
Automatically Identifying Special and Common Unit Tests
Based on Inferred Statistical Algebraic Abstractions

Tao Xie David Notkin
Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA

{taoxie,notkin}@cs.washington.edu

Technical Report UW-CSE-04-08-03
August 2004

Abstract

Common and special test inputs can be created to ex-
ercise some common and special behavior of the class un-
der test, respectively. Although manually created tests are
valuable, programmers often overlook some special or even
common test inputs. We have developed a new approach for
automatically identifying special and common unit tests for
a class without requiring any specification. Given a class,
we automatically generates test inputs and identifies com-
mon and special tests among the generated tests. Program-
mers can inspect these identified tests and use them to aug-
ment existing tests. Our approach is based on statistical
algebraic abstractions, program properties (in the form of
algebraic specifications) dynamically inferred from test ex-
ecutions. We use statistical algebraic abstractions to char-
acterize program behavior and identify special and common
tests. Our initial experience has shown that many interest-
ing test inputs could be identified among a large number of
generated tests.

1 Introduction

In unit testing, the class under test might exhibit spe-
cial and common program behavior when it is exercised by
different test inputs. For example, intuitively a bounded-
stack class exhibits common behavior when the stack is nei-
ther empty nor full, but might exhibit some special behav-
ior when the stack is empty or full. Special and common
test inputs can be created to exercise some special and com-
mon behavior of the class under test, respectively. Although
manually written unit tests for classes play an important role
in software development, they are often insufficient to ex-
ercise some important common or special behavior of the
class: programmers often overlook some special or bound-
ary values and sometimes even fail to include some com-

mon cases. The main complementary approach is to use
one of the automatic unit test generation tools to generate a
large number of test inputs to exercise a variety of behav-
iors of the class. With a priori specifications, the executions
of these test inputs can be automatically verified. In addi-
tion, among generated tests, special and common tests can
be identified based on specifications and then these iden-
tified tests can be used to augment existing manual tests.
However, in practice, specifications are often not written by
programmers. Without a priori specifications, it is imprac-
tical for programmers to manually inspect and verify the
outputs of such a large number of test executions. Conse-
quently programmers do not have an efficient way to iden-
tify common and special tests.

In this paper, we present a new approach for automati-
cally identifying special and common object-oriented unit
tests from automatically generated tests without requiring
specifications. Programmers can inspect these identified
tests for verifying their correctness and understanding pro-
gram behavior. They can use these identified tests to aug-
ment existing tests.

Our new approach is based on dynamically inferred pro-
gram properties, calledstatistical algebraic abstractions.
Different from previous work on dynamic property infer-
ence [12, 17], statistical algebraic abstractions inferred by
our approach are not necessarily universally true among all
test executions; astatistical algebraic abstractionis asso-
ciated with the counts of its satisfying and violating in-
stances during test executions. The abstraction is an equa-
tion that abstracts the program’s runtime behavior (usually
describing interactions among method calls); the equation
is syntactically identical to an axiom in algebraic specifi-
cations [14]. We characterize acommon propertywith a
statistical algebraic abstraction whose instances are mostly
satisfying instances and characterize auniversal property
with a statistical algebraic abstraction whose instances are
all satisfying instances. Then, for each common property,

1

public class LinkedList {
public LinkedList() {...}
public void add(int index, Object element) {...}
public boolean add(Object o) {...}
public boolean addAll(int index, Collection c) {...}
public void addFirst(Object o) {...}
public void addLast(Object o) {...}
public void clear() {...}
public Object remove(int index) {...}
public boolean remove(Object o) {...}
public Object removeFirst() {...}
public Object removeLast() {...}
public Object set(int index, Object element) {...}
public Object get(int index) {...}
public ListIterator listIterator(intindex) {...}
public Object getFirst() {...}
...

}

Figure 1. A LinkedList implementation

we sample and select a special test (violating instance) anda
common test (satisfying instance). For each universal prop-
erty, we sample and select a common test (satisfying in-
stance). Programmers can inspect both the selected tests
and their associated properties.

The rest of this paper is organized as follows. Section 2
presents a nontrivial illustrating example. Section 3 illus-
trates our new approach for identifying special and common
tests based on statistical algebraic abstractions. Section 4
presents our initial experience on applying the approach.
Section 5 reviews related work, and Section 6 concludes.

2 Example

As an illustrating example, we use a nontrivial data struc-
ture: a LinkedList class, which is the implementation of
linked lists in the Java Collections Framework, being a part
of the standard Java libraries [22]. Figure 1 shows declara-
tions of LinkedList’s public methods. This implementation
uses doubly-linked, circular lists that have asize field and
a header field, which acts as a sentinel node. It inherits
a modCount field from a super classAbstractList; this
field records the number of times the list has been struc-
turally modified. LinkedList has 25 public methods, 321
noncomment, non-blank lines of code, and 708 lines of code
including comments and blank lines. Given the bytecode
of LinkedList, our approach automatically generate a large
set of tests (10025 tests); among these generated tests, our
approach identifies 26 special tests and 62 common tests.
These identified tests are associated with 30 universal prop-
erties and 52 common properties.

