
Supporting Ease of Change in the Context of Code

Vibha Sazawal and David Notkin
Department of Computer Science and Engineering

University of Washington, Seattle, WA, USA
Technical Report UW-CSE-2004-09-01

Abstract

Ease of change is an important software property; un-
fortunately, it is difficult to achieve and sustain. One cause
for this difficulty is the semantic gap that divides code from
the discourse of ease of change. Design snippets are par-
tial design representations that scaffold connections be-
tween code and ease of change design principles. Design
snippets integrate into existing evolution processes by co-
displaying selected design information with existing units
of code (e.g., files). In this paper, we introduce design snip-
pets and the design principles that inform snippet content.
We also present the Design Snippets Tool, which generates
four types of design snippets from Java code. Initial assess-
ments suggest that design snippets can be used to identify
design problems, plan changes, and confirm that improve-
ments have been made.

1. Introduction

Software changes [17]; making software easier to
change, then, provides value. The prevalence of existing
code necessitates ease of change; unfortunately, existing
code also complicates attempts to sustain ease of change
over the life of a software system. As software engineers
modify existing code, they have difficulty reasoning about
the effect their modifications have on the overall ease of
change of the system. Systems with poor ease of change
from the outset – or indeed at any point in time – are diffi-
cult to make easier to change.

The ease of change of an existing system can be hard
to assess and improve because code is separated from the
discourse of ease of change. Consider Parnas’ information
hiding design rule: Hide each volatile design decision (se-
cret) behind an abstract interface [25]. The terms used in
this and other design rules, such as volatility, design de-
cision, secret, and assumption, have no direct mapping to
code.

We propose that tool support can help software engi-

neers connect code and design principles related to ease of
change. In particular, we present design snippets: partial
design representations that are extracted from source code
and intended to scaffold connections between code and ease
of change principles. Software engineers can use design
snippets as they manipulate code and make decisions re-
lated to ease of change during evolution tasks.

Section 2 reviews existing techniques that connect code
to ease of change principles and then introduces design
snippets. Section 3 outlines the specific design principles
that guide our definition of design snippets; in particular,
the design snippets presented in this paper support modular
structure, an important aspect of ease of change. Section 4
describes our prototype tool that generates design snippets.
Initial assessment is discussed in Section 5. Sections 6 and
7 present related work and conclusions, respectively.

2. Reducing the gap between code and ease of
change principles

Several existing approaches can help software engineers
make better decisions by reducing the gap between code
and ease of change. Design snippets are intended to com-
plement, not replace, these approaches.

Documentation can be used to explicitly list assumptions
and map them to code [3]. This approach relies on the de-
velopment and maintenance of correct documentation. Un-
fortunately, many software engineers must evolve systems
that lack such documentation.

Another approach codifies solutions to change-related
problems in the form of design patterns [8]. Patterns can be
immensely useful during restructuring tasks; however, they
are not intended to address every change-related problem.
In addition, Baniassad and colleagues have shown that a gap
exists between design patterns and code that itself must be
bridged [1].

Style rules codify ease of change principles in specific
language-oriented terms. For example, the Law of Deme-
ter provides guidelines that reduce coupling between ob-
jects [20]. Johnson and Foote have introduced other object-

oriented style rules, such as “Separate methods that do not
communicate” [12]. Style rules provide useful guidance
during implementation and can often be checked by tools.
However, style rules are so close to code that they cannot
convey the full richness of ease of change principles. For
example, no style rule can ensure that all volatile design de-
cisions are hidden, because volatility is dependent in part on
requirements.

A new approach: design snippets. To reduce the gap
between code and the discourse of ease of change, we pro-
pose design snippets: abstractions of code that help soft-
ware engineers reason about specific ease of change prin-
ciples. Co-displayed with code, design snippets facilitate
consideration of ease of change during evolution activities.

To promote compatibility with existing evolution and
maintenance practices, design snippets are computed and
displayed in the context of units of code (e.g., files). De-
sign snippets elide information unrelated to the unit of fo-
cus to provide a partial but useful representation of ease of
change information. Snippets are automatically extracted
from code, simplifying their use. They are also lightweight,
ensuring that they can be quickly extracted and easily kept
up-to-date during viewing and modification of code.

3. Ease of change principles that guide design
snippet content

In this paper, we focus on design principles that affect
modular structure. Parnas defines modular structure as “the
decomposition of programs into modules and the assump-
tions that the team responsible for each module is allowed
to make about the other modules” [27, page 2]. Design
snippets help software engineers reason about two princi-
ples related to modular structure: information hiding and
low coupling. We review these two principles below.

Information hiding. The information hiding principle
states that “system details that are likely to change inde-
pendently should be the secrets of separate modules; the
only assumptions that should appear in the interfaces be-
tween modules are those that are considered unlikely to
change” [27, page 2]. Every module has an abstract in-
terface, which is the set of assumptions that all clients can
make [3]; when information hiding is observed, the ab-
stract interface only includes information that is unlikely
to change. When change occurs to a module’s implementa-
tion, the effect of the change is limited to that module.

