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Abstract
Imitation is a powerful mechanism for transferring knowledge from an
instructor to a naive observer. We first present Bayesian algorithms,
based on Meltzoff and Moore’s AIM model for imitation in infants, that
implement the core of an imitation learning framework. Next, we present
Bayesian algorithms for learning which objects an instructor considers
salient in a task. Finally, we demonstrate the performance of our algo-
rithms in a gaze following and saliency learning task implemented on an
active vision robotic head. Our results suggest that the ability to follow
gaze and learn instructor- and task-specific saliency models could play
a crucial role in building systems capable of complex forms of human-
robot interaction.

1 Imitation learning and shared attention
Imitation is a powerful mechanism for transferring knowledge from a skilled agent (the
instructor) to an unskilled agent (orobserver) using direct manipulation of the environ-
ment. Several researchers have investigated imitative behavior in apes [21, 5], in children
(including infants only 42 minutes old) [15, 16], and in an increasingly diverse selection
of machines [9, 14]. The attraction of imitation for robotics is obvious: imitative robots
offer drastically reduced programming costs compared to robots requiring programming
by an expert. Imitative robots also offer testbeds for cognitive researchers to test compu-
tational theories, and provide modifiable agents for contingent interaction with humans in
psychological experiments.
Successful imitation requires that instructor and observer simultaneously attend to the same
object or environmental state. Such simultaneous attention is often referred to as “shared
attention” in the psychological literature. Previous work, notably by Scassellati on the
Cog platform [20], has concentrated on deterministic algorithms for shared attention be-
tween humans and robots. Scassellati’s work concentrated on tracking the gaze of a human
instructor, and on mimicking the motion of the instructor’shead in either a vertical or a
horizontal direction. Separately, Movellan and colleagues have used robotic platforms to
study shared attention in infants [8].
Although robotic platforms [7, 20] have demonstrated impressive mimicry results, richly
contingent human-robot interaction comparable to infant imitation depends on having a
model for saliency, i.e., a model of what components of environmental state are important in
a given task. Ideally, saliency models would be task- or instructor-specific, representing the
observer’s learned context-dependent knowledge of how to allocate attentional resources.
In this paper, we describe a robotic system that uses probabilistic algorithms to follow the
gaze of a human and to identify salient objects in a scene. Ouralgorithms employ Bayesian
inference because of its robustness to noise and missing data, tractability under large data
sets, and unifying mathematical formalism. Bayesian imitation learning approaches have
been proposed to accelerate reinforcement learning [17]; however, that framework chiefly
addresses the problem of learning a forward model of the environment [12] via imitation
(see Section 3), and its correspondence with cognitive findings in humans is unclear. Other
frameworks have been proposed for imitation learning in machines [3, 20, 1], but most of
these are not designed around a coherent probabilistic formalism.
The robotic system described in this paper tracks a human instructor’s gaze to an object,
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Figure 1: AIM hypothesis for infant imitation: (a) The AIM hypothesis of facial imitation by
Meltzoff and Moore [16] argues that infants match observations of adults with their own propriocep-
tions using a modality-independent representation of state. Mismatch detection between infant and
adult states is performed in this modality-independent space. Infant motor acts cause proprioceptive
feedback, closing the motor loop. The photographs show an infant tracking the gaze of an adult
instructor (from [4]). (b) Our probabilistic framework matches the structure of AIM. Transforming
instructor-centric coordinates to egocentric coordinates allows the system to remap the instructor’s
gaze vector into either a motor action that the stereo head can execute (for gaze tracking), or an en-
vironmental state (a distribution over objects the instructor could be watching) to learn instructor- or
task-specific saliency.

gions likely to contain human skin. Each connected component is annotated with a bound-
ing box. The MAP bounding box is selected given a prior over bounding box size and
aspect ratio. Kalman filtering stabilizes the box location over successive frames. After
finding a stable bounding box containing the instructor’s face, a probabilistic algorithm [22]
extracts a maximum-likelihood estimate for the instructor’s head posehI . The system does
not infer gaze from the instructor’s eyes, a development that only occurs past age 9 months
in infants [4], well past the onset of imitative behavior (which in some cases [15] is present
from birth). Finally fromhI we compute a 3D gaze vectorvI for the instructor. We project
the gaze vectorvI into a simplified 3D model of the world using estimated instrinsic cam-
era parameters. This space forms the inter-modal representation of the common goal of
Biclops and instructor.

