Automatically Identifying Special and Common Unit Tests
Based on Inferred Statistical Algebraic Abstractions

Tao Xie David Notkin
Department of Computer Science & Engineering, Universityashington, Seattle, WA 98195, USA
{t aoxi e, not ki n}@s. washi ngt on. edu

Technical Report UW-CSE-04-08-03
August 2004

Abstract mon cases. The main complementary approach is to use
one of the automatic unit test generation tools to generate a
Common and special test inputs can be created to ex-large number of test inputs to exercise a variety of behav-
ercise some common and special behavior of the class un4ors of the class. With a priori specifications, the exeatio
der test, respectively. Although manually created tests ar of these test inputs can be automatically verified. In addi-
valuable, programmers often overlook some special or evention, among generated tests, special and common tests can
common test inputs. We have developed a new approach fobe identified based on specifications and then these iden-
automatically identifying special and common unit tests fo tified tests can be used to augment existing manual tests.
a class without requiring any specification. Given a class, However, in practice, specifications are often not writtgn b
we automatically generates test inputs and identifies com-programmers. Without a priori specifications, it is imprac-
mon and special tests among the generated tests. Programtical for programmers to manually inspect and verify the
mers can inspect these identified tests and use them to augeutputs of such a large number of test executions. Conse-
ment existing tests. Our approach is based on statistical quently programmers do not have an efficient way to iden-
algebraic abstractions, program properties (in the form of tify common and special tests.
algebraic specifications) dynamically inferred from test e
ecutions. We use statistical algebraic abstractions tacha
acterize program behavior and identify special and common
tests. Our initial experience has shown that many interest-
ing test inputs could be identified among a large number of
generated tests.

In this paper, we present a new approach for automati-
cally identifying special and common object-oriented unit
tests from automatically generated tests without reggirin
specifications. Programmers can inspect these identified
tests for verifying their correctness and understandinog pr
gram behavior. They can use these identified tests to aug-
ment existing tests.

Our new approach is based on dynamically inferred pro-
gram properties, calledtatistical algebraic abstractions
Different from previous work on dynamic property infer-

In unit testing, the class under test might exhibit spe- ence [12, 17], statistical algebraic abstractions inf&irg
cial and common program behavior when it is exercised by our approach are not necessarily universally true among all
different test inputs. For example, intuitively a bounded- test executions; atatistical algebraic abstractiors asso-
stack class exhibits common behavior when the stack is nei-ciated with the counts of its satisfying and violating in-
ther empty nor full, but might exhibit some special behav- stances during test executions. The abstraction is an equa-
ior when the stack is empty or full. Special and common tion that abstracts the program’s runtime behavior (uguall
test inputs can be created to exercise some special and condescribing interactions among method calls); the equation
mon behavior of the class under test, respectively. Althoug is syntactically identical to an axiom in algebraic specifi-
manually written unit tests for classes play an importalgro cations [14]. We characterize@mmon propertyvith a
in software development, they are often insufficient to ex- statistical algebraic abstraction whose instances arélynos
ercise some important common or special behavior of thesatisfying instances and characterizerdversal property
class: programmers often overlook some special or bound-with a statistical algebraic abstraction whose instances a
ary values and sometimes even fail to include some com-all satisfying instances. Then, for each common property,

1 Introduction

public class LinkedList {

public LinkedList() {...} Abstraction
public void add(int index, Cbject elenment) {...} templates
public bool ean add(oject o) {...}

1L

public bool ean addAll (int index, Collectionc) {...} .
public void addFirst(Cbject o) {...} Class i
public void addLast(Cbject o) {...} bytecode :> Test { | Method-call Statistical
public void clear() {...} H generation | ! composition inference
public Qoject renove(int index) {...} M i
public bool ean renove(oject o) {...}
public Object renmoveFirst() {...} @
public Object renoveLast() {...}
“ommon or
universal

public oject set(int index, Cbject elenent) {...} =I|
C

public oject get(int index) {...}
properties

\ Test
identification

a 3
} Special Common
Figure 1. A LinkedList implementation l, = g

e - P iy B

we sample and select a special test (violating instancejdand Figure 2. An overview of special and common
common test (satisfying instance). For each universalprop test identification

erty, we sample and select a common test (satisfying in-

stance). Programmers can inspect both the selected tests

and their associated properties. approach relies on a set of algebraic-abstraction tengplate
The rest of this paper is organized as follows. Section 2 hre_defined by us; these templates encode common forms
presents a nontrivial illustrating example. Section 3silu of axjoms in algebraic specifications: equality relatidpsh
trates our new approach for identifying special and common gmong two neighboring method calls and single method
tests based on statistical algebraic abstractions. $eétio ca|ls. The outputs of the approach are a set of common
presents our initial experience on applying the approach.ang special tests and their corresponding properties. The
Section 5 reviews related WOI’k, and Section 6 concludes. approach Comprises four Steps: test generation, method-
call composition, statistical inference, and test iderui
2 Example tion. The step of test generation first generates diffelgmt r
resentative argument values for each public method of the
class (based on JCrasher [7], a third-party test generation
tool), and then dynamically and iteratively invokes diéfet
method arguments on each non-equivalent receiver-object
state (our previous work [24] develops techniques for de-
termining object-state equivalence). The step of method-
call composition monitors and collects method executions
to compose two method calid andn® forming a method-
call pair if mL’s receiver-object statafter invoking mi is
equivalent tar2’s receiver-object stateeforeinvoking n.

