
Detecting Redundant Unit Tests for AspectJ Programs

Tao Xie1 Jianjun Zhao2 Darko Marinov3 David Notkin1

1 Department of Computer Science & Engineering, University of Washington, USA
2 Department of Computer Science & Engineering, Fukuoka Institute of Technology, Japan

3 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
{taoxie,notkin}@cs.washington.edu, zhao@cs.fit.ac.jp,

marinov@lcs.mit.edu
Technical Report UW-CSE-04-10-03

October 2004

Abstract. Aspect-oriented software development is gaining popularity with the
adoption of languages such as AspectJ. Testing is an important part in any soft-
ware development, including aspect-oriented development. To automate gener-
ation of unit tests for AspectJ programs, we can apply the existing tools that
automate generation of unit tests for Java programs. However, these tools can
generate a large number of tests, and it is time-consuming tomanually inspect
them all. This paper proposes an automated approach for detecting redundant
unit tests for AspectJ programs. We introduce two levels of units in testing As-
pectJ programs–the higher level of the advised methods and the lower level of the
pieces of advice–and we show how to detect at each level redundant tests that do
not exercise new behavior. Our approach selects only non-redundant tests from
the automatically generated test suites, thus allowing thedeveloper to spend less
time in inspecting this minimized set of tests. We have implemented our approach
and our experience has shown that it can effectively reduce the size of generated
test suites for inspecting AspectJ programs.

1 Introduction

Aspect-oriented software development (AOSD) is a new paradigm that supports sepa-
ration of concerns in software development [5, 10, 14, 19]. AOSD makes it possible to
modularize crosscutting aspects of a software system. The research in AOSD has so far
focused primarily on problem analysis, software design, and implementation activities.

Little attention has been paid to testing in AOSD, although it is well known that
testing is a labor-intensive process that can account for half the total cost of software
development [4]. Automated software testing, and in particular test generation, can sig-
nificantly reduce this cost. Although AOSD can lead to better-quality software, AOSD
does not provide the correctness by itself. An aspect-oriented design can lead to a bet-
ter system architecture and an aspect-oriented programming language enforces a disci-
plined coding style, but they do not shield against mistakesmade by programmers or
a lack of understanding of the specification. As a result, software testing remains an
important task in AOSD.

Aspect-oriented programming languages, such as AspectJ [10], introduce some
new language constructs–most notably aspects, advice, andjoin points–to the common
object-oriented programming languages, such as Java. These specific constructs require
adapting the common testing concepts.

2 Xie and Zhao and Marinov and Notkin

We focus onunit testing, the process of testing each basic component (a unit) of a
program to validate that it correctly implements its detailed design [27]. Unit testing is
gaining importance with the wider adoption of Extreme Programming [3]. For aspect-
oriented programs, the basic testing unit can be either an aspect or a class. In unit test-
ing, developers isolate the unit to run independently from its environment. This allows
writing small testing code that exercises the unit alone. However, in aspect-oriented
programming, it is unusual to run an aspect in isolation. After all, the intended use of an
aspect is to affect the behavior of one or more classes through join points and advice.
Thus, the aspects are usually tested in the context with someaffected classes. This also
allows for testing the complex interactions between the aspect and the affected classes.

We can use the existing tools that automate test generation for Java to automate test
generation for the aspects and their affected classes. Test-generation tools for Java are
available commercially (e.g., Jtest [16]) or as research prototypes (e.g., JCrasher [6]
and Eclat [15]). These tools test a class by generating and executing numerous method
sequences on the objects of the class. Since typical programs do not have executable
specifications for automatic correctness checking, these tools rely on the programmer
to inspect the executions of the generated tests for correctness.

Our previous work [21] has shown that automatic test-generation tools may generate
a large number ofredundant tests that do not exercise new behaviors of the class under
test. Such tests only increase the testing time, without increasing the ability to detect
faults. Redundant tests are even more common in testing aspects: the tests that differ for
the affected class can often be the same for the aspect. (The reverse can also happen, but
much more infrequently.) A key issue in automated testing isto avoid such redundant
tests. This not only reduces the test generation and execution time, but also reduces the
time that developers need to spend inspecting the tests.

We propose in this paper an automated approach for detectingredundant unit tests
for AspectJ programs. We consider two levels of units in AspectJ programs: the pieces
of advice and the advised methods. We formalize the inputs tothese units using object
states. Our approach starts from the unit tests that the existing tools for Java generate
for the aspect and the class affected by it. Our approach thendetects those tests that do
not exercise new inputs to a unit (either a piece of advice or an advised method). These
tests are redundant and can be removed from the generated test suite without decreasing
its quality. Programmers can then inspect this much smallerset of non-redundant tests.

This paper makes the following main contributions:

– We propose an approach for detecting redundant unit tests for aspect-oriented pro-
grams; to the best of our knowledge, this is the first such approach.

– We presents an implementation of the approach for detectingredundant unit tests
for AspectJ programs.

– We describe our experience in applying the approach to various AspectJ programs.
The experience shows that our approach can effectively reduce the size of generated
test suites for inspecting AspectJ program behavior.