3 Probabilistic forward, inverse, and policy models
Many robotics tasks model the environment, whether using a static map of an area or run-
ning a dynamical simulator of the world over time. Forward and inverse models [12] pro-
vide a framework for using models of the environment to yieldknowledge about actions to
take, given a goal. Probabilistic forward models predict a distribution over future environ-
mental states given a current state and an action taken from that state. Probabilistic inverse
models encode a distribution over actions given a current state, desired next state, and goal
state. Wolpert and colleagues have modeled paired forward and inverse models for motor
control and imitation, and investigated their neurological implementations [2, 10].
Reinforcement learning systems typically acquire a third type of model, which we call
a policy model. Policy models compute distributions over actions that an agent should
take to reach a goal, given the current state of the environment and the agent itself. Let



st be the combined state of the environment and an agent in the environment at timet,
let sG be a goal state the agent wishes to achieve (perhaps representing a state of high-
valued reward in a reinforcement learning framework), and letat be an action taken at time
t. Assuming a first-order Markovian environment, a probabilistic forward model can be
represented asP (st+1|at, st, sG) ≡ P (st+1|at, st), and the corresponding inverse model
can be represented asP (at|st, st+1, sG). Similarly, a policy model can be denoted as
P (at|st, sG).
Learning an inverse model is the desired outcome for a learning agent that wishes to imitate,
since inverse models select an action given a current state,desired next state, and goal
state. However, learning inverse models is difficult for a number of reasons, notably that
environmental dynamics are not necessarily invertible. Inpractice, it is often easier to
acquire a forward model of environmental dynamics to make predictions about future state.
By applying Bayes’ rule, it becomes possible to rewrite a probabilistic inverse model in
terms of a forward model and a policy model (with normalization constantk) [19, 18]:

P (at|st, st+1, sG) = kP (st+1|st, at)P (at|st, sG) (1)

Actions can be selected in one of two ways given such an inverse model. The ob-
server can select the action with maximum likelihood, or theobserver can sample from
P (at|st, st+1, sG), a strategy known as “probability matching” [13], which seems to be
used in at least some cases by the brain. Our present system uses only maximum likelihood
estimates to select actions.
We learned a probabilistic forward model for the Biclops by fitting a linear regression
model to encoder position error (in degrees) given an initial state and an action taken from
that state; acceleration was held to a constant 50 degrees/s2. Fig. 2(a) shows error values
from 597 training movements; Fig. 2(b,c) show that remaining error is marginally Gaus-
sian. Fig. 2(d) shows cross-validation of the model using a testing set of 896 movements.
Learning a policy modelP (at|st, sG) requires inferring actionsat based on the instructor’s
state transitions. This inference from state transitions to actions in turn requires knowing
the “action inference” distributionP (at|s

ι
t, s

ι
t+1), wheresι

t refers to a subset of instructor’s
motor state at timet. A full-fledged Bayesian approach to learning policy modelswould
propagate the uncertainty in this estimate through the policy model.
The present system does not learn a policy model. Instead, the system assumes a uniform
prior over actions that (according to the forward model) will move the Biclops’ motor state
closer to the goal motor state. The system simply chooses theML estimate ofat during
training and testing based on observing the instructor’s head pose. The policy model is
implemented using a grid-based empirical distribution. Fig. 2(f) shows the prior model
P (at|st, sG) conditioned onst = (−40,−30) andsG = (10, 10) (as depicted in Fig. 2(e)).
Finally, Fig. 2(g) shows the inverse modelP (at|st, st+1, sG) conditioned onst =
(−40,−30), st+1 = (−10,−10), andsG = (10, 10). The system selects the maximum
likelihood action to move the Biclops head tost+1. The prior model and forward model
combine to yield an action estimate close to the displacement betweenst andst+1.

