
Comparing Subspace Clusterings∗

Technical Report UW-CSE-2004-10-01

Anne Patrikainen† Marina Meilă‡

Abstract

We present the first framework for comparing subspace clusterings.

We propose several distance measures for subspace clusterings, including

generalizations of well-known distance measures for ordinary clusterings.

We describe a set of important properties for any measure for comparing

subspace clusterings and give a systematic comparison of our proposed

measures in terms of these properties. We validate the usefulness of our

subspace clustering distance measures by comparing clusterings produced

by the algorithms FastDOC, HARP, PROCLUS, ORCLUS, and SSPC.

We show that our distance measures can be also used to compare partial

clusterings, overlapping clusterings, hierarchical clusterings, and patterns

in binary data matrices.

Keywords: Subspace clustering, Projected clustering, Distance, Feature selec-
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1 Introduction

1.1 Subspace Clustering

The goal of clustering is to group a given set of data points into clusters that
capture some notion of similarity between the data points in each cluster. Data
is represented by a number of features, not all of which are useful for comparing
individual data points. In particular, the choice of the set of features used to
represent data may highlight different facets of the similarity between the data
points. Subspace clustering was introduced in order to capture this idea of
“similarity examined under different representations”.

Conceptually, subspace clustering algorithms work on a collection of data
points described using a large number of features, and address the problem of
simultaneously selecting the relevant features, and the points that are similar
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given these features. Formally, a subspace cluster can be defined as a pair (subset
of data points, subspace of the feature space). The data points of the cluster
are similar in the associated subspace. A subspace clustering is a collection of
subspace clusters.1 The first2 subspace clustering algorithm CLIQUE [4] was
published in 1998 and was soon followed by many related methods [1, 2, 3, 8,
12, 13, 14, 15, 18, 19, 23, 31, 36, 38, 41, 46, 48, 53, 60, 62, 63]. The algorithms
have been applied for instance to clustering gene expression data: it is often
the case that a group of genes behaves similarly only in a subset of experiments
(i.e. in a subspace) [14, 15, 19, 23, 53, 60, 62]. Reviews of some of the existing
subspace clustering algorithms can be found in [44, 45, 64].

1.2 Comparing Subspace Clusterings

Surprisingly, despite the multitude of subspace clustering algorithms, there are
no existing methods for comparing their outputs. Pairs of ordinary clusterings
(partitions of the set of data points) can be compared with numerous well-
known criteria, for instance with the Clustering Error (CE), the Variation of
Information (VI), or the Rand index; some of these measures have been in use
at least since the seventies [54]. However, these criteria are not directly appli-
cable to comparing subspace clusterings. This is unfortunate, since clustering
comparison methods are necessary for several important tasks, including clus-
ter validation, meta-clustering, and consensus clustering; we introduce these in
Section 1.3.

To the best of our knowledge, nobody has proposed a method for compar-
ing two subspace clusterings in a way that takes into account the data point
groups and the subspaces simultaneously. In the existing literature, authors
most commonly compare only the grouping of data points into clusters, ignor-
ing the similarity or dissimilarity of the associated subspaces [3, 19, 48, 53, 64].
Note that this approach does not work in the general case, since the data point
clusters might be not form a partition of the set of all data points. Sometimes
the subspaces are compared and the data point groups ignored [44, 46]; this
is done qualitatively in the absence of suitable comparison methods. At best,
the data points and the subspaces are compared separately, and the conclusions
are once again only qualitative [2, 14]. All these approaches fail to compare
subspace clusterings in a fair manner.

There are various types of subspace clusters and subspace clusterings. Per-
haps the most common type of subspace cluster is an axis-aligned subspace clus-
ter, in which the subspace is spanned by a subset of the attributes. In this case,
an equivalent representation for the cluster is a pair (subset of data points, sub-
set of attributes). A more general type of subspace cluster is a non-axis-aligned

1Other names that have been used for the same or a closely related task are projected
clustering [2, 3, 62, 63], projective clustering [1, 48], bi-clustering [33, 33], co-clustering [8, 15,
17], coupled two-way clustering [24], simultaneous clustering [47], direct clustering [27], block
clustering [27], and clustering on subsets of attributes [23].

2In fact, related ideas had been introduced earlier in [27, 42], but CLIQUE was the first
algorithm that became widely known in the research community.
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subspace cluster, in which the subspaces can be arbitrarily oriented. We present
distance measures for both types of subspace clusterings and also address the
closely related topics of co-clusterings and attribute weighted clusterings. These
categories of algorithms are described in detail in Section 4.

1.3 Applications of Comparing Clusterings

1.3.1 Cluster Validation

Cluster validation refers to quantitatively evaluating the quality of a clustering
solution. It is always important to validate the clustering solution after running
a clustering algorithm, since bad clusterings arise in many common occasions.
Most clustering algorithms give some kind of a result even if the data set does
not have any clustering structure. Many algorithms give bad results if the
choice of the parameter values or the initialization is inappropriate. This kinds
of clusterings can be recognized and avoided by means of cluster validation.

Cluster validation can be divided into external and internal cluster valida-
tion [54]. External cluster validation refers to comparing a clustering solution
to a true clustering; internal cluster validation evaluates the clustering result
without any knowledge of a true clustering.

External cluster validation [37, 49, 54] is important in evaluating the per-
formance of a clustering algorithm on synthetic data sets. It aims to measure
the quality of clustering produced by the algorithm by comparing it to a true
clustering of the data. Specifically, assume that we have a data set X for which
the true subspace clustering T is known. We have two algorithms, A and A′,
which have produced subspace clusterings S and S ′. We would like to be able
to calculate the distances d(S, T ) and d(S ′, T ) to find out which of these clus-
terings is closer to the true clustering. However, there are currently no distance
measures for subspace clusterings.

Internal cluster validation aims to measure the quality of a clustering in
real-life settings, when there is no knowledge of the real clustering, or if there
is uncertainty of whether the data set can be clustered at all [34, 54]. Internal
cluster validation can be done by means of point configuration based methods,
such as the Dunn index [54] or the Davies-Bouldin index [16], which assess the
structure of the clustering — for instance, a clustering with compact, spheri-
cal, well-separated clusters might be judged good. Another way to do internal
cluster validation is to use stability based methods, which measure the stability
of a clustering by sampling the data [21, 34, 35]. If the clusterings on differ-
ent samples agree, the clustering is judged stable and therefore good. Naturally,
clustering distance measures are needed for evaluating the agreement of the clus-
terings on different samples. However, the point configuration based methods
do not need clustering distance measures, but these methods are not currently
applicable to subspace clusterings in the first place.
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1.3.2 Consensus Clustering

If we have several clusterings for the same data set, we might be interested in
combining these clusterings into a single consensus clustering3 which should be
as close to all original clusterings as possible [26, 52, 55, 56, 57]. This kind of
situation might arise if we are not sure which parameter values (such as the
number of clusters K) of a given clustering algorithm to use; we might just
run the algorithm for several choices of the parameter values and try to find
a consensus among the resulting clusterings. Also, combining several results
by the same algorithm could alleviate the effect of random initialization (for
instance choosing the initial cluster centroids).

As another possibility, we might run several clustering algorithms with dif-
ferent objective functions for the same data set and combine all resulting clus-
terings into a single clustering. This might allow us to capture a rich variety of
features which would not be possible for any single clustering algorithm alone.
Further, combining the results of several different algorithms would improve the
robustness and stability of clustering and decrease the sensitivity to outliers and
noise.

Clustering ensembles can also be used to combine clusterings on different
attributes of the same data set. One potential application of this would be
parallelization; another is distributed data mining. Yet another application
would be clustering categorical data, where each categorical attribute could be
viewed as a clustering of the data set. [26, 55]

Many of the above cases apply to subspace clusterings in addition to ordinary
clusterings. Naturally, if we wish to find a consensus clustering which is close to
all the original clusterings, we must be able to calculate the distances between
the clusterings. Given this definition of a good consensus clustering, having a
distance measure for subspace clusterings is essential for finding a consensus
subspace clustering. Of course, different definitions for a consensus clustering
cost function might be possible, and clustering distance measures might not
always be necessary.

1.3.3 Meta-clustering

Meta-clustering refers to investigating the structure of a set of clusterings. Meta-
clustering discards the idea of trying to derive a single good clustering for a data
set; instead, it is acknowledged that the data can be well represented in several
different, complementary ways. For instance, assume that a given data set has
been clustered several times by different algorithms. A meta-clusterer might
now observe that these clusterings form two tight groups of clusterings, and
give the user a representative of each of these groups, instead of a single ’best’
clustering. [7]

There are various ways to produce different clusterings for a data set: we
could use different algorithms, a single algorithm with various parameter val-
ues and initializations, change metrics, use various dimensionality reduction

3Also known as a clustering ensemble, or an aggregate clustering.
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schemes, or sample the data. Meta-clustering may be used to investigate whether
some of these clusterings form tight groups, whether some of the clusterings are
outliers, whether the effect of the parameter values is strong or weak, etc. For
instance, it has been empirically shown by means of meta-clustering that only
a small number of clustering algorithms is enough to represent a large number
of clustering criteria [29].

Sometimes meta-clustering is used in a broader sense to refer to all kinds of
methods that operate on sets of clusterings; according to this definition, meta-
clustering would include cluster validation and consensus clusterings as special
cases [26]. Whichever definition we choose, it is clear that meta-clustering is
impossible without a distance measure for clusterings.

1.4 Contributions of the Article

In this article, we address the problem of comparing subspace clusterings. Specif-
ically, we introduce a set of important properties for a subspace clustering dis-
tance measure; we propose four novel subspace clustering distance measures
(RNIA and generalizations of the Rand index, CE, and VI); we describe how our
distance measures can be applied to axis-aligned subspace clusterings, non-axis-
aligned subspace clusterings, attribute weighted clusterings, and co-clusterings;
we investigate the theoretical properties of the proposed distance measures; we
show experimentally that our distance measures are useful in practice.

As discussed earlier, subspace clustering distance measures are necessary in
external cluster validation (comparing a clustering to a true clustering), stability
based internal cluster validation (evaluating the stability of a clustering), meta-
clustering (investigating the structure of a set of clusterings), and many cases of
consensus clustering (finding a representative clustering for a set of clusterings).

In addition to comparing subspace clusterings, our distance measures can be
used to compare partial clusterings (clusterings on subsets of data points; see
Section 3), clusterings with overlapping clusters (a data point may belong to
multiple clusters; see Section 3.4), hierarchical clusterings (see Section 6), and
many patterns in data matrices (see Section 5.3).

