Symstra: A Framework for Generating Object-Oriented
Unit Tests using Symbolic Execution

Tao Xie', Darko Marino¥, Wolfram Schulté, David Notkint

! Dept. of Computer Science & Engineering, Univ. of Washing®eattle, WA 98195, USA
2 MIT Computer Science and Atrtificial Intelligence LaboratcEambridge, MA 02139, USA
3 Microsoft Research, One Microsoft Way, Redmond, WA 98053AU

{xi e, notki n}@s. washi ngt on. edu, mari nov@cs. mt. edu,
schul te@n crosoft.com
Technical Report UW-CSE-04-10-02
October 2004

Abstract. Object-oriented unit tests consist of sequences of methadtations.
Behavior of an invocation depends on the method’s argunerdsthe state of
the receiver at the beginning of the invocation. Correspagly generating unit
tests involves two tasks: generating method sequencedsifhtelevant receiver-
object states and generating relevant method argumenis.paper proposes
Symstra, a framework that achieves both test generatids t1asing symbolic
execution of method sequences with symbolic arguments. &iaedsymbolic
states of object-oriented programs and novel ways to caeripam. Given a set
of methods from the class under test and a bound on the lefigthgoiences,
Symstra systematically explores the object-state spatheotlass and prunes
this exploration based on the state comparisons. Expetahesults show that
Symstra generates unit tests that achieve higher branarage faster than the
test-generation techniques based on concrete method enggim

1 Introduction

Object-oriented unit tests are programs that test clagsash test case consists of a
fixed sequence of method invocations with fixed argumentsekglores a particular
aspect of the behavior of the class under test. Unit testbereming a key compo-
nent of software development. The Extreme Programmindgdise [5], for instance,
leverages unit tests to permit continuous and controlletahanges. Unlike in tradi-
tional testing, it is developers (not testers) who shouldentests for every aspect of
the classes they develop. However, manual test generatiiimeé consuming, and so
typical unit test suites cover only some aspects of the class

Since unit tests are gaining importance, many companiegmnowde tools, frame-
works, and services around unit tests. Tools range fromigpesd test frameworks,
such as JUnit [18] or Visual Studio’s new team server [25hitomatic unit-test gen-
eration, such as Parasoft’s Jtest [27]. However, existstdgeneration tools typically
do not provide guarantees about the generated unit-téessln particular, the suites
rarely satisfy the branch-coverage test criterion [6]alehe a stronger criterion, such
as the bounded intra-method path coverage [3] of the cladsruest. We present an ap-
proach that uses symbolic execution to exhaustively egfiounded method sequences
of the class under test to generate tests that achieve hagictband intra-method path
coverage.

2 Xie and Marinov and Schulte and Notkin

1.1 Background

Generating test sequences involves two tasks: generatitigoeh sequences that build
relevant receiver-object state and generating relevahadearguments. This prob-
lem has been already addressed several times. Most toadsagerest sequences us-
ing concrete representations. A popular approach is tosmarf) random generation;
this approach is embodied in tools such as Jtest [27] (a coniahéool for Java) or
JCrasher [13], Eclat [26], and JMLUnit [10] (three reseguobtotypes for Java). Ran-
dom tests are obviously neither minimal nor covering [33je TAsmLT model-based
testing tool [14, 16] uses concrete-state space-expborégichniques [12] to generate
covering method sequences. But AsmLT requires the userrgfutly choose suffi-
ciently large concrete domains for method arguments andgheabstraction functions
to guarantee the covering. Tools such as Korat [8] are aldenerate non-isomorphic
object graphs that can be used for testing, but they do natrg@ncovering test se-
qguences.

King proposed in the 70’s to use symbolic execution for tegéind verification [20].
But because of the high demands on constraint solversgttisique did not get much
attention for test generation until recently. For examitie,BZTT tool uses constraint
solving to derive method sequences from B specifications 2&vever, the B specifi-
cations are not object-oriented. Khurshid et al. [19, 3éphmsed an approach for gener-
ating tests for Java classes based on symbolic executiey.shtow that their generation
based on symbolic execution generates tests faster thiamibael checking of method
sequences with concrete arguments. This is expected: digmdaresentations describe
not only single states, but sets of states, and when apfgiceyombolic representations
canyield large improvements, witnessed for example by sfimmodel checking [24].
The approach of Khurshid et al. [19, 34], however, genetfi@seceiver-object states,
similar to Korat [8], only as object graphs, not through noetlsequences. Moreover, it
requires the user to provide specially constructed classiants [23], which effectively
describe an over-approximation of the set of reachablecobaphs.

Symbolic execution is the foundation of static code anal{®bls. These tools typ-
ically do not generate test data, but automatically veiifyde properties of programs.
These properties often allow merging symbolic states tieat from different execution
paths. However, for test generation, states have to be kpptate, since different tests
should be used for different paths. Recently, tools suchLad/§2,4] and Blast [7,17]
were adapted for test generation. However, neither of themdeal with complex data
structures, which are the focus of this paper.

1.2 Contributions

This paper makes the following contributions.

Symbolic Sequence Exploration:We propose Symstra, a framework that uses
symbolic execution to generate method sequences. Wheitalplp, Symstra uses an
exhaustive exploration of method sequences, similar todh§l4, 34, 35], but with
symbolic variables for primitive-type arguments. Each bglit argument represents a
set of all possible concrete values for the argument. Symses symbolic execution
to operate on symbolic states that include symbolic vaembl

Symbolic State Comparison\We present novel techniques for comparison of sym-
bolic states of object-oriented programs. Our techniqliesve&Symstra to prune the

Generating Object-Oriented Unit Tests using Symbolic Ekea 3

exploration of the object state and thus generate teserfagthout compromising the
exhaustiveness of the exploration. In particular, the mgpreserves the intra-method
path coverage of the generated test suites.