3 Approach

Figure 2 shows the overview of our approach for iden-
tifying special and common tests. The input to our ap-
proach is the bytecode of the (Java) class under test. Our

Figure 2. An overview of special and common
test identification

approach relies on a set of algebraic-abstraction templates
pre-defined by us; these templates encode common forms
of axioms in algebraic specifications: equality relationships
among two neighboring method calls and single method
calls. The outputs of the approach are a set of common
and special tests and their corresponding properties. The
approach comprises four steps: test generation, method-
call composition, statistical inference, and test identifica-
tion. The step of test generation first generates different rep-
resentative argument values for each public method of the
class (based on JCrasher [7], a third-party test generation
tool), and then dynamically and iteratively invokes different
method arguments on each non-equivalent receiver-object
state (our previous work [24] develops techniques for de-
termining object-state equivalence). The step of method-
call composition monitors and collects method executions
to compose two method callsm1 andm2 forming a method-
call pair if m1’s receiver-object stateafter invoking m1 is
equivalent tom2’s receiver-object statebeforeinvokingm2.
The composed method-call pair is used in the step of sta-
tistical inference as if the two method calls in the pair were
invoked in a row on the same receiver. The step of statisti-
cal inference uses method-call pairs and single method calls
to instantiate and check against the abstraction templates.
This step produces a set of common or universal properties.
The step of test identification identifies common and special
tests based on these properties. In the next section, we first
describe predefined abstraction templates and then illustrate
these four steps in details.

3.1 Abstraction Templates

Dwyer et al.’s work [10] and Ernst et al.’s work [12] de-
velop a set of patterns and grammars for temporal properties

2

and operational abstractions, respectively. Inspired by their
work, we develop a set of abstraction templates for alge-
braic abstractions. We have looked into a non-trivial set of
manually written algebraic specifications from the web and
found that a majority of manually written axioms are usu-
ally equations whose left-hand side (RHS) contains a con-
stant or information related to the right-hand side (LHS).
Usually an axiom’s LHS or RHS involves method-call pairs
besides individual method calls.

We use f(S, args).state and f(S,

args).retval to represent the receiver state and
method return after invoking a methodf on a receiver with
argumentargs, where the receiver of a method call is
treated as the first method argument (but a constructor does
not have a receiver). The.state and.retval expres-
sions denote the state of the receiver (calledmethod-exit
state) after the invocation and the result of the invocation,
respectively. We adopt the notation following Henkel and
Diwan [17].

Definition 1 A method-call pair〈 f(S, args1), g(S’,

args2)〉, represented as g(f(S, args1).state,

args2), is a pair of a method callf(S, args1) and
a method callg(S’, args2), where these two method
calls are invoked in a row on the same receiver, withf(S,

args1) being invoked first.

g(f(S, args1).state, args2).retval is
the same asg(S’, args2).retval and g(f(S,

args1).state, args2).state is the same asg(S’,
args2).retval.

Figure 3 show the algebraic-abstraction templates (s0
- s11) for the method-exit state of a method-call pair or
method call. We can derive the algebraic-abstraction tem-
plates (r1 - r11) for the return of a method-call pair or
method call by replacing the.state postfix of s1 - s11
with .retval (but s0’ and s5’ do not have correspond-
ing templates for the method return). Except for Tem-
plate s0’, all templates are equations. For the sake of
brevity, we call these templates as equations without dis-
criminating Template 0’. Basically Template s0 showsf

is a state-preserving method, which does not mod-
ify the receiver’s object state, and Template s0’ showsf

is a state-modifying method, which modifies the re-
ceiver’s object state. In each of Template r1, s0, s0’ and s1,
the LHS of the equation is a single method call. In each
of the remaining templates, the LHS of the equation is a
method-call pair. The RHS of an equation can be the fol-
lowing forms:
• the method-entry state of the first method call in the

LHS, represented asS, such as in Template s0, s0’
and s5’. For example, an instantiation of Template s0’
is removeFirst(S).state != S in the LinkedList
example.

s0: f(S, args1).state == S
s0’: f(S, args1).state != S
s1: f(S, args1).state == const
s2: g(f(S, args1).state, args2).state == args1.i
s3: g(f(S, args1).state, args2).state == args2.i
s4: g(f(S, args1).state, args2).state == f(S, args1).state
s5: g(f(S, args1).state, args2).state == const
s5’: g(f(S, args1).state, args2).state== S
s6: g(f(S, args1).state, args2).state == g(S, args2).state
s7: g(f(S, args1).state, args2).state == f(g(S, args2).state, args1).state
s8: g(f(S, args1).state, args2).state == f(S, args2).state
s9:g(f(S, args1).state, args2).state == g(S, args1).state
s10:g(f(S, args1).state, args2).state== g(f(S, args2).state, args1).state
s11:g(f(S, args1).state, args2).state== f(g(S, args1).state, args2).state

Figure 3. Algebraic-abstraction templates for
method-exit states

• a constant, represented asconst, such as in Template
r1, s1, r5, and s5. A constant can beException, indi-
cating throwing an uncaught exception. For example,
an instantiation of Template r5 isadd(m0).retval
== true.