public Listlterator listlterator(intindex) {...}
public Ooject getFirst() {...}

As anillustrating example, we use a nontrivial data struc-
ture: a LinkedList class, which is the implementation of
linked lists in the Java Collections Framework, being a part
of the standard Java libraries [22]. Figure 1 shows declara-
tions of LinkedList’'s public methods. This implementation
uses doubly-linked, circular lists that haveiaze field and
a header field, which acts as a sentinel node. It inherits
anmodCount field from a super clasabstract Li st ; this

field records the number of times the list has been struc- . .
. . . : The composed method-call pair is used in the step of sta-
turally modified. LinkedList has 25 public methods, 321 .~ ~". . : :
tistical inference as if the two method calls in the pair were

noncomment, non-blank lines of code, and 708 lines of code. ;) L
including comments and blank lines. Given the bytecode quked in a row on the same receiver. Th_e step of statisti-
of LinkedList, our approach automatically generate a large cal_mferepce Uses method—ca]l pairs and smglc_a methasl call
set of tests (10025 tests); among these generated tests, o !nstanuate and check against the abst_ractlon templa_tes
approach identifies 26 special tests and 62 common tests, his step produces a set of common or universal properties.

. o . . : The step of test identification identifies common and speciall
These identified tests are associated with 30 umversalproptests based on these properties. In the next section. we first
erties and 52 common properties. brop) !

describe predefined abstraction templates and then dbastr
these four steps in detalils.
3 Approach
3.1 Abstraction Templates
Figure 2 shows the overview of our approach for iden-
tifying special and common tests. The input to our ap- Dwyer et al.’s work [10] and Ernst et al.'s work [12] de-
proach is the bytecode of the (Java) class under test. Ouwelop a set of patterns and grammars for temporal properties

and operational abstractions, respectively. Inspiredbir t
work, we develop a set of abstraction templates for alge-
braic abstractions. We have looked into a non-trivial set of
manually written algebraic specifications from the web and
found that a majority of manually written axioms are usu-
ally equations whose left-hand side (RHS) contains a con-
stant or information related to the right-hand side (LHS).
Usually an axiom’s LHS or RHS involves method-call pairs
besides individual method calls.

We use f(S, args).state and (S,
args).retval to represent the receiver state and
method return after invoking a methédn a receiver with
argumentar gs, where the receiver of a method call is

s0: f(S, argslgtate
sO': f(S, argslktate =S

sl: f(S, argslitate ==const

s2: g(f(S, args1¥tate args2)state == argsl.i

s3: g(f(S, args1¥tate args2)state == args2.i

s4: g(f(S, argsl¥tate args2)state ==1(S, argslktate

s5: g(f(S, args1¥tate args2)state == const

s5': g(f(S, argslktate args2)state==S

s6: g(f(S, argsl¥tate args2)state ==g(S, args2htate

s7: g(f(S, args13tate args2)state ==f(g(S, args2xtate argsl)state
s8: g(f(S, argsl¥tate args2)state ==1(S, args2)tate

s9:9(f(S, argsl3tate args2)state g(S, argslitate

s10:9(f(S, args13tate args2)state==g(f(S, args2xtate argsl)state
s11:9(f(S, args13tate args2)state==1(g(S, argslktate args2)state

treated as the first method argument (but a constructor does Figure 3. Algebraic-abstraction templates for

not have a receiver). Thestate and.retval expres-
sions denote the state of the receiver (caleethod-exit
statg after the invocation and the result of the invocation,
respectively. We adopt the notation following Henkel and
Diwan [17].

Definition 1 A method-call pair f (S, argsl), g(S,
args2)), represented asg(f(S, argsl).state,
args2), is a pair of a method calf (S, argsl) and
a method callg(S', args2), where these two method
calls are invoked in a row on the same receiver, Vifls,
args1) being invoked first.

g(f(S, argsl).state, args2).retval is
the same asg(S, args2).retval and g(f(sS,
argsl).state, args2).state is the same ag(Ss',
args2).retval.

Figure 3 show the algebraic-abstraction templates (sO
- s11) for the method-exit state of a method-call pair or
method call. We can derive the algebraic-abstraction tem-
plates (rl - r11) for the return of a method-call pair or
method call by replacing thest at e postfix of s1 - s11
with . retval (but sO’ and s5' do not have correspond-
ing templates for the method return). Except for Tem-
plate sO’, all templates are equations. For the sake of
brevity, we call these templates as equations without dis-
criminating Template 0’. Basically Template sO shoivs
is astate-preserving net hod, which does not mod-
ify the receiver’'s object state, and Template sO’ shéws
is ast at e- nodi fyi ng met hod, which modifies the re-
ceiver’s object state. In each of Template r1, s0O, sO’ and s1,
the LHS of the equation is a single method call. In each
of the remaining templates, the LHS of the equation is a

method-exit states

e a constant, represented@amst , such as in Template
rl, s1, r5, and s5. A constant canbeept i on, indi-
cating throwing an uncaught exception. For example,
an instantiation of Template r5 idd(n0) . r et val

== true.

an argument of the first or second method call,
represented aargsl.i or args2.i (wherei in-
dicates theith argument), such as in Template
r2, s2, r3, and s3. For example, an instanti-
ation of Template sO’ is ndexOf (add(S, 0.1,
nml_1).state, nD_2).retval i0.1, where a
method parameter is represented as the combination
of the first letter of its runtime type name and its pa-
rameter order (starting from 0) followed by1” if the
method is the first one in the method pair or followed
by “_2" if the method is the second one.

an method-exit state or return value of a method-call
pair or method call derived from the entities of the
LHS, such as the remaining templates.