2 AspectJ

We next present some details of AspectJ [1], a widely used aspect-oriented program-
ming language. Our implementation for detecting redundanttests operates on AspectJ

Detecting Redundant Unit Tests for AspectJ Programs 3

programs, but the underlying ideas apply to the general class of aspect-oriented lan-
guages.

AspectJ is a seamless, aspect-oriented extension to Java. AspectJ adds to Java sev-
eral new concepts and associated constructs, including join points, pointcuts, advice,
inter-type declarations, and aspects. Anaspect is a modular unit of crosscutting im-
plementation in AspectJ. Each aspect encapsulates functionality that crosscuts other
classes in a program. Like a class, an aspect can be instantiated, can contain state and
methods, and can be specialized with sub-aspects. An aspectis composed with the
classes it crosscuts according to the descriptions given inthe aspect.

A central concept in the composition of an aspect with other classes is ajoin point.
A join point is a well-defined point in the execution of a program, such as a call to a
method, an access to an attribute, an object initialization, or an exception handler. Sets
of join points may be represented bypointcuts, implying that they crosscut the system.
An aspect can specify a piece ofadvice that defines the code that should be executed
when the executions reaches a pointcut. Advice is a method-like mechanism which
consists of instructions that executebefore, after, or around a pointcut. The around
advice executesin place of the indicated pointcut, which allows the aspect to replace a
method.

The AspectJ compiler ensures that the base and aspect code run together in a prop-
erly coordinated fashion. The compiler does this usingaspect weaving which composes
the code of the base class and the aspect to ensure that applicable advice runs at the
appropriate join points [1,8]. Details of AspectJ are available elsewhere [1].

3 Example

We next illustrate how our approach determines redundant tests for an AspectJ pro-
gram. We use a simple integer stack example adapted from Rinard et al. [17]. Figure 1
shows the implementation of the class. This public class hastwo public non-constructor
methods:push andpop are standard stack operations, and one package-private method:
iterator returns an iterator that can be used to traverse the items in the stack. Fig-
ure 2 shows three aspects for the stack class:NonNegative, NonNegativeArg, and
Instrumentation.

The stack implementation accommodates only nonnegative integers as stack items.
TheNonNegative aspect checks this property: the aspect contains a piece of advice
that iterates through all items to check whether they are nonnegative integers. The ad-
vice is executed before any call to aStack method. TheNonNegativeArg aspect
checks whetherStack method arguments are nonnegative integers. The aspect con-
tains a piece of advice that goes through all arguments of an about to be executed
Stack method to check whether they are nonnegative integers. The advice is executed
before the execution of anyStack method. TheInstrumentation aspect counts the
number of times aStack’s push method is invoked on an object since its creation1.
The aspect contains a piece of advice that increments the static count field defined in
the aspect. The advice is executed after any call toStack’s push method. The aspect

1 The advice implementation works correctly only when no interleaving among stack objects’
push and constructor calls.

4 Xie and Zhao and Marinov and Notkin

class Cell {
int data; Cell next;
Cell(Cell n, int i) { next = n; data = i; }

}

public class Stack {
Cell head;
public Stack() { head = null; }
public boolean push(int i) {
if (i < 0) return false;
head = new Cell(head, i);
return true;

}
public int pop() {
if (head == null)

throw new RuntimeException("empty");
int result = head.data; head = head.next;
return result;

}
Iterator iterator() { return new StackItr(head); }

}

Fig. 1. An integer stack implementation

contains another piece of advice that resets the staticcount field. This piece of advice
is executed after any call toStack’s constructor.

We use the AspectJ compiler [1,8] to compile and weave eitherof three aspects and
the stack class (calledbase class) into class bytecode (calledwoven class); a method in
a woven class is called anadvised method. An aspect is compiled to anaspect class and
a piece of advice in the aspect is compiled into anadvice method in the aspect class.
After the compilation, we can use existing Java test-generation tools, such as Parasoft
Jtest 4.5 [16], to generate unit tests for the woven class. Each unit test consists of se-
quences of method invocations. By default Jtest 4.5 does notgenerate tests that contain
invocations of a public class’s package-private methods; therefore, tests generated by
Jtest forStack do not directly invokeiterator.

The following is an exampletest suite with three tests for theStack class:

Test 1 (T1): Test 2 (T2): Test 3 (T3):
Stack s1 = new Stack(); Stack s2 = new Stack(); Stack s3 = new Stack();
s1.push(3); s2.push(3); s3.push(3);
s1.push(2); s2.push(5); s3.push(2);
s1.pop(); s3.pop();
s1.push(5); s3.pop();