1.5 Structure of the Article

We start by comparing axis-aligned subspace clusterings in Section 3. We will
extend our analysis to the case of non-axis-aligned subspace clusterings, at-
tribute weighted clusterings, and co-clusterings in Section 4. In Section 5, we
apply our distance measures to comparing subspace clusterings produced by
the algorithms FastDOC, HARP, PROCLUS, ORCLUS, and SSPC on synthetic
data sets. We also show how our distance measures can be used to compare
patterns in binary data matrices. Finally in Section 6, we present a summary
of our work and discuss future research directions.
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2 Comparing Ordinary Clusterings

A clustering4 C is a partitioning of the set of m data points into disjoint clusters
C1, C2, . . . , CK of sizes m1, m2, . . . , mK , where

∑

i mi = m. Virtually all criteria
for comparing clusterings are based on the so-called confusion matrix. Assume
that we have two clusterings C = {C1, C2, . . . , CK} and C′ = {C ′

1, C
′
2, . . . , C

′
K′}.

The confusion matrix M = (mij) is a K ×K ′ matrix whose ijth element is the
number of points in the intersection of clusters Ci and C ′

j , i.e. mij = |Ci ∩ C ′
j |.

An intuitive way to compare clusterings is to calculate the clustering error
(CE). It is the proportion of points which are clustered differently in C and C ′

after an optimal matching of clusters. In other words, it is the scaled sum of
the non-diagonal elements of the confusion matrix, minimized over all possible
permutations of rows and columns. In practise, we do not need to try out all
possible permutations; clustering error can be computed efficiently by the Hun-
garian method for finding maximum weight matching in a bipartite graph [43].
Clustering error is a metric.

An important class of criteria for comparing clusterings is based on counting
the pairs of points on which two clusterings agree/disagree. Each pair of data
points falls in one of the four categories labeled as N11, N10, N01, and N00. The
category N11 contains the point pairs that are in the same cluster in both C and
C′. The category N10 contains the point pairs that are in the same cluster in C
but not in C′. The definitions of N01 and N00 are similar. All four counts can
be obtained from the confusion matrix; for instance, 2N11 =

∑

i,j m2
ij − m.

The best-known clustering distances based on point pair counts are the Wal-
lace indices [58], the Fowlkes-Mallows index [22], the Rand index[49], the Jac-
card index [28], and the Mirkin metric [39]. For instance, the Rand index is the
proportion of point pairs on which the two clusterings agree, given as

Rand(C, C′) =
N11 + N00

N
, (1)

where N = N11 + N10 + N01 + N00, the total number of point pairs. Out of the
methods mentioned, the quantity (1 - Rand index) and the Mirkin measure are
metrics.

Variation of information (VI) is a recently proposed clustering criterion
based on information theoretic concepts [37]. It measures the amount of infor-
mation that we gain and lose when going from clustering C to another clustering
C′. It is defined as V I(C, C′) = H(C|C′) + H(C′|C), where H(C|C′) is the condi-
tional entropy of C given C ′. An equivalent way of writing the VI distance
is

VI(C, C′) =
1

m

K
∑

i=1

K′
∑

j=1

mij log
mim

′
j

m2
ij

. (2)

The VI distance is also a metric.

4In this paper we only discuss hard clusterings. In a soft clustering, a given data point ri

has a probability P (ri|Cj) of belonging to a given cluster Cj .
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Figure 1: (Left) Two axis-aligned subspace clusterings which we wish to com-
pare. The solid rectangles depict the clustering S = {S1, S2, S3}, and the
dashed rectangles the clustering S ′ = {S′

1, S
′
2, S

′
3}. For these clusterings,

CE(S,S ′) = 19/25 and RNIA(S,S ′) = 13/25. (Right) To create a partition
of the matrix elements, we have filled the non-intersecting areas with singleton
clusters S4, . . . , S7 and S′

4, . . . , S
′
12. This allows us to compute VI(S,S ′) = 1.68

and 1 − Rand(S,S ′) = 82/300.

3 Comparing Axis-Aligned Subspace Clusterings

For the sake of simplicity, we start by considering axis-aligned subspace clus-
terings, the simplest and most popular type of subspace clusterings. We extend
our analysis to non-axis-aligned subspace clusterings and other related types of
clusterings in Section 4.

3.1 Size, Union, and Intersection of Axis-Aligned Sub-

space Clusters

Our data matrix X = (xij) has m rows and p columns. An axis-aligned subspace
cluster S is a pair (R, C), where R ⊆ {r1, r2, . . . , rm} is a subset of the rows
and C ⊆ {c1, c2, . . . , cp} is a subset of the columns. A axis-aligned subspace
clustering S is a collection {S1, S2, . . . , SK} of K subspace clusters.

In order to construct a clustering distance measure for axis-aligned subspace
clusterings, we need to define the size, the union, and the intersection of subspace
clusters and clusterings. To this end, we define the support of a cluster Sk as
the set of matrix elements in it, given as supp (Sk) = {xij |ri ∈ Rk ∧ cj ∈ Ck}.
The support of a clustering S is supp (S) =

⋃

k supp (Sk). The size |Sk| of
a cluster is the number of matrix elements in its support. Similarly, the size
|S| of a clustering is the number of matrix elements in its support. The union
and the intersection of two subspace clusters are given as the union and the
intersection of their supports. We denote the union of two subspace clusterings
S and S ′ by U = U(S,S ′) = supp (S) ∪ supp (S ′) and the intersection by
I = I(S,S ′) = supp (S) ∩ supp (S ′).

To simplify the analysis, we will start by considering only disjoint subspace
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clusterings, i.e., clusterings in which the clusters are disjoint in the sense that
they do not share matrix elements: supp (Sk) ∩ supp (Sl) = ∅ for all k, l ∈
{1, . . . , K} with k 6= l. It is important to note that any given data point or an
attribute may still be relevant for subspaces of multiple clusters. A large number
of subspace clustering algorithms are guaranteed to produce disjoint clusterings;
exceptions include algorithms of the type of CLIQUE [4] and SUBCLU [31].
We discuss the extension of the analysis to non-disjoint subspace clusterings in
Section 3.4.

3.2 Properties of a Distance Measure

Comparing subspace clusterings differs greatly from comparing ordinary clus-
terings, since subspace clusterings are not partitions of the data matrix. We will
therefore start by introducing a set of properties for describing a subspace clus-
tering comparison distance d(S,S ′). We will use these properties to characterize
and compare different distance measure candidates.

Metric. A distance measure d is a metric if it satisfies three axioms: posi-
tivity, symmetry, and triangle inequality.
Positive. For all S and S ′ we have d(S,S ′) ≥ 0 and d(S,S ′) = 0 if and only if
S = S ′.
Symmetric. For all S and S ′ we have d(S,S ′) = d(S ′,S).
Triangle inequality. For all S, S ′, and S ′′ we have d(S,S ′) ≤ d(S,S ′′) +
d(S ′′,S ′).

Label permutation invariant. An alternative way to consider an axis-
aligned subspace clustering S = {S1, S2, . . . , SK} is to view it as a function
S : {xij} → {1, 2, . . . , K}. This function assigns cluster indices to data matrix
elements: we refer to the cluster index S(xij) as the cluster label of the element
xij . A permutation ρ : {1, 2, . . . , K} → {1, 2, . . . , K} is a bijection from the set of
cluster labels to the set of cluster labels. Let us permute the cluster labels of S by
ρ and denote the resulting clustering by Sρ. In other words, we have Sρ(xij) =
ρ(S(xij )). A clustering distance measure d is label permutation invariant if
d(Sρ,S ′π) = d(S,S ′) for any permutations ρ and π and any clusterings S and
S ′.

Penalty for non-intersecting area. Consider two clusterings S and S ′,
the data matrix elements in their union U , in their intersection I , and in U\I .
Let us refer to |U\I | as the non-intersecting area of these two clusterings. Con-
sider adding one or more unclustered data matrix elements xij /∈ U to U\I . In
effect, we increase the non-intersecting area of the two clusterings while keeping
everything else unchanged. The new matrix elements might have been added
to S only, S ′ only, or to both clusterings. Let us denote the new clusterings
by SU and S ′U ; note that one of these clusterings might in fact be equal to
the original one. A distance measure d penalizes for non-intersecting area if
d(SU ,S ′U ) > d(S,S ′) for any clusterings S and S ′.

Background independent. Consider two clusterings S and S ′ on the data
matrix X of size m × p. Let us introduce an alternative notation SX and S ′

X

in order to emphasize that we have clusterings on X . Now consider adding m′
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rows and p′ columns to X and denote the new (m + m′)× (p + p′) data matrix
by X ′. The matrix element sets supp (S) and supp (S ′) are included in X ′, so
we can write SX′ and S ′

X′ for the same clusterings on the larger data matrix X ′.
A distance measure d is background independent if d(SX ,S ′

X ) = d(SX′ ,S ′
X′)

for any clusterings S and S ′ and m′ > 0 or p′ > 0.5

Scale invariant. Consider scaling the data matrix X by a constant k ∈ Z
+,

or in other words, introducing k copies of each row and column of the matrix.
Let us denote the scaled data matrix by kX . While X has rows {r1, . . . , rm}
and columns {c1, . . . , cp}, kX has rows {r11, r12, . . . , r1k, . . . , rm1, rm2, . . . , rmk}
and columns {c11, r12, . . . , c1k, . . . , cm1, cm2, . . . , cmk}. Now consider a subspace
clustering S on X and its scaled version kS on kX . If a cluster Si = (Ri, Ci) of
S has the row rj in its row set Ri, then the cluster kSi = (kRi, kCi) of kS has
the rows rj1, rj2, . . . , rjk in its row set kRi. Similarly, if a cluster Si = (Ri, Ci)
of S has the column cj in its column set Ci, then the cluster kSi = (kRi, kCi) of
kS has the columns cj1, cj2, . . . , cjk in its column set kCi. A distance measure
d is scale invariant if d(kS, kS ′) = d(S,S ′) for all clusterings S and S ′ and for
all k ∈ Z

+.
Copy invariant. Consider two subspace clusterings (S,S ′). Next con-

sider introducing a disjoint copy of this pair of clusterings in a large data
matrix X , resulting in a pair of ‘double clusterings’ (SD ,S ′D). Unlike in
the scale invariance property, we are not altering the size of the data matrix
here. In other words, introduce a copy S̃ of S and a copy S̃ ′ of S ′ such that
the new cluster sizes {m̃i}, {m̃′

i} and cluster intersection sizes {m̃ij} equal

to the old ones ({mi},{m′
i},{mij}) and that supp (S) ∩ supp (S̃) = ∅ and

supp (S ′) ∩ supp (S̃ ′) = ∅. Then the ‘double clusterings’ are given by SD =

{S1, S2, . . . , SK , S̃1, S̃2, . . . , S̃K} and S ′D = {S′
1, S

′
2, . . . , S

′
K′ , S̃′

1, S̃
′
2, . . . , S̃′

K′} A

distance measure d is copy invariant if d(S,S ′) = d(SD ,S ′D) for all clusterings
S and S ′.