There are two extensions to abstraction templates: con-
ditional extension and difference extension. The condi-
tional extension adds a condition for the LHS of a tem-
plate. The existing implementation of our approach con-
siders only conditions that describe the equality relation
ship among arguments from the first and second method
calls in the LHS. The implemented conditional extensions
for method-exit state are represented as:

scl: g(f(S, args13tate args2)state

== RHS where (argsl.i == args2.j)

method-call pair. The RHS of an equation can be the fol- We similarly derive conditional extensions for method re-

lowing forms:

e the method-entry state of the first method call in the
LHS, represented aS, such as in Template sO, sO’
and s5’. For example, an instantiation of Template sO’
isrenmoveFirst(S).state ! = Sin the LinkedList
example.

turns. For example, one instantiation of conditional exten

sions is

contai ns(add(S, nD_1).state, nD_2).retval

== add(contains(S, nD2).state, nD.1l).retval
[where (nD_1==nD_2)].

In future work, we plan to support the following conditional

extensions: For example, foradd(bject o), three arguments
c5: g(f(S, args1ytate args2)etval == if (h(S)) RHS can be generated: Mylnput.<init>(-1).state,
where h is a state-preserving public boolean method of theMyl nput . <i ni t >(0) . st at e, and
class under test. In previous work, we had used the returnMyl nput . <i ni t>(1) . st at e.
values of observers to abstract object states during the con We then generate tests to exercise each possible combi-
struction of state transition diagrams [26]. nation of encountered non-equivalent object states and non
A difference extension is applicable for those templates equivalent method argument lists starting from the stdtes a
whose LHS is a return value with a numeric type, such aster invoking constructors. In particular, we at first genera
i nt. The difference extension that we have implemented and execute tests to exercise the states after invoking con-

are represented as : structors (the first iteration). After having executed thes
rd1: g(f(S, argsljetval, args2)etval== RHS + const tests, we might collect some more new non-equivalent ob-
For example, one instantiation of conditional extensiensi ject states that are not equivalent to any state exercised be
size(add(S, nD.1).state).retval == fore the present iteration. Then we start the next iteration
(size(S).retval + 1). to generate more tests to exercise these new non-equivalent
object states. The iterations continue until there are mo ne
3.2 Test Generation non-equivalent object states in the present iteration or we

have reached the maximum iteration number. In the illus-
trating LinkedList example, we choose the maximum itera-

In previous work [24], we propose a formal framework i b fve. The details of the test i |
for detecting equivalent object states and redundant. tests lon humber as five. The detalls ot the test-generation aigo-

We develop five techniques within this framework. In rithm have been presented in our previous work [23].

this paper, we focus on the WholeState technique. The

WholeStateechnique represents an object state by using3-3 Method-Call Composition

the whole concrete state, which comprises the values of

object fields that are reachable from the object. The tech- To instantiate the LHS or RHS of most abstractions tem-
nique compares object states to determine equivalence bylates, we need to generate a large number of method-call
performing a graph isomorphism algorithm on the repre- pairs besides individual method calls. Traditional algeédr
sentations. The “=="in the equations shown in Section 3.1 specification-based testing techniques [3,6,9, 13, 18jeikt
denotes the equivalence for object states instead of objecheighboring method calls (invoked in a row) on the same re-
identities (except that the LHS and RHS of the “==" are of ceiver as method-call pairs for the LHS or RHS of an alge-
primitive types). braic abstraction. For example, the following is a generate

A method argument listor a method call is charac- test called Test 1 whose line number is marked:
terized by the method signature and the arguments for theTest 1:
method. Two argument lists are non-equivalent iff their 1 Li nkedLi st s = new Li nkedList();
method signatures are different or some of their correspond 2 Myl nput m = new Myl nput (1) ;
ing arguments are non-equivalent. A method call has two3 s. add(m;
types of inputs: method-entry state and the method argu-4 s. get (0);
ment list. A method call has two types of outputs: the nor- 5 s. si ze();
mal return value and method-exit state. 6 s.clear();

We perform combinatorial test generation on the two Traditional techniques extract four method-call pairs:
types of inputs. We first use a third-party test genera- < 1,3 >, < 3,4 >, < 4,5 >, and< 5,6 >, where the
tion tool called JCrasher [7]) to generate non-equivalentline number is used to represent the method call in the line.
non-equivalent method argument lists. For example, To reduce the analysis cost, we compose method calls to
JCrasher generates -1, 0, and 1 for arguments with thegenerate a larger number of synthesized method-call pairs
integer type and it can generate method sequences creatinfjom the same tests; a synthesized method-call pair eghibit
values for those arguments with non-primitive types. We the same behavior as their corresponding actual methéd-cal
provide aMyl nput class as a helper class for JCrasher pair even if the two method calls in the synthesized method-
to generate values for those arguments with the Objectcall pair are notinvoked on the same receiver, or notin a row
type. TheMlnput class contains an integer field, on the same receiver. We can use a synthesized method-call
whose value is set through the argument of its constructor.pair to instantiate an abstract template in the same way as an