Implementation: We describe an implementation of a test-generation to@jon-
stra. Our implementation handles the same constructs apftr@ach of Khurshid et
al. [34], including dynamically allocated structures, hwt pre- and post-conditions,
and symbolic data; however, our current implementatiorscehad support concurrency.
But we could reimplement Symstra in any Java model cheakeln,as Java Pathfinder [33]
or Bogor [29], to also support concurrency.

Evaluation: We evaluate Symstra on seven subjects, most of which arelegmp
data structures. The experimental results show that Sgrgstierates tests faster than
the existing test-generation techniques based on exkawestploration of sequences
with concrete method arguments [14, 16, 34, 35]. Furtheergthe same time for gen-
eration, Symstra can generate tests that achieve bettetbcaverage than the existing
techniques. Finally, Symstra works on ordinary Java impgletaitions and does not re-
quire the user to provide the additional methods that thecgmi of Khurshid et al. [34]
requires.

2 Example

This section illustrates how Symstra explores method sempsgeand generates tests.
Figure 1 shows a binary search tree clasS$ that implements a set of integers. Each
tree has a pointer to the root node. Each node has an elentpbanters to the left
and right children. The class also implements the standdrerations: nsert adds
an element, if not already in the tree, to a leadnove deletes an element, if in the
tree, replacing it with the smallest larger child if necegsandcont ai ns checks if an
elementis in the tree. The class also has a default constitheit creates an empty tree.

Some tools such as Jtest [27], JCrasher [13] and Eclat BX]atclass by generating
random sequences of methods; BST, they could for example generate the following
tests:

Test 1: Test 2:
BST t1 = new BST(); BST t2 = new BST();
tl.insert(0); t2.insert(2147483647);
tl.insert(-1); t2.renove(2147483647) ;
t1.renove(0); t2.insert(-2147483648);

Each test has a method sequence on the objects of the ctasSest 1 creates a tree
t 1, invokes twoi nsert methods on it, and then omenove. Typically, checking the
correctness (of outputs) for such tests relies on desigoelmyract annotations trans-
lated into run-time assertions [10, 27] or on model-bassting [16]. If there are no
annotations or models, the tools check only the code robastrexecute the tests and
check for uncaught exceptions [13].

Some other tools [14, 16, 34, 35] can exhaustively expldmnathod sequences up
to a given length. Such exploration raises two questiorjsnftat arguments to use for
method calls, and (2) how to determine equivalent tests3d taols typically require
the user to provide a sufficiently good set of concrete vdlesach argument, or based
on the argumenttype, use a set of default values that mayretéss&nt behaviors. These

4 Xie and Marinov and Schulte and Notkin

class BST inplenents Set {
Node root ;
static class Node {
int val ue;
Node |eft;
Node ri ght;

void insert(int value) { ... }
voi d renove(int value) { ... }
bool contains(int value) { ... }

}
Fig. 1. A set implemented as a binary search tree

tools check equivalence of test sequences by comparingdtesshat the sequences
build; the comparison uses either user-provided functmrdefaults, such as identity
or isomorphism. This generation is similar to explicittstmodel checking [12].
Symstra also explores all sequences, but using symboliesdbr primitive-type
arguments in method calls. Such exploration relieves Symsgers from the burden
of providing concrete values: Symstra determines the aalievalues during the execu-
tion. Having symbolic arguments necessitates symbolicwi@n [20]. It operates on a
symbolic state that consists of two parts: (Jamstraint known as thgath condition
that must hold for the execution to reach a certain point &)é(heap that contains
symbolic variables. When the symbolic execution encogrddaranch, it explores both
outcomes, appropriately adding the branch condition onétgation to the constraint.
Symbolic state exploration in Symstra is conceptually Einto symbolic model check-
ing [24].
Let us consider the symbolic execution of the following satpe:
BST t = new BST();
t.insert(xzi);
t.insert(z2);

t.insert(zs);
t.remove(xa);

This sequence has four method calls whose arguments areoBgmériablesr,, x2,
x3, andz4. While an execution of a sequence with concrete argumentiuges one
state, symbolic execution of a sequence with symbolic asqiscan produce several
states, thus resulting in an execution tree. Figure 2 shopartaof the execution tree
for this example. Each state has a heap and a constraint tisithold for that heap to
be created. The constructor first creates an empty tree. igherdsert then adds the
elementr; to the tree.

The second nsert produces statess, sy, andss: if 1 = x, the tree does not
change, and ifc; > x; (or z3 < x1), z2 is added in the right (or left) subtree. Note
that the symbolic states ands, aresyntacticallydifferent:s, has the constraintr ue,
while s4, hasz; = z2. However, these two symbolic states aegnanticallyequivalent:
they can be instantiated into the same set of concrete hgapwihg to z; andzs
concrete values that satisfy the constraints; siticdoes not appear in the heapsipn
the constraint iz, is “irrelevant”. Instead of state equivalence, it suffiaesheck state
subsumptionwe say thatss subsumes, because the set of concrete heaps,of a
subset of the set of concrete heapsffHence, Symstra does not need to explore
after it has already exploreg. Symstra detects this by checking that the implication
of constraintse; = z2 = true holds. Our current Symstra implementation uses the
CVC Lite [11] theorem prover to check the validity of the irgaition. (Symstra checks
it for universally quantified:; andx,, althoughz, can be existentially quantified.)