Requires partitioning. Consider two clusterings S and S ′ and the set of
matrix elements in their union U . In the general case, neither of these clusterings
is a partition of U , since the elements in supp (S)\supp (S ′) are not clustered by
S ′, and the elements in supp (S ′)\supp (S) are not clustered by S. A subspace
clustering distance measure d that requires the clusterings to be partitions of
the data matrix elements in the union U therefore forces us to modify S and S ′

before we are able to compute d(S,S ′). In order to transform S into a partition
of the data matrix elements in U , we assign each xij /∈ supp (S ′)\supp (S) to
a new singleton cluster. If S originally had K clusters, its modified version
therefore has K + |supp (S ′)\supp (S)| clusters. Similar transformation is done
for S ′. See Fig. 1 for an example.

Multiple cluster coverage penalty. Consider two clusterings S and S ′

such that S = {S1} consists only of a single cluster and S ′ = {S′
1, . . . , S

′
K′}

5To motivate the background independence property, let us consider the following. The
distance d(S,S′) should not be affected by the size of the data matrix X, only the size of the
union U of the two clusterings. For instance, increasing the size of X by adding noise rows
and columns should not move the clusterings S and S ′ closer to each other.
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consists of K ′ disjoint clusters which all have the same size, with supp (S) =
supp (S ′). The clustering S ′ therefore clusters the same matrix elements than
S but uses multiple clusters to cover the area. For an example of the case
K = 2, see Fig. 1. A distance measure d penalizes for multiple cluster coverage
if d(S,S ′) 6= 0 for K ′ > 1.

Generalizable. A distance measure for axis-aligned subspace clusterings is
generalizable if it can also be applied to non-axis-aligned subspace clusterings
and other related types of clusterings.

Handles ordinary clusterings. A distance measure d(S,S ′) handles or-
dinary clusterings if it produces sensible results in the case in which S and S ′

are ordinary clusterings (partitions of the same element set).
Easy to compute.

Intuitive and understandable.

3.3 Distance Measures for Subspace Clusterings

We now present methods for comparing subspace clusterings by generalizing
well-known distance measures for ordinary clusterings. We consider the Cluster-
ing Error (CE), the Rand index (as a well-known representative of the point pair
counting based methods), and the Variation of Information (VI). In addition,
we introduce a new distance measure, relative non-intersecting area (RNIA).
We define and briefly discuss each of these four distance measures below; a
comprehensive comparison of their properties is presented in Table 1.

Since we are comparing subspace clusterings, we consider the set of the data
matrix elements {xij} as our base element set, instead of the set of data points
(rows).

3.3.1 Clustering Error

Consider subspace clusterings S = {S1, S2, . . . , SK} and S ′ = {S′
1, S

′
2, . . . , S

′
K′}

of K and K ′ clusters, respectively. Recall from Section 2 that a confusion matrix
M = (Mij) is a K × K ′ matrix in which mij is the number of data matrix
elements shared by the clusters Si and S′

j . More formally, mij = |supp (Si) ∩
supp (S′

j)|. Note, however, that in the case of subspace clusters, the rows and
the columns of M do not necessarily sum up to the cluster sizes. That is,
∑

i mij ≤ |S′
j | and

∑

j mij ≤ |Si|.
Let us transform M into a square matrix by adding rows or columns of zeroes

if necessary and use the Hungarian method [43] to find a permutation of the
cluster labels such that the sum of the diagonal elements of M is maximized.
Denote this maximized sum by Dmax. Now, we define the clustering error (CE)
for subspace clusterings as

CE(S,S ′) =
|U | − Dmax

|U | . (3)

In the case of ordinary clusterings (partitions of the rows of the data matrix),
the clustering error defined here is the clustering error of Section 2.
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For the two clusterings of Fig. 1, the confusion M is

S′
1 S′

2 S′
3

S1 4 4 0
S2 0 0 2
S3 0 0 2

.

We also have |U | = 25, Dmax = 6, and thus CE(S,S ′) = 19/25.

3.3.2 Rand Index

The Rand index for ordinary clusterings is based on counting pairs of data
points, but the Rand index for subspace clusterings is based on counting pairs
of matrix elements. Recall that we need the quantities N11 (the number of pairs
of matrix elements in the same cluster in both S and S ′), N00 (the number of
pairs of matrix elements in a different cluster in both S and S ′) and N (the
total number of pairs of matrix elements) for calculating the value of the Rand
index according to Eq. 1.

Since we want our distance measure to be background independent, we will
only count pairs of matrix element in U , the union of the two clusterings. There-
fore N = |U |(|U | − 1)/2. However, to compute the values of N01 and N10, S
and S ′ have to be partitions of U . To this end, we will make S a partition by
filling the non-intersecting area U\supp (S) with extra singleton clusters. We
will similarly convert S ′ into a partition of U .

If we considered this non-intersecting area area as a single big extra cluster,
we would end up having zero distance between many different clusterings6. The
only way around this difficulty seems to be to fill the non-intersecting area with
extra singleton clusters, as illustrated in Fig. 1. After this filling procedure for
both clusterings, we are able to compute the values of N11 and N00 as usual,
for instance with the help of the confusion matrix.

When we discuss the Rand index, we actually consider 1 − Rand(S,S ′) =
(N01 + N10)/N , since this is a proper distance measure: It assumes zero values
for identical clusterings and positive values for non-identical clusterings.

If we transform the two clusterings of Fig. 1 into partitions by adding sin-
gleton clusters, the resulting confusion matrix M is

S′
1 S′

2 S′
3 S′

4 S′
5 S′

6 . . . S′
12

S1 4 4 0 0 0 0 . . . 0 8
S2 0 0 2 1 1 0 . . . 0 4
S3 0 0 2 0 0 1 . . . 1 9
S4 0 0 1 0 0 0 . . . 0 1
S5 0 0 1 0 0 0 . . . 0 1
S6 0 0 1 0 0 0 . . . 0 1
S7 0 0 1 0 0 0 . . . 0 1

4 4 8 1 1 1 . . . 1 25

.

6For instance, consider two single-cluster clusterings S = {S1} and S′ = {S′
1
} such that

supp (S1) ∩ supp (S′
1
) = ∅.
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Based on this confusion matrix, we get N = 300, N11 = 14, N00 = 204, N01 =
26, N10 = 56, and 1 − Rand(S,S ′) = 82/300.

3.3.3 Variation of Information

Like the Rand index, the Variation of Information (VI) also requires the clus-
terings to be partitions. For reasons similar to the case of the Rand index, we
fill the non-intersecting areas of the clusterings with extra singleton clusters.
After this step, we can easily compute the confusion matrix and thereby cal-
culate the VI distance according to Eq. 2. For the two clusterings of Fig. 1,
VI(S,S ′) = 1.68.

3.3.4 Relative Non-Intersecting Area

If we want to compare a subspace clustering S to a true clustering S ′, a simple
approach would be to calculate the precision, the recall, and the F-measure,
used widely in the information retrieval literature to measure the success of the
retrieval task [50]. Retrieval is similar to subspace clustering in that it aims to
extract a subset of the data that is alike in some respect, while the rest of the
data is not assumed to be grouped in any way. Hence, a subspace clustering is
like the unsupervised retrieval of several disjoint groups.

Using our subspace clustering notation, recall is defined as |I |/supp (S ′);
it measures how big part of the matrix elements of the true clustering S ′ is
retrieved (covered) by the clustering S. Precision is defined as |I |/supp (S); it
measures the proportion of the matrix elements in the clustering S that belong
to the true clustering S ′. The F-measure is just the geometric mean of the
precision and the recall.

A big drawback of these measures is that they are not symmetric. A sym-
metric alternative is the relative non-intersecting area (RNIA)7 of the two clus-
terings:

RNIA(S,S ′) =
|U | − |I |

|U | . (4)

For the two clusterings of Fig. 1, RNIA(S,S ′) = 19/25.

3.3.5 Comparing Distance Measures

Table 1 is a summary of the various properties of CE, Rand index, VI, and
RNIA. Rand index and VI have some serious drawbacks: They do not satisfy all
metric axioms, and they fail to penalize for the non-intersecting area in certain
special cases.8 RNIA behaves better, even though it does not satisfy all metric
axioms either and cannot be used for comparing ordinary clusterings (it always
gives zero distance for partitions of the same data set). The properties of CE

7Also known as the symmetric difference of two sets.
8Consider clusterings S and S ′. Add a few clusters of size 2 to S, such that these new clus-

ters are not included in supp (S ′). After the addition, d(S,S ′) might decrease, contradicting
intuition.
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CE RNIA VI 1-Rand

Positive ✓ - ✓ ✓

Symmetric ✓ ✓ ✓ ✓

Triangle inequality ✓ ✓ - -
Label permutation invariant ✓ ✓ ✓ ✓

Penalty for non-intersecting area ✓ ✓ - -
Background independent ✓ ✓ ✓ ✓

Scale invariant ✓ ✓ - -
Copy invariant ✓ ✓ ✓ -
Lower bound 0 0 0 0
Upper bound 1 1 log(U) 1

Requires partitioning - - ✓ ✓

Multiple cluster coverage penalty K−1
K

U 0 log(K) U(K−1)
K(U−1)

Generalizable ✓ ✓ ✓ -
Handles ordinary clusterings ✓ - ✓ ✓
Easy to compute ✓ ✓ ✓ ✓

Intuitive and understandable ✓ ✓ ✓ ✓

Table 1: Subspace clustering comparison properties of the Clustering Error
(CE), the Relative Non-Intersecting Area (RNIA), the Variation of Information
(VI), and 1-Rand. The proofs of the bold-face properties can be found in the
Appendix; the rest of the proofs are straightforward.
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are superior to the properties of the other distance measures; note specifically
that CE is the only metric we have.

We will focus on CE and RNIA in the rest of this article, since these two
measures have more desirable properties than VI or Rand.

A final point to note is that RNIA simply measures the intersecting area of
the two clusterings and loses a lot of information in doing that. In fact, since
CE requires one-to-one matching between clusters, but RNIA rewards for all
overlaps, we have the following proposition.

Proposition 1. For all S and S ′ we have CE(S,S ′) ≥ RNIA(S,S ′).

3.4 Comparing Non-Disjoint Clusterings

In a non-disjoint subspace clustering S, some of the clusters share matrix ele-
ments. We can compare this kinds of clusterings by duplicating certain matrix
elements in a way such that the result clusterings become disjoint. The previ-
ously introduced methods can be then applied.

More specifically, consider a matrix element xij that belongs to the support

of nS
ij clusters of the clustering S and to the support of nS′

ij clusters of the

clustering S ′. To make the clustering S disjoint, we need to have nS
ij copies of

the matrix element xij . To make the clustering S ′ disjoint, we need to have nS′

ij

copies of xij . To make both clusterings disjoint simultaneously, max(nS
ij , n

S′

ij )
copies of xij are needed.

Essentially, the element duplication procedure corresponds to redefining the
union size of two clusterings S and S ′ as

|U | =
∑

i,j

max(nS
ij , n

S′

ij ) (5)

and the intersection size as

|I | =
∑

i,j

min(nS
ij , n

S′

ij ). (6)

Plugging in these definitions for |U | and |I |, RNIA can be computed straight-
forwardly using Eq. 4. As for CE, the cluster intersection matrix can be formed
and its diagonal sum maximized as usual. After this, Eq. 3 can be used together
with the above definition of |U |.