- _ _ _ actual method-call pair. Before we illustrate the techeiqu

When we test a class, we in fact test the interface provideth®y ¢ -5 mposing method calls to form synthesized method-call
class. The interface usually contains the public methodseflass. In . . . -
this paper, we focus on public method calls that are invokethfoutside pairs, we first introduce the definition of a method execu-
the class. tion, which has been informally referred to previously in

the paper. We view the method calls on an object as a se- In algebraic abstractions, the first method call in a
guence of object states and state transitions among themmethod-call pair is usually a method call used to construct
A method call transits the receiver from the method-entry or modify the receiver’'s object state. Therefore for ab-

state to the method-exit state. We usaethod executioto straction inference we do not produce synthesized method-
characterize the runtime information of a method call with- call pairs whose first method call is of a state-preserving
out considering the receiver’s identity. method. For example, from Test 1, we do not produce

<4, 6> abstraction inference. We dynamically determine
Definition 2 A method executiol m, S,Seniry, &, Sexit, whether a method is a state-modifying method. A method
) is a tuple of a method name, a method signature, a is a state-modifying method, if at least one of its previgusl

method-entry stat®.,.,, method arguments, a method- observed invocations modifies the receiver’s object state.
exit stateS..;;, and a return value.. The method execution
is produced by a method call $i(,+,, a). 3.4 Statistical Inference

For example, Test 1 produces the following method exe- After we collect a method execution, we instantiate the

cutions: template variables andar gs1 in the LHS of r1, s0, s0O’,

1 (<init>, (),0, (), So,v) and s1 using the method execution’s method name and sig-
2 (Mylnput.<init>, (int), §, (1), Sm, v) nature. After we generate a synthesized method-call pair,
3 (add, (Object)So, (Sm1), S1, true) we instantiate the template variabfesr gs1, g, ar gs2 in

4 (get, (int),S1, (0), S2, Sma2) the LHS of r2-11 and s2-11 using the method names and
5 (size, (),5,(), S5, 1) signatures in the synthesized method-call pair. Since the
6 (clear, (),5s, (5), 51, v) RHS of a template is either a constant or a combination

where we us@ andv to represent an empty state ancbad of some variables from the LHS, we instantiate the RHS

return value, respectively. A constructor name is shown asof a template using a constant or the information from the
<ini t>. We display the class names before method namesinstantiated LHS. After we have instantiated the LHS and

(e.g. MyInputin Line 2) unless the method is of the class RHS of an abstraction template, we get an algebraic ab-
under test. We then generate a synthesized method-call paigtraction.

based on the methOd-entry states and method-exit states of We next use the actual variable values and state repre-

two method executions. sentations in the method execution or synthesized method-
call pair to evaluate each generated algebraic abstraction
to determine whether they satisfy or violate the abstrac-
tion. Unless the RHS of an abstraction isBttepti on
constant, an exception-throwing method execution or syn-
thesized method-call pair in the LHS always violates the
abstraction. We consider the method call or method-call
pairs instantiating the LHS of an abstraction (calléts in-
stancg as amabstraction instance We record the statistics

of the abstraction satisfactions and violations by abstrac
instances. In particular, we maintain two counters, a satis
faction counter and a violation counter, for each algebraic
abstraction.

Definition 3 A synthesized method-call paif f (S,
argsl), g(S, args2)), represented asg(f(S,
argsl).state, args2) is a pair of a method call (S,
argsl) and a method calg(S , args2), where these
two method calls produce two method executiphs, S,
argsl, Sepit1, 1) and { g, s2, S', args2,Sezit2, r2), and
Sezit1 and S’ are equivalent.

From the method executions of Test 1, we can produce
four synthesized method-call pairs in the same form of those
four method-call pairs extracted by traditional techngue
In addition, we can use the WholeState technique [23] de-
scr_ibed in Section 3.2 to determine threg sets of equivalentDefinition 4 Astatistical algebraic abstractigm, s, v,)
2g{jei\(j;;setﬁ::eesgfﬁ(};héséioj%c’t%tgsgd\;{vi 4(}_;5”8;?)?“22 :22 fol is a tuple of of an algebraic abstractian a count of satis-

. " A . fying instances,,, and a count of violating instances.
lowing three additional synthesized method-call pairsrfro fying “ 9 =

Test1:< 3,5 >, < 3,6 >, and< 4,6 >. Note that if In addition, we associate two abstraction instances with
a method execution throws an uncaught exception, we dog,ch statistical abstraction: the first-encounteredfgitis

not put it as the first method call in a synthesized method-jnstance and the first-encountered violating instance. We
call pair because the method-exit state might be corrupted,ge these instances in test selection, which is described in

already. the next section.

2Because the value efodCount in Sy is different from the one in 3We can additionally consider the method call or method-gais in-
So, the WholeState technique determined them not to be eguiydiow- stantiating the RHS of an abstraction (calRHS instanceas a part of the
ever our other techniques based on an equals method [23kenattional abstraction instance, but we can always derive the RHSniostgiven an
equivalence [9, 17], we can determifig and.S4 to be equivalent. LHS instance and the abstraction.