• an argument of the first or second method call,
represented asargs1.i or args2.i (where i in-
dicates theith argument), such as in Template
r2, s2, r3, and s3. For example, an instanti-
ation of Template s0’ isindexOf(add(S, i0 1,

m1 1).state, m0 2).retval == i0 1, where a
method parameter is represented as the combination
of the first letter of its runtime type name and its pa-
rameter order (starting from 0) followed by “1” if the
method is the first one in the method pair or followed
by “ 2” if the method is the second one.

• an method-exit state or return value of a method-call
pair or method call derived from the entities of the
LHS, such as the remaining templates.

There are two extensions to abstraction templates: con-
ditional extension and difference extension. The condi-
tional extension adds a condition for the LHS of a tem-
plate. The existing implementation of our approach con-
siders only conditions that describe the equality relation-
ship among arguments from the first and second method
calls in the LHS. The implemented conditional extensions
for method-exit state are represented as:

sc1: g(f(S, args1).state, args2).state
== RHS where (args1.i == args2.j)

We similarly derive conditional extensions for method re-
turns. For example, one instantiation of conditional exten-
sions is
contains(add(S, m0 1).state, m0 2).retval

== add(contains(S, m0 2).state, m0 1).retval

[where (m0 1==m0 2)].
In future work, we plan to support the following conditional

3

extensions:
c5: g(f(S, args1).state, args2).retval == if (h(S)) RHS

where h is a state-preserving public boolean method of the
class under test. In previous work, we had used the return
values of observers to abstract object states during the con-
struction of state transition diagrams [26].

A difference extension is applicable for those templates
whose LHS is a return value with a numeric type, such as
int. The difference extension that we have implemented
are represented as :

rd1: g(f(S, args1).retval, args2).retval == RHS + const
For example, one instantiation of conditional extensions is
size(add(S, m0 1).state).retval ==

(size(S).retval + 1).

3.2 Test Generation

In previous work [24], we propose a formal framework
for detecting equivalent object states and redundant tests.
We develop five techniques within this framework. In
this paper, we focus on the WholeState technique. The
WholeStatetechnique represents an object state by using
the whole concrete state, which comprises the values of
object fields that are reachable from the object. The tech-
nique compares object states to determine equivalence by
performing a graph isomorphism algorithm on the repre-
sentations. The “==” in the equations shown in Section 3.1
denotes the equivalence for object states instead of object
identities (except that the LHS and RHS of the “==” are of
primitive types).

A method argument listfor a method call1 is charac-
terized by the method signature and the arguments for the
method. Two argument lists are non-equivalent iff their
method signatures are different or some of their correspond-
ing arguments are non-equivalent. A method call has two
types of inputs: method-entry state and the method argu-
ment list. A method call has two types of outputs: the nor-
mal return value and method-exit state.

We perform combinatorial test generation on the two
types of inputs. We first use a third-party test genera-
tion tool called JCrasher [7]) to generate non-equivalent
non-equivalent method argument lists. For example,
JCrasher generates -1, 0, and 1 for arguments with the
integer type and it can generate method sequences creating
values for those arguments with non-primitive types. We
provide aMyInput class as a helper class for JCrasher
to generate values for those arguments with the Object
type. TheMyInput class contains an integer fieldv,
whose value is set through the argument of its constructor.

1When we test a class, we in fact test the interface provided bythe
class. The interface usually contains the public methods ofthe class. In
this paper, we focus on public method calls that are invoked from outside
the class.

For example, for add(Object o), three arguments
can be generated: MyInput.<init>(-1).state,
MyInput.<init>(0).state, and
MyInput.<init>(1).state.

We then generate tests to exercise each possible combi-
nation of encountered non-equivalent object states and non-
equivalent method argument lists starting from the states af-
ter invoking constructors. In particular, we at first generate
and execute tests to exercise the states after invoking con-
structors (the first iteration). After having executed these
tests, we might collect some more new non-equivalent ob-
ject states that are not equivalent to any state exercised be-
fore the present iteration. Then we start the next iteration
to generate more tests to exercise these new non-equivalent
object states. The iterations continue until there are no new
non-equivalent object states in the present iteration or we
have reached the maximum iteration number. In the illus-
trating LinkedList example, we choose the maximum itera-
tion number as five. The details of the test-generation algo-
rithm have been presented in our previous work [23].

3.3 Method-Call Composition

To instantiate the LHS or RHS of most abstractions tem-
plates, we need to generate a large number of method-call
pairs besides individual method calls. Traditional algebraic-
specification-based testing techniques [3,6,9,13,19] extract
neighboring method calls (invoked in a row) on the same re-
ceiver as method-call pairs for the LHS or RHS of an alge-
braic abstraction. For example, the following is a generated
test called Test 1 whose line number is marked:
Test 1:

1 LinkedList s = new LinkedList();

2 MyInput m = new MyInput(1);

3 s.add(m);

4 s.get(0);

5 s.size();

6 s.clear();

Traditional techniques extract four method-call pairs:
< 1, 3 >, < 3, 4 >, < 4, 5 >, and< 5, 6 >, where the
line number is used to represent the method call in the line.
To reduce the analysis cost, we compose method calls to
generate a larger number of synthesized method-call pairs
from the same tests; a synthesized method-call pair exhibits
the same behavior as their corresponding actual method-call
pair even if the two method calls in the synthesized method-
call pair are not invoked on the same receiver, or not in a row
on the same receiver. We can use a synthesized method-call
pair to instantiate an abstract template in the same way as an
actual method-call pair. Before we illustrate the technique
of composing method calls to form synthesized method-call
pairs, we first introduce the definition of a method execu-
tion, which has been informally referred to previously in

4

the paper. We view the method calls on an object as a se-
quence of object states and state transitions among them.
A method call transits the receiver from the method-entry
state to the method-exit state. We use amethod executionto
characterize the runtime information of a method call with-
out considering the receiver’s identity.