Information hiding is immensely powerful, but it funda-
mentally relies on the designer’s ability to identify likely
future changes. Moreover, even when software engineers
properly anticipate changes, they may make errors in de-
sign (e.g., unintentional assumptions). The effect of unan-
ticipated changes and errors on a modular system is that in-
terfaces change when implementation details change. When

an abstract interface changes, all clients of the abstract in-
terface are potentially affected.

Low coupling. One way to reduce the cost of interface
change, as noted by Lieberherr [18], is to reduce the num-
ber of clients each module has. This advice can be restated
as the well-known design principle of low coupling [38].
When coupling between modules is low, the occurrence and
effect of interface change is reduced.

If volatile details must be revealed by a module, then a
more specific version of the low coupling principle applies.
This version states that access to volatile details should be
restricted to privileged clients [3]. If this rule is followed,
then implementation changes do not affect non-privileged
clients because they use a narrower, stabler interface.

4. Design Snippets Tool

The Design Snippets Tool intends to bridge the gap be-
tween code and the principles of information hiding and
low coupling. Implemented as a plug-in to the Eclipse Java
IDE [6], the tool generates design snippets from Java code.
Snippets are displayed in a window below the Java code ed-
itor. Since Eclipse programmers edit Java files, the “unit”
of code associated with each design snippet is a Java file.
As files are edited, the tool updates the snippets displayed.

4.1. Mapping between modular structure and code

When designing the tool, we made several decisions that
enable extraction of useful design representations from Java
source. First, we limited the scope of the tool to Java pro-
grams in the Eclipse IDE. Second, we identified common
mappings that software engineers make (possibly implic-
itly) when they define modular structure in Java code. We
also identified specific violations of the principles described
earlier that can arise as these mappings are used. Design
snippet content was then created to help software engineers
detect these violations and plan improvements.

From modules to code. The first mapping is that the
closest Java construct to a module is a class. To achieve
information hiding, Parnas states that designers should first
identify volatile assumptions and then design “a module (a
collection of subroutines or macros) that ‘hides’ or contains
each one” [26, page 260]. The class, a collection of subrou-
tines with modifiers that restrict access, is a compatible and
common Java medium for hiding decisions.

Unfortunately, the mapping from module to class has
flaws; for example, Parnas defines a module as a work as-
signment, but multiple classes often form a single work as-
signment. The “work assignment” definition of module has
two advantages: (1) design decisions become part of the
module [25], and (2) software engineers do not have to hide
decisions from other parts of their own code [24]. Thus,

the mapping from module to class can cause two violations
of modular design principles: (1) design decisions may be
made implicitly as classes are defined (and thus not hidden
appropriately) and (2) software engineers may fail to hide
volatile details from other classes also under their responsi-
bility.

From abstract interfaces to code. The second mapping
is that the closest Java construct to an abstract interface is
the non-private subset of a class signature. Every class has
a signature that describes how clients should access class
functionality.1 Unfortunately, the interface between two
modules, as defined by Parnas, is intended to include all
assumptions made by the modules about each other [24].
The non-private class signature is inherently a subset of all
assumptions. As a result, when defining and using class
signatures, two violations of modular design principles can
occur: (1) non-private class signatures may reveal volatile
design decisions and (2) clients may use information not
actually revealed by non-private class signatures. These vi-
olations are compounded by high coupling between classes.

Additional Java features. Inheritance and Java inter-
faces are also used to define modular structure in accor-
dance with design principles. For example, one way to
shield clients from implementation change is to substitute
one class with another class that shares the same superinter-
face. Two other techniques are replacement of a class with
a subclass and replacement of one subclass with another
subclass. In cases when those approaches are intended, the
spirit of modular design principles can be violated if classes
offer or use details not revealed by a superclass or superin-
terface signature.

Goal of snippet content. The goal of snippet content,
given these mappings, is to help software engineers identify
violations of modular design principles and plan improve-
ments. In the next four sections, we introduce each snip-
pet and show screenshots generated by our tool. To illus-
trate the reasoning that the tool supports, we analyze three
Java versions of the classic KWIC index example. Parnas
presents two modularizations of KWIC: in Modularization
1, data representation is shared knowledge; and in Modu-
larization 2, modules interact through information-hiding
interfaces [25]. We present snippets generated from both
versions and Modularization 3, a new version that employs
inheritance.

4.2. Information hiding snippet

The information hiding snippet assists the software engi-
neer in her assessment of the separation between interface

1Behavioral interface specification languages, such as JML [16], and
design-by-contract tools, such as iContract [15], augment Java with ad-
ditional constructs for expressing specifications. Because none of these
features appear in Java by default, they are outside the scope of this paper.

and implementation. Software engineers can use the snippet
to identify when interfaces reveal volatile information.