Generating Object-Oriented Unit Tests using Symbolic Ekea 5

S S3| T1>22 Sg| T1>x2A Sg| T1>T2A
j @ x1<x3 xr1<T3A
~ = c D TL=Ta
~ 8
= < o @ > >
(2]
: . : 56 2
: P &
o Sp| true| 89 true Sy| mi=wz2 On 00
o= —

|
Y
®
Y
®

S5| wi<ws S7| zi>a2n
m13
) \D'

Ug

Fig. 2. A part of the symbolic execution tree

The thirdi nsert again produces several symbolic states. Symstra apples t
only on s3 andss (and not onsy). In particular, we focus org and s, two of the
symbolic states that these executions produce. These atassire syntactically dif-
ferent, but semantically equivalent: we can exchange thiahlasz, andz; to obtain
the same symbolic state. Symstra detects this by checkatggdtands; areisomor-
phic(Section 3.2). Symstra finally appliesnove. Note again that one of the symbolic
states producedg, is subsumed by a previously explored state,

This example has illustrated how Symstra would explore sylimlexecution for one
particular sequence. Symstra actually exhaustively egplthe symbolic execution tree
for all sequences up to a given length, pruning the explondtased on subsumption.
These sequences consists of all specified methods of thewtder test, i.ei,nsert,

r enove, andcont ai ns for BST.

After producing a symbolic state Symstra can generate a specific test with con-
crete arguments to produce a concrete heap®fymstra generates the test by traversing
the shortest path from the root of the symbolic executioa tees and outputting the
method calls that it encounters. To generate concrete agisfor these calls, Symstra
uses a constraint solver. Our current implementation usfOO0C solver [32]. The
tests that it generates feg ands, are:

Test for s3: Test for s4:
BST t3 = new BST(); BST t4 = new BST();
t3.insert(-999999); t4.insert(-1000000);
t3.insert(-1000000); t4.insert(-1000000);

3 Framework and Implementation

This section formalizes the notions introduced informallyhe previous section. We
first describe how Symstra represents symbolic states. tBymnses them for two pur-
poses: (1) during the symbolic execution of method invacetiand (2) for representing
the states between method invocations in method sequélle¢ksen present how Sym-
stra compares states based on the isomorphism of heaps pinchiion of constraints.

6 Xie and Marinov and Schulte and Notkin

We next present the symbolic execution of method invocatiwve finally present the
systematic exploration of method sequences and how Syms#gasymbolic state com-
parison to prune this exploration. We present the Symstianique itself as well as our
current implementation.

3.1 Symbolic State

Symbolic states differ from concrete states, on which theljgrogram executions op-
erate, in that symbolic states contain symbolic expressith symbolic variables and
also constraints on these variables [20]. Symstra usetlweving symbolic expres-

sions and constraints:

- A symbolic variable is a symbolic expression. Each symbadidable has a type,
which is one of the Java types. For example,andx, may be each a symbolic
variable (and thus also a symbolic expression) of fiyye.

- A Java constant of some type is a symbolic expression ofypat t

- For each Java operaterwith n operandsy symbolic expressions of the appropri-
ate operand types connected withare a symbolic expression of the result type.
For examplegx; + z2 andx; > x, are expressions of typent andbool ean,
respectively.

- Symbolic expressions of tyfmol ean are constraints.

Let P be the set of all primitive values, including integersue, f al se, etc. LetV
be a set of infinite number of symbolic variables of each typla a set of all possible
expressions formed frovi and P. Given a valuation for the variableg,; V' — P, we
extend it to evaluate all expressiopsU — P as follows:n(p) = p forallp € P, and
n(OQuy,...,u,) = eval®,n(u1),...,n(uy,)) forall uy,...,u, € U and operations
©®, where eval evaluates operations on primitive values a@egrto the Java semantics.

In object-oriented programs, a concrete state consistglobal heap and a stack (in
general one stack for each thread, but we consider here iogleghreaded programs),
as well as several other parts, such as metadata for clas$@sagram counters. Sym-
bolic states in Symstra have the same parts as concrets, statéhe heaps and stacks
in symbolic states can contain symbolic expressions; eafdilly, each symbolic state
has a constraint. We focus on the symbolic state betweeroshettquences.

Definition 1. A symbolic statdC, H) is a pair of a constraint and a symbolic heap.

We view each heap as a graph: nodes represent objects arslreggesent fields.
Let O be some set of objects whose fields form afsgEach object has a field that rep-
resents its class. We consider arrays as objects whosedieldabelled with (integer)
array indexes and point to the array elements.

Definition 2. A symbolic heap is an edge-labelled grafgh F), whereE C O x F x
(O U {nul | } UU) such that for each fielg of eacho € O exactly ongo, f,0') € E.
A concrete heap has only concrete valugss O U {nul | } U P.

3.2 Heap Isomorphism

We define heap isomorphism as graph isomorphism based onhijedgon [8]. We
are interested in detecting isomorphic heaps because ¢aeytd equivalent method

Generating Object-Oriented Unit Tests using Symbolic Ekea 7

behaviors, and it is thus sufficient to explore only one repngative from each iso-
morphism partition. Nodes in symbolic heaps contain syimch@riables, so we first
define renaming of symbolic variables. Given a bijection V' — V, we extend it
homomorphically to the whole : U — U as follows:7(p) = p for all p € P, and
T(Ou1, ..., up) = O7(u1),...,7(uy,) foral us,. .., u, € U and operations.

Definition 3. Two heaps01, E;1) and(O-, E>) areisomorphidff there are bijections
p: 01 — Ogandr : V — V such that:

By = {(p(0), f,p(0")|{0, f,0") € Er,0" € O1} U{{p(0), fnul I)[{0, f,nul I) € E4} U
{<p(0)v faT(O/)>|<07 fv 0/> € Elvo/ € U}

Note that the definition allows only object identities andndyplic variables to vary:
two isomorphic heaps have the same fields for all objects gndl€up to renaming)
symbolic expressions for all primitive fields.