Definition 2 A method execution〈 m, s,Sentry, a,Sexit, r
〉 is a tuple of a method namem, a method signatures, a
method-entry stateSentry, method argumentsa, a method-
exit stateSexit, and a return valuer. The method execution
is produced by a method call m(Sentry, a).

For example, Test 1 produces the following method exe-
cutions:
1 〈 <init>, (), ∅, (), S0, υ 〉

2 〈 MyInput.<init>, (int), ∅, (1),Sm, υ 〉

3 〈 add, (Object),S0, (Sm1), S1, true〉
4 〈 get, (int),S1, (0),S2, Sm2 〉

5 〈 size, (),S2, (), S3, 1 〉

6 〈 clear, (),S3, (5),S4, υ 〉

where we use∅ andυ to represent an empty state and avoid

return value, respectively. A constructor name is shown as
<init>. We display the class names before method names
(e.g. MyInput in Line 2) unless the method is of the class
under test. We then generate a synthesized method-call pair
based on the method-entry states and method-exit states of
two method executions.

Definition 3 A synthesized method-call pair〈 f(S,

args1), g(S’, args2)〉, represented as g(f(S,

args1).state, args2) is a pair of a method callf(S,
args1) and a method callg(S’, args2), where these
two method calls produce two method executions〈 f, s1, S,
args1,Sexit1, r1〉 and 〈 g, s2, S’, args2,Sexit2, r2〉, and
Sexit1 and S’ are equivalent.

From the method executions of Test 1, we can produce
four synthesized method-call pairs in the same form of those
four method-call pairs extracted by traditional techniques.
In addition, we can use the WholeState technique [23] de-
scribed in Section 3.2 to determine three sets of equivalent
object states:{S0}, {S1, S2, S3}, and{S4}2. Based on the
equivalence among object states, we can produce the fol-
lowing three additional synthesized method-call pairs from
Test 1: < 3, 5 >, < 3, 6 >, and< 4, 6 >. Note that if
a method execution throws an uncaught exception, we do
not put it as the first method call in a synthesized method-
call pair because the method-exit state might be corrupted
already.

2Because the value ofmodCount in S4 is different from the one in
S0, the WholeState technique determined them not to be equivalent; how-
ever our other techniques based on an equals method [23] or observational
equivalence [9, 17], we can determineS0 andS4 to be equivalent.

In algebraic abstractions, the first method call in a
method-call pair is usually a method call used to construct
or modify the receiver’s object state. Therefore for ab-
straction inference we do not produce synthesized method-
call pairs whose first method call is of a state-preserving
method. For example, from Test 1, we do not produce
<4, 6> abstraction inference. We dynamically determine
whether a method is a state-modifying method. A method
is a state-modifying method, if at least one of its previously
observed invocations modifies the receiver’s object state.

3.4 Statistical Inference

After we collect a method execution, we instantiate the
template variablesf andargs1 in the LHS of r1, s0, s0’,
and s1 using the method execution’s method name and sig-
nature. After we generate a synthesized method-call pair,
we instantiate the template variablesf, args1, g, args2 in
the LHS of r2-11 and s2-11 using the method names and
signatures in the synthesized method-call pair. Since the
RHS of a template is either a constant or a combination
of some variables from the LHS, we instantiate the RHS
of a template using a constant or the information from the
instantiated LHS. After we have instantiated the LHS and
RHS of an abstraction template, we get an algebraic ab-
straction.

We next use the actual variable values and state repre-
sentations in the method execution or synthesized method-
call pair to evaluate each generated algebraic abstraction
to determine whether they satisfy or violate the abstrac-
tion. Unless the RHS of an abstraction is anException

constant, an exception-throwing method execution or syn-
thesized method-call pair in the LHS always violates the
abstraction. We consider the method call or method-call
pairs instantiating the LHS of an abstraction (calledLHS in-
stance) as anabstraction instance3. We record the statistics
of the abstraction satisfactions and violations by abstraction
instances. In particular, we maintain two counters, a satis-
faction counter and a violation counter, for each algebraic
abstraction.

Definition 4 A statistical algebraic abstraction〈 a, sa, va 〉
is a tuple of of an algebraic abstractiona, a count of satis-
fying instancessa, and a count of violating instancesva.

In addition, we associate two abstraction instances with
each statistical abstraction: the first-encountered satisfying
instance and the first-encountered violating instance. We
use these instances in test selection, which is described in
the next section.

