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ABSTRACT

Component-based software development has increasingigdja
popularity in industry. Although correct component-ifitee us-
age is critical for successful understanding, testing, @ude of
components, interface usage is rarely specified formallgrac-
tice. To tackle this problem, we automatically extractesfiobject
state machines (OSM) for component interfaces from theuexec
tion of generated tests. Given a component such as a Ja® clas
we generate a set of tests to exercise the component andt¢ble
concrete object states exercised by the tests. Becauserttizen of
exercised concrete object states and transitions amosg ttates
could be too large to be useful for inspection, we slice cetecob-
ject states by each member field of the component and usél slice
states to construct a set of sliced OSM’s. These sliced Opid's
vide useful state-transition information for helping urstand be-
havior of component interfaces and also have potential &g
used in component verification and testing.

1. INTRODUCTION

Component-based software development has become an emer
ing discipline that manages the growing complexity of seftsv
systems [18]. In component-based software developmeftyare
components are the building blocks of a software system. nWhe
component users try to reuse an existing component in tppli-a
cations, they need to understand behavior of the companieidr-
face, such as usage rules that they are required to obey ectexp
results of some component usage scenarios. When compasent d
velopers or users test their components before being exlears
reused, they need to know whether their components behave co
rectly against some usage rules or expectations. Howevprac-
tice, component-interface-usage rules or behavioralifigaions
are usually not equipped for many components. Even if usalge r
or behavioral specifications are provided, they are oftésrinally
written in interface documentation such as Java API doctiznen
tion [17], being prone to errors or difficult to be understood

In this work, among a variety of specifications, we proposssto
the form ofobject state maching®©SM) to characterize behavior
of component interfaces and dynamically extract OSMs frato-a
matically generated tests for component interfaces. We pav-
posed OSM in our previous work [26]. A state in an OSM repre-
sents the state that a component object is in at runtime.n&itian
in an OSM represents method calls invoked through the coemon
interface transiting the component object from one stasatisher.

of a component object is characterized by the values of adisir
tively reachable fields of the component object. A concregVO

is an OSM with concrete states. Given a component, we gener-
ate a set of tests for the component and then collect all isegtc
concrete states of component objects and transitions ¢(dethlls
through component interfaces) among states. These callstdtes
and transitions are used to construct a concrete OSM; howtbee
concrete OSM is often too complicated to be useful for undads
ing. To address this problem, our previous work has proptsed
observer abstractiompproach [26]; the approach uses the return
values of observers (interface methods with non-void rsfum-
voked on a component object as an abstract state in an OSKI. Thi
paper proposes a new supplementary approach of slicingcaeten
state by each member field of the component. Different from ou
previous observer abstraction approach [26], our new @gpris
not affected by the availability or complexity of observarsom-
ponent interfaces. Our state slicing technique is inspinetiVha-

ley et al's model slicing by member fields in dynamically exting
component interfaces [21]; however, our new approach iracr
curate in characterizing component behavior and does noires

a good set of existing system tests for exercising companéstt

Yaces. In this work, we focus on components in the form of Java

classes and component interfaces in the form of public nastim
classes; however, we expect the approach could be easiiyded
to components in other forms.

The rest of this paper is organized as follows. Section 2 de-
scribes a nontrivial illustrating example. Section 3 idwoes the
formal definition of an OSM. Section 4 illustrates the auttima
approach of extracting sliced OSM’s. Section 5 discussés ma
sues of the approach and proposes future work. Section érjges
related work and Section 7 concludes.

