
Type Safety and Erasure Proofs for “A Type System for

Coordinated Data Structures”

Michael F. Ringenburg Dan Grossman
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{miker,djg}@cs.washington.edu

Abstract

We prove the Type Safety and Erasure Theorems presented in Section 4 of Ringenburg and Grossman’s
paper “A Type System for Coordinated Data Structures” [1]. We also remind the reader of the syntax,
semantics, and typing rules for the coordinated list language described in Section 3 of the same paper.
We refer the reader to the original paper for a detailed presentation of the coordinated data structure
type system.

1 The Language

Figures 1, 2, and 3 present, respectively, the syntax, semantics, and typing rules for our coordinated list
language. We implicitly assume ∆ and Γ do not have repeated elements. For example, ∆, α:κ is ill-formed
if α ∈ Dom(∆). To avoid conflicts, we can systematically rename constructs with binding occurrences. We
therefore treat ∆ and Γ as partial functions. All explicit occurrences of α and x in the grammar are binding
(except when they constitute the entire type or expression, of course). Substitution is defined as usual.

2 Type Safety

Lemma 1 (Weakening)

1. If ∆ k̀ τ : κ, then ∆∆′
k̀ τ : κ.

2. If ∆ c̀ Γ, then ∆∆′
c̀ Γ.

3. If ∆; Γ t̀ e : τ and ∆∆′
c̀ ΓΓ′, then ∆∆′; ΓΓ′

t̀ e : τ .

Proof:

1. By induction on the assumed derivation, treating typing contexts as partial functions: If the last rule
in the derivation is kbase, the result is immediate. The other cases follow from induction. (Cases
kquant and kmu reorder typing contexts and use implicit α-conversion to ensure the bound type
variables do not occur in ∆′.)

2. By induction on the assumed derivation: Case cempty is immediate, and case ccons follows from
induction and the previous lemma.

3. By induction on the assumed derivation, treating type and term contexts as partial functions: Case
base is immediate. Cases pair, proj, case, app, fix, tfun, and unroll follow from induction and
the previous lemmas. (Cases case, fun, and tfun reorder contexts and use implicit α-conversion to
ensure bound variables or type variables do not occur in Γ′ or ∆′.) The remaining cases follow from
induction and Weakening Lemma 1, again using reordering and α-conversion as necessary.

1

variables x ∈ Var
type variables α, β ∈ Tyvar
kinds κ ::= T | L
types σ, τ ::= 1 | α | τ × τ | τ + τ | τ → τ | ∀α:κ.τ | ∃α:κ.τ | µ(σ ← β)α.τ | τ∗ | τ ::σ
expressions e ::= () | x | (e, e) | πi e | ini e | case e of x.e x.e | λx:τ. e | e e | fix e

| Λα:κ. e | e [τ] | pack τ, e as τ | unpack e as α, x in e
| roll e as τ | unroll e | peel e as α, α, x in e

values v ::= () | (v, v) | ini v | λx:τ. e | Λα:κ. e | pack τ, v as τ | roll v as τ
type contexts Γ ::= · | Γ, x:τ
kind contexts ∆ ::= · | ∆, α:κ

Figure 1: The syntax for a simple language that includes our extensions and supports coordinated lists.

Lemma 2 (Commuting Substitutions)

If β does not occur free in τ2 (and α 6= β), then τ0[τ1/β][τ2/α] = τ0[τ2/α][τ1[τ2/α]/β]

Proof: By induction on the structure of τ0: If τ0 = 1, then both types are 1. If τ0 = α, then both types are
τ2 (using that β is not free in τ2). If τ0 = β, then both types are τ1[τ2/α]. The remaining cases follow from
induction and the definition of substitution.

Lemma 3 (Substitution)

1. If ∆, α:κ′
k̀ τ : κ and ∆ k̀ τ ′ : κ′, then ∆ k̀ τ [τ ′/α] : κ

2. If ∆, α:κ′
c̀ Γ and ∆ k̀ τ ′ : κ′, then ∆ c̀ Γ[τ ′/α].

3. If ∆, α:κ′; Γ t̀ e : τ and ∆ k̀ τ ′ : κ′, then ∆; Γ[τ ′/α] t̀ e[τ ′/α] : τ [τ ′/α].

4. If ∆; Γ, x:τ ′
t̀ e : τ and ∆; Γ t̀ e′ : τ ′, then ∆; Γ t̀ e[e′/x] : τ .

Proof:

1. By induction on the derivation of ∆, α:κ′
k̀ τ : κ: Case kbase is trivial if τ = 1, follows from the

definition of ∆ if τ is a type variable other than α, and follows from ∆ k̀ τ ′ : κ′ if τ = α. Cases
kpair, kstar, and kcons follow from induction and the definition of substitution. Cases kquant
and kmu follow from induction, the definition of substitution, implicit reordering of typing contexts,
and Weakening Lemma 1 (to show that τ ′ still has kind κ′ under the context extended with the type
variable(s) bound by µ, ∃, or ∀).

2. By induction on the derivation of ∆, α:κ′
c̀ Γ, using the previous lemma

3. By induction on the derivation of ∆, α:κ′; Γ t̀ e : τ : Case base follows from the previous lemma. Cases
pair, proj, inject, case, fun, app, fix, and unroll follow from induction. Case tfun follows from
induction and Weakening Lemma 1 (to show τ ′ has kind κ′ under the context extended with the type
variable bound by Λ). Cases unpack and peel follow from induction, Weakening Lemma 1 (as in case
tfun), and Substitution Lemma 1 (for the kind of the result type, τ [τ ′/α]).