To determine redundant tests for advised methods, our techniques dynamically mon-
itor test executions. Each test execution produces a sequence of method executions.
Eachmethod execution is characterized by the actual method that is invoked and arep-
resentation of the state (receiver object and method arguments) at the beginning of the
execution. We call this statemethod-entry state, and its part that is related to the re-
ceiverobject state. We represent an object using the values of the fields of all reachable
objects. Two states are equivalent if their representations are the same. For instance, T2
has three method executions: a constructor without arguments is invoked,push adds3
to the empty stack,push adds5 to the previous stack. We call two method executions
equivalent if they are invocations of the same method on equivalent states. Our tech-
niques detectredundant tests for advised methods: a test is redundant for a test suite
if every method execution of the test is equivalent to some method execution of some
test from the suite (Section 4.1). For example, our techniques detect that Test 2 is a

Detecting Redundant Unit Tests for AspectJ Programs 5

aspect NonNegative {
before(Stack stack) : call(* Stack.*(..)) &&

target(stack) &&
!within(NonNegative) {

Iterator it = stack.iterator();
while (it.hasNext()) {

int i = it.next();
if (i < 0) throw new RuntimeException("negative");

}
}

}

aspect NonNegativeArg {
before() : execution(* Stack.*(..)) {

Object args[] = thisJoinPoint.getArgs();
for(int i=0; i<args.length; i++) {
if ((args[i] instanceof Integer) &&

(((Integer)args[i]).intValue() < 0))
System.err.println("Negative argument of " +

thisJoinPoint.getSignature().toShortString());
}

}
}

aspect Instrumentation {
static int count = 0;
public print() { System.out.println("count = " + count); }
after() : call(Stack.new()) { count = 0; }
after() : call(* Stack.push(int)) { count++; }

}

Fig. 2.NonNegative, NonNegativeArg, andInstrumentation aspects

redundant test for advised methods with respect to Test 1 because any of Test 2’s three
method executions is equivalent to one of Test 1’s method executions. However, Test 3
is not redundant for advised methods because the last methodexecutions3.pop() is
not equivalent to any of the method executions of Test 1 or Test 2.

To determine redundant tests for advice, our techniques dynamically monitor the
execution of advice methods. Each test execution produces asequence of advice exe-
cutions. Similar to the definition of a method execution, each advice execution is char-
acterized by the actual advice method that is invoked and arepresentation of the state
(aspect receiver object and method arguments) at the beginning of the execution. Our
techniques detectredundant tests for advice: a test is redundant for a test suite if every
advice execution of the test is equivalent to some advice execution of some test from the
suite (Section 4.2). Because theNonNegative andNonNegativeArg aspects do not
declare any fields, the advice execution is solely characterized by the advice method
arguments: the targetStack object and the arguments of invoked methods on Stack
for advice in these two aspects, respectively. Because theInstrumentation aspect
declares only a staticcount field, which is reachable from its aspect objects, but its
advice method does not have any argument, the advice execution is solely character-
ized by the aspect object state. Our techniques can detect both Test 2 and Test 3 are
redundant for advice in any of the three aspects because any advice execution of Test 2
or 3 is equivalent to one of the advice executions of Test 1.

4 Redundant-Test Detection for AspectJ Programs

The AspectJ compiler [1, 8] compiles each aspect into a standard Java class (called
aspect class) and each piece of advice from the aspect into a standard Javamethod

6 Xie and Zhao and Marinov and Notkin

(calledadvice method) of the aspect class. The compiler also inserts the calls to these
advice methods at the appropriate locations in the base classes. These base classes are
then calledwoven classes and the methods in these classes are calledadvised methods.

We define redundant tests for AspectJ programs at two levels:(1) redundant tests
for advised methods in woven classes and (2) redundant testsfor advice methods in
aspect classes. We use our existing Rostra framework [21] todetect redundant tests for
advised methods. We also extend Rostra to detect redundant tests for advice methods.
Rostra takes as inputs the class and methods under test, so wetreat an aspect class as
the class under test and an advice method as the method under test. Specifically, given
an AspectJ program, our extended Rostra performs the following steps:

1. Compile and weave aspects and base classes into class bytecode using the AspectJ
compiler.

2. Generate unit tests for woven classes using existing testgeneration tools that are
based on class bytecode (e.g., Parasoft Jtest 4.5 [16]).

3. Compile and weave aspects and generated test classes intoclass bytecode using the
AspectJ compiler. (This is necessary because some aspects may be woven into each
call site to the base-class methods, e.g., theNonNegative andInstrumentation
aspects for theStack class, and the tests contain such call sites.)

4. Detect and remove redundant tests for advised methods using the Rostra frame-
work [21] (Section 4.1).

5. Detect and remove redundant tests for advice methods by treating an aspect class
as the class under test and an advice method as the method under test (Section 4.2).

The use of Rostra for detecting redundant tests for advised and advice methods
assumes that these methods are deterministic: for each method, any two executions
that begin with the same state reachable from the receiver and method arguments will
behave the same. In particular, this means that Rostra mightnot work on multi-threaded
code or on code that depends on timing.

Our approach detects redundant tests based on the state at the beginning of method
executions within the tests. We next describe how the state is determined for advised
and advice methods. We then describe how we minimize a test suite based on these
states.