2. ILLUSTRATING EXAMPLE

As an illustrating example, we use a nontrivial data stmecta
LinkedList class, which is the implementation of linkeddign the
Java Collections Framework, being a part of the standard liav
braries [17]. Figure 1 shows declarations of LinkedLise$ds and
some public methods that we shall refer to in the rest of this p
per (these public methods either modify object states amthm-
caught exceptions).This implementation uses doubly-linked, cir-
cular lists that have si ze field and aheader field, which acts as a

1We change thosebj ect argument types tdy| nput so that we
can guide ParaSoft Jtest 5.1 [15] (being used in our testrgtoe
described in Section 4.1) to generate better argumshtsiput is

States in an OSM can be concrete or abstract. A concrete statea class that contains an integer field



public class LinkedList extends AbstractSequenti al Li st
inplements List, Cloneable, java.io.Serializable {
private transient Entry header
= new Entry(null,
private transient int size = 0;
private static final |ong serial VersionU D
= 876323262645176354L;

null, null);

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

Li nkedList() {...}

voi d add(int index, Mylnput elenent) {...}
bool ean add(Mlnput o) {...}

bool ean addAl | (i nt index, Collectionc) {...}
voi d addFirst(Mlnput o) {...}

voi d addLast (Ml nput o) {...}

void clear() {...}

Obj ect renove(int index) {...}

bool ean remove( Ml nput o) {...}

Obj ect renoveFirst() {...}

Obj ect renpvelast() {...}

Obj ect set(int index, MyInput elenent) {...}
Object get(int index) {...}

Listlterator listlterator(intindex) {...}
Object getFirst() {...}

Figure 1: A LinkedList implementation

sentinel node. In addition, it also has a sta&ci al Ver si onUl D
field, which is used during serialization. It inheritavadCount
field from a super classbst r act Li st ; this field records the num-
ber of times the list has been structurally modified. Linkistihas
25 public methods, 321 noncomment, non-blank lines of cadd,
708 lines of code including comments and blank lines.

3. OBJECT STATE MACHINE

Figure 2: An overview of LinkedList concrete OSM (containing
only state-modifying transitions) exercised by generatetests

The object states in an OSM can be concrete or abstract. A con-
crete OSM is an OSM where all states are concrete objectstate
We have proposed several techniques to represent objées gta
our previous work [23]; we use the WholeState technique e re
resent concrete object states in this work. Given an objbet,
WholeState technique collects the values of all fields reblenh
from the object and uses these field values to represent toeate
state of the object. When we encounter a reference-typenidic
non-null value during field-value collection, we use a lirization
algorithm [23] to collect the field value as the field name @f ¢ar-
liest collected aliased field; if we cannot find any earlielteztied
aliased field for the field, we collect its value as “mutll”. Two
concrete object states are nonequivalent if their reptaiens are
different. A set of nonequivalent concrete object statesaio con-
crete object states any two of which are nonequivalent.

For example, there are 11 nonequivalent concrete objdessta
LinkedList exercised by tests generated in our test geioeratep
(Section 4.1). There are 161 transitions among these gtaohsd-
ing both state-modifying and state-preserving transsjorirhere

We have defined an object state machine for a component in ourare two exception statesndexQut Of BoundsExcept i on and

previous work [26]:

DEFINITION 1. Anobject state machin®SM)M of a compo-
nentcis a sextupleV = (I, O, S, d, \, INIT) wherel, O, andS
are nonempty sets of method callscls interface, returns of these
method calls, and states @6 objects, respective NIT € S is
the initial state that the machine is in before calling anyisuctor
method ot. § : S x I — P(S) is the state transition function and
A: S8 x I — P(O) isthe output function wherB(S) and P(O)
are the power sets of S and O, respectively. When the machine i
in a current states and receives a method calfrom 7, it moves to
one of the next states specifieddfy, ) and produces one of the
method returns given by(s, ).

When a method call in a component interface is executed, an un
caught exception might be thrown. To represent the stateendre
object is in after an exception-throwing method call, weadtice a
special type of states in an OSMxception statesAfter a method
call on an object throws an uncaught exception, the objdotas
exception state represented by the type name of the exnefith@
exception-throwing method call transits the object from ¢idject
state before the method call to the exception state.