Now consider the case e = e1 [τ1] (tapp). By the typing rules, ∆, α:κ′; Γ t̀ e1 [τ1] : τ2[τ1/α1], where
∆, α:κ′; Γ t̀ e1 : ∀α1:κ1.τ2 and ∆, α:κ′

k̀ τ1 : κ1. We also know that ∆ k̀ τ ′ : κ′. Thus by Substi-
tution Lemma 1, we have ∆ k̀ τ1[τ ′/α] : κ1. By induction, ∆; Γ[τ ′/α] t̀ e1[τ ′/α] : (∀α1:κ1.τ2)[τ ′/α].
Because of α-renaming, we can assume α 6= α1. Thus, by the definition of substitution, ∆; Γ[τ ′/α] t̀

e1[τ ′/α] : ∀α1:κ1.(τ2[τ ′/α]). By the tapp typing rule, we now have ∆; Γ[τ ′/α] t̀ e1[τ ′/α] [τ1[τ ′/α]] :
τ2[τ ′/α][τ1[τ ′/α]/α1]. By the definition of substitution, this is equivalent to ∆; Γ[τ ′/α] t̀ (e1 [τ1])[τ ′/α] :
τ2[τ ′/α][τ1[τ ′/α]/α1]. By the Commuting Substitutions Lemma, we have ∆; Γ[τ ′/α] t̀ (e1 [τ1])[τ ′/α] :
τ2[τ1/α1][τ ′/α]. Thus the lemma holds for this case. Cases pack and roll follow by the same logic.

2

E ::= [·] | (E, e) | (v,E) | πi E | ini E | case E of x.e x.e | E e | v E | fix E
| E [τ] | pack τ, E as τ | unpack E as α, x in e
| roll E as τ | unroll E | peel E as α, β, x in e

πi (v1, v2)
r→ vi where i ∈ {1, 2}

case ini v of x.e1 x.e2
r→ ei[v/x] where i ∈ {1, 2}

(λx:τ. e) v
r→ e[v/x]

fix λx:τ. e
r→ e[(fix λx:τ. e)/x]

(Λα:κ. e) [τ] r→ e[τ/α]
unpack (pack τ1, v as ∃α:κ.τ2) as α, x in e

r→ e[τ1/α][v/x]
unroll roll v as τ

r→ v
peel (roll v1 as µ(σ ← β)α.τ1, roll v2 as µ(σ ← β)α.τ2) as αhd , αtl , x in e
r→ e[τ ′/αhd][σ′/αtl][(roll v1 as µ(τ ′::σ′ ← β)α.τ1, roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x]

where peel(σ) = τ ′::σ′

peel(τ ::σ) = τ ::σ
peel(τ∗) = τ ::τ∗

e
r→ e′

E[e]→ E[e′]

Figure 2: The operational semantics for our simple, coordinated list language.

4. By induction on the derivation of ∆; Γ, x:τ ′
t̀ e : τ : Case base follows trivially if e = () or e = y and

y 6= x. If e = x, then ∆; Γ, x:τ ′
t̀ e : τ ′, and e[e′/x] = e′. Thus ∆; Γ, x:τ ′

t̀ e[e′/x] : τ ′ and so the
lemma holds for this case. Cases pair, proj, inject, case, fun, app, fix, tapp, pack, roll, and
unroll follow directly from induction, the typing rules, and the definition of substitution. Note that
we can assume that all conflicts between the substitution target variable x and any bound variables αi

are resolved by α-renaming (e.g, in the fun and case cases). Cases tfun, unpack, and peel follow
from induction, the typing rules, the definition of substitution, and Weakening Lemma 3 (to show that
e′ still has type τ ′ under the context extended with the bound type variables).

Lemma 4 (Canonical Forms)

1. If · k̀ τ : L, then τ has the form τ1
∗ or the form τ1::τ2.

2. If ·; · t̀ v : τ1 × τ2, then v has the form (v1, v2).

3. If ·; · t̀ v : τ1 + τ2, then v has the form ini v1 and i ∈ {1, 2}.

4. If ·; · t̀ v : τ1 → τ2, then v has the form λx:τ1. e.

5. If ·; · t̀ v : ∀α:κ.τ1, then v has the form Λα:κ. e.

6. If ·; · t̀ v : µ(σ ← β)α.τ1, then v has the form roll v1 as µ(σ ← β)α.τ1.

7. If ·; · t̀ v : ∃α:κ.τ1, then v has the form pack τ2, v1 as ∃α:κ.τ1.

Proof: The first proof is by inspection of the rules for ∆ k̀ τ : κ: when ∆ = · and κ = L, only kstar and
kcons apply. The other proofs are by inspection of the rules for ∆; Γ t̀ e : τ : When ∆ = ·, Γ = ·, e is a
value, and τ has the form required by the lemma, only one rule applies. (The rule is one of pair, inject,
fun, tfun, roll, or pack.)

Lemma 5 (Subexpression Type Invariance)

If ·; · t̀ E[e] : τ , ·; · t̀ e : τ ′, and ·; · t̀ e′ : τ ′, then ·; · t̀ E[e′] : τ .