4 Modeling saliency
Shared attention via gaze following bootstraps more complex tasks, such as learning the
names of objects that are the foci of attention and imitatingmanipulations of objects. Many
sources of saliency can be used to establish shared attention. Our system employs 3 image-
based sources: i) a bottom-up attentional algorithm; ii) a top-down prior imposed by the
instructor’s gaze vector, computed as described in the previous section; and iii) a learned
model that gives an instructor-specific saliency prior overobjects. These 3 saliency cues
combine to yield a context-specific estimate of the object most likely being gazed at by the
instructor. In the future, we envision combining auditory cues (e.g., “look at the large red
object”) with the other 3 sources to increase attentional fidelity.
Our present results consider only one task: gaze following to a single salient object. In
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Figure 2:Probabilistic forward model: (a) Discrete empirical distribution of deviation (in degrees)
between intended motor states and observed motor states in the Biclops stereo head. The distribution
was estimated using a training dataset of 597 example movements. If motors in the head were com-
pletely accurate, the entire distribution would display a spike at (0,0). (b) Distribution of residual error
after model learning. A linear model was learned in a maximumlikelihood fashion from the training
data. The residual error distribution is marginally Gaussian, an important assumption of the model.
(c) Gaussian approximation of the discretized distribution shown in (b). (d) Gaussian approximation
of errors on a cross-validation set of 896 testing movementsresembles that of the training set. (e-g)
Example of an inverse model computation. (e) States used in this example were:st = (−40,−30),
st+1 = (−10,−10), andsG = (10, 10). (f) Policy modelP (at|st, sG). The grid shows depicts the
policy that only actions yielding next states closer to the goal than the current state are allowed, i.e.
given non-zero probability by the policy model. (g) InversemodelP (at|st, st+1, sG). The distribu-
tion shows the likelihood of each action to move the Biclops head towardst+1. This distribution is
sharply peaked aroundat = (30.36, 19.63).

tracking the instructor’s gaze to an object, the goal statesG is achieved when observer and
instructor have centered the same object in their respective visual fields. IfsG denotes a
discrete-valued random variable, the distribution over objects the instructor could be look-
ing at isP (sG). This distribution intuitively corresponds to saliency: objects the instructor
considers relevant to a task are more likely to be fixated on the instructor. Our system be-
gins with a single, generic model of saliency based on a biologically-inspired bottom-up
attentional algorithm [11]. This algorithm returns a saliency “mask” (see Fig. 3(f)) where
the grayscale intensity of a pixel is proportional to saliency as computed from feature de-
tectors for intensity gradients, color, and edge orientation.
Thresholding the mask, then performing connected components on the thresholded im-
age produces a set of discrete objects the system considers as candidates forsG. During
training, the system uses the instructor’s estimated gaze vector to disambiguate between
candidate objects. Once the object gazed at by the instructor is determined, the system uses
information about the object to learn an instructor-specific saliency model as described
below. The final outcome of this process is a model that aims toidentify, given a set of
objects, a distribution over which object the instructor considers most salient to the task at
hand.
Implicitly, the bottom-up algorithm integrates out any instructor-specific and task-specific



saliency information:

P (sG) =
∑

I∈instructors

∑

T∈tasks

P (sG|I, T )P (I, T ) (2)

As the system gathers more data on particular instructors, it builds up a context-specific
model of what each instructor considers salient. For each instructor, we learn a different
Gaussian mixture model in YUV color space using the expectation maximization (EM)
algorithm. Each mixture model is trained on object pixels segmented using the bottom-
up saliency method. Each training pointpi to the model is a vector of the form:pi =
〈ui, vi, zi,o〉, whereui andvi are the UV values of pixeli, and wherezi,o is the size of the
objecto (in pixels) from which pixeli was drawn. Together, these distributions model the
saliency preferences of the instructor.
In testing, the system uses the learned model to predict the goal states for specific instruc-
tors. The Gaussian mixture model yields a prior estimate on which objecto the system
should look at (before the instructor’s gaze vector is inferred) based on pixels in connected
components. The average vectorp over allNx pixels in connected componentx determines
which Gaussian cluster connected componentx is drawn from. The maximum likelihood
estimate from this computation assigns a mixture componentlabel co to the object. The
mixture model prior for Gaussian componentco determines the a priori likelihood that the
instructor will gaze at objecto, whereC is the set of Gaussian clusters in the mixture model
andµc, Σc respectively denote the mean and covariance matrix for cluster c:

co = argmax
c∈C

(

( 1

Nx

Nx
∑

i

pi − µc

)T

Σ−1
c

( 1

Nx

Nx
∑

i

pi − µc

)

)

(3)

P (sG = o) = P (co) (4)

The system combines this prior likelihood with likelihoodsgiven by the instructor’s gaze
vector to determine an MAP estimate of where to look in 3D space.