An OSM can be deterministic or indeterministic. To help ehar
acterize indeterministic transitions, we have defined ttatistics
in a dynamically extracted OSM: transition counts and eimiss
counts [26]. Assume a transitidntransits states to s’, thetran-
sition countassociated with is the number of concrete states en-
closed ins that are transited t¢’ by t. Assumem is the method
call associated with, theemission counéssociated witls andm
is the number of concrete states enclosed &md being at entries
of m (but not necessarily being transited 49. If the transition
count of a transition is equal to the associated emissiontcdie
transition is deterministic and indeterministic othemvis

NoSuchEl ement Except i on. Figure 2 shows a concrete OSM (con-
taining only state-modifying transitions) exercised bpgted testg.
We have observed that the concrete OSM is too complex to be use
ful for inspection.

To reduce the complexity of an OSM, we shall extract an ab-
stract OSM containing abstract states instead of conctatess
An abstract stateof an object is defined by aabstraction func-
tion [14]; the abstraction function maps each concrete statato a
abstract state. In this work, for each member field of a corapgn
we define an abstraction function that maps each concretetsta
an abstract state characterized by the values of those fiedds-
able from the member field. The next section describes thalslet
of the state slicing approach.

4. SLICED-OSM EXTRACTION

Given a Java class, we automatically generate a set of wsts f
extensively exercising object states within a (small) sc¢Pec-
tion 4.1). During the execution of the generated tests, ige shch
exercised concrete object state by member fields and cohstou
stract OSM’s (Section 4.2). For a member field with a refegenc
type, we additionally conduct structural abstraction oa shiced
state to further abstract primitive field values reachabbenfthe
member field (Section 4.3).

4.1 Test Generation

Given a Java class, we first use Parasoft Jtest 5.1 [15] (a com-
mercial Java testing tool) to generate method argumentsdoh

2\We display OSM's by using the Grappa package, which is part of
graphviz [9].



Set testgen(Set thirdPartyTests, int maxlterNum {

public method of the class. Jtest generates a small set dfohet Set newTests = new Set();
arguments and invoke public methods with these argumetds af Runtinelnfo runtinelnfo = runAndCol | ect (thirdPartyTests);
invoking class constructors. For example, Jtest 5.1 géeetao Set nonEgAr gLists = runtinel nfo. get NonEqAr gsLi st s();
tests for exercisingdd( Myl nput el ement) : Set frontiers = runtimelnfo.getAfterlnitNonEqQbj States();
for(int i=1;i<=maxlterNum && frontiers.size()>0;i++) {

Test 1: Set newTestsForCurlter = new Set();

Myl nput t0 = new Myl nput (0); foreach (objState in frontiers) {

Li nkedLi st THI' S = new Li nkedLi st (); foreach (args in nonEgArgLists) {

bool ean RETVAL = THI S. add(tO0); Test newTest = nmakeTest(obj State, args);
Test 2: newTest sFor Cur |l t er. add( newTest ) ;

Myl nput t0 = new Myl nput (7); newTest s. add( newTest) ;

Li nkedLi st THI S = new Li nkedList(); }

bool ean RETVAL = THI S. add(tO0);
runtimel nfo = runAndCol | ect (newTestsForCurlter);

Jtest also allows the user to configure whether to generdteatu frontiers = runtimelnfo.get NewNonEqQbj St at es() .
ues as method arguments. For the sake of simplicity in itiisig ];et urn newTest s-
results, we configure Jtest 5.1 not to generate null argurzsdues } '

for LinkedList.
A list of arguments for a method consists of all arguments re-
quired for invoking the method. Two lists of arguments foretihod Figure 3: Pseudo-code of the test-generation algorithm.
are equivalent if the concrete state of each argument innstdifit
is equivalent to the concrete state of the correspondingnaegt

in the second list. If an argument is of a primitive type, its¢ Test 4 nout 0 = | nout (7) -

crete state is represented by its primitive values. If anment is E’%’nﬂggu o }Hrngwnecvpfi gklau stQ):
of Java built-inst ri ng, I nt eger, or another primitive-type wrap- bool ean RETVAL = THI'S. add(t0);

per, the concrete state of the argument is represented bhats M/lnput t1 = new M/Input(0);

acter strings or corresponding primitive value. If argutsere of boolean RETVALL = THI S. add(t1);

other reference types, we use the WholeState techniquerifotes 4.2 State Slicing

in Section 3) for comparing their state equivalence. Given a concrete state and a member field of the class, we pro-
We use the Rostra tool (developed in our previous work [22, duce an abstract state represented by the value of the méeider