The state exploration in Symstra focuses on the state ofaevkjects and does
not consider the entire heap; in this context, the state olgacto consists of the
values of the fields 06 and fields of all objectseachablefrom o. From a program
heap(O, E) and a tuplgvy, . . ., v,) of pointers and symbolic expressionse O UU,
where0 < i < n, Symstra constructs moted head35] (O, E;,) that has a unique
root objectr € Oy,: Symstra first creates the he&p’, E’), whereO’ = O U {r},

r ¢ O,andE’" = E U {{r,i,v;)|0 < i < n}, and then create§),,, E},) as the
subgraph of O’, E’) such thatD,, C O’ is the set of all objects reachable fronand
En = {{o, f,0) € E'lo € Op}.

We can efficiently check isomorphism of rooted heaps, evengh for general
graphs it is unknown whether checking isomorphism can be dopolynomial time.
Symestralinearizesheaps into integer sequences such that checking heap igbisior
corresponds to checking sequence equality. Figure 3 shenigearization algorithm.
It starts from the root and traverses the heap depth firssslgas a unique identifier to
each object, keeps this mappingobj s and reuses it for objects that appear in cycles.
It also assigns a unique identifier to each symbolic variddgleps this mapping war s
and reuses it for variables that appear several times inghp.h

A similar linearization is used to represent concrete h@apsdel checking [1, 30,
33]. This paper extends the linearization from our previwask [35] with | i nSynExp
that handles symbolic expressions; this improves on theoagp of Khurshid et al. [19,
34] that does not use any comparison for symbolic expresslois easy to show that
our linearization normalizes rooted heaps.

Theorem 1. Two rooted heap&0;, E;) (with rootr;) and(Os, E5) (with rootrs) are
isomorphic iffl i neari ze(ry, (O1, E1))=1ineari ze(rz, (O, E3)).

3.3 State Subsumption

We define symbolic state subsumption based on the concrapes igat each symbolic
state represents. Symstra uses state subsumption to peueeioration. To instantiate
a symbolic heap into a concrete heap, we replace the symimiiables in the heap
with primitive values that satisfy the constraint in the $oftic state.

8 Xie and Marinov and Schulte and Notkin

Map<Obj ect,int> objs; // maps objects to unique ids
Map<SynVar, i nt> vars; // maps synbolic variables to unique ids

int[] linearize(Qbject root, Heap <O E>) {
objs = new Map(); vars = new Map();
return lin(root, <O E>>;

}

int[] lin(Object root, Heap <O E>) {
if (objs.containsKey(root))
return singl etonSequence(objs.get(root));
int id = objs.size() + 1; objs.put(root, id);
int[] seq = singletonSequence(id);
Edge[] fields = sortByField({ <root, f, o>in E });
foreach (<root, f, o> in fields) {
if (isSynbolicExpression(o0)) seq.append(linSynExp(o));
elseif (o == null) seq.append(0);
el se seq. append(lin(o, <O E>)); // pointer to an object

return seq;

}

int[] linSymExp(SynExp e) {
if (isSynvar(e)) {
if (!vars.containsKey(e))
vars.put(e, vars.size() + 1);
return singl etonSequence(vars. get(e));
} elseif (isPrimtive(e)) return uniqueRepresentation(e);
else { // operation with operands
int[] seq = singletonSequence(uni queRepresentation(e.getCOperation()));
foreach (SynExp e in e.getQperands())
seq. append(|inSynExp(e’));
return seq;

}
}

Fig. 3. Pseudo-code of linearization for a symbolic rooted heap

Definition 4. AninstantiatioriZ ((C, H)) of a symbolic statéC, H) is a set of concrete
heapsH’ such that there exists a valuatign: V' — P for whichn(C) is true andH’
is the evaluatiom(H) of all expressions i according ton.

Definition 5. A symbolic statéC;, H,) subsumeanother symbolic staté’s, Hs), in
notation (C1, Hi) 2 (Cq, Hs), iff for each concrete heapl, € Z((Cs, H2)), there
exists a concrete heafi; € Z((C1, H1)) such thatH| and H are isomorphic.

Checking semantically whether one state subsumes anestlery expensive. In-
stead, Symstra uses the algorithmin Figure 4 to check iféhetcaint of C; , H,), after
suitable renaming, implies the constraint(6%, H>). We can show that this algorithm
is a conservative approximation of subsumption.

Theorem 2. If checkSubsunmes({(C1, H1), (C2, H3)) then(C1, H,) subsume&Cs, Hs).

Symstra gains the power and inherits the limits from the ieple used to check
the implication on the (renamed) constraints. The currgms$ra prototype uses the
CVC Lite [11] automatic theorem prover, which has decisioocpdures for several
constraints, including real linear arithmetic, uninteted functions, arrays etc. Since
these checks can consume a lot of time, Symstra further bedsltowing conserva-
tive approximation: if variableg{;) are not a subset of variable$(-)), returnf al se
without checking the implication.

Generating Object-Oriented Unit Tests using Symbolic Ekea 9

bool ean checkSubsunes(Constraint Cl, Heap Hi,
Constraint C2, Heap H2) {

int[] il = linearize(root(Hl), H1);
Map<SynmVar,int> vl = vars; // at the end of previous linearization
int[] i2 = linearize(root(H2), H2);

Map<SynVar,int> v2 = vars; // at the end of previous linearization
if (il <>1i2) return false;

Renaming 7 = v2 o vi~! // conpose v2 and the inverse of vl

return checkVvalidity(r(C2) = C1);

Fig. 4. Pseudo-code of subsumption checking for symbolic states

3.4 Symbolic Execution

We next discuss the symbolic execution of one method in a odesequence. Each
method execution starts with one symbolic state and pradseeeral symbolic states.
We use the notation,,, ((C, H)) to denote the set(C1, H1), ..., (Cy, H,)} of states
that the symbolic execution, of the methodn produces starting from the sta€, H).