A conditional abstractioris an abstraction instantiated

As another example, our approach identifies the follow-

from a conditional extension of a template. We enumerateing common property with 174 satisfying count and 5 vio-

all possible conditional abstractions with different camb

nations of same-type arguments from two method calls in

a synthesized method-call pair. difference abstractiois

lating count (instantiated from Template s0’):
removeFirst(S).state =S
This common property shows that invokingnoveFi r st

an abstraction instantiated from a difference extensicm of modifies the receiver’s state most of the time but not al-
template. We transform a difference abstraction to the formways. In fact, when we look into the violating instance:
Oof LHS - RHS == const, argsl.i or args2.i. removeFirstKinit>().state).statethe instance throws an No-
To reduce overhead, if we have not encountered any in-SuchElementException exception (recall that our approach
stance that satisfies an abstraction, we do not create er storconsider an uncaught-exception-throwing method call-as vi
the entry of the abstraction in the memory. Therefore when olating any abstraction unless the RHS is an exception con-
the test generation and execution terminates, each abstracstant).
tion in memory has at least one satisfying instance. When the underlying abstraction of a universal property
is a conditional abstraction, the property is called a condi
tional universal property. For example, a conditional eniv
sal properties identified by our approach have 672 satigfyin

After the test generation and execution terminates, we count (instantiated from Template s8):
produce a list of statistical algebraic abstractions. We se set(add(S, i0l,m11).state, i02,m12).state
lect special tests and common tests based on these abstrac- == add(S, i02,m12).state [where (i0l==i02)]
tions. Before we introduce the definitions of a special test This property shows that after we add an elemeit1 to a
and common test, we first present the definitions of a uni- SPecific index of the LinkedList and then set the same index
versal property and a common property. Intuitively a uni- With another element:1.2, the resulting state is equivalent
versal property is a statistical algebraic abstractiomeit to the one resulting from directly adding the element 2
any violating instance and a common property is a statistica t0 the index.
algebraic abstraction with a minority of violating instasc

3.5 Identification of Special and Common Tests

Definition 7 A special tests a violating instance of a com-
mon property, or a satisfying instance of a conditional uni-

Definition 5 A universal propertys a statistical algebraic
versal property.

abstraction(a, s, v,), where—22— == 100%.

Satva

Definition 8 A common tesis a satisfying instance of a

For example, our approach identifies the following uni- .
common or universal property.

versal property with 336 satisfying count and 0 violating
count (instantiated from an difference extension of Tem-
plate r5):

size(add(S, mQ).state).retval == (size(S).retval + 1)
This universal property shows that invokiagd(Obj ect
o) always increases the list size.

We consider a satisfying instance of a conditional uni-
versal property to be a special test instead of a common test
because the instance satisfies the condition where there ex-
ists an equality relationship between two arguments.

For each common property, we select the first-
encountered violating instance as the representativeeof th
property’s special tests. For each conditional universal
property, we select the first-encountered satisfying imcsta
as the representative of the property’s special tests. For
each common or universal property, we select the first-
encountered satisfying instance as the representativeof t
nproperty’s common tests. Since a selected test for one prop-
erty might be the same as another selected test for another
property, we also group those properties associated wath th
same test together. Programmers can inspect these selected
tests and their associated satisfied or violated properties

Definition 6 A common propertys a statistical algebraic
abstraction(a, s4, v), whereSaSTava >t (50% <

t < 100%, andt is a user-defined threshold value close
to 100%).

We choose’0% threshold value by default in our ap-
proach. For example, our approach identifies a commo
property with 11 satisfying count and 1 violating count (in-
stantiated from Template r6):
contains(clear(S).state, nf).retval == contains(S, mg).retval
This common property shows that when we invekear
and then invokeont ai ns to see whether the LinkedList]
contains an element0_2, the return value (in fact being 4 EXperience
f al se) is mostly equal to the return value of directly in-
vokingcont ai ns with the same elememt0_2. In the vio-
lating instance, the initial statg contains the element0_2
so the LHS is true.

We have developed a tool, called Sabicu, to prototype
our approach and applied the tool on different types of ap-
plications, especially those complex data structures. &ve d