3We can additionally consider the method call or method-callpairs in-
stantiating the RHS of an abstraction (calledRHS instance) as a part of the
abstraction instance, but we can always derive the RHS instance given an
LHS instance and the abstraction.

5

A conditional abstractionis an abstraction instantiated
from a conditional extension of a template. We enumerate
all possible conditional abstractions with different combi-
nations of same-type arguments from two method calls in
a synthesized method-call pair. Adifference abstractionis
an abstraction instantiated from a difference extension ofa
template. We transform a difference abstraction to the form
of LHS - RHS == const, args1.i or args2.i.

To reduce overhead, if we have not encountered any in-
stance that satisfies an abstraction, we do not create or store
the entry of the abstraction in the memory. Therefore when
the test generation and execution terminates, each abstrac-
tion in memory has at least one satisfying instance.

3.5 Identification of Special and Common Tests

After the test generation and execution terminates, we
produce a list of statistical algebraic abstractions. We se-
lect special tests and common tests based on these abstrac-
tions. Before we introduce the definitions of a special test
and common test, we first present the definitions of a uni-
versal property and a common property. Intuitively a uni-
versal property is a statistical algebraic abstraction without
any violating instance and a common property is a statistical
algebraic abstraction with a minority of violating instances.

Definition 5 A universal propertyis a statistical algebraic
abstraction〈 a, sa, va 〉, where sa

sa+va

== 100%.

For example, our approach identifies the following uni-
versal property with 336 satisfying count and 0 violating
count (instantiated from an difference extension of Tem-
plate r5):

size(add(S, m01).state).retval == (size(S).retval + 1)
This universal property shows that invokingadd(Object
o) always increases the list size.

Definition 6 A common propertyis a statistical algebraic
abstraction 〈 a, sa, va 〉, where sa

sa+va

≥ t (50% <

t < 100%, and t is a user-defined threshold value close
to 100%).

We choose80% threshold value by default in our ap-
proach. For example, our approach identifies a common
property with 11 satisfying count and 1 violating count (in-
stantiated from Template r6):
contains(clear(S).state, m02).retval == contains(S, m02).retval
This common property shows that when we invokeclear

and then invokecontains to see whether the LinkedList
contains an elementm0 2, the return value (in fact being
false) is mostly equal to the return value of directly in-
vokingcontains with the same elementm0 2. In the vio-
lating instance, the initial stateS contains the elementm0 2

so the LHS is true.

As another example, our approach identifies the follow-
ing common property with 174 satisfying count and 5 vio-
lating count (instantiated from Template s0’):

removeFirst(S).state != S
This common property shows that invokingremoveFirst
modifies the receiver’s state most of the time but not al-
ways. In fact, when we look into the violating instance:
removeFirst(<init>().state).state, the instance throws an No-
SuchElementException exception (recall that our approach
consider an uncaught-exception-throwingmethod call as vi-
olating any abstraction unless the RHS is an exception con-
stant).

When the underlying abstraction of a universal property
is a conditional abstraction, the property is called a condi-
tional universal property. For example, a conditional univer-
sal properties identified by our approach have 672 satisfying
count (instantiated from Template s8):

set(add(S, i01,m1 1).state, i02,m1 2).state
== add(S, i02,m1 2).state [where (i01==i0 2)]

This property shows that after we add an elementm1 1 to a
specific index of the LinkedList and then set the same index
with another elementm1 2, the resulting state is equivalent
to the one resulting from directly adding the elementm1 2

to the index.

Definition 7 A special testis a violating instance of a com-
mon property, or a satisfying instance of a conditional uni-
versal property.

Definition 8 A common testis a satisfying instance of a
common or universal property.

We consider a satisfying instance of a conditional uni-
versal property to be a special test instead of a common test
because the instance satisfies the condition where there ex-
ists an equality relationship between two arguments.

For each common property, we select the first-
encountered violating instance as the representative of the
property’s special tests. For each conditional universal
property, we select the first-encountered satisfying instance
as the representative of the property’s special tests. For
each common or universal property, we select the first-
encountered satisfying instance as the representative of the
property’s common tests. Since a selected test for one prop-
erty might be the same as another selected test for another
property, we also group those properties associated with the
same test together. Programmers can inspect these selected
tests and their associated satisfied or violated properties.

4 Experience

We have developed a tool, called Sabicu, to prototype
our approach and applied the tool on different types of ap-
plications, especially those complex data structures. We de-

6

Table 1. Quantitative results for identifying special and c ommon tests
axiom axioms time properties tests

subject meth space iter consd (sec) univ c-univ common generated special common both
BinSearchTree 4 240 3 91 0.85 6 8 6 91 5 11 1

4 91 1.22 6 8 5 136 4 11 1
5 91 1.22 6 8 5 136 4 11 1

BinomialHeap 12 2364 3 515 3.11 20 4 44 512 27 39 2
4 515 12.34 17 4 52 1865 31 42 2
5 515 37.55 17 4 46 4749 28 40 2

FibonacciHeap 9 1242 3 289 1.30 13 8 54 110 33 39 3
4 289 1.91 12 3 41 173 27 32 3
5 289 3.60 9 3 56 341 32 34 3