3

∆ k̀ τ : κ

kbase

∆ k̀ 1 : T
∆ k̀ α : ∆(α)

kpair
∆ k̀ τ1 : T ∆ k̀ τ2 : T

∆ k̀ τ1 × τ2 : T
∆ k̀ τ1 + τ2 : T
∆ k̀ τ1 → τ2 : T

kquant

∆, α:κ k̀ τ : T
∆ k̀ ∀α:κ.τ : T
∆ k̀ ∃α:κ.τ : T

kmu
∆ k̀ σ : L ∆, α:T, β:T k̀ τ : T

∆ k̀ µ(σ ← β)α.τ : T

kstar
∆ k̀ τ : T
∆ k̀ τ∗ : L

kcons
∆ k̀ τ : T ∆ k̀ σ : L

∆ k̀ τ ::σ : L

∆; Γ t̀ e : τ

base

∆; Γ t̀ () : 1
∆; Γ t̀ x : Γ(x)

pair
∆; Γ t̀ e1 : τ1 ∆; Γ t̀ e2 : τ2

∆; Γ t̀ (e1, e2) : τ1 × τ2

proj
∆; Γ t̀ e : τ1 × τ2 i ∈ {1, 2}

∆; Γ t̀ πi e : τi

inject
∆; Γ t̀ e : τ ∆ k̀ τ ′ : T

∆; Γ t̀ in1 e : τ + τ ′

∆; Γ t̀ in2 e : τ ′ + τ

case
∆; Γ t̀ e : τ1 + τ2 ∆; Γ, x:τ1 t̀ e1 : τ ∆; Γ, x:τ2 t̀ e2 : τ

∆; Γ t̀ case e of x.e1 x.e2 : τ

fun
∆; Γ, x:τ t̀ e : τ ′ ∆ k̀ τ : T

∆; Γ t̀ λx:τ. e : τ → τ ′

app
∆; Γ t̀ e1 : τ ′ → τ ∆; Γ t̀ e2 : τ ′

∆; Γ t̀ e1 e2 : τ

fix
∆; Γ t̀ e : τ → τ

∆; Γ t̀ fix e : τ

tfun
∆, α:κ; Γ t̀ e : τ

∆; Γ t̀ Λα:κ. e : ∀α:κ.τ

tapp
∆; Γ t̀ e1 : ∀α:κ.τ ′ ∆ k̀ τ : κ

∆; Γ t̀ e [τ] : τ ′[τ/α]

pack
∆; Γ t̀ e : τ ′[τ/α] ∆ k̀ τ : κ ∆ k̀ ∃α:κ.τ ′ : T

∆; Γ t̀ pack τ, e as ∃α:κ.τ ′ : ∃α:κ.τ ′

unpack
∆; Γ t̀ e1 : ∃α:κ.τ ′ ∆, α:κ; Γ, x:τ ′

t̀ e2 : τ ∆ k̀ τ : T
∆; Γ t̀ unpack e1 as α, x in e2 : τ

roll
∆; Γ t̀ e : τ [τ ′/β][µ(σ ← β)α.τ/α] ∆ k̀ µ(τ ′::σ ← β)α.τ : T

∆; Γ t̀ roll e as µ(τ ′::σ ← β)α.τ : µ(τ ′::σ ← β)α.τ

unroll
∆; Γ t̀ e : µ(τ ′::σ ← β)α.τ

∆; Γ t̀ unroll e : τ [τ ′/β][µ(σ ← β)α.τ/α]

peel
∆; Γ t̀ e1 : (µ(σ ← β)α.τ1)× (µ(σ ← β)α.τ2)

∆, αhd :T, αtl :L; Γ, x:(µ(αhd ::αtl ← β)α.τ1)× (µ(αhd ::αtl ← β)α.τ2) t̀ e2 : τ ∆ k̀ τ : T
∆; Γ t̀ peel e1 as αhd , αtl , x in e2 : τ

Figure 3: The typing rules for our coordinated list language.

4

Proof: By induction on the structure of E, proceeding by cases. All cases follow directly by the typing rules
and the inductive hypothesis. For instance, if E = (E1, e2), then E[e] = (E1[e], e2) and E[e′] = (E1[e′], e2).
By inversion, if ·; · t̀ E[e] : τ1 × τ2 then ·; · t̀ E1[e] : τ1. By induction, ·; · t̀ E1[e′] : τ1. Thus, ·; · t̀ E[e′] :
τ1 × τ2. The other cases proceed identically.

Lemma 6 (Preservation)

1. If ·; · t̀ e : τ and e
r→ e′, then ·; · t̀ e′ : τ .

2. If ·; · t̀ e : τ and e→ e′, then ·; · t̀ e′ : τ .

Proof:

1. We consider each of the e
r→ e′ rules in turn:

• Case πi (v1, v2)
r→ vi: By the proj typing rule, ·; · t̀ πi (v1, v2) : τi where ·; · t̀ (v1, v2) : τ1 × τ2.

Inversion of ·; · t̀ (v1, v2) : τ1 × τ2 ensures ·; · t̀ vi : τi.