4 Comparing Other Types of Clusterings

In this section, we first extend our analysis to comparing non-axis-aligned sub-
space clusterings. The comparison scheme we propose includes axis-aligned
subspace clusterings as a special case. Further, we observe that similar prin-
ciples can be applied to comparing attribute weighted clusterings. Lastly, we
address the problem of comparing co-clusterings.

14



4.1 Comparing Non-Axis-Aligned Subspace Clusterings

A non-axis-aligned subspace cluster S is a pair (R, W ), where R ⊆ {r1, r2, . . . , rm}
is a subset of the data points and W is a collection of vectors {w1, w2, . . . , wD},
wi ∈ R

p. The vectors in W form a basis for a subspace of the original p-
dimensional data space. We use W also to denote this subspace. A non-
axis-aligned subspace clustering S is a collection {S1, S2, . . . , SK} of K non-axis
aligned subspace clusters.

To simplify the analysis, we require analogously to the axis-aligned case that
the clusters of a non-axis-aligned subspace clustering are disjoint. By this we
mean that if two clusters share data points, the associated subspaces must be
orthogonal. An extension to the case of non-disjoint clusterings seems possible
but complicated, and we leave it for future studies.

We can compare non-axis-aligned subspace clusterings using CE or RNIA
just as we compared axis-aligned ones if we first define the size of a cluster and
the union and the intersection of two clusters. These are introduced next, by
means of the principal angles between two subspaces.

4.1.1 Principal Angles

Let us consider two subspaces of R
n, F and G, such that p = dim F ≥ dim G =

q ≥ 1. The q principal angles θ1, θ2, . . . , θq ∈ [0, π/2] can be used to measure
the similarity of the subspaces. The angles can be defined sequentially for
k = 1, 2, . . . , q by

cos(θk) = max
w∈F ,v∈G

wT v (7)

with
(wk, vk) = arg max

w∈F ,v∈G
wT v (8)

subject to

||w|| = ||v|| = 1, wT wi = 0, vT vi = 0,
i = 1, 2, . . . , k − 1.

(9)

The vectors w1, w2, . . . , wq and v1, v2, . . . , vq are referred to as the principal
vectors. A pair of vectors (wi, vi) is referred to as a principal pair.

Let us clarify the definition a bit. Given two subspaces F and G, we first
find vectors w1 ∈ F and v1 ∈ G such that the angle between these vectors is as
small as possible. This angle is referred to as the first principal angle θ1. We
now proceed to finding vectors w2 ∈ F and v2 ∈ G such that the angle between
these vectors is minimized, given the additional restriction that w2 has to be
orthogonal with w1, and that v2 has to be orthogonal with v1. This gives us the
second principal angle θ2. We continue finding principal angles this way. The
vectors w1, w2, . . . form an orthogonal set in the subspace F , and the vectors
v1, v2, . . . form an orthogonal set in the subspace G. Due to this restriction,
the maximum number of these vectors (and hence principal angles) is naturally
min(dimF , dimG). An illustrative example of principal angles is given in Fig. 2.
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Figure 2: Example of principal angles between two subspaces. We have two
2-dimensional subspaces F and G in a 3-dimensional space. We thus have two
principal angles θ1 and θ2 between these subspaces. The first principal angle
θ1 is the angle between the vectors w1 and v1; it is naturally zero. The second
principal angle θ2 is the angle between the vectors w2 and v2. The vectors
w1, w2 are orthogonal and lie on the subspace F . Similarly, the vectors v1, v2

are orthogonal and lie on the subspace G.

Singular value decomposition (SVD) is a convenient way to compute the
principal angles. Let the matrices QF ∈ R

n×p and QG ∈ R
n×q contain or-

thonormal bases for the subspaces F and G, respectively. The SVD of QT
FQG

is
Y T QT

FQGZ = diag(σ1, σ2, . . . , σq), (10)

where Y ∈ R
p×p and Z ∈ R

q×q are orthogonal matrices. The ith singular value
σi is just the cosine of the ith principal angle, i.e. σi = cos(θi).

The cosines of the principal angles are also known as canonical correlations
and have important applications for instance in statistics, econometrics, and
geology. Principal angles can also be used to solve certain constrained opti-
mization problems. [6, 11, 20, 42]

4.1.2 Size, Union, and Intersection of Non-Axis-Aligned Subspace

Clusters

In order to use CE, RNIA, or other distance measures with non-axis-aligned
subspace clusterings, we need to define the size of a non-axis-aligned subspace
cluster and the union and intersection of two such clusters. In case of axis-
aligned subspace clusters, our base elements were the matrix elements, or the
pairs (data point, attribute). Analogously, the base element here is (data point
l, basis vector w).

We count the number of these base elements in a cluster Si = (Ri, Wi), whose
size becomes naturally mi = |Ri| · dim(Wi). Continuing with the analogy, we
define the intersection of two clusters Si = (Ri, Wi) ∈ S and S′

j = (R′
j , Vj) ∈ S ′

16



as mij = |Ri ∩ R′
j |

∑q
k=1 σ2

k, where q is the minimum of the dimensions of Wi

and Vj and {σk} are the principal angles between Wi and Vj .
This seemingly arbitrary definition for the intersection of two non-axis-

aligned subspace clusters has a twofold motivation. First, it is geometrically
consistent, as Theorem 1 shows, and in the axis-aligned case it coincides with
the previously defined mij (the number of matrix elements shared by the two
clusters). The second, probabilistic, motivation comes from viewing mij/mi as
the probability of seeing label j in S ′ if we randomly pick a point from cluster
Si ∈ S. This view is used in the original definition of the VI distance and is
implicit also in the other distance measures we have considered [37].

Let us investigate the probabilistic motivation in more detail. For any vector
w denote by ΠV w the projection of w on subspace V . Note that ||ΠV w||22 =
cos2(w, V )||w||22. We imagine the following sampling process:

1. Pick uniformly a point l ∈ Ri, and if l 6∈ R′
j , stop with 0 successes.

2. Else, pick a random orthonormal basis BWi
in Wi.

3. For each w ∈ BWi
, “map w probabilistically to Vj” by counting a success

with probability cos2(w, Vj ) and a failure with probability sin2(w, Vj ).

It can be shown that the expected number of successes in mi trials is equal to
mij as defined above.

We have to make sure that the size of the intersection of a subspace cluster
Si with the clusters of the other clustering does not exceed the size of Si. The
following theorem shows this; the proof is presented in the Appendix.

Theorem 1. Assume that we have a p-dimensional subspace F and k or-
thogonal subspaces G1,G2, . . . ,Gk of dimensionalities q1, q2, . . . , qk. We com-
pute the principal angles θ1

F ,Gi
, . . . , θai

F ,Gi
between all subspace pairs F , Gi; here

ai = min(p, qi). It always holds that
∑k

i=1

∑ai

j=1 cos2(θj
F ,Gi

) ≤ p. Equality is at-

tained if and only if F admits an orthogonal decomposition9 over the subspaces
{G}.

We have defined the cluster size mi for a non-axis-aligned subspace cluster.
We have also defined the size mij of the intersection of two non-axis-aligned
subspace clusters, motivated this definition, and made sure that it is geomet-
rically consistent. We now proceed to defining the size of the intersection and
union of two non-axis-aligned subspace clusterings.

The size of the intersection |I | of two non-axis-aligned subspace clusterings
is naturally defined as the sum of the intersections of the cluster pairs: |I | =
∑

ij mij . The union size |U | of two clusterings can be defined as |U | =
∑

i mi +
∑

j mj −
∑

ij mij .
After these definitions, we can calculate the distances between two non-axis-

aligned subspace clusterings with CE or RNIA simply by using the familiar
Eqs. 3 and 4. To compute CE, we only need the confusion matrix M , which
can be constructed using the cluster intersection sizes mij and the union size

9In other words, the subspace F is spanned by the collection of the basis vectors for
subspaces {Gi}i.
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|U |. To compute RNIA, only the union size |U | and the intersection size |I | are
needed.

4.1.3 Example of Non-Axis-Aligned Subspace Clusterings

Assume that we have two non-axis-aligned subspace clusterings, S = {S1, S2}
and S′ = {S′

1, S
′
2}, defined as follows.

S1 = ({1, 2, 3}, {[1, 1, 0, 0]T/
√

2})
S2 = ({5, 6, 7}, {[0, 0, 1, 0]T ,

[0, 1, 0, 1]T /
√

2, [1,−2, 0, 2]T/3})
S′

1 = ({2, 3, 4, 5},
{[2, 0, 0, 1]T/

√

(5), [0, 1, 0, 0]T})
S′

2 = ({5, 6, 7},
{[0, 0, 1, 0]T , [−1, 0, 0, 2]T/

√
5})

We immediately observe that the cluster sizes are m1 = 3 ·1 = 3, m2 = 3 ·3 = 9,
m′

1 = 4 · 2 = 8, and m′
2 = 3 · 2 = 6.

We write the orthonormal basis vectors in the matrices QS1
, QS2

, QS′
1
, and

QS′
2
. We need these matrices for calculating the principal angles between the

subspaces. For instance, the principal angle θ1
S1,S′

1

is the only non-zero singular

value of the matrix QT
S1

QS′
1
. The principal angles are θ1

S1,S′
1

= 0.32 (18.44◦),

θ1
S1,S′

2

= 1.25 (71.57◦), θ1
S2,S′

1

= 0 (0◦), θ2
S2,S′

1

= 0.89 (50.77◦), θ1
S2,S′

2

= 0 (0◦),

and θ2
S2,S′

2

= 0.69 (39.23◦).

These numbers allow us to compute the intersections between the cluster
pairs. For instance, for S1 and S′

1 we get the intersection size |I |S1,S′
1

= 2 ·
cos(0.32) = 1.90. Similarly, |I |S1,S′

2
= 0, |I |S2,S′

1
= 1.63, and |I |S2,S′

2
= 5.31.

The union area of the two clusterings is |U | =
∑

i mi +
∑

j m′
j −

∑

i,j |I |Si,S
′
j

=
26− 8.84 = 17.16.

Finally, RNIA(S,S ′) = (17.16−8.84)/17.16 = 0.48 and CE(S,S ′) = (17.16−
7.21)/17.16 = 0.58.

4.2 Comparing Attribute Weighted Clusterings

An attribute weighted cluster S is a pair (R, b), where R ⊆ {r1, r2, . . . , rm} is
a subset of the data points and b is a vector [b1, b2, . . . , bp]

T , where bi ≥ 0
and

∑p
i=1 bi = 1. The vector b defines an importance weight for each column

(attribute). An attribute weighted clustering S is a collection of K attribute
weighted clusters {S1, S2, . . . , SK}. The algorithms COSA [23] and LAC [19]
produce this type of clusterings.