Overview. The information hiding snippet presents two
outlines side-by-side. The scope of both outlines presented
is the active file being edited or viewed in the Eclipse IDE.
For each class2 defined in the file, the interface outline de-
scribes the non-private class signature and the implemen-
tation outline describes the class’ implementation details.
Specifically, the interface outline presents details about non-
private field signatures, method signatures, member types,
superclasses, and superinterfaces. The implementation out-
line presents details about private fields, private initializers,
and private method signatures. The implementation out-
line also includes a description of secret types used by each
method.

Secret types. Secret types are types whose class or in-
stance members are used by a class but whose use is not
obvious from perusal of the class signature. The types of
parameters to methods and the types of class and instance
variables are not secret. Other non-secret types are this,
an enclosing type, or a nested type. The implementation
outline of the information hiding snippet displays the secret
types used by each method of each class and a description
of how that type is used. For our purposes, a type or type in-
stance is used if (1) it is a parameter to a method, (2) if it is
a target of a method call, (3) if it is created by a constructor
call, (4) if a class variable or instance variable is accessed,
or (5) if an instance is caught as an exception.

Secret types are interesting because they provide a suc-
cinct view of the implementation details ostensibly hidden
by an interface. Many noteworthy implementation details
are captured in a list of instances created, exceptions caught,
and other uses of non-parameter, non-field types. In addi-
tion, secret uses of types are naturally expressed in terms
that are easy to compare to the signatures in the interface
outline. Together, secret types and private members pro-
vide a meaningful view of class implementation details in a
reasonable amount of screen real estate.

Example. The following example illustrates how the in-
formation hiding snippet can bring attention to violations
of information hiding. Figures 1a and 1b show the inter-
face outline and implementation outline for a circular shifter
based on Modularization 1. Class CircularShift pre-
pares an index of all circular shifts as a two-dimensional
array. Each column of the array lists the starting address of
the circular shift in memory and the original index of the
unshifted line.

Figures 2a and 2b show the interface outline and im-
plementation outline for a circular shifter based on Mod-
ularization 2. In this version, clients call methods of

2Java interfaces are also analyzed by the information hiding snippet,
but we omit discussion of them here.

Figure 1. (a) Interface outline (left) and (b) implementation outline (right) for mod. 1’s circular shifter

Figure 2. (a) Interface outline (left) and (b) Implementation outline (right) for mod. 2’s circular shifter

CircularShift to obtain the words or lines comprising
each circular shift.

Comparing Figure 1a to 1b, we see that
CircularShift stores circular shifts as an int[][]

(field circular shifts) and offers an int[][]

to clients (via method getCircularShifts). This
similarity between field type and return type suggests
that the signature of CircularShift may be sensi-
tive to changes in the way circular shifts are internally
stored. The only access clients have to circular shifts is
getCircularShifts; thus, all clients are affected if the
signature of getCircularShifts changes. Moreover,
clients may need to change even if getCircularShifts’s
signature does not change, because clients are also sensitive
to changes in the way data within the integer array is
organized.

We also note that a secret type used by execute

is Input. Input creates an index that contains
the starting address of each line. Figure 1b shows that
CircularShift calls Input.getLineIndex to obtain
that index. In summary, Figures 1a and 1b reveal that
volatile data representations are shared widely by Input,
CircularShift, and CircularShift’s clients.

In contrast, Figures 2a and 2b show that Parnas’
second modularization hides volatile design decisions
more effectively. Figure 2a shows that Modulariza-
tion 2’s CircularShift has a method named setup

which takes a LineStorage instance as a parame-

ter. This LineStorage instance contains the equiv-
alent of the line index obtained by directly calling
Input.getLineIndex in Modularization 1. The actual re-
trieval of the LineStorage index (from Input or another
module) is left to CircularShift’s client in this mod-
ularization. The remaining methods of CircularShift

provide clients with means for accessing words and lines of
the circular shifts. None of the signatures of these access
methods reveal the implementation details shown in Figure
2b. Figure 2b shows that CircularShift chooses to store
the circular shifts in a LineStorage instance, but Figure
2a shows that clients cannot directly access that instance.

Implementation details. The Design Snippets Tool uses
Eclipse APIs [6] to access abstract syntax trees and objects
associated with each Java file. For performance reasons,
the information hiding snippet offers two analysis modes: a
quick mode and a slow mode. The modes affect the com-
pleteness of the list of secret types. To determine the types
of objects used in the active Java file, the quick mode uses
local variable declarations, method signatures, and field
declarations. The quick mode identifies static member ac-
cesses using a list of types compiled from the import state-
ments in the file.3 The slow mode requests type bindings
from the Eclipse compiler to determine the names of types
that are used but not named in the active Java file.