• Case case ini v of x.e1 x.e2
r→ ei[v/x]: By the case typing rule, ·; · t̀ case ini v of x.e1 x.e2 : τ

where ·; · t̀ ini v : τ1 + τ2, ·; ·, x:τ1 t̀ e1 : τ , and ·; ·, x:τ2 t̀ e2 : τ . Inversion of ·; · t̀ ini v : τ1 + τ2

ensures ·; · t̀ v : τi. Thus, by Substitution Lemma 4, ·; · t̀ ei[v/x] : τ .

• Case (λx:τ ′. e) v
r→ e[v/x]: By the app typing rule, ·; · t̀ (λx:τ ′. e) v : τ where ·; · t̀ λx:τ ′. e :

τ ′ → τ , and ·; · t̀ v : τ ′. Inversion of ·; · t̀ λx:τ ′. e : τ ′ → τ ensures ·; ·, x:τ ′
t̀ e : τ . Thus, by

Substitution Lemma 4, ·; · t̀ e[v/x] : τ .

• Case fix λx:τ. e
r→ e[(fix λx:τ. e)/x]: By the fix typing rule, ·; · t̀ fix λx:τ. e : τ where ·; · t̀

λx:τ. e : τ → τ . Inversion of ·; · t̀ λx:τ. e : τ → τ ensures ·; ·, x:τ t̀ e : τ . Thus, by Substitution
Lemma 4, ·; · t̀ e[(fix λx:τ. e)/x] : τ .

• Case (Λα:κ. e) [τ] r→ e[τ/α]: By the tapp typing rule, ·; · t̀ (Λα:κ. e) [τ] : τ ′[τ/α] where ·; · t̀

Λα:κ. e : ∀α:κ.τ ′ and · k̀ τ : κ. Inversion of ·; · t̀ Λα:κ. e : ∀α:κ.τ ′ ensures ·, α:κ; · t̀ e : τ ′.
Therefore, by Substitution Lemma 3, ·; · t̀ e[τ/α] : τ ′[τ/α].

• Case unpack (pack τ1, v as ∃α:κ.τ2) as α, x in e
r→ e[τ1/α][v/x]: By the unpack and pack typ-

ing rules, ·; · t̀ unpack (pack τ1, v as ∃α:κ.τ2) as α, x in e : τ where ·; · t̀ pack τ1, v as ∃α:κ.τ2 :
∃α:κ.τ2, ·, α:κ; ·, x:τ2 t̀ e : τ , and · k̀ τ : T. Inversion of ·; · t̀ pack τ1, v as ∃α:κ.τ2 : ∃α:κ.τ2

ensures ·; · t̀ v : τ2[τ1/α] and · k̀ τ1 : κ. Therefore, by Substitution Lemma 3, ·; ·, x:τ2[τ1/α] t̀

e[τ1/α] : τ [τ1/α]. By Substitution Lemma 4, ·; · t̀ e[τ1/α][v/x] : τ [τ1/α]. Because · k̀ τ : T, we
know that α does not appear free in τ . Therefore ·; · t̀ e[τ1/α][v/x] : τ .

• Case unroll roll v as τ
r→ v: By the unroll and roll typing rules,

·; · t̀ unroll roll v as τ : τ1[τ2/β][µ(σ ← β)α.τ1/α]

where τ = µ(τ2::σ ← β)α.τ1 and ·; · t̀ roll v as τ : τ . Inversion of ·; · t̀ roll v as τ : τ ensures
·; · t̀ v : τ1[τ2/β][µ(σ ← β)α.τ1/α].

• Case e = peel (roll v1 as µ(σ ← β)α.τ1, roll v2 as µ(σ ← β)α.τ2) as αhd , αtl , x in e1
r→ e′ where

e′ = e1[τ ′/αhd][σ′/αtl][(roll v1 as µ(τ ′::σ′ ← β)α.τ1, roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x]

and peel(σ) = τ ′::σ′: By the peel typing rule, ·; · t̀ e : τ where · k̀ τ : T,

·; · t̀ (roll v1 as µ(σ ← β)α.τ1, roll v2 as µ(σ ← β)α.τ2) : µ(σ ← β)α.τ1 × µ(σ ← β)α.τ2 ,

and
·, αhd:T, αtl:L; ·, x:µ(αhd ::αtl ← β)α.τ1 × µ(αhd ::αtl ← β)α.τ2 t̀ e1 : τ .

By inversion of the kcons and kstar rules, · k̀ τ ′ : T and · k̀ σ′ : L. Because αhd and αtl do not
appear free in τ , τ1, or τ2, we can apply Substitution Lemma 3 twice and Substitution Lemma 4
once to the typing expression for e1 above, and obtain ·; · t̀ e′ : τ

5

2. Follows directly by Preservation Lemma 1, the operational semantics, and the Subexpression Type
Invariance Lemma.

Lemma 7 (Progress)

If ·; · t̀ e : τ then e is a value or there exists an e′ such that e→ e′.

Proof: By definition of e→ e′, it suffices to prove the following: If ·; · t̀ e : τ and e is not a value then there
exists an E, er, and e′r such that e = E[er] and er

r→ e′r. The proof is by induction on the structure of e:

• If e is (), the result holds vacuously because e is a value.

• If e is x, the result holds vacuously because ·; · t̀ x : τ is impossible.