Appendix A presents a symbolic execution for a fragment géJAs other sym-
bolic executions [20,34], it symbolically explores botlabches of f statements, mod-
ifying the constraint with a conjunct that needs to hold fa €xecution to take a certain
branch. In this context, the constraint is calfgath condition because it is a conjunc-
tion of conditions that need to hold for the execution to takeertain path and reach
the current address. This symbolic execution directly@wgd every path of the method
under consideration. The common issue in the symbolic diartis that the number of
paths may be infinite and thus, ((C, H)) may be unbounded. In such cases, Symstra
can use the standard set of heuristics to explore only sortie gfaths [9, 34].

The current Symstra prototype implements the executiggest@ symbolic state
by rewriting the code to operate on symbolic expressionghEy Symstra implements
the exploration of different branches by re-executing tle¢had from the beginning for
each path, without storing any intermediate states. Otelets [15] implementation,
although less optimized, turned out to be at least an ordevagfitude faster than the
more optimized Java Pathfinder model checker [33, 34] tloaéstthe states and thus
does not re-execute the methods from the beginning. Not&tmastra re-executes only
one method (for different paths), not the whole method secgle

Our Symstra prototype also implements the standard optimizs for symbolic
execution. First, Symstra simplifies the constraints thatilds at branches; specifi-
cally, before conjoining the path condition so farand the current branch condition
C’ (whereC" is S(I) or! S(1), using the notation from Appendix A), Symstra checks
if some of the conjuncts i@ impliesC’; if so, Symstra does not conjo®’. Second,
Symstra checks if the constraifi®:& C’ is unsatisfiable; if so, Symstra stops the cur-
rent path of symbolic execution, because it is an infeagibtd. The current Symstra
prototype can use the CVC Lite [11] theorem prover or the Caribgary [28] to check
unsatisfiability. We have found that Omega is faster, butitdies only linear arithmetic
constraints.

3.5 Symbolic State Exploration

We next present the symbolic state space for method segaiandehow Symstra sys-
tematically explores this state space. The state spacéstoakall states that are reach-

10 Xie and Marinov and Schulte and Notkin

able with the symbolic execution of all possible method seges for the class under
test. LetC/M be a set of the constructor/non-constructor methods ofcthiss. Each
method sequence starts with a constructor ftdofollowed by several methods from
M. We denote with¥¢ », the state space for these sequences. The initial symbolic
state issp = (true, {}): the constraint is true, and the heap is empty. The stateespac
includes the states that the symbolic execution produgghdaconstructors and meth-
ods:(J.cc 0c(s0) € Yem andVs € Xe a.Umeaq om(s) € e m. As usual [12],
Xe,m is the least fixed point of these equations. The state spaggigslly infinite.

The current Symstra prototype exhaustively explores athedipart of the symbolic
state space in a breadth-first manner. The inputs to Sym&tra set of constructat
and non-constructor methodsl of the class under test and a bound on the length of
sequences. A set of symbolic statesigbsumption-fred no symbolic state from the
setis subsumed by another. Symstra maintains a subsunrfpmset of explored states
and a processing queue of states. Symstra processes theigadureadth-first manner:
it takes one state and symbolically executes each methaoet test (constructor at the
beginning of the sequence and a non-constructor afterfiva¢ach path on this state.
Every such execution yields a new symbolic state. Symstus #te new state to the
queue for further exploration only if it is not subsumed byaherady explored state from
the set. Otherwise, Symstra prunes the exploration: thesyewbolic state represents
only a subset of the concrete heaps that some explored sinsbatie represents; it is
thus unnecessary to explore the new state further. Prumisgcbon subsumption plays
the key role in enabling Symstra to explore large state space

3.6 Concrete Test Generation

During the symbolic state exploration, Symstra also buslalscific concrete tests that
lead to the explored states. Whenever Symstra finishes asdigrekecution of a method
that generates a new symbolic state H), it also generates symbolic testThis test
consists of the constrain and the shortest method sequence that reagfieH).
(Symstra associates such a method sequence with each systht# and dynamically
updates it during execution). Symstra then instantiatgsrdoslic test using the POOC
constraint solver [32] to solve the constraihbver the symbolic arguments for methods
in the sequence. Based on the produced solution, Symsiimnslzioncrete arguments
for the sequence leading {6, H). Symstra exports such concrete test sequences into
a JUnit test class [18]. It also exports the constrainassociated with the test as a
comment for the test in the JUnit test class.

At the class-loading time, Symstra instruments each biiaggboint of the class
under test for measuring branch coverage at the bytecoek lealso instruments each
method of the class to capture uncaught exceptions at ranfilme user can configure
Symstra to select only those generated tests that increasetbcoverage or throw new
uncaught exceptions.

4 Evaluation

This section presents our evaluation of Symstra for expipmethod sequences and
generating tests. We compare Symstra with Rostra [35], mwiqus framework that

Generating Object-Oriented Unit Tests using Symbolic Ekea 11

class methods under test some private methods| #ncnb #
lines | branches
IntStack push,pop - 30 9
UBStack push,pop - 59 13
BinSearchTree insert,remove removeNode 91 34
BinomialHeap insert,extractMin findMin,merge 309 70
delete unionNodes,decrease
LinkedList add,remove,removeLast addBefore 253 12
TreeMap put,remove fixAfterins 370 170
fixAfterDel,delEntry
HeapArray insert,extraMax heapifyUp,heapifyDown| 71 29

Table 1. Experimental subjects

generates tests using bounded-exhaustive exploratioaqufesices with concrete ar-
guments. We have developed Symstra on top of Rostra, sohthatoimparison does
not give an unfair advantage to Symstra because of unralafgwvements. We have
performed the experiments on a Linux machine with a Pent\ir2.8 GHz processor

using Sun’s Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

Table 1 lists the seven Java classes that we use in the exgmgsinThe first six
classes were previously used in evaluating Rostra [35] thedast five classes were
used in evaluating Korat [8]. The columns of the table shosvdlass name, the public
methods under test (that the generated sequences corsisbimie private methods
invoked by the public methods, the number of non-comment;llank lines of code
in all those methods, and the number of branches for eackcubj