We can easily utilize CE and RNIA to compare attribute weighted clusterings
if we first define the sizes, the unions and the intersections for this kind of
clusterings. We define the size of the cluster (R, b) as |R|, the number of data
points in the cluster. To define the intersection of two clusters, we first need
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the intersection of two attribute weight vectors. We define this as

b1 ∩ b2 = 1− 1

2

p
∑

i=1

|b1i − b2i|. (11)

Note that this could be defined in various ways; The present definition cor-
responds to the variation distance commonly used with discrete probability
distributions [5].

It always holds that 0 ≤ b1 ∩ b2 ≤ 1. Now the intersection of two clusters
(R1, b1) and (R2, b2) is given as |R1 ∩ R2| · |b1 ∩ b2|. To bound the sum of
the intersection sizes, we require that if two clusters of a clustering share data
points, the inner product of the associated attribute weight vectors has to be
zero. We previously introduced an analogous definition for non-axis-aligned
subspace clusters.

4.3 Comparing Co-Clusterings

Recall that a co-clustering S = (R, C) is a simultaneous partitioning of the
rows and the columns of the data matrix; R = {R1, R2, . . . , RL} denotes the
collection of row clusters and C = {C1, C2, . . . , CM} the collection of column
clusters.

Since co-clusterings are always partitionings of the data matrix elements, we
can straightforwardly use any of the ordinary clustering distance measures of
Section 2. For instance, we simply write VI(S,S ′) for the VI distance between
two co-clusterings S and S ′. In calculating the VI (or any other distance) for
co-clusterings, we consider each data matrix element as a data point with a
cluster label, and the co-clustering as a partition of the data matrix elements.

It is possible to derive relationships for the distances between two co-clusterings
and their corresponding row and column clusterings. For instance, the following
propositions hold. The proofs are presented in the Appendix.

Proposition 2. For all co-clusterings S,S ′ we have VI(S,S ′) = VI(R,R′) +
VI(C, C′).

Proposition 3. For all co-clusterings S,S ′ we have CE(S,S ′) ≥ CE(R,R′) +
CE(C, C′) − CE(R,R′)CE(C, C′).

Proposition 4. For all co-clusterings S,S ′ we have RNIA(S,S ′) = 0.

4.3.1 Example of Co-Clusterings

Consider two co-clusterings S and S ′. We have R = {{1, 2, 3, 4}, {5, 6, 7}, {8}},
C = {{1, 2, 3}, {4, 5, 6}, {7, 8}, R′ = {{1, 2, 4}, {3, 6, 7}, {5, 8}}, and
C ′ = {{1, 2, 5, 6}, {3, 4, 7}, {8}}.

The VI distances are VI(R,R′) = 0.93, VI(C, C′) = 1.41, and VI(S,S ′) =
VI(R,R′)+VI(C, C′) = 2.34. The CE distances are CE(R,R′) = 2/8, CE(C, C′) =
4/8, and CE(S,S ′) = CE(R,R′) + CE(C, C′) − CE(R,R′)CE(C, C′) = 40/64.
All RNIA distances are zero.
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5 Experimental Results

We now demonstrate how our distance measures can be used to calculating
distances between clusterings produced by a variety of subspace clustering algo-
rithms on synthetic data sets. In our first experiment, detailed in Section 5.1,
we compare the algorithms by the means of external cluster validation. We also
show how the use of the subspace clustering distance measures can give more in-
formation than traditional row-based or column-based comparison approaches.
In Section 5.2, we describe an experiment illustrating how subspace clustering
distance measures can be used for studying the stability of various clusterings
produced by a single algorithm on a given data set. These results indicate that
our distance measures are useful for internal cluster validation. As our third
experiment, described in Section 5.3, we show how our distance measures can
be used to compare patterns in binary data matrices.

5.1 External Cluster Validation

5.1.1 Data Sets and Algorithms

We compare the performance of four algorithms, PROCLUS [2], FASTDOC [48],
HARP [62], and ORCLUS [3] on synthetic data sets. The first three algorithms
produce axis-aligned subspace clusterings, and ORCLUS produces non-axis-
aligned clusterings. We compare clusterings produced by these algorithms using
our extended CE and RNIA distance measures, which were the two candidates
possessing the most desirable theoretical properties (see Section 3.3.5 for de-
tails).

We use the clustering results from [61, 62] that compared the algorithms
across 8 synthetic data sets. Each data set has 500 data points, 20 attributes,
and 5 axis-aligned subspace clusters. The corresponding row clusters form a
partition of the data points (rows). The number of data points in each cluster
varies from 15% to 25% of the total number of points. The 8 data sets differ
in the dimensionality of the subspace clusters. In the first data set, the dimen-
sionality of all subspace clusters is 4, in the second data set it is 6, and finally
in the 8th data set, the subspaces are 18-dimensional. In an attribute relevant
to a subspace, the standard deviation of the within-cluster data is between 3%
and 5% of the global standard deviation on that attribute.10 No noise is added.
For each data set, we have several clustering results for each algorithm corre-
sponding to various parameter values (except for HARP, which is deterministic
and has no input parameters).

5.1.2 Qualitative Comparison of the Algorithms

Some of the clustering results by HARP, PROCLUS, and FASTDOC are visual-
ized in Fig. 3 together with the original clustering.11 To illustrate the full range

10Only the ratio of the standard deviations affects the performance of the algorithms; the
magnitudes as such do not have an effect.

11Since ORCLUS produces non-axis-aligned clusters, its results cannot be visualized here.
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(a) Data set with five 4-dimensional subspace clusters. The original clustering and
the best clustering by HARP, PROCLUS, and FASTDOC, decided based on the
CE score for subspace clusterings.
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(b) Data set with five 4-dimensional subspace clusters. The worst clus-
tering by PROCLUS and FASTDOC, decided based on the CE score for
subspace clusterings.

Figure 3: Various subspace clusterings for a data set with 500 data points,
20 dimensions, and five 4-dimensional subspace clusters. Each small picture
illustrates a subspace clustering. Each subspace cluster is represented by a
different shade of gray (the colors do not imply correspondence between clusters
of different clusterings), and the unclustered background is white. The definition
of the ’best’ clustering depends on the choice of the distance for PROCLUS and
FASTDOC. We only have one HARP clustering, since HARP is a deterministic
algorithm without input parameters.
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of clusterings that we analyzed, we have chosen to plot the best and the worst
clusterings produced by each algorithm. We only consider CE distances here,
since the RNIA results are very similar. The output clusters by the various
algorithms are clearly different from each other and the dependence of PRO-
CLUS and FASTDOC on the parameter values is strong. Visual inspection of
the clustering results on other data sets supports these observations.

5.1.3 Comparing Subspace Clusterings, Row Clusterings, and Col-

umn Clusterings

Let us now consider the difference between the CE distance for subspace clus-
terings, row clusterings, and column clusterings. Fig. 4 shows a comparison
between the algorithms on all data sets using six different distance measures.12

In the first column, we have CE distance for subspace clusterings, CE distance
using row information only, and CE distance using column information only.13

In the second column, the corresponding results for RNIA are shown. Note
that the column clusterings are non-disjoint, so we need to apply the element
duplication procedure from Section 3.4 here.

The figure clearly brings out differences between the subspace clustering
distances, the row clustering distances, and the column clustering distances,
indicating that it is indeed worthwhile to pay attention to the choice of the
clustering type to compare. For instance, according to the row clustering results,
HARP performs well for all data sets and always gives the best result. This is
somewhat misleading, since the other two distance measures reveal that HARP’s
choice of subspaces leaves room for improvement. These results show that,
irrespective of whether we wish to compare algorithms to each other or analyze
the performance of a given algorithm across data sets, the row, column, or
subspace based distance measures give different information.

The results of CE and RNIA are very similar on the subspace clustering
distances (top row of Fig. 4) and on the column clustering distances (bottom
row of Fig. 4). However, the RNIA scores for PROCLUS, ORCLUS, and HARP
are zero when the row clustering distances are computed. This is natural, since
all three algorithms give a partition of the full set of data points, and since
the original clustering contains a partition of the same set, we do not have any
non-intersecting area between the clusterings. On the other hand, FASTDOC
does not produce a partition of the set of data points, which is why its RNIA
scores are non-zero.

12We have chosen to plot only the best clustering results of each algorithm, since the de-
pendence on parameter values is strong, and it does not make sense in this case to plot the
means with error bars.

13Since we do not yet have a method for handling non-disjoint non-axis-aligned clusterings,
the column distance measure for ORCLUS is not shown.
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(a) CE distances for subspace
clusterings.
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(b) RNIA distances for subspace
clusterings.
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(c) CE distances for row cluster-
ings.
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(d) RNIA distances for row clus-
terings.
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(e) CE distances for column clus-
terings.
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(f) RNIA distances for column
clusterings.

Figure 4: Distances between PROCLUS output and the true clustering, Fast-
DOC output and the true clustering, etc., for eight different data sets (cluster
dimensionalities 4, 6, . . . , 18). Only the best clustering results of each algorithm
are shown. Since we do not yet have a method for handling non-disjoint non-
axis-aligned clusterings, the column distance for ORCLUS is not shown.

23



5.2 Internal Cluster Validation

5.2.1 Data Sets and Algorithms

We conducted another experiment on a new data set consisting of 1000 rows, 100
columns, and 5 subspace clusters. The goal here is to compare the performance
of PROCLUS and SSPC [63] over samples of this data set with various parameter
settings. Our non-disjoint axis-aligned subspace clusters are 10-dimensional and
each cluster has approximately 200 rows. The row clusters form a partition of
the set of all rows. The standard deviation of the within-cluster data is between
3% and 5% of the global standard deviation. Five samples of this data set
were created by removing 10% of the rows and 10% of the columns.14 These
5 samples were then clustered by PROCLUS and SSPC. PROCLUS was run
with 9 different parameter values for each sample, resulting in 45 clusterings,
and SSPC was run with 10 different parameter values per sample, resulting in
50 clusterings.

5.2.2 Results

We have computed the pairwise distances for all 96 clusterings (the true clus-
tering, 50 SSPC clusterings, and 45 PROCLUS clusterings) using the subspace
clustering CE distance and the subspace clustering RNIA distance. Fig. 5 (a)
shows a single-linkage dendrogram produced by an agglomerative hierarchical
clustering algorithm based on the subspace clustering CE distances between all
pairs of clusterings. The five groups on the left correspond to the SSPC cluster-
ings on the five samples; the true clustering is included in the fifth group. The
PROCLUS clusterings lie on the right-hand side of the dendrogram and do not
seem to contain any clear structure.

