the contents of the predicates.
Truth values of statement are decided using by a set of inferencing rules. Under possible worlds
semantics, there is a set of worlds, each describing the contents of predicates. There is also a prob-
ability distribution over the worlds. The statements do not have a truth value but a probability
associated with them. The probability of a statement is the sum of probabilities of all the worlds
where the statement can be inferred.

Unfortunately, the number of possible worlds in exponential in the number of objects. Thus,
to apply the possible world semantics to model uncertainty, efficient evaluation algorithms are
required.

3.2 Probabilistic Databases

Probabilistic frameworks [9, 6, 15, 31] have been proposed in the past. Initial works made restric-
tive simplifying assumptions to get around the high complexity of query evaluation. Cavallo and
Pittarelli [9] proposed a theory for probabilistic databases where they assume that tuples in the
same relations represent disjoint events. Barbara et. al. [6] and Dey et al. [15] improved upon this
model, but still allowed only a very restricted set of queries. The Probview system [31] used user
defined functions to combine probabilities of events, but chose an alternate semantics for projection
where duplicates are not removed and hence, do not assign a single probability to tuples.

Zimanyi [43] and Fuhr [21] used the logic of probabilities [25] to give semantics to queries in
databases. They also give algorithms to evaluate queries in probabilistic databases based on an
algebra of events. However, the algorithms run in time exponential in the size of the database and
hence, impractical to use.

2There are also functional symbols but we ignore them in this discussion
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In our recent work [13], we propose efficient algorithms for answering queries in probabilistic
databases. We consider a database where every tuple has a certain probability of belonging to the
database. The dependence between the probabilities is described by events. There is a set of basic
events, each has a certain probability of occurrence, and each tuple has an event. Thus, if two
tuples have the same event, either both of them are present in the data or none of them. All the
basic events are assumed to be independent.

The resulting probabilistic database represents a probability distribution on the sets of possible
subsets of the given database. Each such possible database represents a complex event that is the
conjunction of the events of the tuples present in that instance. The probability of the complex
events can be calculated from the probabilities of the basic events and using the independence
assumption. Given any query, the answer is itself a set of tuples with probabilities. The probability
of a tuple is the sum of probabilities of all possible database instances where that tuple in an answer
to the query.

We show that certain queries have a #P-complete 3 data complexity under probabilistic se-
mantics. However, a large fraction of queries that occur in practice do admit an exact efficient
algorithm (8 out of the 10 TPC/H queries fall in this category). For others, we describe Monte-
Carlo simulation algorithms to approximate the probabilities to arbitrary precision.

We also show how an imprecise query on a deterministic database implicitly defines a proba-
bilistic database where the probabilities of the answers give their relevance.

3.3 Query Answering Using Views

Query answering using views is an instance of problem that requires reasoning with incomplete
information. The query answering problem is the following: given a query Q over a schema and
a set of view definitions over the same schema, how can Q be answered using only the answers to
the views? The query answers are defined by the notion of certain answers, first introduced by
Abiteboul and Duschka [2].

Let Q be a query and V = {V1, · · ·Vm} be a set of view definitions over a database schema R.
Let v = {v1, · · · vm} be the extensions of the views. Two interpretations are consider for the view
extensions. Under closed-world model, the view extensions are considered to be complete while un-
der open-world model, the view extensions could be incomplete. In data integration settings, data
sources are often defined as views over the global schema, called local-as-view (LAV) approach.
The sources are assumed to be incomplete and hence, an open-world model is assumed.

A tuple a is called a certain answer to the query Q under open-world assumption given view exten-
sions v if for all databases D that satisfy vi ⊆ Vi(D) for every i, we have a ∈ Q(D).

A tuple a is called a certain answer to the query Q under closed-world assumption given view
extensions v if for all databases D that satisfy vi = Vi(D) for every i, we have a ∈ Q(D).

The certain answers have an interpretation under possible worlds semantics. The views do not
define a unique database instance and hence there are several possible databases. However, the
view extensions place certain constraints on the databases. The certain answers are precisely the
tuples that have a probability 1 given any database that satisfies the constraints.

3The complexity class #P is the counting version of the class NP . #P-complete problems do not admit polynomial
time solution unless P = NP
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In section 2.2, we saw the need for answering queries over probabilistic views, i.e. when tuple
membership in views is uncertain. In this setting, the current techniques for query answering do not
help because there are no certain answers. Current techniques do not distinguish between pretty
certain answers and answers that are certainly not true.