4.1 Detecting Redundant Tests for Advised Methods

Each execution of a test produces a sequence of method calls on the objects of the wo-
ven class (under test). Each method call produces a method execution whose behavior
depends on the state of the receiver object and method arguments at the beginning of
the execution. Each method execution can be represented with the actual method that
is invoked and a representation of the state (reachable formreceiver object and method
arguments) at the beginning of the execution. We call such a statemethod-entry state.

We represent a method-entry state in this work using the WholeState technique
from the Rostra framework [21]. Each tests focuses on the state of several objects,
including the receiver object and method arguments. Locally, the state of an object
consists of the values of the object’s fields, but some of the fields may point to other
objects, and thus, globally the state of an object consists of the state of all reachable

Detecting Redundant Unit Tests for AspectJ Programs 7

objects. To represent the state of specific objects, we traverse and collect the values
of fields reachable from these objects. During the traversal, we perform a linearization
algorithm [21] on the collected field values with reference types. In particular, when we
encounter a reference-type fieldf, instead of collecting its value (which is a memory
address) in the state representation, we collect the following representation:

– collect “null” if (f == null).
– collect “not null” if (f != null) and there exists no previously encountered field
f’ such that (f == f’).

– collectfname’ wherefname’ is the name of the earliest encountered fieldf’ such
that (f == f’) and (f != null).

The linearization does not traverse the fields of basic objects–e.g., aString or a
primitive-wrapper object such asInteger–whosetoString()methods return a unique
string. Instead, the linearization uses this string in the state representation.

The state representation of a method-entry state is basically a sequence of strings.
Comparing two state representations is reduced to comparing two sequences of strings.
We denote withlinearize(s) the state representation of a method-entry states.

Definition 1. Two method-entry states s1 and s2 are equivalent iff
linearize(s1) =linearize(s2).

Definition 2. A method execution〈m, s〉 is a pair of a method m and a method-entry
state s.

Definition 3. Two method executions 〈m1, s1〉 and 〈m2, s2〉 are equivalentiff

(1) m1 = m2, and
(2) linearize(s1) =linearize(s2).

Each test execution produces several method executions. Under the assumption that
equivalent method executions exhibit the same behavior, testing a method execution
equivalent to a previously tested one does not provide any new value in terms of in-
creasing fault detection or code coverage for the method.

Definition 4. A test t is redundantin testing advised methods for a test suite S iff for
each method execution produced by t, there exists an equivalent method execution of
some test from S.

Definition 5. A test suite S is minimal iff there is no t ∈ S such that t is redundant for
S\{t}.

Minimization of a test suiteS′ finds a minimal test suiteS ⊆ S′ that exercises the
same set of non-equivalent method executions asS′ does. Figure 3 shows the pseudo-
code of the test minimization algorithm. The algorithm receives an original test suite
and produces a minimal test suite. It runs each test in the original test suite and collect
the method executions produced by the execution of the test.If all the method execu-
tions produced by the test are a subset (in terms of equivalence) of the existing method
executions that are produced by previously executed tests,the test is a redundant test

8 Xie and Zhao and Marinov and Notkin

Set minimization(Set origTests) {
Set methodExecs = new Set();
Set nonRedundantTests = new Set();
foreach (Test t in origTests) {

Set curMethodExecs = runAndCollect(t);
if !(curMethodExecs subset methodExecs) {

nonRedundantTests.add(t);
methodExecs = methodExecs union curMethodExecs;

}
}
return nonRedundantTests;

}

Fig. 3. Pseudo-code of the test minimization algorithm.

and is discarded; otherwise, the test is a non-redundant test and its produced method
executions are added to the existing method executions. Given a test suiteS′, there can
be several possible test suitesS ⊆ S′ that minimizeS′, depending on the order of run-
ning the tests inS′. In our implementation, our algorithm accepts a JUnit test suite and
uses the test-execution order enforced by the JUnit framework [9].

4.2 Detecting Redundant Tests for Advice

This section shows how we treat aspect class as the class under test and advice methods
as public methods in the class under tests, and then adapt theapproach presented in
Section 4.1 for detecting redundant tests for advice methods. We also discuss how the
AspectJ compiler compiles pieces of advice into advice methods, and present the defini-
tions of redundant tests for advice methods. We finally illustrate the special treatments
of JoinPoint arguments for advice methods.

Compilation of Advice The AspectJ compiler compiles each aspect into an aspect
class and each piece of advice in the aspect into a public non-static method (called
advice method) in the aspect class [1, 8]. The parameters of this public method are the
same as the parameters of the advice, possibly in addition tosomethisJoinPoint
parameters (discussed separately in this section). The body of this public method is
usually the same as the body of the advice. At appropriate locations of the base class,
the AspectJ compiler inserts calls to compiled advice methods. At each site of these
inserted calls, a singleton object of an aspect class is firstobtained by calling the static
methodaspectOf, which is defined in the aspect class. Then an advice method is
invoked on the aspect object.

Both pieces of before and after advice are compiled into advice methods of an as-
pect class in the preceding way; however, compiling and weaving around advice is
more complicated. Normally a piece of around advice is also compiled into a public
method. But it takes one additional argument: anAroundClosure object. A call to
proceed in the around advice method body is replaced with a call to arun method on
theAroundClosure object. However, when anAroundClosure object is not needed,
the around advice is inlined in methods of the base class; no around advice method is
created in the aspect class for this case.