5 Results: gaze tracking and saliency model learning
Fig. 3(a,b,c,d) show saliency model learning at four different points in the training pro-
cess. Fig. 3(a) plots the model’s saliency estimate (upper row of text) as a distribution over
objects before training begins (withS = 0 gaze examples from the instructor). The true
distribution the instructor (Fig. 3(e)) used to select objects is shown in the lower row of
text. In Fig. 3(b,c,d), as more training samples are collected from the instructor (S = 15,
S = 35, andS = 50), the estimated saliency distribution becomes closer to the true dis-
tribution. The instructor shown here prefers large green and large blue objects. Fig. 3(e,f)
respectively show the testing performance and the grayscale saliency map given by the
bottom-up algorithm. The testing objects are distinct fromthe training objects, but share
similar surface colors and object sizes. Note that the saliency distribution estimated by the
model on the testing objects intuitively matches the instructor preferences shown during
training—the model assigns large blue objects much higher probabilities of being salient
compared to other object types.
Fig. 4(a-f) show the testing process. The top row shows the process from the Biclops’ view-
point, while the bottom row shows the instructor’s viewpoint. From left to right, the Biclops
first infers the instructor’s gaze vector, follows the gaze vector to a cluster of objects, and
centers on the most salient object. The combined pose estimation algorithm and action
selection yield 90% accuracy on matching the instructor’s gaze vector using out-of-sample
data. Fig. 4(g) demonstrates the value of an instructor-specific saliency model: when the
instructor’s gaze tracks to a cluster of objects the bottom-up algorithm regards as salient
(that is, when instructor gaze contains ambiguity), a learned saliency prior enables the sys-
tem to select the instructor’s object of interest more oftenthan using a uniform prior over
object saliency. The line graph in Fig. 4(g) contrasts performance of the combined pose
detector, inverse model, and instructor-specific saliencymodel (dashed line) with the pose



detector, inverse model, and a uniform prior on object saliency (solid line). As the number
of potentially salient objects in the instructor’s gaze vector increases, the instructor’s gaze
vector becomes increasingly ambiguous as a marker of which object the instructor consid-
ers salient. The learned saliency model continues to robustly identify the object at which
the instructor is gazing over increasing number of objects,while performance using the
uniform prior quickly degrades1.

6 Conclusion
This paper presented a Bayesian framework for imitation learning, and showed how gaze
following to salient objects fits into the framework. The framework builds on Meltzoff
and Moore’s AIM hypothesis for human imitative acts. Preliminary results from an active
vision stereo head demonstrated the ability of our system tolearn simple saliency prefer-
ences, and to track instructor gaze to salient objects. We anticipate extending our saliency
learning and gaze tracking system to the HOAP-2 humanoid platform (Fig. 4(h)) in the near
future. Our algorithmic framework is hardware-agnostic, except for the forward model; in-
structor head pose estimation and the prior model will not change under this platform.
Once we learn the forward dynamics of the humanoid’s head, gaze following and saliency
model learning will employ the same codebase as the Biclops head. This extension will
in turn enable more complex imitative tasks to be learned under our framework. We also
anticipate expanding our saliency learning system to accommodate more attentional cues
(such as auditory information) and richer saliency models.
Acknowledgements: We thank Andy Meltzoff for generously providing Fig. 1(a). This work was
supported by grants from NSF and ONR.
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Figure 3:Learned saliency prior: (a,b,c,d) The upper values give the true saliency distribution. The
lower values give the current estimate for this distribution, givenS samples. Progressing from (a) to
(d) shows the estimate approaching the true distribution asnumber of samples increases. (e) After
training, we validate the learned saliency model using a setof testing objects. Next to each testing
object is its estimated probability of saliency, with the true probability (according to the instructor)
shown in parentheses. (f) A neurally-plausible bottom-up algorithm [11] provides a pixel-based,
instructor-generic prior distribution over saliency, which the system thresholds to identify potentially
salient objects. (g) Thresholded saliency map. (h) Intersection of instructor gaze vector and the table
surface, with additive Gaussian noise. (i) Combination of (g) and (h) yields an MAP estimate for the
most salient object in the training set (the blue wallet).
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Figure 4:Gaze following performance: (a-f) Testing process. Top row shows the Biclops’ view,
bottom row shows the instructor’s view. From left to right, the Biclops finds the instructor’s face and
annotates an estimated gaze vector. Next the Biclops looks at the table. In (c), the Biclops correctly
infers the object attended to by the instructor by combiningthe estimated gaze vector and estimated
object saliency. (g) Using learned saliency prior enables disambiguation of relevant objects from a
cluster of closely situated objects. A uniform saliency prior fails, while the learned saliency model
shown in Fig. 3(a-d) identifies the correct object. As numberof objects in the gaze vector increases,
the learned saliency model (dashed line) outperforms a uniform saliency prior (solid line). The plot
shows an average over 3 trials for both the learned saliency and uniform saliency cases. (h) HOAP-2
humanoid robot. Our future efforts will focus on sensorimotor learning and imitation learning on this
platform.


