Detecting Redundant Unit Tests for AspectJ Programs

Tao Xie' Jianjun Zhadé Darko Marinov David Notkin'

! Department of Computer Science & Engineering, Universitwashington, USA
2 Department of Computer Science & Engineering, Fukuokatinstof Technology, Japan
3 MIT Computer Science and Atrtificial Intelligence LaboratocEambridge, MA 02139, USA
{t aoxi e, not ki n}@s. washi ngt on. edu, zhao@s.fit.ac.jp,
mari nov@cs. mt. edu
Technical Report UW-CSE-04-10-03
October 2004

Abstract. Aspect-oriented software development is gaining popiylavith the
adoption of languages such as AspectJ. Testing is an immgréat in any soft-
ware development, including aspect-oriented developniEntutomate gener-
ation of unit tests for AspectJ programs, we can apply thetiexj tools that
automate generation of unit tests for Java programs. Hawdwese tools can
generate a large number of tests, and it is time-consumimgatoually inspect
them all. This paper proposes an automated approach foctohefeedundant
unit tests for Aspectd programs. We introduce two levelsriffsin testing As-
pectJ programs—the higher level of the advised methodsharidwer level of the
pieces of advice—and we show how to detect at each level daatitests that do
not exercise new behavior. Our approach selects only miumdant tests from
the automatically generated test suites, thus allowingléveloper to spend less
time in inspecting this minimized set of tests. We have impgated our approach
and our experience has shown that it can effectively reduesize of generated
test suites for inspecting AspectJ programs.

1 Introduction

Aspect-oriented software development (AOSD) is a new pgnadhat supports sepa-
ration of concerns in software development [5, 10, 14, 19)S® makes it possible to
modularize crosscutting aspects of a software system.&3earch in AOSD has so far
focused primarily on problem analysis, software desigd,iemplementation activities.

Little attention has been paid to testing in AOSD, althougis well known that
testing is a labor-intensive process that can account fibthatotal cost of software
development [4]. Automated software testing, and in paldictest generation, can sig-
nificantly reduce this cost. Although AOSD can lead to beteality software, AOSD
does not provide the correctness by itself. An aspect-tatedesign can lead to a bet-
ter system architecture and an aspect-oriented progragiariguage enforces a disci-
plined coding style, but they do not shield against mistakasle by programmers or
a lack of understanding of the specification. As a resultiwsare testing remains an
important task in AOSD.

Aspect-oriented programming languages, such as Aspe6}] ifitroduce some
new language constructs—most notably aspects, advicggiamnubints—to the common
object-oriented programming languages, such as Javae Bpesific constructs require
adapting the common testing concepts.

2 Xie and Zhao and Marinov and Notkin

We focus orunit testing, the process of testing each basic component (a unit) of a
program to validate that it correctly implements its detditlesign [27]. Unit testing is
gaining importance with the wider adoption of Extreme Paogming [3]. For aspect-
oriented programs, the basic testing unit can be eitherpecasr a class. In unit test-
ing, developers isolate the unit to run independently fremenvironment. This allows
writing small testing code that exercises the unit alonewéir, in aspect-oriented
programming, it is unusual to run an aspect in isolationeAdtl, the intended use of an
aspect is to affect the behavior of one or more classes thrmilg points and advice.
Thus, the aspects are usually tested in the context with sdieeted classes. This also
allows for testing the complex interactions between theespnd the affected classes.

We can use the existing tools that automate test generatidla¥a to automate test
generation for the aspects and their affected classesgéestration tools for Java are
available commercially (e.g., Jtest [16]) or as researdtatypes (e.g., JCrasher [6]
and Eclat [15]). These tools test a class by generating ascbéixg numerous method
sequences on the objects of the class. Since typical pragdanmot have executable
specifications for automatic correctness checking, thesls tely on the programmer
to inspect the executions of the generated tests for coesst

Our previous work [21] has shown that automatic test-gdimergools may generate
a large number ofedundant tests that do not exercise new behaviors of the class under
test. Such tests only increase the testing time, withoutasing the ability to detect
faults. Redundant tests are even more common in testingtasgiee tests that differ for
the affected class can often be the same for the aspect. éVlise can also happen, but
much more infrequently.) A key issue in automated testing iavoid such redundant
tests. This not only reduces the test generation and exedirtie, but also reduces the
time that developers need to spend inspecting the tests.

We propose in this paper an automated approach for deteetihgndant unit tests
for AspectJ programs. We consider two levels of units in Aspprograms: the pieces
of advice and the advised methods. We formalize the inputseee units using object
states. Our approach starts from the unit tests that thérexi®ols for Java generate
for the aspect and the class affected by it. Our approachdéttts those tests that do
not exercise new inputs to a unit (either a piece of advice@dvised method). These
tests are redundant and can be removed from the generdtsditesvithout decreasing
its quality. Programmers can then inspect this much smsdieof non-redundant tests.