Redundant Tests for Advice Methods Except for the type of inlined around advice,
all pieces of advice are compiled into advice methods in aspect classes. In unit testing

Detecting Redundant Unit Tests for AspectJ Programs 9

of an AspectJ program, we treat aspect classes and their advice methods as lower-level
units comparing to the woven classes and their public methods.

Similar to the way of defining method-entry state, we can define advice-entry state
for an advice method. Anadvice-entry state is the representation of the state (receiver
object and method arguments) at the beginning of the advice’s execution. The receiver
object of an advice method is an aspect object (obtained by calling aspectOf). We
also treat advised methods in the base class where around advice is inlined as special
advice methods. The receiver objects of these special methods are the object of the
base class. We represent advice-entry states similar to representing the method-entry
states (discussed in Section 4.1). Next we define advice-entry state equivalence, advice
execution, their equivalence, and redundant tests for advice methods, similar to the
corresponding ones for advised methods.

Definition 6. Two advice-entry states s1 and s2 are equivalent iff
linearize(s1) =linearize(s2).

Definition 7. An advice execution〈a, s〉 is a pair of an advice method a and an advice-
entry state s.

Definition 8. Two advice executions 〈a1, s1〉 and 〈a2, s2〉 are equivalentiff

(1) a1 = a2, and
(2) linearize(s1) =linearize(s2).

Definition 9. A test t is redundantin testing advice methods for a test suite S iff for
each advice execution produced by t, there exists an equivalent advice execution of
some test from S.

Then we can adapt the test minimization algorithm shown in Figure 3 for minimiz-
ing a test suite for testing advice methods.

thisJoinPoint Arguments The body of a piece of advice can use three special vari-
ables, i.e.,thisJoinPointStaticPart, thisEnclosingJoinPointStaticPart,
andthisJoinPoint to discover both static and dynamic information about the cur-
rent join point [1, 8]. The AspectJ compiler detects which special variables are re-
ferred within the body of the advice and extends the signature of the advice method
with corresponding parameters for these referred special variables. For example, the
NonNegativeArg aspect shown in Figure 2 invokes

thisJoinPoint.getArgs()

to retrieve the arguments of the current join point and invokes
thisJoinPoint.getSignature().toShortString()

to get the method signature name associated with the currentjoin point. The AspectJ
compiler extends the signature of the advice method with oneadditional parameter:

JoinPoint thisJoinPoint.
The JoinPoint type and the return type ofthisJoinPoint.getSignature() are in
the packages whose names start with “org.aspectj.” We refer to a type defined in
these packages as anAspectJ-library type.

10 Xie and Zhao and Marinov and Notkin

At runtime, if we are not careful in collecting the state, we may collect more infor-
mation than that desired as the advice-entry state. This would happen if we traversed
and collected all the fields reachable from thethisJoinPoint argument, which con-
tains reflective information about the current join point. In fact, the aspect execution
behavior is affected only by the return values of those method calls transitively invoked
onthisJoinPoint. For example, only the return values of

thisJoinPoint.getArgs(), and
thisJoinPoint.getSignature().toShortString()

are relevant for affecting the behavior of theNonNegativeArg aspect.
To address this issue of JoinPoint argument state, we use a special treatment during

object-field traversal for state representation. When we encounter an AspectJ-library-
type object during the traversal, we stop collecting the fields of the object. Instead, we
capture the relevant parts of the JointPoint state by collecting and traversing the val-
ues of all object fields reachable from the return of a method call if the method call
is invoked on an AspectJ-library-type object within the aspect execution (during this
return-object-field traversal, we still avoid collecting the fields of an AspectJ-library-
type object). For example, the return ofthisJoinPoint.getArgs() is an object ar-
ray to hold the method arguments of the current join point. Wetraverse and collect
the values of fields reachable from these method arguments aspart of the advice-entry
state. In addition, the return ofthisJoinPoint.getSignature() is an object with
an AspectJ-library type:org.aspectj.lang.Signature. We do not traverse and
collect the object fields of this signature object because itis an AspectJ-library-type
object. ThentoShortString() is invoked on this signature object and the method
return is aString, containing the short-form name of the method signature. Wealso
collect this string as part of the advice-entry state.

5 Experience

We have implemented a test-minimization tool for AspectJ programs by modifying Ros-
tra, our previous tool for detecting redundant object-oriented unit tests [21]. We have
applied our tool on a variety of AspectJ programs. This section describes our experience
on several typical AspectJ programs. Most of these programswere used by Rinard et
al. [17] in evaluating their classification system for aspect-oriented programs. Table 1
lists the programs that we use. For each program, we first feedits woven class bytecode
to Jtest 4.5 [16] to generate tests. (Jtest allows the user toset the length of sequences
between one and three, and we set it as three.) The second column of Table 1 shows the
number of tests generated by Jtest. After weaving the base classes, aspects, and gener-
ated tests, we run these generated tests with our tool for detecting redundant tests for
advised methods. We then rerun these tests with the tool for detecting redundant tests
for advice. For either run, the tool reports the percentage of redundant tests (Columns 3
and 4), the number of non-redundant tests (Columns 5 and 6), the number of nonequiv-
alent method or advice executions (Columns 7 and 8), and the number of nonequivalent
class or aspect object states (Columns 9 and 10). The resultsfor advised methods and
advice are put in the columns with the titles of “meth” and “adv”, respectively.