We use Symstra and Rostra to generate test sequences withthggN methods.
Rostra also requires concrete values for arguments, sotwetsaise N different ar-
guments (the integers from 0 t§ — 1) for methods under test. (The same experi-
mental setup was used for generating test sequences withatlaePathfinder model
checker [34].) Table 2 shows the comparison between Symstt&ostra. We rang¥
from five to eight. (ForV < 5, both Symstra and Rostra generate tests really fast, usu-
ally within a couple of seconds, but those tests do not haweel goality.) We tabulate
the time to generate the tests (measured in seconds, CoRiaams 7), the number of
explored symbolic and concrete object states (Columns 8grtle number of gener-
ated tests (Columns 5 and 9), and the branch coverage adtbgube generated tests
(Columns 6 and 10). In Columns 5 and 9, we report the total rrmabgenerated tests
and, in the parentheses, the cumulative number of testgtirabse branch coverage.

During test generation, we set a three-minute timeout faheteration of the
breadth-first exploration: when an iteration exceeds thmewites, the exhaustive ex-
ploration of Symstra or Rostra is stopped and the systemepdscwith the next iter-
ation. We use a “*” mark for each entry where the test-gemangirocess timed out;
the state exploration of these entries is no longer exhaustfe use a “—" mark with to
denote an entry where Symstra or Rostra exceeded the meimdry |

The results indicate that Symstra generates method seegienthe same length
N often much faster than Rostra, thus enabling Symstra torgenlenger method se-
quences within a given time limit. Both Symstra and Rostfisie® the same branch
coverage for method sequences of the same lengtidowever, Symstra achieves
higher coverage faster. It also takes less memory and cah fgeneration in more

12 Xie and Marinov and Schulte and Notkin

Symstra Rostra

| class | time] stateg testy %cov time| stateg testy %cov
UBStack 0.85] 22 43(5)| 92.3 4.98 656| 1950(6) 92.3
1.24 30 67(6)| 100.0 31.83 3235 13734(7) 100.0

1.57 43 94(6)| 100.0 | *269.68|*10735|*54176(7)|*100.0

2.33 63 141(6)| 100.0 - - - -

IntStack 0.26] 12 18(3)] 55.6 12.76/ 4836| 5766(4) 55.6
0.47] 16 24(4)| 66.7 | *207.59|*36330|*47208(5)| *66.7

054 20 32(5)| 88.9 | *689.02*30080| *52480(5)| *66.7

067 24 40(6)| 100.0 - - - -

BinSearchTree 4.07 65 350(15) 97.1 4.80] 188| 1460(16) 97.1

15.220 197 1274(16) 100.0 23.05| 731| 7188(17) 100.0

70.94 626 4706(16) 100.0 - - - -

*251.30|*1882|*12626(16) *100.0 - - - -

BinomialHeap 1.41 6 40(13)| 84.3 4.97 380| 1320(12) 84.3

359 7| 66(13) 843| 50092 3036/12168(12] 84.3
567 8| 86(15) 90.0 - - - -
1753 9| 157(16) 914 - - - -
LinkedList 056 6 25(6)] 100.0| 32.61 3906 8591(6) 100.0
066, 7 33(6)| 100.0 | *412.00] *9331|*20215(6)*100.0
0.80] 8 42(6)| 100.0 - - - -
094 9 52(6)| 100.0 - - - -
TreeMap 3.79] 25| 114(28) 765 352 72| 560(31) 765
17.32] 37| 386(34) 829| 1242 185 2076(37) 82.9
38.15 89| 698(36) 84.1| 41.89 537 6580(39) 84.1
173.71] 230] 2074(36) 84.1 - - - -
HeapArray 2.79] 20 51(9)] 75.9 3.75] 664 1296(10) 75.9

577 30| 96(11) 89.7 - - - -

1452 69 175(13)| 100.0 - - - -

00| N | 01| 00| N | U1 00| N| O U1{ 00| N[O U1 00| N | 01| oo N| | U1| 0o| N| o] G| 2

2850 131 389(13) 100.0 - - - -

Table 2. Experimental results of test generation using Symstra arsir&

cases than Rostra. These results are due to the fact thasgatdolic state, which
Symestra explores at once, actually describes a set of deratates, which Rostra must
explore one by one. Rostra often exceeds the memory liminwe= 7 or N = 8,
which is often not enough to guarantee full branch coverage.

Visser et al. [34] generate tests based on exhaustive etjgnrof sequences with
concrete method arguments by using the Java Pathfinder robeeker [33]. Based
on their published results [34], even Rostra explores ntetfsmuences with concrete
method arguments faster than Java Pathfinder. But they caehaulti-threading. We
believe that adding Symstra-like symbolic method sequetecdava Pathfinder would
significantly improve test generation using Java Pathfinder

5 Discussion

Specifications.Symstra leverages specifications, i.e. method pre- andgopostitions
and class invariants, written in the Java Modelling LanguétML) [21]. The JML
tool-set transforms these constructs into run-time assarthat throw JML-specific

Generating Object-Oriented Unit Tests using Symbolic Ekea 13

exceptions when violated. Generating method sequencesdtirods with JML speci-
fications amounts to generatitegal method sequences that satisfy pre-conditions and
class invariants, i.e., do not throw exceptions for thesestacts. If during the ex-
ploration Symstra finds a method sequence that violatestacpaslition or invariant,
Symstra has discovered a bug; Symstra can be configured &agersuch tests and
continue or stop test generation. If a class implementagi@orrect with respect to its
specification, paths that throw post-condition or invatrexceptions should be infeasi-
ble.