23]) to monitor the execution of the test class generatedtést J  and the values of all those fields reachable from the membdr fie

and generate new tests based on collected method argurifeets.  if the member field is of a reference type. For example, in tie e

pseudo-code of our test-generation algorithm is present&iy- of Tests 1 and 2, th&H S object’s concrete states are represented

ure 3 (adapted from our previous work [22]). The test gein@mat by the following object-field values:

algorithm receives a set of third-party generated tests (&test- Concrete object state at the end of Test 1:
generated tests) and a maximum iteration number that sgecifi rsn'oéf;im .

how many iterations we shall use to grow concrete objecestat  serj al ver si onUl D=876323262645176354;

We first run these third-party generated tests and collectime header . el enent =nul | ;

information from their execution; the collected runtimdéoima- header . next. el ement . v=0;

header . next . next =header ;

tion includes the set of all nonequivalent non-construatethod header . next . pr evi ous=header :

argument lists and nonequivalent object states exercisedgithe header . pr evi ous=header . next ;

execution. ) _
Then in the first iteration, the frontier set (containing tisect Cg:f:tle object state at the end of Test 2:

states to be fully exercised) includes those nonequivaates at modCount =1;

exits of constructors exercised by the third-party teste iMrate seri al Versi onUl D=876323262645176354;

each object state in the frontier set and each argumenn likeiset header. el ement=null;

of nonequivalent non-constructor-method argument listsaised header . next . next =header -

by the third-party tests. For each combination of an objetesind header . next . previ ous=header;

an argument list, we construct a test by invoking the cooading header . previ ous=header . next;

method with the argument list on the object state. We exeallite  When we slice these concrete object states bythe field, both
constructed tests and collect runtime information. In thbss- abstract-state representations aiieZe=1; " and these two nonequiv-
quent iteration, the frontier set includes those nonedemtastates ~ alent concrete states are mapped to the same abstract/At&e.
exercised by the new tests but not exercised by any test i-pre W€ generate abstract states at the entry and exit of a me#tiod ¢

. . - . : : we generate a transition (characterized by the method fralt)
ous iterations. We continue the iterations until we havehed the the abstract state at the method entry to the abstract staite a

maximum iteration number or the frontier set contains n@dbj  method exit. Then we can construct an abstract OSM from test
states. ] ] i ) . executions. Figure 4 shows a LinkedList OSM sliced byghee

_ For the LinkedList example, we configure the maximum itera- field (displaying also exception states and transitionkeéan). Fig-

tion number as two. For illustration purpose, let us assugre h  yre 5 shows a LinkedList OSM sliced by thedcount field (with-

that third-party tests contain only two tests (Tests 1 anith@)we out displaying exception states or transitions to themjle allow
have shown in the beginning of this section. Then in the fiesai the user to configure whether to display exception stategrand
tion, we generate Tests 1 and 2; in the second iteration, werge  itions to them in a sliced OSM. By default, we do not display
Tests 3 and 4 shown as below: state-preserving transitions in a sliced OSM in order tes@ne a

Test 3: succinct view. In Figure 4, the transition starting from tio@
Wi npLt 10 = new Winput(9); st(): We do not show the LinkedList OSM sliced by the
bool ean RETVAL = THI S. add(t0); ' serial VersionUl D field in this paper because the class
Myl nput t1 = new Myl nput(7); does not modifyseri al Ver si onUl D and the extracted OSM is
bool ean RETVAL1 = THI S. add(t1); trivial.