Table 1. Quantitative results for identifying special and c ommon tests

axiom axioms | time properties tests
subject meth | space | iter | consd | (sec) | univ | c-univ | common | generated| special| common | both
BinSearchTree 4 240 3 91 0.85 6 8 6 91 5 11 1
4 91 1.22 6 8 5 136 4 11 1
5 91 1.22 6 8 5 136 4 11 1
BinomialHeap 12 | 2364 3 515 3.11 20 4 44 512 27 39 2
4 515 | 12.34| 17 4 52 1865 31 42 2
5 515 | 37.55| 17 4 46 4749 28 40 2
FibonacciHeap 9 1242 3 289 1.30 13 8 54 110 33 39 3
4 289 191 12 3 41 173 27 32 3
5 289 3.60 9 3 56 341 32 34 3
HashMap 13 | 2022 3 467 | 17.83| 66 8 98 2605 44 88 6
4 467 | 82.61| 61 8 90 10137 41 85 10
5 467 | 449.42| 61 8 82 17277 38 84 10
HashSet 8 792 3 222 221 38 11 46 235 20 44 2
4 222 4.46 37 12 35 469 18 43 5
5 224 6.98 31 12 20 729 15 41 5
LinkedList 21 | 6048 3 682 7.48 72 21 46 1009 21 88 1
4 724 | 26.04| 41 16 69 3249 42 82 0
5 729 | 93.10| 30 15 37 10025 26 62 0
SortedList 24 | 7827 3 701 | 12.17| 69 12 55 1135 28 88 1
4 744 | 40.89| 40 10 59 3655 32 73 0
5 749 | 146.96| 30 9 60 11278 28 61 0
TreeMap 15 | 1968 3 535 | 22.64| 67 8 97 3331 44 89 6
4 535 | 100.10| 62 8 98 12751 44 89 10
5 535 | 421.83| 62 8 83 17191 40 86 10
IntStack 4 252 3 33 0.49 2 0 2 76 2 3 1
4 33 1.17 2 0 5 241 4 5 2
5 33 2.97 2 0 5 766 4 5 2
UBStack 10 | 1077 3 115 0.71 11 1 5 183 5 16 0
4 115 0.96 11 1 5 274 5 16 2
5 115 1.17 11 1 4 365 4 15 0

scribe our initial experience on several benchmarks of com-exercise the new nonequivalent object states, the We esti-
plex data structures in this section. The full details of the mate the size of axiom space to explore based on the num-
results have been posted on our project tvdthe first and ber of methods and the number of abstraction templates.
second columns of Table 1 show the name of the benchmarkThe third column of Table 1 shows our estimation. The
programs and the number of public methods used for testfourth column shows the maximum iteration number where
generation and test identification. Most of these classes ar the data in the same row are produced. The fifth column
complex data structures that are used to evaluate Korat [4]shows the number of axiom candidates (statistical abstrac-
and later used to evaluate our previous work on redundanttions) that our prototype considered and kept in memory
test detection [24]. during test generation and execution. We have observed that
We ran Sabicu on a Linux machine with a Pentium IV the the number of axiom candidates is not very large and
2.8 GHz processor with 1 GB of RAM running Sun’s JDK they often remain stable across iterations. The sixth colum
1.4.2. In particular, we ran Sabicu on the benchmarks with Shows the real time (in seconds) spent on test generation,
three different maximum iteration numbers: 3, 4, and 5. To execution, and identification. We have observed that for
avoid taking too long during one iteration, we set a time- relatively large programs the real time grows to be around
out of five minutes for each iteration; if within five minutes three to five times when setting one more maximum iter-

Sabicu could not finish generating and running tests to fully ation. Columns 7, 8, and 9 show the number of universal
properties, conditional universal properties, and common

4http://ww.cs.washington.edu/homes/taoxie/sabicu/ properties, respectively. The last four columns show the

number of all generated tests, identified special tests-ide 6 violating count (instantiated from Template r5):
tified common tests, and tests identified to be both special isMember(push(S, iQ).state, i02).retval == true
and common with respect to different properties, respec- [where (iQ1==i0_2)]
tively. We have observed that a higher maximum iteration This property shows the bounded feature of the stack im-
number (more tests) can falsify universal properties neigér ~ plementation; if a stack is unbounded, this property would
from earlier iterations but usually cannot produce more uni be a universal property. In the special test for this propert
versal properties because the maximum iteration number ofthe UBStack stat§ is already full; pushing an element (that
three shall be able to instantiate all possible universgbpr does not exist in the stack already) on a full stack does not
erties (described by our abstraction templates). However,change the stack state. InvokingMenber with the same
the number of conditional universal properties or common element as the argument does not gealse return value.
properties can be increased or decreased when we increase We have found that conditional universal properties are
the maximum iteration number. On one hand, a universalnot too many but often indicate interesting and importantin
property can be demoted to be common properties or con-teractions between two methods. Indeed, even without us-
ditional universal properti€s On the other hand, a prop- ing our approach, programmers can use heuristics for gener-
erty does not have a high enough number of satisfying in- ating tests to exercise two neighboring method calls whose
stances can be promoted to be a common property wherarguments share the same type. However, our approach can
more satisfying instances are generated in a higher itera-help find most interesting call pairs among them automati-
tion. Although the number of all generated tests increasescally. We also found that some universal properties are not
over iterations, the number of identified special and com- really universally satisfiable because the generateddests
mon tests remains relatively manageable; although the abnot sufficient enough to violate them. However, we cannot
solute number of identified tests is relatively high for larg afford to generate exhaustive tests with higher bound (re-
benchmarks, the average number of identified tests for eacHlected by the maximum iteration number). In future work,
method is not high. we plan to use universal properties or conditional universa
We manually inspect identified tests and their associatedproperties to guide generating a narrowed set of tests for
properties; we especially focus on special tests. Becduse othese properties instead of a bounded exhaustive set.
space limit, we will describe only several interesting itlen Although we manually inspected identified tests and
fied tests that we observed during inspection in this section found many interesting behaviors exposed by them, it is stil
One common property for LinkedList has 171 satisfying unclear how well these identified tests can detect faults. In
count and 21 violating count (instantiated from Template future work, we plan to do experiments to assess the fault

s6): detection capability of identified tests comparing to adl th
addFirst(remove(S, m@).state, m(P).state == generated tests or those tests selected using other st sel
addFirst(S, m@).state [where (md==mQ.2)] tion techniques.

