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Abstract

Imitation is a powerful mechanism for transferring knovdedrom an
instructor to a naive observer. We first present Bayesiaariéhgns,
based on Meltzoff and Moore’s AIM model for imitation in imfes, that
implement the core of an imitation learning framework. Neve present
Bayesian algorithms for learning which objects an instiucbnsiders
salient in a task. Finally, we demonstrate the performaricaipalgo-
rithms in a gaze following and saliency learning task impeted on an
active vision robotic head. Our results suggest that thityalm follow
gaze and learn instructor- and task-specific saliency msactsild play
a crucial role in building systems capable of complex forrheuman-
robot interaction.

1 Imitation learning and shared attention

Imitation is a powerful mechanism for transferring knovgedrom a skilled agent (the

instructor) to an unskilled agent (oobserver) using direct manipulation of the environ-
ment. Several researchers have investigated imitativavi@hin apes [21, 5], in children

(including infants only 42 minutes old) [15, 16], and in arr@asingly diverse selection
of machines [9, 14]. The attraction of imitation for robatis obvious: imitative robots

offer drastically reduced programming costs compared botrequiring programming

by an expert. Imitative robots also offer testbeds for ctigmiresearchers to test compu-
tational theories, and provide modifiable agents for caat interaction with humans in

psychological experiments.

Successful imitation requires that instructor and obsesiveultaneously attend to the same
object or environmental state. Such simultaneous attertioften referred to as “shared
attention” in the psychological literature. Previous wonotably by Scassellati on the

Cog platform [20], has concentrated on deterministic algors for shared attention be-

tween humans and robots. Scassellati’s work concentratééicking the gaze of a human
instructor, and on mimicking the motion of the instructdnsad in either a vertical or a

horizontal direction. Separately, Movellan and colleaghave used robotic platforms to
study shared attention in infants [8].

Although robotic platforms [7, 20] have demonstrated ingpiee mimicry results, richly
contingent human-robot interaction comparable to infamtédtion depends on having a
model for saliency, i.e., a model of what components of emritental state are importantin
a given task. Ideally, saliency models would be task- orirtsor-specific, representing the
observer’s learned context-dependent knowledge of hoWdoade attentional resources.

In this paper, we describe a robotic system that uses prddiabalgorithms to follow the
gaze of a human and to identify salient objects in a scenealgarithms employ Bayesian
inference because of its robustness to noise and missiagtdattability under large data
sets, and unifying mathematical formalism. Bayesian itigitalearning approaches have
been proposed to accelerate reinforcement learning [brifeher, that framework chiefly
addresses the problem of learning a forward model of the@mvient [12] via imitation
(see Section 3), and its correspondence with cognitiverfgglin humans is unclear. Other
frameworks have been proposed for imitation learning inhirees [3, 20, 1], but most of
these are not designed around a coherent probabilisticafcsm.
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Figure 1: AIM hypothesis for infant imitation: (a) The AIM hypothesis of facial imitation by
Meltzoff and Moore [16] argues that infants match obseoretiof adults with their own propriocep-
tions using a modality-independent representation oéstisismatch detection between infant and
adult states is performed in this modality-independentspinfant motor acts cause proprioceptive
feedback, closing the motor loop. The photographs show famtinracking the gaze of an adult
instructor (from [4]). (b) Our probabilistic framework nuies the structure of AIM. Transforming
instructor-centric coordinates to egocentric coordisatiows the system to remap the instructor’s
gaze vector into either a motor action that the stereo hea@xacute (for gaze tracking), or an en-
vironmental state (a distribution over objects the indoucould be watching) to learn instructor- or
task-specific saliency.

gions likely to contain human skin. Each connected compoiseamnnotated with a bound-
ing box. The MAP bounding box is selected given a prior oveurtabing box size and
aspect ratio. Kalman filtering stabilizes the box locatimerosuccessive frames. After
finding a stable bounding box containing the instructorcefa probabilistic algorithm [22]
extracts a maximum-likelihood estimate for the instrustbead posé ;. The system does
not infer gaze from the instructor’s eyes, a developmeritdhly occurs past age 9 months
in infants [4], well past the onset of imitative behavior (alinin some cases [15] is present
from birth). Finally fromh; we compute a 3D gaze vectey for the instructor. We project
the gaze vectov; into a simplified 3D model of the world using estimated ingtic cam-
era parameters. This space forms the inter-modal repagganof the common goal of
Biclops and instructor.