This paper makes the following main contributions:

— We propose an approach for detecting redundant unit tesésfct-oriented pro-
grams; to the best of our knowledge, this is the first suchauyr.

— We presents an implementation of the approach for deteatichgndant unit tests
for AspectJ programs.

— We describe our experience in applying the approach to wadspect] programs.
The experience shows that our approach can effectivelyceetthe size of generated
test suites for inspecting AspectJ program behavior.

2 Aspect]

We next present some details of AspectJ [1], a widely usedaspiented program-
ming language. Our implementation for detecting reduntizsis operates on AspectJ

Detecting Redundant Unit Tests for AspectJ Programs 3

programs, but the underlying ideas apply to the generas désaspect-oriented lan-
guages.

Aspectl is a seamless, aspect-oriented extension to Jspacd adds to Java sev-
eral new concepts and associated constructs, includingpjoints, pointcuts, advice,
inter-type declarations, and aspects. dgpect is a modular unit of crosscutting im-
plementation in AspectJ. Each aspect encapsulates faatitipthat crosscuts other
classes in a program. Like a class, an aspect can be ingtahttan contain state and
methods, and can be specialized with sub-aspects. An aispeotmposed with the
classes it crosscuts according to the descriptions givéreiaspect.

A central concept in the composition of an aspect with otfesses is §oin point.

A join point is a well-defined point in the execution of a pragr, such as a call to a
method, an access to an attribute, an object initializatoan exception handler. Sets
of join points may be represented pgintcuts, implying that they crosscut the system.
An aspect can specify a piece advice that defines the code that should be executed
when the executions reaches a pointcut. Advice is a meikedilechanism which
consists of instructions that execuiefore, after, or around a pointcut. The around
advice executem place of the indicated pointcut, which allows the aspect to replac
method.

The AspectJ compiler ensures that the base and aspect cottgaiher in a prop-
erly coordinated fashion. The compiler does this usisggect weaving which composes
the code of the base class and the aspect to ensure thatadypladvice runs at the
appropriate join points [1, 8]. Details of AspectJ are alal elsewhere [1].

3 Example

We next illustrate how our approach determines redundatd fer an AspectJ pro-
gram. We use a simple integer stack example adapted frormdRéhal. [17]. Figure 1
shows the implementation of the class. This public clas®wapublic non-constructor
methodspush andpop are standard stack operations, and one package-privatedet
i terator returns an iterator that can be used to traverse the itenteistack. Fig-
ure 2 shows three aspects for the stack clisaNegat i ve, NonNegat i veAr g, and

I nstrument ati on.

The stack implementation accommodates only nonnegatiggens as stack items.
The NonNegat i ve aspect checks this property: the aspect contains a pieagvizfea
that iterates through all items to check whether they araeegative integers. The ad-
vice is executed before any call toSaack method. TheNonNegat i veAr g aspect
checks whethest ack method arguments are nonnegative integers. The aspect con-
tains a piece of advice that goes through all arguments ofbantao be executed
St ack method to check whether they are nonnegative integers. dieeis executed
before the execution of arst ack method. The nst r unent at i on aspect counts the
number of times &t ack’s push method is invoked on an object since its creation
The aspect contains a piece of advice that increments the staint field defined in
the aspect. The advice is executed after any cadt tack’s push method. The aspect

! The advice implementation works correctly only when nore@ving among stack objects’
push and constructor calls.

4 Xie and Zhao and Marinov and Notkin

class Cell {
int data; Cell next;
Cell(Cell n, int i) { next = n; data =i; }
}

public class Stack {
Cel | head;
public Stack() { head = null; }
public bool ean push(int i) {
if (i <0) return fal se;
head = new Cel | (head, i);
return true;

}
public int pop() {
if (head == null)
throw new Runti meException("enmpty");
int result = head. data; head = head. next;
return result;

}

Iterator iterator() { return new Stackltr(head); }

Fig. 1. An integer stack implementation

contains another piece of advice that resets the statiat field. This piece of advice
is executed after any call & ack’s constructor.

We use the AspectJ compiler [1, 8] to compile and weave etthitiree aspects and
the stack class (calldahse class) into class bytecode (callegoven class); a method in
a woven class is called aalvised method. An aspect is compiled to aspect classand
a piece of advice in the aspect is compiled intoaaiice method in the aspect class.
After the compilation, we can use existing Java test-gdimeréools, such as Parasoft
Jtest 4.5 [16], to generate unit tests for the woven classh Bait test consists of se-
quences of method invocations. By default Jtest 4.5 doegerwrate tests that contain
invocations of a public class’s package-private methdukrefore, tests generated by
Jtest forSt ack do not directly invoke t er at or .