The subspace CE distance matrix in Fig. 5 (c) supports our findings. Clus-
tering 1 is the true clustering, clusterings 2–51 are the SSPC clusterings, and
clusterings 52–96 are the PROCLUS clusterings. The SSPC and the PROCLUS
clusterings are separated by vertical and horizontal lines. The clusterings are
ordered by sample: the clusterings 2–11 are the SSPC clusterings for the first
sample, the clusterings 12–21 are the SSPC clusterings for the second sample,
and so on. Similarly, the clusterings 52–60 are the PROCLUS clusterings for the
first sample, the clusterings 61–69 are the PROCLUS clusterings for the second
sample, etc. It is clear that the SSPC clusterings are much closer to each other
than the PROCLUS clusterings, which do not exhibit clear clustering structure.
In each sample, the SSPC clusterings are clustered into two groups by parameter
value, as the dendrogram of Fig. 5 (a) also shows.

The right column of Fig. 5 shows similar results using the subspace RNIA
distance. As the dendrogram in Fig. 5 (b) illustrates, the RNIA results differ
from the CE results. As before, the five clusters on the left-hand side of the
dendrogram correspond to the SSPC clusterings for the five samples. However,

14An extensive series of experiments would be needed to determine a good sample size and
to see whether sampling both the rows and the columns is necessary. In this article, we present
only preliminary experiments on internal cluster validation.
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ple, constructed using CE distances for
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(d) Distance matrix ordered by sam-
ple, constructed using RNIA distances
for subspace clusterings.

Figure 5: Representations of the pairwise distances for 50 clusterings by SSPC
(10 parameter values for each of the 5 samples) and 45 clusterings by PRO-
CLUS (9 parameter values for each of the 5 samples). In the dendrograms, the
closely grouped clusterings on the left are produced by SSPC, and the more
loosely grouped clusterings on the right are produced by PROCLUS. In the dis-
tance matrices, 1: True clustering. 2–51: SSPC clusterings. 52–96: PROCLUS
clusterings. The horizontal/vertical lines mark the borders between the SSPC
clusterings and the PROCLUS clusterings.
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now also some of the PROCLUS results seem to exhibit clustering structure;
five groups of four PROCLUS clusterings each are visible.

The distance matrix in Fig. 5 (d) brings more light in the situation. The five
groups correspond to the five samples, and in each sample, the clusterings cor-
responding to the four last parameter values are clustered together. This is easy
to explain. The parameter value required by PROCLUS is the average dimen-
sionality of the output subspace clusters. The parameter values 6-9 correspond
to higher dimensionalities 60-90, and if the clusters are so high-dimensional as
to fill almost the whole 100-dimensional data matrix, they are bound to be close
to each other in the RNIA sense; the relative overlap is very high, no matter
how bad the clusters are. However, this undesirable phenomenon does not show
in the CE results, since CE requires a one-to-one matching between the clusters.

This experiment demonstrates how subspace clustering distance measures
could be used for stability-based internal cluster validation for subspace clus-
terings. We have shown that omputing pairwise distances between clusterings
is able to provide us infromation on the stability of algorithms. Based on our
experiments, it is clear that SSPC is more stable algorithm than PROCLUS,
since the SSPC results vary less across samples. It is important to note that the
choice of the subspace clustering distance measure does matter: CE is a better
choice than RNIA in the case of high-dimensional subspace clusters.

We have further shown that subspace clustering distance measures are useful
in other ways; noticing that the SSPC clusterings corresponding to various
parameter values fall into two groups gives us more information on how the
SSPC algorithm works; this is an example of meta-clustering.

5.3 Patterns in a Binary Data Set

We will now demonstrate that our distance measures are not limited to compar-
ing subspace clusterings but can be used for other important tasks as well. As
an example, let us consider comparing patterns in sparse binary data matrices.
This kinds of matrices are commonly encountered in data mining; examples in-
clude market basket data, web log data, and text data in bag-of-words format.
Ways to represent patterns in binary matrices include error-tolerant frequent
itemsets [59], dense itemsets [51], geometric and combinatorial tiles [25], al-
pha/beta concepts [10], and conjunctive clusters [40].

Some of the pattern representations listed above can be directly viewed as
axis-aligned-subspace clusterings and compared as such. Many others can be
straightforwardly converted into axis-aligned subspace clusterings. To demon-
strate this, we have computed geometric tiles, error-tolerant frequent itemsets
(ETIs), and dense itemsets for a newsgroup posting data set. Geometric tiles
are just rectangular sets of data matrix elements, so we do not have to do any-
thing to convert these into subspace clusters.15 However, error-tolerant frequent
itemsets and dense itemsets are attribute sets. In these cases, we can quite nat-
urally compute the set of rows for which a given itemset is frequent/dense. This

15In our experiments, we leave out the background tile which covers the whole data matrix;
see the original paper for details.
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way, we are able to derive a rectangular set of matrix elements corresponding
to each itemset.

Our data set, which has been originally used in [30], consists of 348 news-
group postings and 16 terms. The entry (i, j) in the data matrix has a value ’0’
or ’1’ depending on whether the jth term appears in the ith newsgroup post-
ing. The postings are collected from 4 newsgroups whose topics are religion,
cryptography, medicine, and space. The terms are chosen to reflect the topics:
they are ’god’, ’christ’, ’bibl’, ’church’, ’secur’, ’kei’, ’encrypt’, ’public’, ’effet’,
’medic’, ’patient’, ’doctor’, ’space’, ’nasa’, ’orbit’, and ’launch’. See Fig. 6 (a)
for a visualization of the data set. We have chosen a small data set because the
dense itemsets algorithm and the basic version of the error-tolerant frequent
itemsets algorithm are exponential with respect to the number of attributes.

We have computed geometric tiles for the newsgroup data set with 9 different
parameter values, error-tolerant frequent itemsets with 15 parameter values,
and dense itemsets with 20 parameter values. We then converted these results
into collections of rectangular sets of data matrix elements; we will refer to these
rectangular sets as clusters and the collections of these sets as clusterings. Some
examples of the results are visualized in Fig. 6. The examples show that the
dependence on parameter values is significant for ETIs and dense itemsets. It
is therefore important to be able to compare these results quantitatively. This
way, we are able to see which algorithms are stable, which parameter values
produce similar results, and which algorithms resemble each other.

Fig. 7 shows the pairwise CE and RNIA distances for all pairs of clusterings.
The CE and RNIA distances behave in a similar way, even though RNIA places
the clusterings closer to each other, as expected. The results for dense itemsets
form a few clear clusters, the results for geometric tiles are all very close to each
other, and the results for error-tolerant frequent itemsets vary a lot with respect
to the parameter value. The tilings are closer to the dense itemsets than the
ETIs.

6 Conclusion

In this article, we have addressed the problem of comparing subspace cluster-
ings. We have done a comprehensive literature survey on subspace clustering
articles and observed that there is currently no satisfactory way to compare
subspace clusterings. We have motivated our work by arguing that comparing
clusterings is of crucial importance in external and internal cluster validation,
meta-clustering, and consensus clusterings.

Since comparing subspace clusterings is more general task than comparing
ordinary clusterings, we have introduced a set of theoretical properties impor-
tant for a subspace clustering distance. We have introduced four candidates
for comparing subspace clusterings, namely CE, RNIA, VI, and Rand, and
characterized them in terms of their theoretical properties. CE, VI, and Rand
are generalizations of existing methods for comparing ordinary clusterings, and
RNIA is a novel retrieval measure.
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error-tolerant
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turned into
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(c) An example
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frequent item-
sets turned
into rectangles
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(d) An example
collection of
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turned into
rectangles (13
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(e) An example
collection of
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turned into
rectangles (7 par-
tially overlapping
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ometric tiles (10
partially overlap-
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Figure 6: Some example results by our algorithms for the newsgroup data set.
The binary data matrix is of size 348 newsgroup postings × 16 terms; the ’1’s are
colored black. This simple visualization does not show the difference between
the clusters or the overlap of the clusters.
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Figure 7: Representations of the pairwise distances for dense itemsets (1-20),
tilings (21-30), and error-tolerant frequent itemsets (31-46) for the newsgroup
data. The horizontal/vertical lines denote the borders between these three cat-
egories of results.

Out of these four distance measure candidates, we have chosen to use CE
and RNIA in our experiments, since these two measures possess the most desir-
able theoretical properties. In the experiments, we have compared clusterings
by five well-known algorithms: FASTDOC, HARP, PROCLUS, ORCLUS, and
SSPC. We have demonstrated how our measures can be used in both external
and internal cluster validation. We have also shown that comparing subspace
clusterings gives different information than comparing the corresponding row
and column clusterings. Further, we have noted that comparing the row or the
column clusterings, which might not be partitions of sets of all rows/columns,
is often not even possible with the ordinary clustering comparison measures.
Our experiments have demonstrated that CE is a better choice for a distance
measure than RNIA in the case of high-dimensional subspace clusters.

It turns out that the distance measures we have proposed for axis-aligned
subspace clusterings are useful for comparing other types of clusterings also.
In designing the distance measures, we have not restricted ourselves in any
way to consider only rectangular sets of matrix elements as clusters. Hence,
our distance measures are applicable to any partial clusterings : clusterings on
subsets of data points. We are not aware of any existing methods for comparing
partial clusterings. These kinds of clusterings commonly arise in stability-based
internal cluster validation, where we want to compare clusterings on samples of
the data. Most previous approaches have compared the clusterings only at their
intersection [9]. Partial clusterings might also arise in distributed databases [52].

Our distance measures could also be useful for comparing hierarchical clus-
terings. Comparing hierarchical clusterings is interesting, since hierarchies are
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commonly used in bioinformatics for instance to represent the evolutionary re-
lations of proteins [32]. Also, the subspace clustering algorithms HARP and
COSA produce hierarchical clusterings; it would be exciting to see how these
clusterings compare to ordinary hierarchical clusterings. Hierarchical cluster-
ings are commonly described by dendrograms, which in turn can be viewed as
non-disjoint clusterings, i.e., clusterings in which a given data point may belong
to several clusters. More specifically, a hierarchical clustering for N data points
is a collection of N partitions of these N points; each data point thus belongs
to N clusters simultaneously. We are currently studying the properties of our
distance measures in comparing hierarchical clusterings.

We have demonstrated that in addition to comparing clusterings, our dis-
tance measures can be used to compare certain types of patterns in data ma-
trices. We have shown comparisons for geometric tiles, dense itemsets, and
error-tolerant frequent itemsets for a binary data matrix. Our distance mea-
sures provide a way to derive results on the stability and similarity of algorithms
that produce this kinds of patterns.

There are still more avenues to be explored in the future. Weighting the rows
and the columns of the data matrix is another potentially useful feature. We
have only discussed hard clusterings; probabilistic subspace clusterings would
require separate analysis.16 Finally, depending on the definition of the closeness
of the data points in the subspace (for instance, distance-based [2] or pattern-
based [60]), the rows and the columns of the data matrix may or may not be
symmetric, and a successful comparison method should take this into account.

Appendix 1: Proofs for Table 1

6.1 Triangle Inequality

Theorem 2. (Triangle inequality for CE.) CE(A,B) ≤ CE(A, C) + CE(B, C)
for any subspace clusterings A,B, C.