& Field size sliced OSM of LinkedL ist

<init=()

addFirst(mo)

i zdd(io,m1) a0d{ma)
Layout addLastima)
Print
= remove(ii)
Quit add(il,m1) set(i0,m1y | listteratorio)
gEL(ID)

Add (07 ml v 7 )[4
Addi0:1;m1 0744
[2is]

listlterator(io)

IndexOutOfBoundsException

removelast()
getFirst()

removerirst()
getlast()

remaovelast])
clear()
remowverRirst()

remove({m0) remove(il)

NoSuchElementException

addFirst{ma)
add(m0)
addLast{md)

remove(il) add(i,m1) add(idm1)

Figure 4: A LinkedList OSM sliced by the si ze field

“I NI T state is marked withxi ni t >(), which represents a con-
structor call. In general, each transition edge in an OSMasked

with a simplified representation of the method name and tigea
that correspond to the method calls of the transition. Whenet

are multiple nonequivalent argument lists of the same nuktitam-
siting one state to another, we group them into one singtesitra
tion edge. This grouping mechanism can be viewed as a form of
abstraction on transitions. When the user move the mous®rcur
over the edge, the details of method calls are displayed.efkor
ample, the leftmost edge in Figure 4 shows the simplified otkth
name and signature fardd(i nt index, Myl nput elenent):
add(i 0, mi), where each parameter is represented as the com-
bination of the first letter of its type name and its parameteler
(starting from 0). The details of method calls in this lefoshtran-
sition are:

add(i 0:7; mL.v:7;)?/-[4]4]
add(i0:1;ml.v:0;)?/-[44]
[8/8]

wherent. v represents the field of the second argument, argu-
ment values or argument’s field values are shown followiedy thr-
gument names or argument’s field names separated’bgrfid dif-
ferent arguments or fields are separated jBy For succinctness,
we do not display the “nabull” value for a non-null reference-type
field (“not_null” assignments are described in Section 3). A line
of description for method calls is in the form et?/mr![tc/ec]
wherem is the method call name and argument values,is the
return value if any (if a return is void or the method call threoan
exception, we display the return value as “-" and we do not dis
play “"), tc is the transition count, anec is the emission count
(the descriptions of transition counts and emission coargsde-
scribed in Section 3). In the bottom line of the detailed desion,

we summarize the total number of transition counts and éomiss
counts for all the method calls in the transition. When th¢hoe
calls in the transition exercise all existing argumentsli&ir the
method, we additionally display “ALLARG"”, such as in the details
for arenove(nD) in Figure 5. To present a more succinct view,
we group calls of different methods with the same startiragest
and ending state into a single transition edge if these rdethls
satisfy the following two properties: (1) the calls of eachthod
exercise all existing argument lists for the method (digpthwith
“ALL _ARG"); (2) the calls of each method are deterministic (their
transition counts are equal to their emission counts). Roeter-

& Field modCount sliced OSM of LinkedList

<init=()
maodCount=0;

add(iom1)

modCount=1;

clear()
addFirstma)
add{m0)
addLast{mi)

removeFirst()
cleari)
addFirstim)
removel ast()
ddfmi)
Last(m)

remowe(id) add(iom1) remove(m0)

remove (m0.yv:0;)?/true! (206
remove({m0.y. 7,12/ true! (206
ALL_ARGS [417]

modCount=2;

[{]

(NI [v]

Figure 5: A LinkedList OSM sliced by the nodCount field

ministic transitions, we highlight their simplified methodmes
and signatures in bold font. For example, one edgeeabve( D)

is highlighted in central Figure 4. This indeterminism icaties that
invokingr emove( nD) on a linked list containing one element does
not necessarily make the linked list empty. For example, s
case is to remove an element with the value of O from a linkstd li
containing an element with the value of 7.

Extracted sliced OSM’s provide succinct views for summariz
ing interesting state-transition behavior exhibited bymponent.
For example, by inspecting and exploring Figure 4, we can con
veniently understand the conditions of throwing uncaugitep-
tions, which often indicate the sequencing constraintssifigia
component. For example, amdexQut Of BoundsExcept i on is
thrown when invokingyet (i 0) immediately after invoking a con-
structor. Previous research in inferring sequencing caimgs [1,
21, 27] could be effective in inferring this simple consttabut
might not be able to infer more complex constraints exthtig