Symstra operates on the bytecode level. It can perforrmtesfithe specifications
woven into method bytecode by the JML tool-set or by simitanl$. Note that in this
setting Symstra essentially uses black-box testing [3€kpore only those symbolic
states that are produced by method executions that satisfggnditions and class in-
variants; conditions that appear in specifications simpbppgate into the constraints
associated with a symbolic state explored by Symstra. Usingbolic execution, Sym-
stra thus obtains the generation of legal test sequenceféy'.

Performance.Symstra enables exploring longer method sequences thagctmeiques
based on concrete arguments. However, users may want t@ahasploration of even
longer sequences to achieve some test purpose. In such ttesasers can apply sev-
eral techniques that trade the guarantee of the intra-rdethit coverage for longer se-
quences. For example, the user may provide abstractiotidmsdor states [23], as used
for instance in the AsmLT generation tool [14], or binary hwds for comparing states
(e.g.equal s), as used for instance in Rostra. Symstra can then genesdsetihat in-
stead of subsumption use these user-provided functiom®foparing state. This leads
to a potential loss of intra-method path coverage but esdhfger, user-controlled ex-
ploration. To explore longer sequences, Symstra can aésetandard heuristics [9, 34]
for selecting only a set of paths instead of exploring alhpat

Limitations. The use of symbolic execution has inherent limitations. &le, it
cannot precisely handle array indexes that are symboliahas. This situation occurs
in some classes, such Bssj Set andHashMap used previously in evaluating Ros-
tra [35]. One solution is to combine symbolic execution wigxhaustive or random)
exploration based on concrete arguments: a static analgsikl determine which ar-
guments can be symbolically executed, and for the rest,sbewould provide a set of
concrete values [14].

So far we have discussed only methods that take primitivaraegts. We can-
not directly transform non-primitive arguments into syribwariables (of primitive
type). However, we can use the standard approach for gérgsaich arguments: gen-
erate them also as sequences of method calls that may redynsgquire more se-
quences of method calls, but eventually boil down to prieitvalues. JCrasher [13]
and Eclat [26] take a similar approach. Another solutionigransform these argu-
ments into reference-type symbolic variables and enhdrecsytmbolic execution.

6 Conclusion

Automatic generation of unit tests is an important topic. Wdge proposed Symstra, a
novel framework that uses symbolic execution to generataal s\sumber of method

14 Xie and Marinov and Schulte and Notkin

sequences for complex data structures that reach high lbamd intra-method path
coverage. Symstra exhaustively explores method sequentesymbolic arguments
up to a given length. It prunes the exploration based on stalbsumption and this
pruning enables to generate tests faster but without comigiag the exhaustiveness of
the exploration. We have implemented a test-generatidrido&ymstra and evaluated
Symestra on seven subjects, most of which are complex daiztstes. The results show
that Symstra generates tests faster than the existingeestration techniques based on
exhaustive exploration of sequences with concrete methguhents, and given the
same time limit, Symstra can generate tests that achieverlianch coverage than
these existing techniques.

References

1. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xiag: A model checker for
concurrent software. IRroc. 6th International Conference on Computer Aided \@atfon,
pages 484-487, 2004.

2. T. Ball. A theory of predicate-complete test coverage gederation. Technical Report
MSR-TR-2004-28, Microsoft Research, Redmond, WA, Aprid20

3. T. Ball and J. R. Larus. Using paths to measure, explaid,esnhance program behavior.
IEEE Computer33(7):57-65, 2000.

4. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Autatic predicate abstraction of C

programs. IrProc. the ACM SIGPLAN 2001 Conference on Programming LageZzesign

and Implementatigrpages 203-213, 2001.

K. Beck. Extreme programming explainedddison-Wesley, 2000.

B. Beizer.Software Testing Techniquesiternational Thomson Computer Press, 1990.

7. D.Beyer, A. J. Chlipala, and R. Majumdar. Generatingstesim counterexamples. Proc.
26th International Conference on Software Engineerjpages 326—335, 2004.

8. C.Boyapati, S. Khurshid, and D. Marinov. Korat: autordatssting based on Java predicates.
In Proc. International Symposium on Software Testing and ysigipages 123-133, 2002.

9. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyaefinding dynamic program-
ming errors.Softw. Pract. Exper30(7):775-802, 2000.

10. Y. Cheon and G. T. Leavens. A simple and practical appréaainit testing: The JML
and JUnit way. InProc. 16th European Conference Object-Oriented Programgnpages
231-255, June 2002.

11. S.B. Clark W. Barrett. CVC Lite: A new implementation bétcooperating validity checker.
In Proc. 16th International Conference on Computer Aidedfiéaiion pages 515-518, July
2004.

12. E. M. Clarke, O. Grumberg, and D. A. Pelddodel CheckingThe MIT Press, Cambridge,
MA, 1999.

13. C.Csallner and Y. Smaragdakis. JCrasher: an autonoatisiness tester for Javdoftware:
Practice and Experience4:1025-1050, 2004.

14. Foundations of Software Engineering, Microsoft RedeaiThe AsmL test generator tool.
http://research. mcrosoft.com fse/asm /doc/ AsmL.Tester. htm .

15. P. Godefroid. Model checking for programming languagsisag Verisoft. InProc. 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programinamguagespages 174—
186, 1997.

16. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. €&aing finite state machines
from abstract state machines. Rmoc. International Symposium on Software Testing and
Analysis pages 112-122, 2002.

2

Generating Object-Oriented Unit Tests using Symbolic Ekea 15

17. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. v&go# verification with BLAST.
In Proc. 10th SPIN Workshop on Software Model Checkiragjes 235-239, 2003.

18. JUnit, 2003htt p: //wwv. j unit. org.

19. S. Khurshid, C. S. Pasareanu, and W. Visser. Generaigetbolic execution for model
checking and testing. IRroc. 9th International Conference on Tools and AlgoritHorsthe
Construction and Analysis of Systerpages 553-568, April 2003.