Basic Aspects. Many aspects (such as the ones shown in Figure 2) log or check base
classes. Our tool detects the same percentage of redundant tests for advised methods on

Detecting Redundant Unit Tests for AspectJ Programs 11

AspectJ program tests %r-tests nr-tests ne-methexec ne-objstates
meth adv meth adv meth adv meth adv

NonNegative 44 72.7 90.9 12 4 16 5 6 1
NonNegativeArg 44 72.7 93.2 12 3 13 6 6 1
Instrumentation 44 72.7 84.1 12 7 12 8 6 4
Telecom 798 95.2 98.5 38 12 52 21 21 2
BusinessRuleImpl 439 94.1 97.7 26 10 35 12 6 2
StateDesignPattern 129 48.8 36.4 66 82 82 172 47 74

Table 1.Results of applying the test-minimization tool on Jtest-generated tests

the three aspects in Figure 2 (shown in the first three data rows of Table 1). However,
interestingly the tool detects different numbers of nonequivalent method executions
when we weaveStackwith these aspects. The numbers are different because the advice
in theNonNegative aspect invokesstack.iterator(), increasing the total number
of nonequivalent method executions, and the AspectJ compiler inserts an extra static
initializer method<clinit> into theStack class for preparing the joinpoint reflection
within NonNegativeArg. In general, when a base class is woven with different aspects,
running the same test suite on the woven class with our tool might produce different
numbers of non-redundant tests, nonequivalent method executions, or nonequivalent
object states for advised methods.

Telecom. The Telecom program is an example available with the AspectJdistribu-
tion [1]. It simulates a community of telephone users. One key base class isConnection,
which has six non-constructor methods. It has an integer field state to indicate the
state of the connection. TheTiming aspect records the phone connection time (we
have replaced aTimer class’sstartTime andstopTimewith some constants to make
method executions deterministic for testing purposes) andtheBilling aspect uses the
connection time to bill the dialer. Neither aspect declaresany object field for itself but
declare some object fields for other classes. Therefore, ourtool detects the states of these
two aspects to be empty at runtime (only two nonequivalent aspect states are exercised
during test execution). TheTiming aspect declares two pieces ofafter advice for the
call of Connection’s complete() anddrop() methods and the arguments of these
pieces of advice are the targetConnection object of these method calls. Therefore,
our tool determines that the inputs to these pieces of adviceare theConnection ob-
ject states. TheBilling aspect also defines two pieces ofafter advice. One piece
of advice is for thecall of Connection’s constructor; the advice’s argument is the
constructor’s first argument (indicating the dialer). The other piece of advice is for the
call of Connection’s drop() and its argument is the targetConnection object.
Some method executions ofConnection do not produce any advice execution and
some nonequivalent method executions produce equivalent advice executions because
only some parts of method inputs (receiver objects or arguments) are visible and usable
to advice executions. Our tool detects that about one third of the non-redundant tests
for advised methods are in fact redundant for advice.

Aspects for Business Rule Implementation. Two aspects of business rules for a bank-
ing system are used as examples in Section 12.5 of [12].MinimumBalanceRuleAspect

defines a piece ofbefore advice for the execution ofAccount’s debit method. An-

12 Xie and Zhao and Marinov and Notkin

otherOverdraftProtectionRuleAspect defines another piece ofbefore advice
for the execution ofAccount’s debit method2. Neither aspect declares any object
field for itself; our tool detects only two nonequivalent aspect states exercised by the
generated tests. The arguments to both pieces of advice are the targetAccount object
and the argument (the withdrawal amount) of thedebit. Our tool detects that about 40
percent of the non-redundant tests for advised methods are in fact redundant for advice.

State Design Pattern Aspect. The state design pattern had been implemented using
AspectJ by Hannemann and Kiczales [7].QueueStateAspect declares three object
fields with types ofQueueEmpty, QueueNormal, andQueueFull. The base class
Queue declares astate field that can be assigned with any of these three fields.
QueueStateAspectdeclares three pieces ofafter advice, one for thecall of Queue’s
constructor (the advice assignsQueueEmpty to state), one for thecall of Queue’s
insert (the advice assignsQueueNormal or QueueFull to state), one for thecall
of Queue’s removeFirst (the advice assignsQueueNormal orQueueEmpty tostate).
Interestingly the aspect-object states are more complicated than the base-class-object
states; this phenomenon is not common among AspectJ programs. Subsequently the
tool detects that non-redundant tests for advice are more than the ones for advised meth-
ods.