HashMap 13 2022 3 467 17.83 66 8 98 2605 44 88 6
4 467 82.61 61 8 90 10137 41 85 10
5 467 449.42 61 8 82 17277 38 84 10

HashSet 8 792 3 222 2.21 38 11 46 235 20 44 2
4 222 4.46 37 12 35 469 18 43 5
5 224 6.98 31 12 20 729 15 41 5

LinkedList 21 6048 3 682 7.48 72 21 46 1009 21 88 1
4 724 26.04 41 16 69 3249 42 82 0
5 729 93.10 30 15 37 10025 26 62 0

SortedList 24 7827 3 701 12.17 69 12 55 1135 28 88 1
4 744 40.89 40 10 59 3655 32 73 0
5 749 146.96 30 9 60 11278 28 61 0

TreeMap 15 1968 3 535 22.64 67 8 97 3331 44 89 6
4 535 100.10 62 8 98 12751 44 89 10
5 535 421.83 62 8 83 17191 40 86 10

IntStack 4 252 3 33 0.49 2 0 2 76 2 3 1
4 33 1.17 2 0 5 241 4 5 2
5 33 2.97 2 0 5 766 4 5 2

UBStack 10 1077 3 115 0.71 11 1 5 183 5 16 0
4 115 0.96 11 1 5 274 5 16 2
5 115 1.17 11 1 4 365 4 15 0

scribe our initial experience on several benchmarks of com-
plex data structures in this section. The full details of the
results have been posted on our project web4. The first and
second columns of Table 1 show the name of the benchmark
programs and the number of public methods used for test
generation and test identification. Most of these classes are
complex data structures that are used to evaluate Korat [4]
and later used to evaluate our previous work on redundant-
test detection [24].

We ran Sabicu on a Linux machine with a Pentium IV
2.8 GHz processor with 1 GB of RAM running Sun’s JDK
1.4.2. In particular, we ran Sabicu on the benchmarks with
three different maximum iteration numbers: 3, 4, and 5. To
avoid taking too long during one iteration, we set a time-
out of five minutes for each iteration; if within five minutes
Sabicu could not finish generating and running tests to fully

4http://www.cs.washington.edu/homes/taoxie/sabicu/

exercise the new nonequivalent object states, the We esti-
mate the size of axiom space to explore based on the num-
ber of methods and the number of abstraction templates.
The third column of Table 1 shows our estimation. The
fourth column shows the maximum iteration number where
the data in the same row are produced. The fifth column
shows the number of axiom candidates (statistical abstrac-
tions) that our prototype considered and kept in memory
during test generation and execution. We have observed that
the the number of axiom candidates is not very large and
they often remain stable across iterations. The sixth column
shows the real time (in seconds) spent on test generation,
execution, and identification. We have observed that for
relatively large programs the real time grows to be around
three to five times when setting one more maximum iter-
ation. Columns 7, 8, and 9 show the number of universal
properties, conditional universal properties, and common
properties, respectively. The last four columns show the

7

number of all generated tests, identified special tests, iden-
tified common tests, and tests identified to be both special
and common with respect to different properties, respec-
tively. We have observed that a higher maximum iteration
number (more tests) can falsify universal properties inferred
from earlier iterations but usually cannot produce more uni-
versal properties because the maximum iteration number of
three shall be able to instantiate all possible universal prop-
erties (described by our abstraction templates). However,
the number of conditional universal properties or common
properties can be increased or decreased when we increase
the maximum iteration number. On one hand, a universal
property can be demoted to be common properties or con-
ditional universal properties5. On the other hand, a prop-
erty does not have a high enough number of satisfying in-
stances can be promoted to be a common property when
more satisfying instances are generated in a higher itera-
tion. Although the number of all generated tests increases
over iterations, the number of identified special and com-
mon tests remains relatively manageable; although the ab-
solute number of identified tests is relatively high for large
benchmarks, the average number of identified tests for each
method is not high.

We manually inspect identified tests and their associated
properties; we especially focus on special tests. Because of
space limit, we will describe only several interesting identi-
fied tests that we observed during inspection in this section.
One common property for LinkedList has 171 satisfying
count and 21 violating count (instantiated from Template
s6):

addFirst(remove(S, m01).state, m02).state ==
addFirst(S, m02).state [where (m01==m0 2)]

In the common test of this property, the LinkedList stateS

in the abstraction does not hold the element to be removed
(m0 1 or m0 2). But in the special test,S holds the element
to be removed.

Another common property for LinkedList has 204 satis-
fying count and 21 violating count (instantiated from Tem-
plate r5):

contains(remove(S, m01).state, m02).retval == false
[where(m01==m0 2)]

In the common test of this property, the LinkedList stateS

in the abstraction hold no or only one element to be removed
(m0 1 or m0 2). But in the special test,S holds more than
one (same) element to be removed. This property shows
that LinkedList can hold multiple equivalent elements un-
like a set (the property would be a universal property for a
set implementation).

One common property for UBStack, a bounded stack
storing unique elements, has has 47 satisfying count and

5a universal property can be demoted to a conditional one because we
do not infer or report a conditional universal property thatis inferred by a
universal property

6 violating count (instantiated from Template r5):
isMember(push(S, i01).state, i02).retval == true

[where (i01==i0 2)]
This property shows the bounded feature of the stack im-

plementation; if a stack is unbounded, this property would
be a universal property. In the special test for this property,
the UBStack stateS is already full; pushing an element (that
does not exist in the stack already) on a full stack does not
change the stack state. InvokingisMember with the same
element as the argument does not get afalse return value.