• If e is (e1, e2), then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : τ1 and ·; · t̀ e2 : τ2 where τ = τ1 × τ2.
By induction, if e1 is not a value, then there exists E1 and er such that e1 = E1[er] and er

r→ e′r.
Then e = (E1[er], e2), so letting E = (E1, e2) suffices. Similarly, if e1 is a value and e2 is not a value,
induction ensures there exist E1 and er such that letting E = (v,E1) suffices. Else e1 and e2 are both
values, so e is value and the result holds vacuously.

• If e is πi e1, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : τ1 × τ2, i ∈ {1, 2} and τ = τi. By induction, if
e1 is not a value, there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then e = πi E1[er], so
letting E = πi E1 suffices. Else e1 is a value and ·; · t̀ e1 : τ1 × τ2 ensures e1 = (v1, v2) for some v1 and
v2. Therefore, e

r→ vi so letting E = [·] suffices.

• If e is ini e1, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : τi, i ∈ {1, 2} where τ = τ1 + τ2. If e1 is not a
value, then by induction there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then e = ini E1[er],
so letting E = ini E1 suffices. Otherwise, if e1 is a value then e is a value, and so the result holds
vacuously.

• If e is case e1 of x.e2 x.e3, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : τ1 + τ2. If e1 is not a value, then by
induction there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then e = case E1[er] of x.e2 x.e3,
so letting E = case E1 of x.e2 x.e3 suffices. Otherwise, if e1 is a value then the Canonical Forms
Lemma ensures that e1 has the form ini v, i ∈ {1, 2} for some value v. Thus e

r→ ei[v/x], so letting
E = [·] suffices.

• If e is λx:τ1. e1, the result holds vacuously because e is a value.

• If e is e1 e2, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : τ1 → τ2 and ·; · t̀ e2 : τ1. If e1 is not a value,
then by induction there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then e = E1[er] e2, so
letting E = E1 e2 suffices. If e1 is a value v and e2 is not a value, then by induction there exists E2

and er such that e2 = E2[er] and er
r→ e′r. Then e = v E2[er], so letting E = v E2 suffices. Otherwise,

if e1 and e2 are values then the Canonical Forms Lemma ensures that e1 has the form λx:τ1. e3. Thus
e

r→ e3[e2/x], so letting E = [·] suffices.

• If e is fix e1, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : τ → τ . If e1 is not a value, then by induction
there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then e = fix E1[er], so letting E = fix E1

suffices. Otherwise, if e1 is a value then the Canonical Forms Lemma ensures that e1 has the form
λx:τ. e2. Thus e

r→ e2[fix λx:τ. e2/x], so letting E = [·] suffices.

• If e is Λα:κ. e1, the result holds vacuously because e is a value.

• If e is e1 [τ1], then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : ∀α:κ.τ2. If e1 is not a value, then by induction
there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then e = E1[er] [τ1], so letting E = E1 [τ1]
suffices. Otherwise, if e1 is a value then the Canonical Forms Lemma ensures that e1 has the form
Λα:κ. e2. Thus e

r→ e2[τ1/α], so letting E = [·] suffices.

• If e is pack τ1, e1 as τ2, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : τ3[τ1/α], where τ2 = ∃α:κ.τ3. If
e1 is not a value, then by induction there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then
e = pack τ1, E1[er] as τ2, so letting E = pack τ1, E1 as τ2 suffices. Otherwise, if e1 is a value then e is
a value, and so the result holds vacuously.

6

• If e is unpack e1 as α, x in e2, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : ∃α:κ.τ1. If e1 is not
a value, then by induction there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then e =
unpack E1[er] as α, x in e2, so letting E = unpack E1 as α, x in e2 suffices. Otherwise, if e1 is a
value then the Canonical Forms Lemma ensures that e1 has the form pack τ2, v as ∃α:κ.τ1. Thus
e

r→ e2[τ2/α][v/x], so letting E = [·] suffices.

• If e is roll e1 as τ1, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : τ2[τ3/β][µ(σ ← β)α.τ2/α], where
τ1 = µ(τ3::σ ← β)α.τ2. If e1 is not a value, then by induction there exists E1 and er such that
e1 = E1[er] and er

r→ e′r. Then e = roll E1[er] as τ1, so letting E = roll E1 as τ1 suffices. Otherwise, if
e1 is a value then e is a value, and so the result holds vacuously.

• If e is unroll e1, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : µ(τ2::σ ← β)α.τ1. If e1 is not a value, then
by induction there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then e = unroll E1[er], so
letting E = unroll E1 suffices. Otherwise, if e1 is a value then the Canonical Forms Lemma ensures
that e1 has the form roll v as µ(τ2::σ ← β)α.τ1. Thus e

r→ v, so letting E = [·] suffices.

• If e is peel e1 as αhd , αtl , x in e2, then inverting ·; · t̀ e : τ ensures ·; · t̀ e1 : µ(σ ← β)α.τ1 × µ(σ ← β)α.τ2.
If e1 is not a value, then by induction there exists E1 and er such that e1 = E1[er] and er

r→ e′r. Then
e = peel E1[er] as αhd , αtl , x in e2, so letting E = peel E1 as αhd , αtl , x in e2 suffices. Otherwise, if e1 is
a value then the Canonical Forms Lemma (parts 2 and 6) and inversion of the pair rule ensures that
e1 has the form (roll v1 as µ(σ ← β)α.τ1, roll v2 as µ(σ ← β)α.τ2). Thus

e
r→ e2[τ ′/αhd][σ′/αtl][(roll v1 as µ(τ ′::σ′ ← β)α.τ1, roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x] ,

where peel(σ) = τ ′::σ′. Thus letting E = [·] suffices.