To prove this theorem, we first show some preliminary results. For simplicity,
we adopt a shorthand notation and write A instead of supp (A), A\B instead of
supp (A) \ supp (B), etc. Also, we write AA∩B for the part of the clustering A
in A∩B, AA\B for the part of the clustering A in A\B, etc. Also, let us define
a cluster label vector u for a clustering of mp points and K clusters as a vector
of size mp × 1 where ui = k if the ith point belongs to the kth cluster. Here
i ∈ {1, 2, . . . . , mp} and k ∈ {1, 2, . . . , K}.

Proposition 5. If A and B are arbitrary subspace clusterings and C ′ ⊆ (A∪B),
then CE(A,B) ≤ CE(A, C ′) + CE(B, C′).

Proof. (Proposition 5) Let us write H(u, v) for the Hamming distance between
two cluster label vectors u and v, or in other words, the total number of differ-

16However, we are only aware of one algorithm producing probabilistic subspace cluster-
ings [46].
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ences between these two vectors. Then the CE distance becomes

CE(A,B) =

min H(AA∩B,BA∩B) + |A\B| + |B\A|
|A ∪ B| ,

where the minimum is taken over all permutations of the cluster labels. Let us
consider three subspace clusterings A, B, and C ′ such that A and B are arbitrary
and C′ ⊆ (A∪B). We consider C ′ in three disjoint parts: C′ = C′

A∩B∪C′
A\B∪C′

B\A.

Let us fix the cluster labels of C ′ and choose the permutation of labels in A
to minimize H(AA∩C′ , C′

A∩C′) and the permutation of labels in B to minimize
H(BB∩C′ , C′

B∩C′). Using these labels, we have

CE(A, C′) + CE(B, C′) − CE(A,B)

≥
H(AC′

A∩B
, C′

A∩B) + H(AC′
A\B

, C′
A\B)

|A ∪ C′|

+
|A| − |C′

A∩B| − |C′
A\B| + |C′

B\A|
|A ∪ C′|

+
H(BC′

A∩B
, C′

A∩B) + H(BC′
B\A

, C′
B\A)

|B ∪ C′|

+
|B| − |C′

A∩B| − |C′
B\A| + |C′

A\B|
|B ∪ C′|

− H(AA∩B,BA∩B) + |A\B|+ |B\A|
|A ∪ B| .

Above, the first two terms correspond to CE(A, C ′) and the second two terms
correspond to CE(B, C ′). Due to the choice of the labels, the quantity in the
third term is greater than or equal to CE(A,B), hence the inequality.

Next, we notice that |A| = |A ∩ B|+ |A\B|, that |B| = |A ∩ B|+ |B\A|, and
that H(AA∩B,BA∩B) ≤ |A ∩ B| + H(AC′

A∩B
,BC′

A∩B
) − |C′

A∩B|. We substitute
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these in the above equation, rearrange the terms, and obtain

CE(A, C′) + CE(B, C′) − CE(A,B)

≥
H(AC′

A∩B
, C′

A∩B)

|A ∪ C′| +
H(BC′

A∩B
, C′

A∩B)

|B ∪ C′|

−
H(AC′

A∩B
,BC′

A∩B
)

|A ∪ B|

+
H(AC′

A\B
, C′

A\B)

|A ∪ C′| +
H(BC′

B\A
, C′

B\A)

|B ∪ C′|

+
(|A ∩ B| − |C′

A∩B|) + (|A\B| − |C′
A\B|) + |C′

B\A|
|A ∪ C′|

+
(|A ∩ B| − |C′

A∩B|) + (|B\A| − |C′
B\A|) + |C′

A\B|
|B ∪ C′|

− |A\B|+ |B\A| + (|A ∩ B| − |C ′
A∩B|)

|A ∪ B| .

We know that the triangle inequality holds for CE with ordinary clusterings
(partitions), so in the equation above, the first three terms sum up to 0 or more.
The Hamming distance is always nonnegative, so the fourth and the fifth terms
above are also greater than or equal to 0. We also notice that |A\B|−|C ′

A\B| ≥ 0

and |B\A| − |C′
B\A| ≥ 0. Finally, it holds that |A ∩ B| − |C ′

A∩B| ≥ 0. These
observations lead us to

CE(A, C′) + CE(B, C′) − CE(A,B)

≥
(|A\B| − |C′

A\B|) + |C′
B\A|

|A ∪ C′|

+
(|B\A| − |C′

B\A|) + |C′
A\B|

|B ∪ C′|

− |A\B| + |B\A|
|A ∪ B| .

We lastly observe that |A ∪ B| ≥ |A ∪ C ′| and that |A ∪ B| ≥ |B ∪ C′|, which
helps to complete the proof:

CE(A, C′) + CE(B, C′) − CE(A,B)

≥
|A\B| − |C′

A\B| + |C′
B\A| + |B\A|

|A ∪ B|

+
−|C′

B\A| + |C′
A\B| − |A\B|+ |B\A|
|A ∪ B|

= 0.
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Proposition 6. If A and B are arbitrary subspace clusterings and C = C ′ ∪C′′,
where C′ ⊂ (A ∪ B) and C′′ ∩ (A ∪ B) = ∅, then CE(A, C) ≥ CE(A, C ′) and
CE(B, C) ≥ CE(B, C′).

Proof. (Proposition 6)

CE(A, C)

=
H(AA∩C′ , C′

A∩C′) + |A\C′| + |C′\A| + |C′′|
|A ∩ C′| + |A\C′| + |C′\A| + |C′′|

≥ H(AA∩C′ , C′
A∩C′) + |A\C′| + |C′\A|

|A ∩ C′| + |A\C′| + |C′\A|
= CE(A, C′).

The case of B and C can be proven analogously.

Proof. (Theorem 2) Let us choose arbitrary subspace clusterings A, B, and C, for
which C = C′∪C′′ such that C′ ⊆ (A∪B) and C′′∩ (A∪B) = ∅. By Propositions
5 and 6, CE(A, C) + CE(B, C) ≥ CE(A, C ′) + CE(B, C′) ≥ CE(A,B).

Theorem 3. (Triangle inequality for RNIA.) RNIA(A,B) ≤ RNIA(A, C) +
RNIA(B, C) for any subspace clusterings A,B, C.

Proof. (Theorem 3) Let us pick subspace clusterings A,B, C for a data matrix
X = (xij). Let us write nA for the number of the elements of X that are
clustered only by A, nAB for the number of the elements of X that are clustered
by A and B but not C, and nABC for the number of the elements of X that are
clustered by all three clusterings. We define nB , nC , nAC , and nBC similarly.
Now, we can write

RNIA(A, C) + RNIA(B, C)− RNIA(A,B)

=
nA + nC + nAB + nBC

nA + nC + nAB + nBC + nAC + nABC

+
nB + nC + nAC + nAB

nB + nC + nAC + nAB + nBC + nABC

− nA + nB + nAC + nBC

nA + nB + nAC + nBC + nAB + nABC

.

Once the expression is fully expanded, all negative terms disappear. Since the
expression is always greater than zero, the triangle inequality holds.

Example 1. (Triangle inequality for VI.) VI does not satisfy the triangle in-
equality in the case of subspace clusterings.

We show by counterexample that VI does not satisfy the triangle inequality.
Consider three subspace clusterings A = (A1) = ({1, 2}, {1, 2, 3, 4}),B = (B1) =
({2, 3}, {1, 2, 3, 4}), and C = (C1, C2) = ({1, 2}, {1, 2, 3, 4}, {1, 2}, {6}). We have
VI(A,B) = 8/3 log 2 ≈ 1.84, VI(A, C) = 1/5 log 2 ≈ 0.14, and VI(B, C) =
17/7 log2 ≈ 1.68. Thus VI(A, C) + VI(B, C) < VI(A,B), showing that the
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triangle inequality does not hold. It does not hold for these three clusterings
even for VI distances scaled by the logarithm of the union area.

Example 2. (Triangle inequality for Rand.) The Rand index does not satisfy
the triangle inequality in the case of subspace clusterings.

We show by counterexample that (1-Rand) does not satisfy the triangle
inequality. Consider the example clusterings from Example 1. For these clus-
terings, we have 1−Rand(A,B) = (22+22)/66 ≈ 0.67, 1−Rand(A, C) = 1/45 ≈
0.02, and 1−Rand(B, C) = 45/91 ≈ 0.49. The triangle inequality does not hold,
since 1 − Rand(A, C) + 1 − Rand(B, C) < 1 − Rand(A,B).

6.2 Penalty for Non-Intersecting Area

Consider adding k ≥ 1 units of non-intersecting area to two subspace clusterings
A and B and denote the resulting clusterings by AU and BU (note that one of
these might actually equal to the original clustering). Are our distance measures
able to penalize for this added non-intersecting area?

Theorem 4. (Penalty for Non-Intersecting Area with CE.) CE(AU ,BU ) ≥
CE(A,B) for all subspace clusterings A, B.

Proof.

CE(AU ,BU) =
(|U | + k) − Dmax

(|U | + k)

≥ |U | − Dmax

|U |
= CE(A,B).

Theorem 5. (Penalty for Non-Intersecting Area with RNIA.) RNIA(AU ,BU) ≥
RNIA(A,B) for all subspace clusterings A, B.

Proof.

RNIA(AU ,BU ) =
(|U | + k) − |I |

(|U | + k)

≥ |U | − |I |
|U |

= RNIA(A,B).

Example 3. (Penalty for Non-Intersecting Area with VI.) VI does not always
penalize for non-intersecting area.
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We show by counterexample that VI does not always penalize for the non-
intersecting area. Consider the clusterings in Example 1. We have the same
intersection size but larger non-intersecting area for clusterings B and C than
for clusterings B and A, so B and C should be farther apart. Despite this,
VI(B, C) < VI(A,B). This is true also if we scale the VI distances by the
logarithms of the appropriate union areas.

Example 4. (Penalty for Non-Intersecting Area with Rand.) The Rand index
does not always penalize for non-intersecting area.

Consider the clusterings from Example 2. With similar reasoning as in Ex-
ample 3, the fact that 1 − Rand(B, C) < 1 − Rand(A,B) shows that (1-Rand)
fails to penalize for the growing non-intersecting area.

6.3 Scale Invariance

Consider scaling all areas by a constant c ≥ 1.

Theorem 6. (Scale Invariance for CE.) CE(cA, cB) = CE(A,B) for all sub-
space clusterings A, B.

Proof.

CE(cA, cB) =
c|U | − cDmax

c|U |

=
|U | − Dmax

|U |
= CE(A,B).

Theorem 7. (Scale Invariance for RNIA.) RNIA(cA, cB) = RNIA(A,B) for
all subspace clusterings A, B.

Proof.

RNIA(cA, cB) =
c|U | − c|I |

c|U |

=
|U | − |I |

|U |
= RNIA(A,B).

Example 5. (Scale Invariance for VI.) VI is not scale invariant in the case of
subspace clusterings.
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We show this by counterexample.