One set of identifiers whose types might not be named

3The quick mode also obtains a list of all types in the current package.

within a class body is fields of superclasses. This problem
highlights a fundamental issue with the mapping of mod-
ule to class – are superclass members part of the module, or
are they distinct from the module? From the perspective of
a client of a class, non-private members defined in the su-
perclass are not distinct from members defined in the class
itself. But from the perspective of the superclass and sub-
class, the subclass is a client that is affected by changes to
the superclass. As a result, the quick mode lists the super-
class as a secret type if explicit calls to superclass methods
(i.e., calls preceded by the keyword super) are made. The
slow mode also lists the types of superclass fields used and
the superclasses of enclosing types (if used) as secret types.

4.3. Type assumptions snippet

If the non-private signature of a class hides volatile de-
sign details, then clients that only use the non-private signa-
ture are protected when details change. However, clients
commonly make assumptions that go beyond what class
signatures actually reveal. These assumptions, often inad-
vertent, can result in widespread sharing of volatile details.
Similarly, classes can make implicit assumptions about their
clients, resulting in adverse effects when clients change.
Examples include assumptions about performance, order of
operations, and run-time types of signature elements.

Overview. The type assumptions snippet helps software
engineers detect assumptions made about types specified in
a class signature. Type assumptions are manifested when
casts are made from the types specified in the class signature
to other types. For each type defined in the active Java file,
the type assumptions snippet lists casts to parameters and
return values of the type’s methods and casts made to the
type’s fields.

We chose to focus on type assumptions because they are
straightforward to detect and are often symptoms of larger
problems with information sharing. For example, type-
casting of return values and parameters may indicate that
intended module boundaries are being bypassed and that
details known to be volatile are being used. A common
type-cast is from superclass to subclass, and these casts re-
duce the software maintainer’s ability to substitute one sub-
class with another in response to change. The maintainer’s
problem is compounded by the fact that casts by clients
can only be identified by perusal of client code. Software
engineers can use the type assumptions snippet to decide
whether the benefit of type-casting (if any) outweighs the
potential maintenance cost of sharing information not doc-
umented in any class signature.

Example. This example illustrates the decision-making
support offered by the type assumptions snippet. In this ex-
ample, we present a new version of KWIC, which we call
Modularization 3. In Modularization 3, the input processor

and the circular shifter both inherit from IndexCreator.
IndexCreator defines a protected instance variable of
type Index (named m index) and a public method
named getIndex(). Two classes inherit from Index:
LineIndex and ShiftIndex. Figure 3 shows a subset of
Modularization 3’s class diagram.

InputIndexCreator CircularShiftIndexCreator

+ getIndex() : Index + getIndex() : Index

Index
has

LineIndex ShiftIndex

+ getIndex() : Index

IndexCreator

m_index : Index

Figure 3. Subset of mod. 3’s class diagram.

InputIndexCreator instantiates the inherited
field m index as a variable of type InputIndex.
CircularShiftIndexCreator instantiates m index

as a variable of type ShiftIndex. The type as-
sumptions views for InputIndexCreator.java

and CircularShiftIndexCreator.java are
shown in Figure 4. Three clients cast the return
value of InputIndexCreator.getIndex() to
LineIndex, and one client casts the return value
of CircularShiftIndexCreator.getIndex() to
ShiftIndex.

Figure 4. Type assumptions view for mod. 3’s
input processor and circular shifter

Suppose Alice, a software engineer, decides to re-
place both LineIndex and ShiftIndex with a sin-
gle class called LineStorageIndex. (Motivation for
this change can be found by reviewing the informa-
tion hiding snippet views for LineIndex.java and
CircularShiftIndex.java, not shown here.) With-
out the type assumptions snippet, Alice may dangerously
infer that her change will not affect clients, as long as
LineStorageIndex offers a getIndex method that re-
turns an instance of type Index. But when using the type

assumptions snippet, Alice will immediately note that the
return value of getIndex is cast by clients to more spe-
cific subclasses.4 Alice now has a more complete under-
standing of the impact of her intended change; in particular,
she now knows that clients actually rely on specific Index

subclasses.
Because the type assumptions view displays casts that

appear in client code, the software engineer can review a
class signature and its (mis)use at the same time. Often
problems with a class signature can be surfaced by view-
ing how the signature is used. In the case of Modular-
ization 3 described above, clients make type-casts because
they need to access specific methods of LineIndex and
ShiftIndex. The Index class signature fails to offer
enough functionality to IndexCreator subclasses. In this
case, the software engineer needs to weigh the benefits of
inheritance with the potential cost of general class signa-
tures that meet few client needs. Type assumptions are a
tangible way to detect these tensions. In addition, type as-
sumptions have a real effect on the ease of change of a sys-
tem.

Implementation details. The type assumptions snippet
uses information in the active Java file to identify casts to
method parameters. To determine if clients cast fields or
method return values, the snippet analyzes all files in the
active Java project5 the first time it runs. The snippet caches
all casts that are discovered and then displays those casts
that are relevant to types defined in the active Java file. The
cache is updated as files are edited.