Definition 8 (Stuck)

An expression e is stuck if e is not a value and there is no e′ such that e→ e′.

Theorem 9 (Type Safety)

If ·; · t̀ e : τ and e→∗ e′ (where →∗ is the reflexive, transitive closure of →, then e′ is not stuck).

Proof: By induction on the number of steps to reach e′, using induction and the Preservation Lemma to
conclude ·; · t̀ e′ : τ and the Progress Lemma to conclude e′ is not stuck.

3 Type Erasure

We start by listing the erasure rules. The untyped language is the standard, left-to-right, call-by-value λ-
calculus with products and sums. We assume the reader is already familiar with its semantics, so we do not
bother formalizing them here.

erase(()) = ()
erase(x) = x
erase((e1, e2)) = (erase(e1), erase(e2))
erase(πi e) = πi erase(e)
erase(ini e) = ini erase(e)
erase(case e of x.e1 x.e2) = case erase(e) of x.erase(e1) x.erase(e2)
erase(pack τ1, e as τ2) = erase(e)
erase(unpack e1 as α, x in e2) = (λx.erase(e2)) erase(e1)
erase(roll e as τ) = erase(e)
erase(unroll e) = erase(e)
erase(peel e1 as αhd, αtl, x in e2) = (λx.erase(e2)) erase(e1)
erase(Λα : κ.e) = λ .erase(e), where not in e.
erase(e[τ]) = erase(e) ()
erase(λx : τ.e) = λx.erase(e)
erase(e1 e2) = erase(e1) erase(e2)
erase(fix e) = fix erase(e)

7

We now prove the erasure theorem. We begin with a useful lemma that shows substitutions for type
variables disappear under our erasure rules. Intuitively, this holds because all types are erased by the erasure
rules, and because substitution never changes the shape of the terms.

Lemma 10 (Type Substitution Invariance) If e is an expression in the typed language, τ is a type and
α is a type variable, then

erase(e[τ/α]) = erase(e) . (1)

Proof: All cases follow directly from structural induction on the expression e and from the definition of
type substitution.

We next prove another lemma that shows that the erasure function distributes over term-variable sub-
stitution (i.e., the distributive property holds for this pair of operations).

Lemma 11 (Distributive Rule) If e and e′ are expressions in the typed language, and x is a variable,
then

erase(e[e′/x]) = erase(e)[erase(e′)/x] . (2)

Proof: First, consider the case where e = x. Then we have

erase(e[e′/x]) = erase(x[e′/x]) = erase(e′) .

Also,
erase(e)[erase(e′)/x] = erase(x)[erase(e′)/x] = x[erase(e′)/x] = erase(e′) .

Thus both sides of equation 2 are equivalent, and so the lemma holds. All other cases follow directly by
structural induction and by the definition of term-substitution.

We now prove a lemma that states that the erasure of a value is a value.

Lemma 12 (Value Erasure) Let e be an expression in our typed language.

1. If e is a value, then erase(e) is a value in the untyped language.

2. If erase(e) is a value and ·; · ` e : τ for some type τ , then there exists a value v such that e→? v and
erase(v) = erase(e).

Proof: We have the following value forms in our typed language:

v ::= () | (v, v) | ini v | λx : τ.e | Λα : κ.e | pack τ, v as τ | roll v as τ .

By structural induction and the given erasure rules, these reduce, respectively, to the following forms:

v ::= () | (v, v) | ini v | λx.e′ | λ .e′ | v | v ,

all of which are values in the untyped language. Thus part 1 holds.
We prove the second part by induction on the structure of e, proceeding by cases:

• Case e = x: Holds vacuously, because x does not typecheck under the context ·; ·.

• Case e = () | λx : τ.e1 | Λα : κ.e1: Holds trivially, because e is a value. Thus, we can let v = e and
so e→? v in zero steps and erase(v) = erase(e).

• Case e = πie1 | case e1 x.e2 x.e3 | e1 e2 | fix e1 | e1[t] | unpack e1 as α, x in e2 | peel e1 as
αh, αt, x in e2: Holds vacuously, because erase(e) is not a value.

8

• Case e = (e1, e2) | ini e1 | pack τ1, e1 as τ2 | roll e1 as τ : By inspection of the erasure rules
and the value forms, if erase(e) is a value then erase(ei) must be a value for all i (i = 1, 2 for the
pair case, and i = 1 for the rest). By induction and inspection of the typing rules (which show that
if e typechecks under ·; ·, then so does ei), ei →? vi and erase(ei) = erase(vi). Thus, by the typed
operational semantics, e →? v (where v = (v1, v2) | ini v1 | pack τ1, v1 as τ2 | roll v1 as τ), and
by the erasure rules, erase(e) = erase(v).