& Field header sliced OSM of LinkedList

<init=()

header.element=null;
header.next=header;
header previous=header,

adcFirst{mn)
add(m0)
addLast{mD)

removelast()
clear()
removeFirst()

add(iom1) remove(mo) remove(io)

rermove io:0;) ety 7,11 2/24]
rerovein: o) ety ;I 2/24]
[24r24]

header.element=null;
header next element w=-,

header next.next=header,
header next.previous=header,
neader previous=header nex,

addFirstm)
add(m0}
addLast(m0)

add(i0,m1})

header.element=null;
header next element w=-,
header next.next.element.v=-;
header.next.next.next=header;
header next next.previous=header next;
header next.previous=header,
header previous=header next.next;

Figure 6: A LinkedList OSM sliced by the header field after
structural abstraction

our approach. One such a complex constraint is that if wekvo
a constructoradd( n0) , r enovelLast (), and finallyget (i 0) , an
| ndexQut OFf BoundsExcept i on is thrown. The reasons are that
previous research in inferring sequencing constraints doecon-
sider the internal states of a component but only the seguanmier
among method calls invoked through a component interface.

By looking into the details of those transitions leading he t
I ndexQut Of BoundsExcept i on state, we can understand that if a
method argument is an integer index to a linked list, it shal-
erally fall into the scope between zero and the size of theHBiat
one difference has caught our attentiadd(i 0, nt) in the left-
most of Figure 4 is not grouped with other method calls with in
dex arguments on the second-to-leftmost edge of Figurech, asi
renove(i 0) andset (i 0, mni); this indicates that all argument
lists for methods on the second-to-leftmost edge leadshee=0; ”
state to the f‘ndexQut Of BoundsExcept i on” state, but not all ar-
gument lists foradd(i 0, ml) lead to the exception state. By in-
specting their details, we found that, to avoid the exceptibei 0
argument foradd(i 0, nl) should satisfy(0 <= i0 && i0 <=
si ze()) but thei 0 argument for the methods on the second-to-
leftmost edge should satisfy0 <= i0 & i 0 < size()). We
also found thati st 1t er at or (i 0) needs to satisfy the same con-
straint asadd(i 0, ni). We have confirmed these small distinc-
tions among exception-throwing conditions by browsingaJaR|
documentation [17].

4.3 Structural Abstraction

ter we apply structural abstraction éeader -sliced states in the
end of Tests 1 and 2, we produce the same abstract state as belo

header .
header .
header .
header .
header .

el ement =nul | ;

next . el enent . v=-;
next . next =header ;
next . previ ous=header;
previ ous=header . next;

In the representation of abstract states, we replace ahfalies of
primitive types with “~". In fact, we have found that the gesited
abstract states have a one-to-one correspondence withates s
sliced by thesi ze field. For example, thaeader -sliced state af-
ter structural abstraction in the end of Tests 1 and 2 coorefp
to the “si ze=1; " state. Figure 6 shows a LinkedList OSM sliced
by theheader field after structural abstraction (without display-
ing exception states or transitions to them). This OSM igeiily
useful for another implementation of a linked list that dneshave
asi ze field but computes the size on the fly from theader field
when the size’s value is needed. For other data structuobsasua
binary tree, onai ze-sliced abstract state might map to more than
one sentinel-node-sliced abstract states after struetisraction.

5. DISCUSSION AND FUTURE WORK

In some classes, some member fields might be closely coupled
and we might prefer to slice states by multiple member fiahds i
stead of a single member field. We can use concept analysig-to ¢
egorize member fields into groups based on field-accessmatte
by member methods using concept analysis [5]. Then we cea sli
states by these field groups and use sliced states to carsitoed
OSM's.

Like other dynamic inference techniques [1,7,11, 21, 25 (2@
quality or complexity of an extracted sliced OSM dependsten t
executed tests besides the characteristics of the usedenéeit.
There are two controllable configurations on the tests gdedr
by our approach: method arguments and the maximum iteration
number. When we use another third-party tool to generatee mor
method arguments for a method but keep the same maximum it-
eration number as two, the sliced OSM'’s for LinkedList in Fig
ure 4, 5, and 6 would be kept mostly the same (details assdciat
with transitions might grow though) but theader -sliced OSM
before structural abstraction would grow rapidly. When week
the same method arguments but increase the maximum iteratio
number, the sliced OSM’s in Figure 4, 5, and 6 would grow lihea
For example, in Figure 4, there will be new transitions stgrfrom
the bottom-right i ze=2; ” state similar to the ones starting from
the “si ze=1, " state.