In the common test of this property, the LinkedList stéte
in the abstraction does not hold the element to be removeds Related Work
(m0-1 orm0-2). Butin the special tesf holds the element

to be removed.]]] Our work is mainly related to three lines of work: ab-
Another common property for LinkedList has 204 satis- giraction generation (also called specification infergnce

f)1ir1tg cg)unt and 21 violating count (instantiated from Tem- ¢;oictical program analysis, and test selection.
plate r5):

contains(remove(S, mb).state, m®).retval == false
[where(mQ1==mQ2)]
_In the common test of this property, the LinkedList stalte Ernst et al. [12] develop the Daikon tool to infer op-
in the abstraction hold no or only one element to be removed ___ . . .
erational abstractions from test executions. Our abstrac-

(m0_1 or m0_2). But in the special tes§ holds more than . . S .)
one (same) element to be removed. This property showstlon template technique is inspired by their use of gram

.) . . mars in abstraction inference. Their abstractions are uni-
that LinkedList can hold multiple equivalent elements un-

like & set (the property would be a universal property for a versal properties, whereas statistical algebraic atigirec
. property property in our approach contain both universal and common prop-
set implementation).

erties. Keeping track of statistical algebraic abstratics
One common property for UBStack, a bounded stack

. . | has h o ore tractable than keeping track of statistical operation
storing unique elements, has has 47 satisfying count an bstractions, because the candidate space of operatinnal a

Sa universal property can be demoted to a conditional oneusecae stractions Is mugh larger. . .
do not infer or report a conditional universal property tissnferred by a Henkel and Diwan develop a tool to infer algebraic spec-

universal property ifications for a Java class [17]. Their tool generates a large

5.1 Abstraction Generation

number of terms, which are method sequences, and evalmain. Our approach is basically a type of partition test-
uates these terms to find equations, which are then genering. We divide test input domain for a method-call pair or
alized to axioms. Since their technique does not rely on method call into subdomains based on each inferred statisti
abstraction templates, their technique is able to inferemor cal algebraic abstraction: satisfying tests and violat#sts.
types of abstractions than the ones predefined in our ap- When a priori specifications are provided for a program,
proach. For example, their technique can infer an abstrac-Chang and Richardson use specification coverage criteria to
tion whose RHS contains a method call that is not presentselect a candidate set of test cases that exercise newsspect
in the LHS. However, their inferred abstractions are all uni of the specification [5]. Given algebraic specificationsia pr
versal properties, containing no common properties. Theirori, several testing tools [3, 6,9, 13, 19] generate ancckele
tool does not support conditional abstractions. Theirlate a set of tests to exercise these specifications. Unlike these
work [18] develops an interpreter for the algebraic specifi- black-box approaches, our approach does not require spec-
cations of a Java class, and this interpreter acts like @prot ifications a priori.

type implementation for the class. The abstractions ieferr Harder et al’s operational difference approach [16],
by either their earlier tool or our tool can be fed into this Hangal and Lam’s DIDUCE tool [15], and the operational
interpreter for debugging algebraic specifications. violation approach in our previous work [25] select tests
based on a common rationale: selecting a test if the test
5.2 Statistical Program Analysis exercises a certain program behavior that is not exhibited

by previously executed tests. The approach in this paper is

Different from the preceding abstraction inference tech- Pased on a different rationale: selecting a test as a special
nigues, Ammons et al. infer protocol specifications for a test if the test exercises a certain program behavior that is
C application program interface by observing frequent in- not exhibited by most other tests; selecting a test as a com-

teraction patterns of method calls [1]. Their inferred pro- Mon testif the test exercises a certain program behavior tha
tocol specifications are either common or universal prop- 1S €xhibited by all or most other tests. Different from these

erties. They identify those executions that violate the in- Previous approaches, our approach is not sensitive to the
ferred protocol specifications for inspection. Both theida ~ Order of the executed tests. In addition, these three pre-
our approaches use statistical techniques to infer freiquenVious approaches operates on inferred operational abstrac
behavior. Their approach operates on protocol specifica-tions [12], whereas our approach operates on inferred alge-
tions, whereas our approach operates on algebraic specifiPraic specifications. _ _ o
cations. Their later work [2] uses concept analysis to auto- ~ Dickinson et al. [8] use clustering analysis to partition
matically group the violating executions into highly sieril ~ €xecutions based on structural profiles, and use sampling
clusters. They found that by examining clusters instead of t€Chniques to select executions from clusters for observa-
individual executions, programmers can debug a specifica-ions. Their experimental results show that failures often
tion with less work. Our approach selects one represestativ Nave unusual profiles that are revealed by cluster analysis.
test from each subdomain defined by statistical algebraicAlthough our approach shares a similar rationale with their
abstractions, instead of presenting all violating or $yitigy approach, our approach operates on black-box algebraic ab-
tests to programmers. This can also reduce the inspectiorptractions instead of structural behavior.
effort for a similar reason.