20. J. C. King. Symbolic execution and program test@gmmun. ACM19(7):385-394, 1976.

21. G.T. Leavens, A. L. Baker, and C. Ruby. Preliminary desifJML: A behavioral inter-
face specification language for Java. Technical Report FTR@®8Department of Computer
Science, lowa State University, June 1998.

22. B. Legeard, F. Peureux, and M. Utting. A comparison of tHeC/B and TTF/Z test-
generation methods. Proc. 2nd International Z and B Conferengages 309-329, January
2002.

23. B. Liskov and J. GuttagProgram Development in Java: Abstraction, Specificatiam] a
Object-Oriented DesignAddison-Wesley, 2000.

24. K. L. McMillan. Symbolic Model Checkind<luwer Academic Publishers, 1993.

25. Microsoft Visual Studio Developer Center, 2004t t p: // nmsdn. m crosoft. com
vstudi o/ .

26. C. Pacheco and M. D. Ernst. Eclat documents. Online nha@@ 2004. http://
peopl e. csail . m t. edu/ peopl e/ cpacheco/ ecl at/.

27. Parasoft. Jtest manuals version 5.1. Online manugl2004.ht t p: / / www. par asoft.
com .

28. W. Pugh. A practical algorithm for exact array dependeanalysis. Commun. ACM
35(8):102-114, 1992.

29. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensibled highly-modular software
model checking framework. IRroc. 9th ESEC/FSHages 267—-276, 2003.

30. Robby, M. B. Dwyer, J. Hatcliff, and R. losif. Space-retion strategies for model checking
dynamic systems. IRroc. 2003 Workshop on Software Model Checkihgdy 2003.

31. A. Salcianu. Pointer analysis and its applications &aJrograms. Master’s thesis, MIT
Laboratory for Computer Science, 2001.

32. H. Schlenker and G. Ringwelski. POOC: A platform for abjeriented constraint program-
ming. InProc. 2002 International Workshop on Constraint Solvingl &onstraint Logic
Programming pages 159-170, June 2002.

33. W. Visser, K. Havelund, G. Brat, and S. Park. Model cheglirograms. IfProc. 15th IEEE
International Conference on Automated Software Engimgepages 3—12, 2000.

34. W. Visser, C. S. Pasareanu, and S. Khurshid. Test inmérggon with Java PathFinder.
In Proc. 2004 ACM SIGSOFT International Symposium on SoftWesting and Analysjs
pages 97-107, 2004.

35. T. Xie, D. Marinov, and D. Notkin. Rostra: A framework fdetecting redundant object-
oriented unit tests. IfProc. 19th IEEE International Conference on Automated V@i
Engineering pages 196—-205, Sept. 2004.

A Symbolic Execution

This section presents details of the symbolic executiomeflava method. Each execu-
tion of a methodn starts with one symbolic stat€’, H) and produces several symbolic
statess,,, ((C, H)). At the beginning of the execution, the st H) is transformed
into anextended symbolic stat€’, H, S, R), which contains a symbolic stackwith
only one frame with fresh symbolic variables for all arguttiseand conceptually the rest
of the concrete statB. In general, for each thread there is one symbolic staclntiagts

16 Xie and Marinov and Schulte and Notkin

each local variable into a symbolic expression of the cpading type. The symbolic
execution operates on this extended state following [20}épresenting values with
symbolic expressions. We define the symbolic execution asetibn,o, whose inputs
are an extended symbolic state and an address of the nexicitish to execute (and
implicitly a program to execute), and whose output is a sekténded symbolic states.
Each of the extended states in the output has the empty stadk &ransformed into a
non-extended state by droppiSgandR to formo.,,((C, H)).

We adopt the model from Salcianu [31] and consider that ttieeds in a form
similar to Java’'s bytecode, i.e., each method consists it @f simple instructions.
Each instruction is at some addresin this list. Different kinds of instructions and
their concrete semantics are given in [31][Section 4.1].

Instruction ata

o((C,H,S,R),a)

Constant

I=p o({(C,H,S[l — SynExp(p)], R),a+ 1)

Operation o((C,H,S[l — SynExp(®,S(l1),...,5(;))],R),a+1)
=0l ... where@® is a Java operator, such as- , ==, >, &&...

;_1030;2 ; oc({C,H,S[ly — H(S(l2),)], R),a+1)

o, o(CHI(S(0). 1) = S2)) 8, B),a + 1)

New a({C, H U {{o, f, default(f))| f € fields(C)}, S|l — o], R"),a + 1)
l=new(C whereo ¢ H; R’ may include some new data about the cl@ss
Call

In=lo. m(11,. ... 1;) o((C, H,push-framéS, a,lr, S(l1),...,S(l;)), R), star(m))
Return

ceturni o({C, H, pop-framés)retlod(S) — S(1)], R), retadd S))

If /

it () gotoad o((C&&! S(1),H,S,R),a+ 1) Uo((C&&S(1), H, S, R),a’)

Table 3. Symbolic execution for different kinds of instructions

Table 3 presents the symbolic execution for the relevardiof instructions. It
shows how to evaluate((C, H, S, R), a) based on the kind of the instruction at address
a. For Constant, Operation, and Load(C, H, S, R),a) = o¢((C,H,S’,R),a + 1),
whereS’ is the appropriately modified stack, aadt 1 is the address of the next in-
struction. For Store only the heap is modified, and for Nevhltlo¢ heap and the stack
are modified to include the new objectvhose fields have default values. For Call and
Return, the stack is modified as usual by pushing a new framei(atializing the for-
mal arguments with the actual arguments) and popping thiaape, respectively. The
most interesting case is for If: symbolic execution expddveth branches, because the
condition is a symbolic expression that may be true or fasalifferent valuations of
symbolic variables. The execution of also modifies the constraint with a conjunct
that needs to hold for the execution to take a certain branch.