When analyzing a Java file, the snippet looks at variable
declarations and assignment statements to identify simple
aliases of parameters, return values, or fields. Casts of these
aliases are also maintained in the cache. Casts by this

of superclass fields and return values to methods defined
in a superclass are listed in the type assumptions view of
the appropriate superclass. Casts by a non-subclass client
are assigned to the compile-time type of the client’s server,
even if the server’s method or field was actually defined in
a superclass.

4.4. Dependencies snippet

The information hiding and type assumptions snippets
help software engineers create a modular structure that iso-
lates volatile details behind interfaces. However, interface
change may still occur, and low coupling is recommended
as a way to reduce the effects of interface change. The de-
pendencies snippet helps the software engineer assess the
degree and nature of coupling between classes.

4In-package clients can also directly access protected field m index.
If any clients cast m index to another type, those casts would also appear
in the type assumptions view.

5In the Eclipse IDE, a project is a named collection of related Java files.

Overview. For each type T defined in the active file, the
dependencies snippet displays the types that T depends on
and the types that depend on T. A type can be a class or
Java interface; the dependencies snippet treats them simi-
larly. The snippet displays a graph; types are nodes and
dependencies are edges. Types with the same qualifiers are
grouped together to improve readability, and users can filter
uninteresting nodes or request that an entire Java package
be represented as a single node. Edge labels describe the
nature of the relationship between the two types.

Edges between types are broken down into two cate-
gories. Tables 1 and 2 enumerate both categories. The first
category consists of edges between T1 and T2 where T2 is
statically referenced in T1’s type declaration. The second
category consists of edges between T1 and T2 where T1 ob-
tains an instance of T2 at runtime.

Table 1. Edges between T1 and T2 where T2 is
statically referenced in T1’s type declaration

Example Edge Label

T1 extends T2 extends

T1 implements T2 impl

A method of T1 takes an instance of
T2 as a parameter

param

T1 declares a field of type T2 has

T1 accesses a static member of T2 stat

T1 checks if an expression is of type
T2

inst-of

Table 2. Edges between T1 and T2 where T1

obtains an instance of T2 at runtime

Example Edge Label

T1 creates a new instance of
type T2

new

T1 obtains an instance of T2 as
a return value of a method

ret

T1 obtains an instance of T2 as
a field of another type

fld

T1 obtains an instance of T2 by cast

casting another type ret-cast

param-cast

fld-cast

Edge labels. Low coupling is desirable, but some depen-
dencies are inevitable. Two factors to consider when eval-
uating a dependency include (1) the purpose of the depen-
dency and (2) the dependency’s effect on a system’s overall
vulnerability to interface change. The dependencies snippet
produces edge labels to support the assessment of these two
factors.

Edge labels help diagnose the effect of a dependency by
indicating the origin of the coupling between two types.
The origin of a dependency affects whether a dependency
between two types is obvious from perusal of a class signa-
ture or whether the dependency is more obscure. Obvious-
ness affects the ease with which interface changes can be
addressed [20]. For example, param and has dependen-
cies are easier to detect and reason about than many ret

and cast dependencies. In fact, the Law of Demeter out-
laws a subset of ret dependencies. Edge labels also help
programmers estimate the cost of removing a dependency.

Comparison to style rules. Why are style rules such
as the Law of Demeter insufficient? We appreciate style
rules and encourage their use; however, software engineers
possess knowledge about the likelihood of changes that is
application-specific and cannot be encoded in any style rule.
The dependencies snippet helps software engineers apply
their knowledge of volatility to code by displaying a conve-
nient view of dependencies in code of active interest.

Example. Figures 5 and 6 show the dependencies view
for Input.java in Modularization 1 and Modularization
2 respectively. Dependencies on classes in java.lang and
java.io have been elided.

Figure 5. Dependencies view for mod. 1’s in-
put processor

When viewing Modularization 1’s Input class defini-
tion, a software engineer can learn from Figure 5 that all
other KWIC classes directly access Input functionality. If
the signature of Input changes, all four clients may be af-
fected. The edge label between Input and all of its clients
is stat; since class members are not dynamically bound,
the ability to replace Input with a subclass is impaired.
In contrast, Figure 6 shows that only the MasterControl

class depends upon Modularization 2’s Input. Modular-
ization 2’s classes are less coupled to the Input class and
thus more resilient to changes to Input.

Implementation details. For each type T defined in the
active file, the dependencies snippet identifies what types
T depends on by analyzing the relationships expressed in

Figure 6. Dependencies view for mod. 2’s in-
put processor

that file. To identify the set of types that depend on T, the
snippet analyzes other files. Similar to the type assumptions
snippet, the dependencies snippet analyzes all files in the
active Java project during its first run. It then caches these
dependencies and displays those relevant to types defined
in the active file. The cache is updated as files are edited.
Graph layout is performed by AT&T’s graphviz software
package [7].

Similar to the information hiding snippet, the dependen-
cies snippet has a quick mode and a slow mode. The modes
affect completeness. The quick mode identifies types whose
names appear in the Java file where the dependency is man-
ifested. The slow mode adds ret edges when method
calls are directly used as the target of other methods or as
method parameters. The slow mode also identifies when a
type uses fields of its superclasses or the superclasses of an
enclosing type. Edges to superclass field types receive the
super-has label.