Summary. Our tool can often detect a high percentage of redundant tests for advised
methods among the tests generated by Jtest. This phenomenonhas been observed in the
experiments of evaluating Rostra [21]. Furthermore, our tool can detect an even higher
percentage of redundant tests for advice. Thus, usually fewer tests need to be inspected
when focusing on advice rather than advised methods. Our tool outputs traces of state
information for nonequivalent method/advice executions and class/aspect object states;
the user can inspect these traces for correctness. Usually an aspect-object state is empty
or contains fewer object fields than base classes; therefore, the size of the exercised
aspect-object state space is smaller than the size of the exercised base-class-object state
space. One interesting exceptional case is the state designpattern aspect; for this aspect,
we detect more non-redundant tests for advice than for advised method.

6 Related Work

The work in this paper is built on our previous work on Rostra,a framework for de-
tecting redundant unit tests of object-oriented programs [21]. We use the definition of
equivalent method executions (proposed in Rostra) for advised methods and extend
the definition to equivalent aspect executions for advice. Two nonequivalent method
executions might still produce the same set of nonequivalent aspect executions. This
phenomenon is similar to the observation in Rostra: two tests with different method
sequences might still produce the same set of nonequivalentmethod executions.

Souteret al. [18] identified the code associated with a particular maintenance task
(referred as a concern) and performed testing tasks with respect to the concern. They

2 The original version in the book [12] requires thedebit execution for the advice to be in-
voked underneath a method in aCheckClearanceSystem class; we comment this con-
straint out for the generated tests to exercise both aspects.

Detecting Redundant Unit Tests for AspectJ Programs 13

instrumented only the concern for collecting runtime information so that they could
reduce the space and time cost of running tests. They also suggested organizing tests
according to concerns, so that tests could be selected or prioritized given a concern.
A concern in an application corresponds to an aspect in an AspectJ program. Their
approach selects a test if the test covers the aspect even if the same input to the aspect
has been exercised by previously selected tests. Zhouet al. [26] used the same approach
for selecting relevant tests for an aspect. When testing an aspect using our approach, we
selects a test if the test covers the aspect and the input to the aspect is different from
any previously exercised input. Therefore, our approach selects fewer tests with respect
to an aspect than these two previous approaches but preserves the same quality of tests
selected by these approaches for testing the aspect.

Xu et al. [22] proposed a testing approach for aspect-oriented programs based on an
aspect flow graph. The graph consists of an aspect scope statemodel (ASSM), which is
a combination of class and aspect state models and the methodand advice flow graphs,
and can be used to represent some classes together with some additional advice that
may affect the behavior of these classes. Based on the ASSM ofan aspect-oriented
program, one can produce necessary test suites for testing the program. Their approach
first analyzes how the behaviors of classes can be dynamical affected by aspects, and
then constructs an ASSM to generate a set of code based test cases. They also define a
test coverage criterion for testing aspect-oriented programs. Their work focuses on how
to construct some abstract models for supporting aspect-oriented testing, whereas our
work focuses mainly on how to reduce the redundant unit testswhen performing unit
testing on AspectJ programs using existing test-generation tools such as Jtest [16].

Alexanderet al. [2] proposed a fault model for aspect-oriented programming, which
includes six types of faults that may occur for aspect-oriented systems. Although the
model is useful for guiding the development of testing coverage tools for aspect-oriented
programs, unlike our approach, it does not provide a concrete method for testing aspect-
oriented programs.

Zhao [23, 24] proposed a data-flow-based unit testing approach for aspect-oriented
programs. For each aspect or class, the approach performs three levels of testing: intra-
module, inter-module, and intra-aspect or intra-class testing. His work focused on unit
testing of aspect-oriented programs based on data flow, whereas our work focuses on
detecting redundant unit tests for AspectJ program based onobject states, in order to
reduce the unit testing cost.

Krishnamurthiet al. [11] verified aspect advice modularly by formally modeling a
program fragment as a state machine and a piece of advice as a state machine. They
treated joinpoints as function calls. Our approach also implicitly models a piece of
advice as a state machine and focuses on testing aspects.

Zhao and Rinard [25] developed Pipa, a behavioral interfacespecification language
(BISL) for AspectJ for formal verification. Pipa is a simple and practical extension to
Java Modeling Language (JML) [13], a BISL designed for Java.Pipa uses a similar way
as JML to specify AspectJ classes and interfaces, and extends JML, with just a few new
notations, to specify AspectJ aspects. By transforming an AspectJ program together
with its Pipa specification into a standard Java program withJML specification, one
can formally verify AspectJ programs by using existing JML-based tools. Programmers
can write specifications in Pipa for AspectJ programs and usethem for correctness

14 Xie and Zhao and Marinov and Notkin

checking during test execution thus avoiding inspection efforts. However, when running
generated tests is relatively expensive for regression testing, we can still minimize or
prioritize generated tests for regression testing based onequivalent method executions
or advice executions proposed in our approach.