3.4 Ranking Queries in Databases

Most of the current research on ranking queries in databases has been non-probabilistic and devised
for specific cases. The VAGUE system [36] supports queries with vague predicates, but the query
semantics are ad hoc and apply only to a limited SQL fragments. Chaudhuri et al. [3] consider
ranking query results automatically based on heuristics scores. Theobald and Weikum [42] describe
a query language for XML that supports approximate matches with relevance ranking based on
ontologies and semantic similarity. Keyword searches in databases are discussed in [26, 12, 24].
Fagin [19] gives an algorithm to rank objects based on its scores from multiple sources: this applies
only to a single table.

4 Challenges in Managing Uncertainties in Data Integration

In previous sections, I have illustrated various sources of uncertainties in data integration and tech-
niques used for representing and reasoning with knowledge. However, there are several challenges
that must be met before these techniques can be applied to solve data integration problems.

Challenge 1: How can uncertain information be quantified?

The fundamental challenge is figuring out what the uncertainties mean? At elemental level,
systems use various measures of closeness that include edit distances, q-grams, phonetic similarity,
TF/IDF, ontologies and lexicons like Wordnet. But how can the similarity scores between data
items be translated into probabilities of their matches?

Challenge 2: A system must manage a rich representation of uncertainties.

We saw that uncertainties arise at both schema level as well as data level. They involve state-
ments about statistical knowledge as well as degrees of beliefs. The information can be uncertain,
unreliable or incomplete. A system must be able to manage these various kinds of uncertainties.

Challenge 3: Probabilistic dependencies must be supported.

Answering queries involve combining multiple sources of uncertain information, and its affected
to a great extent by the correlation between the uncertainties. The data integration system must
be able to understand and handle the dependence between probabilities.

Challenge 4: A solution should scale to large number of sources and large amount of data.

Efficient algorithms are needed for query answering in presence of uncertainties. Techniques
from Knowledge Reasoning are too impractical to be applied directly to data integration. The
characteristics of data integration applications are 1) there is a large volume of data spread across
a large number of sources and 2) queries are usually expressed as select/project/joins or conjunctive
queries and their union, and thus use only a small fragment of logic.
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5 Thesis Proposal

As a part of my thesis, I propose to develop techniques that can meet the challenges of managing
uncertainties in data integration. Our initial work in this direction, on query evaluation in proba-
bilistic databases [13], provides me a starting point for solving these challenges and I plan to build
on this work. Following problems are of particular interest:

• Generation of Probabilities: The problem of generating probabilities from uncertainties
has received very little attention in probabilistic databases, though it has been considered
in other domains. For instance, Lakshmanan [30] has given an epistemic foundation for
associating probabilities to agent beliefs in knowledge bases. Techniques are needed to learn
probabilities using, for instance, machine learning tools on training data sets or user feedbacks.

Another prospective direction is a query language that can explicitly talk about the uncer-
tainties. Such a query language can be used by applications to specify their needs of high
precision or recall, or to specify, for example, if certain predicates in the query are more
important than others.

• Support for dependencies between uncertainties: In our current work or probabilistic
databases, all the probabilities are assumed to be independent. As we have seen earlier,
there are scenarios in data integration where this assumption does not hold. Supporting a
language rich enough to express ”interesting” probability dependencies is an important open
problem. The trade-offs between the expressive power of the language and the complexity of
query answering make the problem challenging as arbitrary dependencies can quickly lead to
computational intractability.

An important class of dependencies that occur very frequently in practice and demands
attention is mutual exclusion. Two events are mutually exclusive if they both cannot happen
together. Often it is the case that some data item is known to have a single unique value. This
value, however, may be unknown and specified probabilistically. All the resulting probabilistic
events are mutually exclusive. For example, every paper is published in a unique conference.
Thus, while conference(Paper1, SIGMOD) and conference(Paper1, VLDB) both may have a
finite probability, both of them cannot be true.

• Integration of Uncertainties in Schema Matching: We have seen that there is a
close connection between the uncertainties in schema mappings and the relevance of the
resulting answers. While schema matching algorithms do the hard work of calculating the
probabilities of various matches, it is lost while answering queries. Usually, only the most
probable candidate matching is considered as the output of the algorithm and is assumed to
be the correct mapping.