We have found that conditional universal properties are
not too many but often indicate interesting and important in-
teractions between two methods. Indeed, even without us-
ing our approach, programmers can use heuristics for gener-
ating tests to exercise two neighboring method calls whose
arguments share the same type. However, our approach can
help find most interesting call pairs among them automati-
cally. We also found that some universal properties are not
really universally satisfiable because the generated testsare
not sufficient enough to violate them. However, we cannot
afford to generate exhaustive tests with higher bound (re-
flected by the maximum iteration number). In future work,
we plan to use universal properties or conditional universal
properties to guide generating a narrowed set of tests for
these properties instead of a bounded exhaustive set.

Although we manually inspected identified tests and
found many interesting behaviors exposed by them, it is still
unclear how well these identified tests can detect faults. In
future work, we plan to do experiments to assess the fault
detection capability of identified tests comparing to all the
generated tests or those tests selected using other test selec-
tion techniques.

5 Related Work

Our work is mainly related to three lines of work: ab-
straction generation (also called specification inference),
statistical program analysis, and test selection.

5.1 Abstraction Generation

Ernst et al. [12] develop the Daikon tool to infer op-
erational abstractions from test executions. Our abstrac-
tion template technique is inspired by their use of gram-
mars in abstraction inference. Their abstractions are uni-
versal properties, whereas statistical algebraic abstractions
in our approach contain both universal and common prop-
erties. Keeping track of statistical algebraic abstractions is
more tractable than keeping track of statistical operational
abstractions, because the candidate space of operational ab-
stractions is much larger.

Henkel and Diwan develop a tool to infer algebraic spec-
ifications for a Java class [17]. Their tool generates a large

8

number of terms, which are method sequences, and eval-
uates these terms to find equations, which are then gener-
alized to axioms. Since their technique does not rely on
abstraction templates, their technique is able to infer more
types of abstractions than the ones predefined in our ap-
proach. For example, their technique can infer an abstrac-
tion whose RHS contains a method call that is not present
in the LHS. However, their inferred abstractions are all uni-
versal properties, containing no common properties. Their
tool does not support conditional abstractions. Their later
work [18] develops an interpreter for the algebraic specifi-
cations of a Java class, and this interpreter acts like a proto-
type implementation for the class. The abstractions inferred
by either their earlier tool or our tool can be fed into this
interpreter for debugging algebraic specifications.

5.2 Statistical Program Analysis

Different from the preceding abstraction inference tech-
niques, Ammons et al. infer protocol specifications for a
C application program interface by observing frequent in-
teraction patterns of method calls [1]. Their inferred pro-
tocol specifications are either common or universal prop-
erties. They identify those executions that violate the in-
ferred protocol specifications for inspection. Both their and
our approaches use statistical techniques to infer frequent
behavior. Their approach operates on protocol specifica-
tions, whereas our approach operates on algebraic specifi-
cations. Their later work [2] uses concept analysis to auto-
matically group the violating executions into highly similar
clusters. They found that by examining clusters instead of
individual executions, programmers can debug a specifica-
tion with less work. Our approach selects one representative
test from each subdomain defined by statistical algebraic
abstractions, instead of presenting all violating or satisfying
tests to programmers. This can also reduce the inspection
effort for a similar reason.

Engler et al. [11] infer bugs by statically identifying in-
consistencies from commonly observed behavior. We dy-
namically identify special tests, which might expose bugs,
based on deviations from common properties. Liblit et al.
[20] use remote program sampling to collect dynamic infor-
mation of a program from executions experienced by end
users. They use statistical regression techniques to identify
predicates that are highly correlated with program failures.
In our approach, we use statistical inference to identify spe-
cial tests and common tests.

5.3 Test Selection

In partition testing [21], a test input domain is divided
into subdomains based on some criteria, and then we can
select one or more representative inputs from each subdo-

main. Our approach is basically a type of partition test-
ing. We divide test input domain for a method-call pair or
method call into subdomains based on each inferred statisti-
cal algebraic abstraction: satisfying tests and violatingtests.

When a priori specifications are provided for a program,
Chang and Richardson use specification coverage criteria to
select a candidate set of test cases that exercise new aspects
of the specification [5]. Given algebraic specifications a pri-
ori, several testing tools [3, 6, 9, 13, 19] generate and select
a set of tests to exercise these specifications. Unlike these
black-box approaches, our approach does not require spec-
ifications a priori.

Harder et al.’s operational difference approach [16],
Hangal and Lam’s DIDUCE tool [15], and the operational
violation approach in our previous work [25] select tests
based on a common rationale: selecting a test if the test
exercises a certain program behavior that is not exhibited
by previously executed tests. The approach in this paper is
based on a different rationale: selecting a test as a special
test if the test exercises a certain program behavior that is
not exhibited by most other tests; selecting a test as a com-
mon test if the test exercises a certain program behavior that
is exhibited by all or most other tests. Different from these
previous approaches, our approach is not sensitive to the
order of the executed tests. In addition, these three pre-
vious approaches operates on inferred operational abstrac-
tions [12], whereas our approach operates on inferred alge-
braic specifications.