4.5. De facto interfaces snippet

While the dependencies snippet provides a quick aware-
ness of dependencies, it does not convey exactly which
members are accessed by each client. For all types defined
in the active file, the de facto interfaces snippet describes
the de facto interface of each client. The de facto interface
is the set of members actually used by a client [14]. The
de facto interfaces snippet supports more detailed consid-
eration of the cost of removing a dependency. The snippet
also helps software engineers ensure that volatile interface
details are restricted to privileged clients.

Example. After looking at the dependencies snippet
view for Modularization 1’s Input class, a software en-
gineer may be interested in learning why so many classes
depend on Input. This question can be quickly answered
by the de facto interfaces view for Input, shown in Figure

7. CircularShift, Alphabetizing, and Output all
access Input member functions to obtain the line index
and the character array prepared by Input. The de facto
interfaces snippet can be configured to organize its results
either by client or by member; in Figure 7, the two organi-
zations are shown side-by-side.

Figure 7. De facto interfaces view for mod. 1’s
input processor.

5. Assessment

The KWIC examples in the preceding sections convey
how design snippets can be used to identify design prob-
lems and provide information needed when making deci-
sions related to ease of change. We continue to explore
other demonstrations of snippet usage and solicit feedback
from volunteer users. In this section we present two ex-
amples of snippet usage: an exploratory study in which
eight participants used design snippets during a restructur-
ing task, and an example of our own use of design snippets
while modifying the Design Snippets Tool.

5.1. Exploratory study

In another paper [31], we describe an investigation into
the value of design snippets during decision-making. Eight
participants were asked to restructure a small Java applica-
tion in anticipation of planned changes. The application val-
idated text input and the hypothetical changes involved the
addition of new input fields. Participants were introduced
to design snippets and were also free to use other features
available in the Eclipse IDE. After each session, a narrative
of each participant’s actions was created by merging notes
from two observers with recorded screen capture data.

The narratives suggest that design snippets hold promise.
Design snippets were used to discover design problems,
identify restructuring goals, plan restructuring activities, ex-
amine effects of changes on design, and discover relevant
questions about the code. Most participants switched nu-
merous times between design snippets and code, in accor-
dance with our intended usage scenario. Study participants

viewed snippets as they made changes to the code and after
they had completed making changes. We believe that the
scoped display of design snippets facilitated such frequent
switching.

Participants appreciated the non-local information pro-
vided by design snippets. One participant viewed the casts
in the type assumptions snippet and stated “Cool, I can get
it over here”; she appreciated that casts of return values of
methods can be viewed with the method definition, even
though the casts appear elsewhere. Another participant said
that the dependencies snippet is “very useful,” because it
identifies a class’ clients when the class definition is active.

5.2. Design snippets as dog food

We actively use the Design Snippets Tool as we develop
the tool itself. Design snippets help us hill-climb incremen-
tally toward improved ease to change. We present an exam-
ple of our snippet usage during an enhancement task below.

The enhancement task. Due to user feedback,
we added a feature to the de facto interfaces snip-
pet that supports navigation from entries in the snip-
pet’s tree control to lines of code. If a user double-
clicks on an entry in the tree control, the code re-
lated to that entry gains focus. Two classes involved
in the enhancement include DeFactoInterfacesView,
which displays the tree control in the Eclipse IDE, and
DeFactoDoubleClickListener, a new class that imple-
ments double-click support. Double-click support is an un-
stable feature and many design decisions were tentative. We
were interested in reducing the effect of changes to double-
click support on DeFactoInterfacesView.

Use of dependencies snippet. As we added this new
feature, we frequently viewed the dependencies snippet
for DeFactoInterfacesView.java. We sought to
ensure that only one new dependency was added – an edge
labeled “has, new” between DeFactoInterfacesView

and DeFactoDoubleClickListener. We did
not want DeFactoInterfacesView to gain addi-
tional dependencies that could result in changes to
DeFactoInterfacesView if decisions related to double-
click support changed.

Use of information hiding snippet. We
also viewed the information hiding snippet for
DeFactoDoubleClickListener.java to obtain a
quick view of DeFactoDoubleClickListener’s
non-private class signature. Ideally,
DeFactoDoubleClickListener should reveal few
implementation details. After viewing the snippet, we
decided to change the access level of several auxiliary
methods to private in order to ensure that clients use the
narrowest interface possible.

Use of de facto interfaces snippet. We realized
that DeFactoDoubleClickListener, as originally en-
visioned, needs detailed knowledge about tree control en-
tries in order to find the corresponding lines of code. We
decided to let DeFactoDoubleClickListener call ac-
cessor methods associated with each entry in the tree con-
trol. The de facto interfaces snippet helps us ensure that
only DeFactoDoubleClickListener uses these privi-
leged accessor methods.