3 Probabilistic forward, inverse, and policy models

Many robotics tasks model the environment, whether usirtgt&csnap of an area or run-
ning a dynamical simulator of the world over time. Forward @amerse models [12] pro-
vide a framework for using models of the environment to ylaidwledge about actions to
take, given a goal. Probabilistic forward models predicistridution over future environ-
mental states given a current state and an action taken frahstiate. Probabilistic inverse
models encode a distribution over actions given a curraite stlesired next state, and goal
state. Wolpert and colleagues have modeled paired forwatdraerse models for motor
control and imitation, and investigated their neurolobiocglementations [2, 10].

Reinforcement learning systems typically acquire a thyqaetof model, which we call

a policy model. Policy models compute distributions oveiicens that an agent should
take to reach a goal, given the current state of the envirahared the agent itself. Let



s be the combined state of the environment and an agent in theoement at timet,

let s be a goal state the agent wishes to achieve (perhaps retimgsarstate of high-
valued reward in a reinforcement learning framework), atd, be an action taken at time
t. Assuming a first-order Markovian environment, a probabdiforward model can be
represented aB(s;y1|ay, 8¢, s¢) = P(sg11]at, s¢), and the corresponding inverse model
can be represented d¥a¢|s:, st+1,S¢). Similarly, a policy model can be denoted as
P(at|st, sa).

Learning an inverse model is the desired outcome for a legiagent that wishes to imitate,
since inverse models select an action given a current slaetdred next state, and goal
state. However, learning inverse models is difficult for anber of reasons, notably that
environmental dynamics are not necessarily invertible.practice, it is often easier to
acquire a forward model of environmental dynamics to makeigtions about future state.
By applying Bayes' rule, it becomes possible to rewrite abphulistic inverse model in
terms of a forward model and a policy model (with normali@atconstant) [19, 18]:

P (atlst, st11,86) = kP (se41]st, ar) P (aelst, sa) (1)
Actions can be selected in one of two ways given such an iavaradel. The ob-
server can select the action with maximum likelihood, or ¢heerver can sample from
P(a|st, si+1,s¢), a strategy known as “probability matching” [13], which seeto be
used in at least some cases by the brain. Our present systésmnlg maximum likelihood
estimates to select actions.

We learned a probabilistic forward model for the Biclops kirfg a linear regression
model to encoder position error (in degrees) given an Irstete and an action taken from
that state; acceleration was held to a constant 50 degtedsfs 2(a) shows error values
from 597 training movements; Fig. 2(b,c) show that remajrémror is marginally Gaus-
sian. Fig. 2(d) shows cross-validation of the model usingséirig set of 896 movements.

Learning a policy modeP(a.|s;, s¢) requires inferring actions; based on the instructor’s
state transitions. This inference from state transitionadtions in turn requires knowing
the “action inference” distributiof (a s, s; ; ), wheres; refers to a subset of instructor’s
motor state at time. A full-fledged Bayesian approach to learning policy modedsld
propagate the uncertainty in this estimate through theyatiodel.

The present system does not learn a policy model. Insteadytem assumes a uniform
prior over actions that (according to the forward model) mibve the Biclops’ motor state
closer to the goal motor state. The system simply choosebithestimate ofa; during
training and testing based on observing the instructoradh@ose. The policy model is
implemented using a grid-based empirical distributiong. Ri(f) shows the prior model
P(at|st, s¢) conditioned ons; = (—40, —30) andsg = (10, 10) (as depicted in Fig. 2(e)).
Finally, Fig. 2(g) shows the inverse modél(a;|s:, s¢+1,5¢) conditioned ons; =
(—40,-30), sty1 = (—10,—10), andsg = (10,10). The system selects the maximum
likelihood action to move the Biclops head 4gp.,. The prior model and forward model
combine to yield an action estimate close to the displacéimsweens; ands; .

4 Modeling saliency

Shared attention via gaze following bootstraps more coxnasks, such as learning the
names of objects that are the foci of attention and imitati@gipulations of objects. Many

sources of saliency can be used to establish shared atte@io system employs 3 image-
based sources: i) a bottom-up attentional algorithm; id@down prior imposed by the

instructor’s gaze vector, computed as described in theiquesection; and iii) a learned

model that gives an instructor-specific saliency prior aMgjects. These 3 saliency cues
combine to yield a context-specific estimate of the objecstriikely being gazed at by the

instructor. In the future, we envision combining auditones (e.g., “look at the large red