Static analysis techniques can be used to identify somdfiinsu
ciency of generated tests for extracting sliced OSM's. Bane
ple, because Jtest 5.1 generates only an empty collectiomant
for addAl | (i nt index, Collection c),theaddA | method
is dynamically identified as a state-preserving method foexa
tracted sliced OSM’s. Existing static techniques for mdtparity
analysis [2,16] can identifgddAl | not to be state preserving; then
we can augment Jtest-generated tests with non-emptyctiohear-

When we slice two concrete object states in the end of Tests 1 9Uments fomddAl I .

and 2 by theneader field, these two nonequivalent concrete ob-
ject states are still mapped to two different abstract sta#éer we
slice all exercised concrete object states bytbeader field, we
reduce 11 concrete object states to 7 abstract states, whose
sponding OSM is still complex. Inspired by Korat's objecaph
isomorphism [3], we conducstructural abstractionby keeping
only structural information among object fields but igngrihose
primitive field values in a sliced state. The underlyingaatile for
this technique is that object states sharing the same oiaph
structure often exhibit certain common behavior. For eXermgif-

Although in this paper we primarily investigate the extractof
sliced OSM's to help understand component behavior. There a
other promising applications of extracted OSM’s. For exkwe
can extract sliced OSM’s from existing generated tests se ¢ae
task of test inspection. We can use extracted OSM’s to gaiste t
generation using existing finite-state-machine-basetihtesech-
niques [13], use new generated tests to further improveaeed
OSM's, and then use new improved OSM'’s to generate more new
tests and so forth. During iterations, any new generated tés



olating existing inferred properties (e.g. OSM'’s) can blected
for inspection [25]. These iterations form a feedback loeween
test generation and specification inference proposed iprenfous
work [24].

One promising research direction for exploiting the power o
sliced OSM's in testing and verification is to extrapolatesesn
states and transitions based on observed states anditnasisithen
the prescribed component behavior is not limited to obsktore.
For example, in Figure 4, we can predict the structure ofitams
around the unseers!‘ ze=3; ” state or other unseen states.

Once we have extrapolated sliced OSM's, we can perform con-
formance checking between OSM'’s and an actual implementati
which is similar to conformance checking between abstrates
machines and an actual implementation [8]. We can also explo
ways of translating properties captured by OSM’s to the form-
derstood by existing program model checking tools [4, 2@] ase
existing tools to verify programs against their extracte8Ms.
Note that finding counterexamples does not necessarilysexXmags
in programs but might expose insufficiency of originally geated
tests for OSM extraction. These counterexamples can hakrgee
new tests to augment existing generated tests.

6. RELATED WORK

Our previous work develops the observer abstraction approa
for extracting OSM’s (called observer abstractions) fromit-test
executions [26]. The observer abstraction approach usegtarn
values of observers invoked on a concrete object state asetbs
state representation, whereas our new approach in this paps
the values of a member field in a concrete object state asaabstr
state representation. Unlike the observer abstractioroaph, our
new approach does not require the availability of (goodeoless.
The complexity of an observer abstraction depends on thexcha
teristics of its corresponding observers, whereas the ity of
a sliced OSM depends on the characteristics of its correpgn
member field. Observer abstractions help investigate hehes-
lated to the return values of observers and this type of behés/
not explored in our new approach. In the LinkedList examle,
contrast to four sliced OSM'’s generated by our new approéeh,
observer abstraction approach generates 18 observeactisis.
One observer isnt si ze() ; therefore, the extracted ze() ob-
server abstraction is exactly the same assbute-sliced OSM.