Discussion. In the future, we may choose to re-
structure the double-click functionality described
above. The use of privileged information by
DeFactoDoubleClickListener renders it vulnera-
ble to changes if any of the entry classes change. Our
purpose here was not to show a perfectly designed feature;
rather, we show how design snippets can be used to incre-
mentally reason about an imperfect system and improve it.
This hill-climbing approach to improved modular structure
has been very valuable to us as we write software. Design
snippets encourage us to think about modular structure,
even when working on features that are small or need to
be completed quickly. Snippets also expedite the process
of making decisions and monitoring the effects of those
decisions.

6. Related Work

Partial views. Slicers and concern-support tools create
partial views of a system. Slicers [37, 36] identify lines of
code associated with one or two program points. Aspect
Browser [9] and FEAT [30] identify cross-cutting concerns
in source code. Aspect Browser uses a map metaphor to dis-
play where concern code is located. FEAT describes struc-
tural relationships between elements in concern code using
a tree control. Both Aspect Browser and FEAT require that
users inform the tool about what code is initially of interest.

The Design Snippets Tool provides a different partial
view. The code of interest is the set of classes defined in
the active file. Design snippets integrate into existing evolu-
tion processes by augmenting the dominant “editable unit”
of code – the file.

Program understanding tools. Program understand-
ing tools help software engineers systematically navigate
and explore software systems. Examples include Rigi [21],
which visualizes a hierarchical structure of a software sys-
tem, and SHriMP [33], which presents the structure of a
software system as a nested graph.

The Design Snippets Tool complements tools like these.
Rather than facilitating navigation and comprehension, de-
sign snippets facilitate evaluation of software with regard to
certain design principles. Specific support for evaluation
is important, because good program understanding tools
may obscure design problems; for example, Storey and col-

leagues noted that users of Rigi and SHriMP failed to notice
that the subsystem hierarchy displayed by both tools was
not an inherent part of the software [34].

Model-driven development tools. Model-driven devel-
opment tools, such as Rational Rose XDE [28], Together
[2], and Fujaba [22], support the creation of both UML di-
agrams and code. These tools support automatic generation
of code from UML and vice versa. The main difference be-
tween these tools and the Design Snippets Tool is the form
and role of design representations. Model-driven tool users
employ UML to express full descriptions of the static struc-
ture and dynamic behavior of software systems. In con-
trast, design snippets provide partial, targeted information
intended primarily for evaluation of software with regard to
ease of change.

Design critics. Design critics [29] automatically critique
designs. ArgoUML [35] has a set of built-in design rules for
UML diagrams. Tools also exist to detect violations of the
Law of Demeter [19]. While the Design Snippets Tool also
supports specific rules, it does not explicitly identify rule
violations. Instead, software engineers use design snippets
to manually assess tradeoffs.

Software metrics. Quantitative software metrics can be
used to identify design flaws; for example, Chidamber and
Kemerer [4] used the “number of children” metric to de-
tect misuse of subclassing in a large user interface class li-
brary. Design snippets complement metrics; while metrics
can identify that a problem may exist, a software engineer
still needs to to confirm, understand, and solve the problem.
Software engineers can use design snippets as they investi-
gate possible problems uncovered by metrics.

Advanced paradigms and environments. Aspect-
oriented programming [13], subject-oriented programming
[10], and functional programming [11] provide features
that support ease of change in ways that traditional object-
oriented languages do not. For example, an aspect or hyper-
slice can encapsulate a volatile decision that is cumbersome
or impossible to encapsulate in Java. Design snippets for
these paradigms appear to require a different mapping from
language constructs to design principles terminology. Lan-
guages or environments that support specifications [16] or
contracts [15] may also require a different mapping. New
design principles may also apply.

Advanced environments such as HyperJ [23] and Coven
[5] replace the file with other notions of “editable unit.” De-
sign snippets should be scoped differently for those environ-
ments.

7. Conclusion

Design snippets are abstractions of code that help soft-
ware engineers improve the modular structure of their soft-
ware. Compatible with existing software evolution pro-

cesses, design snippets present streamlined design details
related to code of interest. Software engineers can use
design snippets to hill-climb incrementally from an exist-
ing system to an improved one as they perform evolution
tasks. Future work includes application of the design snip-
pets concept to additional design principles and program-
ming paradigms.

8. Acknowledgments

The Java implementations of KWIC used in this pa-
per are adapted from a set of KWIC implementations by
Nick Scerbakov of the Institute for Information Systems
and Computer Media, Austria [32].

References

[1] E. Baniassad, G. Murphy, and C. Schwanniger. Design pat-
tern rationale graphs: Linking design to source. In Proc. of
the 25th Intl. Conf. on Software Engineering, 2003.

[2] Borland Together. [http://www.borland.com/together].
[3] K. Britton, R. A. Parker, and D. Parnas. A procedure for de-

signing abstract interfaces for device interface modules. In
Proc. of the 5th Intl. Conf. on Software Engineering, 1981.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented design. IEEE Trans. on Software Engineering,
June 1994.