object”) with the other 3 sources to increase attentionalifigd

Our present results consider only one task: gaze followdng single salient object. In
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Figure 2:Probabilistic forward model: (a) Discrete empirical distribution of deviation (in degsg
between intended motor states and observed motor states Bidlops stereo head. The distribution
was estimated using a training dataset of 597 example mowsmié motors in the head were com-
pletely accurate, the entire distribution would displapi&s at (0,0). (b) Distribution of residual error
after model learning. A linear model was learned in a maxintiketihood fashion from the training
data. The residual error distribution is marginally Gaassan important assumption of the model.
(c) Gaussian approximation of the discretized distribusbown in (b). (d) Gaussian approximation
of errors on a cross-validation set of 896 testing movemsismbles that of the training set. (e-g)
Example of an inverse model computation. (e) States usédsrekample weres; = (—40, —30),
s¢+1 = (—10,—10), andse = (10, 10). (f) Policy modelP(a¢|s¢, s). The grid shows depicts the
policy that only actions yielding next states closer to tbalghan the current state are allowed, i.e.
given non-zero probability by the policy model. (g) Inversedel P(a¢|s:, st+1, sa¢). The distribu-
tion shows the likelihood of each action to move the Biclopadhtowards; ;. This distribution is
sharply peaked around = (30.36,19.63).

tracking the instructor’'s gaze to an object, the goal stagtes achieved when observer and
instructor have centered the same object in their respeetsual fields. Ifsg denotes a
discrete-valued random variable, the distribution ovgects the instructor could be look-
ing atisP(s¢). This distribution intuitively corresponds to saliencysjects the instructor
considers relevant to a task are more likely to be fixated enrstructor. Our system be-
gins with a single, generic model of saliency based on a gio#dly-inspired bottom-up
attentional algorithm [11]. This algorithm returns a satig “mask” (see Fig. 3(f)) where
the grayscale intensity of a pixel is proportional to satieas computed from feature de-
tectors for intensity gradients, color, and edge orieatati

Thresholding the mask, then performing connected comper@m the thresholded im-
age produces a set of discrete objects the system consgleedidates fos,. During
training, the system uses the instructor’s estimated geztorto disambiguate between
candidate objects. Once the object gazed at by the instrigadetermined, the system uses
information about the object to learn an instructor-speafliency model as described
below. The final outcome of this process is a model that aimddntify, given a set of
objects, a distribution over which object the instructongiders most salient to the task at
hand.

Implicitly, the bottom-up algorithm integrates out anytmstor-specific and task-specific



saliency information:

P(sa)= Y, > P(sc|I,T)P(I,T) )
I€instructors T €&tasks

As the system gathers more data on particular instructblmilds up a context-specific
model of what each instructor considers salient. For eastnuctor, we learn a different
Gaussian mixture model in YUV color space using the expiectahaximization (EM)
algorithm. Each mixture model is trained on object pixelgmsented using the bottom-
up saliency method. Each training poit to the model is a vector of the fornp, =
(us, vi, 2i,0), Whereu; andv; are the UV values of pixel, and where; , is the size of the
objecto (in pixels) from which pixeli was drawn. Together, these distributions model the
saliency preferences of the instructor.

In testing, the system uses the learned model to predictdhkstates for specific instruc-
tors. The Gaussian mixture model yields a prior estimate bitlwobjecto the system
should look at (before the instructor’s gaze vector is irfdy based on pixels in connected
components. The average vegtoover all N, pixels in connected componentietermines
which Gaussian cluster connected componeistdrawn from. The maximum likelihood
estimate from this computation assigns a mixture compoladya c, to the object. The
mixture model prior for Gaussian componeptdetermines the a priori likelihood that the
instructor will gaze at objeet, whereC'is the set of Gaussian clusters in the mixture model
andyu., X, respectively denote the mean and covariance matrix foterius

- 1 N, Tzfl 1 N, .
Co = arcgerréax((N—w;pi —,uc) ¢ (N_m;pl —,Uc)> (3
P(sg=0) = P(c) (4)

The system combines this prior likelihood with likelihoogisen by the instructor’s gaze
vector to determine an MAP estimate of where to look in 3D spac

5 Resaults: gazetracking and saliency model learning

Fig. 3(a,b,c,d) show saliency model learning at four déferpoints in the training pro-
cess. Fig. 3(a) plots the model’s saliency estimate (uppewof text) as a distribution over
objects before training begins (with = 0 gaze examples from the instructor). The true
distribution the instructor (Fig. 3(e)) used to select otgas shown in the lower row of
text. In Fig. 3(b,c,d), as more training samples are cadlgédétom the instructor{ = 15,

S = 35, andS = 50), the estimated saliency distribution becomes closeredrie dis-
tribution. The instructor shown here prefers large greehlarge blue objects. Fig. 3(e,f)
respectively show the testing performance and the graysallency map given by the
bottom-up algorithm. The testing objects are distinct frin@ training objects, but share
similar surface colors and object sizes. Note that thersafidistribution estimated by the
model on the testing objects intuitively matches the irgtupreferences shown during
training—the model assigns large blue objects much highasgbilities of being salient
compared to other object types.