• Case e = unroll e1: By inspection of the erasure rules, if erase(unroll e1) is a value, then erase(e1)
is a value. By induction and inspection of the typing rules (which show that if e typechecks under ·; ·,
then so does e1), e1 →? v1 and erase(v1) = erase(e1). Thus, by the typed operational semantics,
e →? unroll v1. Since ·; · ` e : τ , by preservation and canonical forms v1 must have the form
roll v2 as µ(σ ← β)α.τ . Thus, by the typed operational semantics, unroll v1 → v2. So, we have
e →? v2. Also, by the erasure rules erase(e) = erase(e1) and erase(v1) = erase(v2). We already
know that erase(e1) = erase(v1), thus erase(e) = erase(v2) and so the lemma holds.

We next prove the key lemma, which states that erasure and evaluation commute in our enriched language.
We will make use of the above lemmas, the Canonical Forms Lemma, and the Preservation Lemma. The
Canonical Forms and Preservation Lemmas were proved in Section 2 as part of the type safety proof.

Lemma 13 (Erasure And Evaluation Commute) Let e and e′ be expressions in the typed language,
and let ·; · ` e : τ for some τ .

1. If e→ e′, then erase(e)→ erase(e′) or erase(e) = erase(e′).

2. If erase(e) = t and t→ u, then there exists an e′ such that e→? e′ and erase(e′) = u.

Proof: We prove this lemma by structural induction on the expression e.

• Case e = x: If e = x, then erase(e) = x. The lemma thus holds vacuously, because neither e nor
erase(e) take a step. This case also holds vacuously because e = x is not well typed under the empty
context.

• Case e = () | λx : τ.e1 | Λα : κ.e1: In these cases, e is a value. By Lemma 12 (value erasure), erase(e)
is also a value. The lemma thus holds vacuously, because neither e nor erase(e) take a step.

• Case e = (e1, e2): By the given erasure rules, erase(e) = (erase(e1), erase(e2)).

If e1 is not a value, then the typed operational semantics ensures e′ = (e′1, e2) for some e′1. By induc-
tion, erase(e1) → erase(e′1) or erase(e1) = erase(e′1). So by the untyped operational semantics,
(erase(e1), erase(e2)) → (erase(e′1), erase(e2)) or (erase(e1), erase(e2)) = (erase(e′1), erase(e2)).
Thus, since erase(e′) = (erase(e′1), erase(e2)), part 1 of the lemma holds.

On the other hand, if e1 is a value and e2 is not a value then the typed operational semantics ensures
e′ = (e1, e

′
2) for some e′2. By induction, erase(e2) → erase(e′2) or erase(e2) = erase(e′2).

By Lemma 12 (value erasure), erase(e1) is a value. So by the untyped operational semantics,
(erase(e1), erase(e2)) → (erase(e1), erase(e′2)) or (erase(e1), erase(e2)) = (erase(e1), erase(e′2)).
Thus, since erase(e′) = (erase(e1), erase(e′2)), part 1 of the lemma holds.

Otherwise, if e1 and e2 are both values, then e is a value. Thus part 1 holds vacuously, because e does
not take a step.

If erase(e1) is not a value, then by the untyped operational semantics

erase(e) = (erase(e1), erase(e2))→ (e′′1 , erase(e2))

for some e′′1 . By induction, e1 →? e′1 and erase(e′1) = e′′1 . Thus by the typed operational semantics,
e →? e′ = (e′1, e2). Since erase(e′) = (e′′1 , erase(e2)), part 2 of the lemma holds.

If erase(e1) is a value and erase(e2) is not a value, then by the untyped operational semantics

erase(e) = (erase(e1), erase(e2))→ (erase(e1), e′′2)

9

for some e′′2 . By induction, e2 →? e′2 and erase(e′2) = e′′2 . By Lemma 12, e1 →? e′1, where e′1 is
a value and erase(e′1) = erase(e1). Thus by the typed operational semantics, e →? e′ = (e′1, e

′
2).

Since erase(e′) = (erase(e1), e′′2), part 2 of the lemma holds.

If erase(e1) and erase(e2) are both values, part 2 of the lemma holds vacuously because erase(e)
does not take a step.

• Case e = πi e1: By the given erasure rules, erase(e) = πi erase(e1).

If e1 is not a value, then the typed operational semantics ensures that e′ = πi e′1 for some e′1. By
induction, erase(e1) → erase(e′1) or erase(e1) = erase(e′1). Thus by the untyped operational
semantics, πi erase(e1) → πi erase(e′1) or πi erase(e1) = πi erase(e′1). By the erasure rules,
erase(e′) = πi erase(e′1). Thus part 1 of the lemma holds.

If e1 is a value, then because e is well typed and because of the Canonical Forms Lemma, we
know that e1 has the from (v1, v2), where v1 and v2 are values. Thus by the typed operational
semantics, e′ = vi. By the erasure rules, erase(e1) = (erase(v1), erase(v2)). By Lemma 12
(value erasure), (erase(v1), erase(v2)) is a pair of values. By the untyped operational semantics,
erase(e) = πi erase(e1) → erase(vi) = erase(e′). Thus part 1 of the lemma holds.

If erase(e1) is not a value, then by the untyped operational semantics erase(e)→ πi e′′1 for some e′′1 . By
induction, e1 →? e′1 and erase(e′1) = e′′1 . Thus by the typed operational semantics, e→? e′ = πi e′1.
Since erase(e′) = πi e′′1 , part 2 of the lemma holds.