From system-test executions, Whaley et al. dynamicallyaekt
Java component-interface models, each of which accesseartie
field [21]. They statically determine whether a method isadest
modifying one. In their extracted models, they assume that t
same state-modifying method transits an object to the sastesat
state. This assumption makes the extracted models lessatecu
than our approach. Ammons et al. mine protocol specification
the form of a finite state machine from system-test execsatjah
Although their approach uses data dependence to extraviargl
API method calls, it does not use component internal statesde
the sequence order among APl method calls for learning reodel
Both Whaley et al. and Ammons et al.’s approaches usuallyireq
a good set of system tests for exercising component inesfac
whereas our approach receives a given component and geserat
a set of tests to exercise component’s object states in d stogle.
Because their approaches do not consider object stateriafum
but just sequence order among API method calls, applyingl&/ha
et al.'s approach on our generated unit tests would yieldhapbdete
graph of methods that modify the same object field and apglyin
Ammons et al.'s approach on our generated unit tests woeld gi
complete graph of all methods in the component interface.

Yang and Evans infer temporal properties in the form of the

strictest pattern any two methods can have in executioesri].
Similar to Whaley et al. and Ammons et al.’s approachesr tqei
proach considers only sequence order among method catiewtit
considering internal states of a component, whereas ounagip
use sliced states to construct OSM'’s, which encoded moreatec
sequencing constraints. In addition, their approach densise-
quencing relationship between two methods, whereas ouoapip
considers state-transition relationship among multipéhods.

Ernst et al. develop Daikon to dynamically infer likely imants
from test executions [7]. These invariants describe theresl
relationships among the values of object fields, argumanis re-
turns of a single method in a component interface, whereas ou
sliced OSM’s describe state-transition relationships ragnmulti-
ple methods in a component interface and use the values @ fiel
reachable from a member field to represent object stateskdHen
and Diwan discover algebraic specifications from the exeoudf
automatically generated unit tests [11]. Their discovesiggbraic
specifications usually present a local view of relationshiptween
two methods, whereas our sliced OSM’s present a global view o
relationships among multiple methods.

Corbett et al. develop Bandera to extract finite-state nsodel
from Java source code for model checking [4]. Given a prop-
erty, Bandera’s slicing component removes control poixsi-
ables, and data structures that are irrelevant for checkimgrop-
erty. For each member field of a component, our approach dynam
ically slices object states that are reachable from the neeffiid
and constructs a sliced OSM. Given a definition of an abstract
Bandera’s abstraction-based specializer transformsilres code
into a specialized version by replacing concrete operatioml tests
on relevant concrete data with abstracted versions onaaibsizl-
ues. Our approach conducts structural abstraction onedstimte
by mapping all primitive values in the state to the same abstr
value.

Grieskamp et al. allow the user to define indistinguishsbili
properties to group infinite states in abstract state mashinto
equivalence classes, called hyperstates [10]. Their tmoemen-
tally produces finite state machines by executing absttat# ma-
chines. Our approach use the values of a member field to group
concrete object states into abstract states in a sliced OSM.

Kung et al. statically extract object state models fromskmirce
code and use them to guide test generation [12]. An objets sta
model is in the form of a finite state machine: the states are de
fined by value intervals over object fields, which are derifreth
path conditions of method source; the transitions are dérly
symbolically executing methods. Our approach dynamiceXy
tracts sliced OSM'’s from test executions and supports a michér
range of classes than Kung et al's approach. For exampleg Ktun
al.’s approach could not extract any state models forhdwder
field becauséeader 's values cannot be characterized by value in-
tervals, which are usually applicable for primitive nuneefields.
Their approach could not extract any model for theleCount
field because there is no usable path condition for this antégld
in the source code. Because of the code complexity, theioaph
would have difficulties in symbolically deriving transitis for the
states extracted from the only path condition usable foir tye-
proach:(si ze==0) .

Turner and Robson use finite state machines to specify the be-
havior of a class [19]. The states in a state machine are define
the values of a subset or complete set of object fields. Timsitra
tions are method names. Although both their specified fitiites
machines and our sliced OSM’s are in a similar form, we auto-
matically extract state machines from test executionsredsthey
manually specify state machines for a class. Edwards develn
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