Fig. 4(a-f) show the testing process. The top row shows thegss from the Biclops’ view-
point, while the bottom row shows the instructor’s viewgoifrom left to right, the Biclops
first infers the instructor's gaze vector, follows the gaeetor to a cluster of objects, and
centers on the most salient object. The combined pose dgtimeagorithm and action
selection yield 90% accuracy on matching the instructaasegvector using out-of-sample
data. Fig. 4(g) demonstrates the value of an instructocipealiency model: when the
instructor’s gaze tracks to a cluster of objects the bottgmalgorithm regards as salient
(that is, when instructor gaze contains ambiguity), a ledsaliency prior enables the sys-
tem to select the instructor’s object of interest more oftem using a uniform prior over
object saliency. The line graph in Fig. 4(g) contrasts perince of the combined pose
detector, inverse model, and instructor-specific salienogel (dashed line) with the pose



detector, inverse model, and a uniform prior on object sajigsolid line). As the number
of potentially salient objects in the instructor's gazeteeincreases, the instructor’s gaze
vector becomes increasingly ambiguous as a marker of witijgtthe instructor consid-
ers salient. The learned saliency model continues to rigbigentify the object at which
the instructor is gazing over increasing number of objestsile performance using the
uniform prior quickly degradés

6 Conclusion

This paper presented a Bayesian framework for imitatiomieg, and showed how gaze
following to salient objects fits into the framework. Therfrework builds on Meltzoff
and Moore’s AIM hypothesis for human imitative acts. Prétiary results from an active
vision stereo head demonstrated the ability of our systeleaim simple saliency prefer-
ences, and to track instructor gaze to salient objects. \Weiate extending our saliency
learning and gaze tracking system to the HOAP-2 humanottbpfa (Fig. 4(h)) in the near
future. Our algorithmic framework is hardware-agnosticept for the forward model; in-
structor head pose estimation and the prior model will n@ingfe under this platform.
Once we learn the forward dynamics of the humanoid’s heazt fralowing and saliency
model learning will employ the same codebase as the Bicleps.h This extension will
in turn enable more complex imitative tasks to be learneceundr framework. We also
anticipate expanding our saliency learning system to actogate more attentional cues
(such as auditory information) and richer saliency models.
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Figure 3:Learned saliency prior: (a,b,c,d) The upper values give the true saliency disiobufThe
lower values give the current estimate for this distribatigiven.S samples. Progressing from (a) to
(d) shows the estimate approaching the true distributiomuasber of samples increases. (e) After
training, we validate the learned saliency model using a&##sting objects. Next to each testing
object is its estimated probability of saliency, with theeprobability (according to the instructor)
shown in parentheses. (f) A neurally-plausible bottom-lgw@thm [11] provides a pixel-based,
instructor-generic prior distribution over saliency, athithe system thresholds to identify potentially
salient objects. (g) Thresholded saliency map. (h) Inttise of instructor gaze vector and the table
surface, with additive Gaussian noise. (i) Combinationgdfand (h) yields an MAP estimate for the

most salient object in the training set (the blue wallet).
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Figure 4: Gaze following performance: (a-f) Testing process. Top row shows the Biclops’ view,
bottom row shows the instructor’s view. From left to rigltite Biclops finds the instructor’s face and
annotates an estimated gaze vector. Next the Biclops |lddke @&able. In (c), the Biclops correctly
infers the object attended to by the instructor by combinihegestimated gaze vector and estimated
object saliency. (g) Using learned saliency prior enablsardbiguation of relevant objects from a
cluster of closely situated objects. A uniform saliencyopfails, while the learned saliency model
shown in Fig. 3(a-d) identifies the correct object. As nundfesbjects in the gaze vector increases,
the learned saliency model (dashed line) outperforms ammisaliency prior (solid line). The plot
shows an average over 3 trials for both the learned saliemtyiniform saliency cases. (h) HOAP-2
humanoid robot. Our future efforts will focus on sensoriardéarning and imitation learning on this

platform.