VI(cA, cB)

=
1

c|U |





∑

i

(cmi) log(cmi) +
∑

j

(cm′
j) log(cm′

j) − 2
∑

i

∑

j

(cmij) log(cmij)





= VI(A,B) + log c





∑

i

mi +
∑

j

m′
j − 2

∑

i

∑

j

mij





≥ VI(A,B),

since for subspace clusterings,
∑

i mi ≥ ∑

i

∑

j mij and
∑

j m′
j ≥ ∑

i

∑

j mij .
The equality (and thus scale invariance) only holds for ordinary clusterings, for
which mi =

∑

j mij and m′
j =

∑

i mij ∀ i, j.

Example 6. (Scale Invariance for Rand.) The Rand index is not scale invariant
in the case of subspace clusterings.

We show this by counterexample.

1 − Rand(cA, cB) =

∑L′

i=1

∑L
j=1

∑L
k=j+1(cmij)(cmik)

(cm)((cm) − 1)/2

=

∑L
i=1

∑L′

j=1

∑L′

k=j+1(cmji)(cmki)

(cm)((cm) − 1)/2

=

∑L′

i=1

∑L
j=1

∑L
k=j+1 mijmik +

∑L
i=1

∑L′

j=1

∑L′

k=j+1 mjimki

m(m − 1/c)/2

≤ 1 − Rand(A,B).

The equality holds only for c = 1, i.e. when there is no scaling.

6.4 Copy Invariance

Consider introducing two disjoint copies of the same clustering S in a large data
matrix. Denote the new ’double clustering’ by SD .

Theorem 8. (Copy Invariance for CE.) CE(AD ,BD) = CE(A,B) for all sub-
space clusterings A, B.

Proof.

CE(AD ,BD) =
2|U | − 2Dmax

2|U |

=
|U | − Dmax

|U |
= CE(A,B).
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Theorem 9. (Copy Invariance for RNIA.) RNIA(AD ,BD) = RNIA(A,B) for
all subspace clusterings A, B.

Proof.

RNIA(AD ,BD) =
2|U | − 2|I |

2|U |

=
|U | − |I |

|U |
= RNIA(A,B).

Theorem 10. (Copy Invariance for VI.) VI(AD,BD) = VI(A,B) for all sub-
space clusterings A, B.

Proof.

VI(AD,BD)

=
1

2|U |



2
∑

i

mi log mi + 2
∑

j

m′
j log m′

j − 2 · 2
∑

i

∑

j

mij log mij





= VI(A,B).

Example 7. (Copy Invariance for Rand.) The Rand index is not copy invari-
ant.

We show this by counterexample. Note that (1-Rand) can also be written
as

1 − Rand(A,B) =
1/2(

∑L′

i=1

∑L
j=1

∑L
k=1 mijmik − ∑L

i=1

∑L′

j=1 m2
ij)

m(m − 1)/2

+
1/2(

∑L
i=1

∑L′

j=1

∑L′

k=1 mjimki −
∑L

i=1

∑L′

j=1 m2
ij)

m(m − 1)/2

Using this, we have

1 − Rand(AD,BD) =
1/2(2

∑L′

i=1 2
∑L

j=1 2
∑L

k=1 mijmik − 2
∑L

i=1 2
∑L′

j=1 m2
ij)

(2m)((2m) − 1)/2

+
1/2(2

∑L
i=1 2

∑L′

j=1 2
∑L′

k=1 mjimki − 2
∑L

i=1 2
∑L′

j=1 m2
ij)

(2m)((2m) − 1)/2

=
1/2(2

∑L′

i=1

∑L
j=1

∑L
k=1 mijmik − ∑L

i=1

∑L′

j=1 m2
ij)

m(m − 1/2)/2

+
1/2(2

∑L
i=1

∑L′

j=1

∑L′

k=1 mjimki −
∑L

i=1

∑L′

j=1 m2
ij)

m(m − 1/2)/2

6= 1 − Rand(A,B)
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in the general case.

6.5 Multiple Cluster Coverage Penalty

Consider two subspace clusterings A = (A1) and B = (B1, . . . , BK) such that
the clusters Bi are disjoint, of equal size |A1|/K = |U |/K, and fully cover
supp A1.

Theorem 11. (Multiple Cluster Coverage Penalty for CE.) CE(A,B) = K−1
K

|U |.

Proof. We allow only one of the clusters Bi to be matched with A1, so K −
1 clusters are left unmatched, and the clustering error becomes CE(A,B) =
K−1

K
|U |.

Theorem 12. (Multiple Cluster Coverage Penalty for RNIA.) RNIA(A,B) = 0.

Proof. In this case I = U and therefore RNIA(A,B) = 0.

Theorem 13. (Multiple Cluster Coverage Penalty for VI.) VI(A,B) = log K.

Proof. In this case, M = (m1j) for j = 1, . . . , K, where m1j = |U |/K. Also,
m1 = |U | and m′

j = |U |/K. We thus get

VI(A,B) =
1

|U | [|U | log |U | + K(|U |/K) log(|U |/K) − 2K(|U |/K) log(|U |/K)]

= log K.

Theorem 14. (Multiple Cluster Coverage Penalty for Rand.) 1−Rand(A,B) =
[|U |(K − 1)][K(|U | − 1)].

Proof. In this case, N = |U |(|U | − 1)/2, N11 = 1/2(|U |/K)(|U |/K − 1)K, and
N00 = 0, so (1-Rand) becomes

1 − Rand(A,B) = 1 − N00 + N11

N

= 1 − 1/2(|U |/K)(|U |/K − 1)K

|U |(|U | − 1)/2

=
|U |(K − 1)

K(|U | − 1)
.
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Appendix 2: Proof for Theorem 1 of Section 5

Proposition 7. If (uj , vj) is a principal pair, then σjuj = ΠFvj where ΠFx
represents the projection of vector x on the subspace F .

Proof. (Proposition 7) True for j = 1 by the definition of the projection opera-
tion. For j > 1, we have by the definition of (uj , vj) that uj = σ−1

j Π(u1,...uj−1)⊥F vj

where (u1, . . . uj−1)
⊥F represents the orthogonal complement of (u1, . . . uj−1) in

F . By the elementary “3 perpendicular theorem” we also have that vj ⊥ uj′ for
any j′ < j. Therefore, Π(u1,...uj−1)vj = 0 and ΠFvj = σjuj .

Proposition 8. If U is a n×a matrix of rank at most p, then ||U ||2F ≤ p||U ||22,
where || ||F represents the Frobenius norm.

Proof. (Proposition 8) ||U ||2F = tr UT U
1
=

∑p
j=1 λi(U

T U) ≤ pλmax(UT U) =

p||U ||22. Equality
1
= holds because at most p eigenvalues of UT U are non-zero.

Proof. (Theorem 1) Let σij = cos(θj
F ,Gi

) and let (uij , vij), uij ∈ F , vij ∈
Gi, i = 1, . . .K, j = 1, . . . ai be the principal vectors. Note that {vij} form an
orthonormal system and denote by V the n × a matrix V = [v11 v12 . . . vKaK

].
Define ũij = ΠFvij ; ũij is a vector of length σij with the same direction as uij

by Proposition 7. Form the matrix U having ũij , i = 1, . . .K, j = 1, . . . ai as
columns. Then ||U ||2F = trUT U =

∑

ij ||ũij ||2 =
∑

ij σ2
ij .

It remains to show that ||U ||2F ≤ p. But, in matrix notation, U = HV where
H is the symmetric, idempotent (H2 = H) matrix representing the projection
onto F . It is easy to verify that ||V ||2 = 1 and ||H ||2 = 1. Therefore, ||U ||2 ≤
||H ||2||V ||2 = 1 and by virtue of Proposition 8 we obtain ||U ||2F ≤ p.

Appendix 3: Proofs for Section 5.2

Consider two co-clusterings S = (Sij), S ′ = (S′
ij) together with the correspond-

ing row clusterings R = (Ri), R′ = (R′
i) and the column clusterings C = (Ci),

C′ = (C ′
i). For the row clusterings, we define the cluster sizes as ri = |Ri|,

r′i = |R′
i|, and the cluster intersection sizes as rij = |Ri ∩R′

j |. Similarly, for the
column clusterings, we have ci = |Ci|, c′i = |C ′

i |, and cij = |Ci ∩ C ′
j |. For the

co-clusterings, the sizes of the clusters are defined as mij = |Sij | = ricj , m′
ij =

|S′
ij | = r′ic

′
j , and the intersection of two co-clusters is mijkl = |Sij∩S′

kl| = rikckl.
Recall that m and p stand for the number of data matrix rows and columns,
respectively. Also recall that Dmax is the sum of the diagonal elements of the
co-clustering confusion matrix after an optimal permutation of the co-cluster
labels. Let us write DR

max for the corresponding sum for the row clustering
confusion matrix and DC

max for the column clustering confusion matrix.

Theorem 15. (CE and Co-Clusterings) CE(S,S ′) ≥ CE(R,R′)+CE(C, C′)−
CE(R,R′)CE(C, C′) for any co-clusterings S = (R, C), S ′ = (R′, C′).
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Proof. Fix the permutation of the co-cluster labels that minimizes CE(S,S ′).
However, the same permutation of the labels might not minimize CE(R,R′)
and/or CE(C, C′). If it does, an equality is attained, but we do not know yet if
this is the case. Meanwhile, we have

CE(S,S ′) =
mp − Dmax

mp

=
mp − ∑

i

∑

j mijij

mp

=
mp − ∑

i

∑

j riicjj

mp

=
mp − ∑

i rii

∑

j cjj

mp

≥ mp − DR
maxDC

max

mp

=
m − DR

max

m
+

p − DC
max

p
+

(m − DR
max)(p − DC

max)

mp

= CE(R,R′) + CE(C, C′) − CE(R,R′)CE(C, C′).

Theorem 16. (RNIA and Co-Clusterings) RNIA(S,S ′) = 0 for any co-clusterings
S = (R, C), S ′ = (R′, C′).

Proof. For co-clusterings it always holds that I = U .

Theorem 17. (VI and Co-Clusterings) VI(S,S ′) = VI(R,R′) + VI(C, C′) for
any co-clusterings S = (R, C), S ′ = (R′, C′).

Proof.

VI(S,S ′) =
1

mp

∑

i

∑

j

∑

k

∑

l

mijkl log
mijm

′
kl

m2
ijkl

=
1

mp

∑

i

∑

j

∑

k

∑

l

rikcjl log
ricjr

′
kc′l

r2
ikc

′2
jl

=
1

mp

∑

i

∑

k

rik log
rir

′
k

r2
ik

∑

j

∑

l

cjl

+
1

mp

∑

j

∑

l

cjl log
cjc

′
l

c2
jl

∑

i

∑

k

rik

=
1

m

∑

i

∑

k

rik log
rir

′
k

r2
ik

+
1

p

∑

j

∑

l

cjl log
cjc

′
l

c2
jl

= VI(R,R′) + VI(C, C′).

We get this by noticing that
∑

j

∑

l cjl = p and that
∑

i

∑

k rik = m.
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