[5] M. C. Chu-Carroll and S. Sprenkle. Coven: Brewing better
collaboration through software configuration management.
In Proc. of the 8th Intl. Symposium on the Foundations of
Software Engineering, 2000.

[6] Eclipse Foundation. Eclipse. [http://www.eclipse.org].
[7] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Wood-

hull. Graphviz. [http://www.research.att.com/ sw/ tools/
graphviz/].

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1995.

[9] W. Griswold, J. Yuan, and Y. Kato. Exploiting the map
metaphor in a tool for software evolution. In Proc. of the
23rd Intl. Conf. on Software Engineering, 2001.

[10] W. Harrison and H. Ossher. Subject-oriented program-
ming: a critique of pure objects. In Proc. of the Intl. Conf.
on Object-Oriented Programming Systems, Languages, and
Applications, 2002.

[11] J. Hughes. Why functional programming matters. Computer
Journal, 32(2), 1989.

[12] R. Johnson and B. Foote. Designing reusable classes. Jour-
nal of Object-Oriented Programming, June/July 1988.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proc. of the European Conf. on Object-
Oriented Programming, 1997.

[14] W. Korman and W. Griswold. Elbereth: Tool support for
refactoring Java programs, 1998. Technical report, Univ. of
California, San Diego, Dept. of Comp. Sci. and Engineering.

[15] R. Kramer. iContract: the Java design by contract tool. In
Technology of Obj.-Oriented Languages and Systems, 1998.

[16] G. T. Leavens, A. L. Baker, and C. Ruby. JML: a java mod-
eling language. In Formal Underpinnings of Java, 1998.

[17] M. Lehman and L. Belady. Program Evolution: Processes
of software change. Academic Press, 1985.

[18] K. Lieberherr. Controlling the complexity of software de-
signs. In Proc. of the 26th Intl. Conf. on Software Engineer-
ing, 2004. Keynote paper.

[19] K. Lieberherr, D. Lorenz, and P. Wu. A case of statically ex-
ecutable advice: Checking the law of demeter with aspectj.
In Proc. of the 3rd Intl. Conf. on Aspect-Oriented Software
Development, 2003.

[20] K. J. Lieberherr, I. Holland, and A. J. Riel. Object-oriented
programming: An objective sense of style. In Proc. of the
Object Oriented Programming, Systems, Languages, and
Applications Conf., 1988.

[21] H. Müller and K. Klashinsky. Rigi – a system for
programming-in-the-large. In Proc. of the 10th Intl. Conf.
on Software Engineering, 1988.

[22] U. Nickel, J. Niere, J. Wadsack, and A. Zündorf. Roundtrip
engineering with FUJABA. In Proc. of 2nd Workshop on
Software-Reengineering, 2000.

[23] H. Ossher and P. Tarr. Multi-dimensional separation of con-
cerns and the hyperspace approach. In Proc. of the Sympo-
sium on Software Architectures and Component Technology:
The State of the Art in Software Development, 2001.

[24] D. Parnas. Information distribution aspects of design
methodology. In IFIP Congress, 1971.

[25] D. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, Dec. 1972.

[26] D. Parnas. Software Fundamentals. Addison-Wesley, 2001.
Edited by Daniel Hoffman and David Weiss.

[27] D. Parnas, P. Clements, and D. Weiss. The modular struc-
ture of complex systems. In Proc. of the 7th Intl. Conf. on
Software Engineering, 1984.

[28] Rational Rose XDE. [http://www-306.ibm.com/ software/
rational].

[29] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. Software
architecture critics in argo. In Proc. of the Conf. on Intelli-
gent User Interfaces, 1998.

[30] M. P. Robillard and G. C. Murphy. Concern graphs: Finding
and describing concerns using structural program dependen-
cies. In Proc. of the 24th Intl. Conf. on Software Engineer-
ing, 2002.

[31] V. Sazawal, M. Kim, and D. Notkin. A study of evolution
in the presence of source-derived partial design representa-
tions. In In Proc. of the Intl. Workshop on Principles of Soft-
ware Evolution, 2004.

[32] N. Scerbakov. Software design project, 2003.
[http://coronet.iicm.edu/ sa/ swp how.htm].

[33] M.-A. D. Storey, H. A. Müller, and K. Wong. Manipulating
and documenting software structures. Software Visualiza-
tion, 1996.

[34] M.-A. D. Storey, K. Wong, and H. A. Müller. How do
program understanding tools affect how programmers un-
derstand programs? Science of Computer Programming,
36(2–3), 2000.

[35] Tigris.org. Argouml. [http://www.argouml.org].
[36] F. Tip. A survey of program slicing techniques. Journal of

Programming Languages, 3:121–189, 1995.

[37] M. Weiser. Program slicing. IEEE Trans. on Software Engi-
neering, July 1984.

[38] E. Yourdon and L. Constantine. Structured Design. Prentice-
Hall, 1979.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