Dickinson et al. [8] use clustering analysis to partition
executions based on structural profiles, and use sampling
techniques to select executions from clusters for observa-
tions. Their experimental results show that failures often
have unusual profiles that are revealed by cluster analysis.
Although our approach shares a similar rationale with their
approach, our approach operates on black-box algebraic ab-
stractions instead of structural behavior.

6 Conclusion

We have proposed a new approach for automatically
identifying special and common tests out of a large number
of automatically generated tests. The approach is based on
statistically true (not necessarily universally true) program
properties, called statistical algebraic abstractions. We de-
velop a set of abstraction templates, which we can instan-
tiate to form commonly seen axioms in algebraic specifi-
cations. Based on the predefined abstraction templates, we
perform a statistical inference on collected method calls and
method-call pairs to obtain statistical algebraic abstractions.
We develop a way to characterize special and common tests
based on statistical algebraic abstractions. We sample and
select special tests and common tests together with their as-
sociated abstractions for inspection. Our initial experience

9

has shown that those tests and properties identified by our
approach exposed many interesting cases.

Acknowledgments

We thank Darko Marinov for providing Korat bench-
marks and valuable feedback on an earlier version of the
paper. We acknowledge support through the High Depend-
ability Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifica-
tions. InProc. 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 4–16, 2002.

[2] G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus. De-
bugging temporal specifications with concept analysis. In
Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 182–195, 2003.

[3] G. Bernot, M. C. Gaudel, and B. Marre. Software testing
based on formal specifications: a theory and a tool.Softw.
Eng. J., 6(6):387–405, 1991.

[4] C. Boyapati, S. Khurshid, and D. Marinov. Korat: auto-
mated testing based on Java predicates. InProc. Interna-
tional Symposium on Software Testing and Analysis, pages
123–133, 2002.

[5] J. Chang and D. J. Richardson. Structural specification-
based testing: automated support and experimental evalu-
ation. InProc. 7th ESEC/FSE, pages 285–302, 1999.

[6] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In
black and white: an integrated approach to class-level test-
ing of object-oriented programs.ACM Trans. Softw. Eng.
Methodol., 7(3):250–295, 1998.

[7] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for java.Software: Practice and Experience,
34:1025–1050, 2004.

[8] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In
Proc. 8th ESEC/FSE, pages 246–255, 2001.

[9] R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented programs.ACM Trans. Softw. Eng.
Methodol., 3(2):101–130, 1994.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in property specifications for finite-state verification. In
Proc. 21st International Conference on Software Engineer-
ing, pages 411–420, 1999.

[11] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. InProc. 18th ACM symposium on
Operating Systems Principles, pages 57–72, 2001.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE Trans. Softw. Eng., 27(2):99–
123, 2001.

[13] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction,
implementation, specification, and testing.ACM Trans. Pro-
gram. Lang. Syst., 3(3):211–223, 1981.

[14] J. V. Guttag and J. J. Horning. The algebraic specification of
abstract data types.Acta Informatica, 10:27–52, 1978.

[15] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InProc. 24th Interna-
tional Conference on Software Engineering, pages 291–301,
2002.

[16] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. InProc. 25th International Con-
ference on Software Engineering, pages 60–71, 2003.

[17] J. Henkel and A. Diwan. Discovering algebraic specifica-
tions from Java classes. InProc. 17th European Conference
on Object-Oriented Programming, pages 431–456, 2003.

[18] J. Henkel and A. Diwan. A tool for writing and debugging
algebraic specifications. InProc. 26th International Confer-
ence on Software Engineering, pages 449–458, 2004.

[19] M. Hughes and D. Stotts. Daistish: systematic algebraic
testing for oo programs in the presence of side-effects. In
Proc. the International Symposium on Software Testing and
Analysis, pages 53–61, 1996.

[20] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InProc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 141–154, 2003.

[21] G. J. Myers. Art of Software Testing. John Wiley & Sons,
Inc., 1979.

[22] Sun Microsystems. Java 2 Platform, Standard Edi-
tion, v 1.4.2, API Specification. Online documentation,
Nov. 2003. http://java.sun.com/j2se/1.4.2/
docs/api/.

[23] T. Xie, D. Marinov, and D. Notkin. Improving generationof
object-oriented test suites by avoiding redundant tests. Tech-
nical Report UW-CSE-04-01-05, University of Washington
Department of Computer Science and Engineering, Seattle,
WA, Jan. 2004.

[24] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests. InProc.
19th IEEE International Conference on Automated Software
Engineering, Sept. 2004.

[25] T. Xie and D. Notkin. Tool-assisted unit test selectionbased
on operational violations. InProc. 18th IEEE International
Conference on Automated Software Engineering, pages 40–
48, 2003.

[26] T. Xie and D. Notkin. Automatic extraction of object-
oriented observer abstractions from unit-test executions. In
Proc. 6th International Conference on Formal Engineering
Methods, Nov. 2004.

10