Schema matching algorithms can be more useful if they return a set of mappings along with
the confidences or alternatively a single representation of the evidences and decision choices
that schema matchers have. Thus, query answers across sources can be ordered by relevances,
accesses to different sources can be ordered depending on queries and alternate mappings for
a source can be tried that if its data mismatches with data from other sources with more
certain mappings. In summary, the schema matching algorithms need a tighter integration
with query answering.

• Support for Statistical Knowledge: While the tuple probabilities in our current model
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represent confidences or degrees of beliefs, support is needed to represent statistical informa-
tion.

The form of knowledge can vary from simple statistics like ”15% of DB papers are AI papers”
to statements like ”the costs of products follow a Gaussian distribution”. Statistical knowledge
has been used to represent precision and recall of schema mappings [10] and to represent the
overlap between collections and sources [20].

While degrees of beliefs define a probability distribution over possible worlds, statistical state-
ments define a probability distribution over domain and effort is required to integrate both
of them in a probabilistic database.

• Semantics for query answering using views There is need for a semantics for query
answering on probabilistic views. In Section 3.3, we saw that probabilistic views have an
interpretation as constraints on the probability distribution of database instances.

Unfortunately, the set of constraints imposed by probabilistic views do not always define a
unique probability distribution. Hence, possible world semantics cannot be directly applied
to the problem. We describe here two different techniques in Knowledge Reasoning that can
be employed.

Bacchus, Grove, Halpern and Koller [5] consider the problem of generating new beliefs in a
knowledge base from old. They call the beliefs subjective information and distinguish it from
objective information or the facts in the knowledge base. They consider a prior knowledge
about the probability distribution on the possible worlds. For instance, in the absence of any
knowledge about the databases, all possible databases are equally likely (a uniform prior).
The subjective information is treated as a set of constraints on the probability distribution
on possible worlds. To obtain a unique posterior distribution, they consider the one ”closest”
to the prior distribution that satisfies all the constraints. They use the well studied measure
of cross-entropy to determine the distance between two distributions.

Fagin, Halpern and Megiddo describe a logic of probabilities [18]. They consider a language
that allows statements like ”the probability of E1 is at least 0.8” and ”the probability of E2

is at least twice the probability of E3”. They give a inferencing algorithm for the language by
considering it as statements over the probability distribution of possible worlds. Thus, when
constraints on probabilities do not define a unique distribution, bounds can be imposed on
the probabilities of various events. They apply techniques from linear programming.

Thus, several questions need to be answered. Do both techniques result in equivalent seman-
tics for answering queries and if not, which one is more meaningful for data integration? Also,
how does this change the complexity of query answering?

• Efficient evaluation algorithms: In our previous work[13], we observed that the problem
of evaluation of conjunctive queries on probabilistic databases is #-P complete. Prior works
have suggested the use of a heuristic called extensional evaluation, where relational algebra
operators calculate probabilities along the way. While extensional evaluation is fast and can
be easily incorporated into a query execution engine, it does not give any guarantees on the
errors and it also sensitive to the plan used for execution. Figure 2 shows the recall curve for
the extensional evaluation of a TPC-H query and its very low. For instance, a user interested
in top 50 answers gets a recall of only 40%.

Our work revealed a surprising result: each query either has an execution plan on which
extensional evaluation computes correct probabilities or its #-P complete to evaluate that
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Figure 2: Recall Plot for Extensional Evaluation of TPC-H Query

query. We call them safe and unsafe queries respectively.

There are lots of questions that need to be answered. For safe queries, only some execution
plans guarantee correctness. How can a query optimizer search over them to obtain a good
plan? For unsafe queries, that is no efficient way to calculate the answers exactly (unless
P = NP ). Can query plans be produced that guarantee a small error? Alternatively, can
techniques like Monte-Carlo simulations be employed efficiently to approximate the answers?
We have only made initial progress in this direction.

The problem of efficient query evaluation would become progressively more challenging as we
add the support for richer dependencies, schema uncertainties and statistical information.

Another problem of interest is the evaluation of top-k queries. Can the most relevant answers
to a query be returned quickly without evaluating the query completely?

Fast algorithms for query answering are crucial for the success of using probabilistic methods
in answering queries.

6 Conclusions

There is a pressing need for managing uncertainties in data integration systems. In this thesis
proposal, I propose a probabilistic framework to represent and manage these uncertainties. I
identified the various sources of uncertain information that arise in data integration, described the
current techniques for reasoning with knowledge and the main challenges in applying these to data
integration and put forward a set of specific problems that need to be solved.
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