If erase(e1) is a value, then by Lemma 12 (value erasure) e1 →? e′1 = v where v is a value. By the
Canonical Forms Lemma, the Preservation Lemma, and the assumption that e is well typed, v must
have the form (v1, v2) where v1 and v2 are values. Thus e →? vi. Since Lemma 12 also tells us that
erase(e1) = erase(v), we know that erase(e1) = (erase(v1), erase(v2)). This is a pair of values
(Lemma 12), thus erase(e) = πi erase(e1)→ erase(vi). Thus part 2 of the lemma holds.

• Case e = ini e1 | case e1 of x.e2 x.e3 | roll e1 as τ | pack τ1, e1 as τ2 | fix e1 | e1 e2: These cases
all follow directly by the same logic as the pair and projection cases. The fix and function application
cases also require Lemma 11.

• Case e = unpack e1 as α, x in e2: We have erase(e) = (λx.erase(e2)) erase(e1).

If e1 is not a value, then part 1 of the lemma follows directly by the same logic as the pair and projection
cases.

If e1 is a value, then because e is well typed and because of the Canonical Forms Lemma, e1 must
have the form pack τ1, v as ∃α : κ.τ2, where v is a value. Thus by the typed operational semantics,
e′ = e2[τ1/α][v/x]. By Lemmas 10 and 11, erase(e′) = erase(e2)[erase(v)/x]. By the erasure rules,
erase(e) = (λx.erase(e2)) erase(v). The untyped operational semantics ensures that erase(e) →
erase(e2)[erase(v)/x] because the erasure of a value is a value (Lemma 12). Thus, part 1 of the
lemma holds.

If erase(e1) is not a value, then part 2 of the lemma follows directly by the same logic as the pair and
projection cases.

If erase(e1) is a value, then by the untyped operational semantics,

erase(e) = (λx.erase(e2)) erase(e1) → erase(e2)[erase(e1)/x] .

By Lemma 12, the typed operational semantics, the Canonical Forms Lemma, the Preservation Lemma,
and the assumption that e is well-typed, e →? e′′ = unpack (pack τ1, v as ∃α : κ.τ2) as α, x in e2,
where v is a value and erase(v) = erase(e1). Thus by the typed operational semantics, e′′ → e′ =
e2[τ1/α][v/x]. By Lemmas 10 and 11, erase(e′) = erase(e2)[erase(v)/x] = erase(e2)[erase(e1)/x].
Thus, since e→? e′, part 2 of the lemma holds.

• Case e = peel e1 as α1, α2, x in e2: This case follows directly by the same logic as the unpack
case.

10

• Case e = e1[τ]: By the erasure rules, erase(e) = erase(e1) ().

If e1 is not a value, then part 1 of the lemma follows directly by the same logic as the pair and projection
cases.

If e1 is a value, then because e is well typed and because of the Canonical Forms Lemma, e1 must
have the form Λα : κ.e2. The typed operational semantics thus ensures that e′ = e2[τ/α]. By
Lemma 10, erase(e′) = erase(e2). Also, because we know the form of e1, the erasure rules tell
us that erase(e) = λ .erase(e2) (), where is not in e2. By the untyped operational semantics,
erase(e) → erase(e2) = erase(e′). Thus, part 1 of the lemma holds.

If erase(e1) is not a value, then part 2 of the lemma follows directly by the same logic as the pair and
projection cases.

If erase(e1) is a value, then by Lemma 12, the typed operational semantics, the Canonical Forms
Lemma, the Preservation Lemma, and the assumption that e is well-typed, we know that e →?

e′′ = (Λα : κ.e2)[τ] and erase(Λα : κ.e2) = erase(e1). By the typed operational semantics,
e′′ → e′ = e2[τ/α]. By Lemma 10, erase(e′) = erase(e2). We also have

erase(e) = erase(e1) () = erase(Λα : κ.e2) () = (λ .erase(e2)) ()→ erase(e2) ,

by the erasure rules and the untyped operational semantics. Thus part 2 of the lemma holds.

• Case e = unroll e1: By the erasure rules, erase(e) = erase(e1).

If e1 is not a value, then part 1 of the lemma follows directly by the same logic as the pair and projection
cases.

If e1 is a value, then because e is well typed and because of the Canonical Forms Lemma, e1 must have
the form roll v as τ where v is a value. Thus, by the typed operational semantics, e → v. By the
erasure rules, erase(e) = erase(v). Thus, part 1 of the lemma holds.

If erase(e1) is not a value, then part 2 of the lemma follows directly by the same logic as the pair and
projection cases.

If erase(e1) is a value, then erase(e) = erase(e1) is a value. Thus erase(e) takes no steps, and so
part 2 of the lemma holds vacuously.

Finally, we prove the erasure theorem.

Theorem 14 (Erasure Theorem) If e is an expression in the typed language, v is a value in the typed
language, and e→? v, then erase(e)→?erase(v) in the untyped language. (Also, e and erase(e) have the
same termination behavior.)

Proof: The first part follows from Lemma 13 and induction on the derivation e →? v. To prove that the
termination behaviors are identical, we need to show that e terminates if and only if erase(e) terminates.
The forward direction follows directly from the first part of this Lemma and part 1 of Lemma 12. The reverse
direction follows from part 2 of Lemma 12, Lemma 13, and induction on the derivation erase(e)→? v, where
v is a value in the untyped language.

References

[1] Michael F. Ringenburg and Dan Grossman. A type system for coordinated data structures, July 2004.
Submitted for publication.

11