7 Conclusion and Future Work

We have proposed an automated approach for detecting redundant unit tests for AspectJ
programs. Redundant tests are defined for two types of units:advised methods and
pieces of advice. We have formally defined inputs to either type of units based on object
states. We have used the Rostra framework [21] to detect redundant tests for advised
methods and adapted the framework to detect redundant testsfor advice. In this work,
we have focused on detecting redundant tests and removing them before the inspection
of test executions. By doing so, we can still generate tests for AspectJ programs by
reusing existing Java test-generation tools and then postprocess their generated tests by
removing redundant tests for AspectJ programs.

In future work, we plan to develop techniques and tools for directly generating
non-redundant tests for AspectJ programs. In testing unitsof advised methods, we can
use the test generation techniques for Java programs by avoiding redundant tests [20].
In test generation for an advised method, we have direct controls on choosing which
inputs to exercise the method. In test generation for a pieceof advice, we do not have
direct controls on the inputs to the advice but have control on inputs to advised methods,
which invoke the advice. We have shown that different inputsto an advised method can
produce the same input for a piece of advice. Before we actually run these different
inputs to the advised method, we plan to use static or dynamicanalysis to determine
which parts of inputs to the advised method are relevant to the inputs to the advice.
Then we can predict whether an input to the advised method could lead to a new input
to the advice. Based on this prediction, we can generate inputs to the advised method
that can lead to new inputs to the advice with a high probability.

References

1. AspectJ compiler 1.2, May 2004.http://eclipse.org/aspectj/.
2. R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards the systematic testing of aspect-

oriented programs. Technical Report CS-4-105, Departmentof Computer Science, Colorado
State University, Fort Collins, Colorado, 2004.

3. K. Beck.Extreme programming explained. Addison-Wesley, 2000.
4. B. Beizer.Software Testing Techniques. International Thomson Computer Press, 1990.
5. L. Bergmans and M. Aksits. Composing crosscutting concerns using composition filters.

Commun. ACM, 44(10):51–57, 2001.
6. C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java.Software:

Practice and Experience, 34:1025–1050, 2004.
7. J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. InProc.

17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 161–173, 2002.

8. E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. InProc. 3rd International Confer-
ence on Aspect-Oriented Software Development, pages 26–35, 2004.

Detecting Redundant Unit Tests for AspectJ Programs 15

9. JUnit, 2003.http://www.junit.org.
10. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Ir-

win. Aspect-oriented programming. InProc. 11th European Conference on Object-Oriented
Programming, pages 220–242. 1997.

11. S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying aspect advice modularly. InProc.
12th International Symposium on the Foundations of Software Engineering, November 2004.

12. R. Laddad.AspectJ in Action. Manning, 2003.
13. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral inter-

face specification language for Java. Technical Report TR 98-06i, Department of Computer
Science, Iowa State University, June 1998.

14. K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented programming with adaptive
methods.Commun. ACM, 44(10):39–41, 2001.

15. C. Pacheco and M. D. Ernst. Eclat documents. Online manual, Oct. 2004. http://
people.csail.mit.edu/people/cpacheco/eclat/.

16. Parasoft. Jtest manuals version 4.5. Online manual, April 2003. http://www.
parasoft.com/.

17. M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis for aspect-
oriented programs. InProc. 12th International Symposium on the Foundations of Software
Engineering, November 2004.

18. A. L. Souter, D. Shepherd, and L. L. Pollock. Testing withrespect to concerns. InProc.
International Conference on Software Maintenance, page 54, 2003.

19. P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton.N degrees of separation: multi-
dimensional separation of concerns. InProc. 21st International Conference on Software
Engineering, pages 107–119, 1999.

20. T. Xie, D. Marinov, and D. Notkin. Improving generation of object-oriented test suites by
avoiding redundant tests. Technical Report UW-CSE-04-01-05, University of Washington
Department of Computer Science and Engineering, Seattle, WA, Jan. 2004.

21. T. Xie, D. Marinov, and D. Notkin. Rostra: A framework fordetecting redundant object-
oriented unit tests. InProc. 19th IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

22. W. Xu, D. Xu, V. Goel, and K. Nygard. Aspect flow graph for testing aspect-oriented pro-
grams. InProc. 8th IASTED International Conference on Software Engineering and Appli-
cations, 2004.

23. J. Zhao. Tool support for unit testing of aspect-oriented software. InProc. OOPSLA’2002
Workshop on Tools for Aspect-Oriented Software Development, Nov. 2002.

24. J. Zhao. Data-flow-based unit testing of aspect-oriented programs. InProc. 27th IEEE
International Computer Software and Applications Conference, pages 188–197, Nov. 2003.

25. J. Zhao and M. Rinard. Pipa: A behavioral interface specification language for AspectJ. In
Proc. Fundamental Approaches to Software Engineering, pages 150–165, April 2003.

26. Y. Zhou, D. Richardson, and H. Ziv. Towards a practical approach to test aspect-oriented
software. InProc. 2004 Workshop on Testing Component-based Systems (TECOS 2004),
Net.ObjectiveDays, Sept. 2004.

27. H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.ACM
Comput. Surv., 29(4):366–427, 1997.