Engler et al. [11] infer bugs by statically identifyingin- 6 Conclusion
consistencies from commonly observed behavior. We dy-
namically ider_ltif_y special tests, which might expose bugs, \We have proposed a new approach for automatically
based on deviations from common properties. Liblit et al. jgentifying special and common tests out of a large number
[20] use remote program sampling to collect dynamic infor- ¢ 5\ ;tomatically generated tests. The approach is based on

mation of a program from executions experienced by end giatistically true (not necessarily universally true) gram
users. They use statistical regression techniques toifdent rgperties, called statistical algebraic abstractions. dat

predicates that are highly correlated with program fadure g0 a set of abstraction templates, which we can instan-
In our approach, we use statistical inference to identiBsp ate to form commonly seen axioms in algebraic specifi-

cial tests and common tests. cations. Based on the predefined abstraction templates, we
_ perform a statistical inference on collected method caitb a
5.3 Test Selection method-call pairs to obtain statistical algebraic absivas.

We develop a way to characterize special and common tests

In partition testing [21], a test input domain is divided based on statistical algebraic abstractions. We sample and

into subdomains based on some criteria, and then we carselect special tests and common tests together with their as
select one or more representative inputs from each subdosociated abstractions for inspection. Our initial expere

has shown that those tests and properties identified by our[13] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction
approach exposed many interesting cases.

Acknowledgments

We thank Darko Marinov for providing Korat bench-
marks and valuable feedback on an earlier version of the

paper. We acknowledge support through the High Depend-[16

ability Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

G. Ammons, R. Bodik, and J. R. Larus. Mining specifica-
tions. InProc. 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languagesages 4-16, 2002.

G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus. De-
bugging temporal specifications with concept analysis. In
Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementatigrages 182-195, 2003.

G. Bernot, M. C. Gaudel, and B. Marre. Software testing
based on formal specifications: a theory and a t@&sftw.
Eng. J, 6(6):387—405, 1991.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: auto-
mated testing based on Java predicatesPrrc. Interna-
tional Symposium on Software Testing and Analységes
123-133, 2002.

J. Chang and D. J. Richardson. Structural specification-
based testing: automated support and experimental evalu-
ation. InProc. 7th ESEC/FSHages 285-302, 1999.

H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In
black and white: an integrated approach to class-level test
ing of object-oriented programsACM Trans. Softw. Eng.
Methodol, 7(3):250-295, 1998.

C. Csallner and Y. Smaragdakis. JCrasher: an autonatic r
bustness tester for jav&oftware: Practice and Experience
34:1025-1050, 2004.

W. Dickinson, D. Leon, and A. Podgurski. Pursuing fadur
the distribution of program failures in a profile space.
Proc. 8th ESEC/FSHages 246—255, 2001.

R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented program#&CM Trans. Softw. Eng.
Methodol, 3(2):101-130, 1994.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in property specifications for finite-state verification. In
Proc. 21st International Conference on Software Engineer-
ing, pages 411-420, 1999.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. Froc. 18th ACM symposium on
Operating Systems Principlgsages 5772, 2001.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolutionlEEE Trans. Softw. Eng27(2):99—
123, 2001.

In

10

[14]

[15]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

implementation, specification, and testidg_M Trans. Pro-
gram. Lang. Syst3(3):211-223, 1981.

J. V. Guttag and J. J. Horning. The algebraic specificatif
abstract data type#icta Informatica 10:27-52, 1978.

S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. Pmoc. 24th Interna-
tional Conference on Software Engineeripages 291-301,
2002.

] M. Harder, J. Mellen, and M. D. Ernst. Improving testtesi

via operational abstraction. Proc. 25th International Con-
ference on Software Engineerimages 60-71, 2003.

J. Henkel and A. Diwan. Discovering algebraic specifica
tions from Java classes. Rroc. 17th European Conference
on Object-Oriented Programmingages 431-456, 2003.

J. Henkel and A. Diwan. A tool for writing and debugging
algebraic specifications. Broc. 26th International Confer-
ence on Software Engineeringages 449-458, 2004.

M. Hughes and D. Stotts. Daistish: systematic algebrai
testing for oo programs in the presence of side-effects. In
Proc. the International Symposium on Software Testing and
Analysis pages 53-61, 1996.

B. Liblit, A. Aiken, A. X. Zheng, and M. |. Jordan. Bug
isolation via remote program sampling. Pmoc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementationpages 141-154, 2003.

G. J. Myers. Art of Software TestingJohn Wiley & Sons,
Inc., 1979.

Sun Microsystems. Java 2 Platform, Standard Edi-
tion, v 1.4.2, API Specification. Online documentation,
Nov. 2003. http://java.sun.com j2se/ 1. 4.2/
docs/ api /.

T. Xie, D. Marinov, and D. Notkin. Improving generatiof
object-oriented test suites by avoiding redundant tesish-T
nical Report UW-CSE-04-01-05, University of Washington
Department of Computer Science and Engineering, Seattle,
WA, Jan. 2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests Ptac.
19th IEEE International Conference on Automated Software
Engineering Sept. 2004.

T. Xie and D. Notkin. Tool-assisted unit test selectimsed

on operational violations. IRroc. 18th IEEE International
Conference on Automated Software Engineerpages 40—
48, 2003.

T. Xie and D. Notkin. Automatic extraction of object-
oriented observer abstractions from unit-test executidms
Proc. 6th International Conference on Formal Engineering
Methods Nov. 2004.