The following is an exampleest suite with three tests for thét ack class:

Test 1 (T1): Test 2 (T2): Test 3 (T3):
Stack s1 = new Stack(); Stack s2 = new Stack(); Stack s3 = new Stack();
s1. push(3); s2. push(3); s3. push(3);
s1. push(2); s2. push(5); s3. push(2);
s1. pop(); s3. pop() ;
s1. push(5); s3.pop();

To determine redundanttests for advised methods, ouriggadmdynamically mon-
itor test executions. Each test execution produces a sequiEnmethod executions.
Eachmethod execution is characterized by the actual method that is invoked ameg-a
resentation of the state (receiver object and method arguments) at thiaitiag of the
execution. We call this stateethod-entry state, and its part that is related to the re-
ceiverobject state. We represent an object using the values of the fields of atiirable
objects. Two states are equivalent if their representatioa the same. For instance, T2
has three method executions: a constructor without argtsnemvoked push adds3
to the empty staclkgush addss to the previous stack. We call two method executions
equivalent if they are invocations of the same method onvadprit states. Our tech-
niques detectedundant tests for advised methods: a test is redundant for a tegt suit
if every method execution of the test is equivalent to somthotkexecution of some
test from the suite (Section 4.1). For example, our tectesqietect that Test 2 is a

Detecting Redundant Unit Tests for AspectJ Programs 5

aspect NonNegative {
before(Stack stack) : call(* Stack.*(..)) &&
target(stack) &&
I'wi t hi n(NonNegative) {
Iterator it = stack.iterator();
while (it.hasNext()) {
int i =it.next();
if (i <0) throw new Runti neException("negative");
}
}
}

aspect NonNegativeArg {
before() : execution(* Stack.*(..)) {

Obj ect args[] = thisJoinPoint.getArgs();
for(int i=0; i<args.length; i++) {
if ((args[i] instanceof Integer) &&

(((Integer)args[i]).intValue() < 0))
Systemerr.println("Negative argunent of " +
t hi sJoi nPoi nt. get Signature().toShortString());
}
}
}

aspect Instrunentation {
static int count = O;

public print() { Systemout.println("count =" + count); }
after() : call(Stack.new()) { count = 0;
after() : call(* Stack.push(int)) { count++; }

}

Fig.2.NonNegat i ve, NonNegat i veAr g, andl nst r unent at i on aspects
redundant test for advised methods with respect to Test dusecany of Test 2's three
method executions is equivalent to one of Test 1's methodwians. However, Test 3
is not redundant for advised methods because the last meksaditions 3. pop() is
not equivalent to any of the method executions of Test 1 orJdes

To determine redundant tests for advice, our techniqueardigally monitor the
execution of advice methods. Each test execution produseg@ence of advice exe-
cutions. Similar to the definition of a method execution headvice execution is char-
acterized by the actual advice method that is invoked argprasentation of the state
(aspect receiver object and method arguments) at the birginhthe execution. Our
techniques detecedundant tests for advice: a test is redundant for a test suite if every
advice execution of the test is equivalent to some adviceigia of some test from the
suite (Section 4.2). Because tRenNegat i ve andNonNegat i veAr g aspects do not
declare any fields, the advice execution is solely charaeiby the advice method
arguments: the targett ack object and the arguments of invoked methods on Stack
for advice in these two aspects, respectively. Becauseérther unent at i on aspect
declares only a staticount field, which is reachable from its aspect objects, but its
advice method does not have any argument, the advice eapdstsolely character-
ized by the aspect object state. Our techniques can dettitilest 2 and Test 3 are
redundant for advice in any of the three aspects becausedaioeaxecution of Test 2
or 3 is equivalent to one of the advice executions of Test 1.

4 Redundant-Test Detection for AspectJ Programs

The AspectJ compiler [1, 8] compiles each aspect into a stahdava class (called
aspect class) and each piece of advice from the aspect into a standardniattaod

6 Xie and Zhao and Marinov and Notkin

(calledadvice method) of the aspect class. The compiler also inserts the callsetset
advice methods at the appropriate locations in the basseda$hese base classes are
then calledvoven classes and the methods in these classes are calflvised methods.

We define redundant tests for Aspectd programs at two le{@lsedundant tests
for advised methods in woven classes and (2) redundantftasséglvice methods in
aspect classes. We use our existing Rostra framework [2dtect redundant tests for
advised methods. We also extend Rostra to detect redureddstfor advice methods.
Rostra takes as inputs the class and methods under test, tseatvan aspect class as
the class under test and an advice method as the method este3pecifically, given
an AspectJ program, our extended Rostra performs the finitpsteps:

1. Compile and weave aspects and base classes into classdgtgsing the AspectJ
compiler.

2. Generate unit tests for woven classes using existinggstration tools that are
based on class bytecode (e.g., Parasoft Jtest 4.5 [16]).

3. Compile and weave aspects and generated test classemsadytecode using the
AspectJ compiler. (This is necessary because some aspa>samwoven into each
call site to the base-class methods, e.g.NtheNegat i ve andl nst runment ati on
aspects for thét ack class, and the tests contain such call sites.)

4. Detect and remove redundant tests for advised methodg tis¢ Rostra frame-
work [21] (Section 4.1).

5. Detect and remove redundant tests for advice method®hiirtg an aspect class
as the class under test and an advice method as the methadestdSection 4.2).

The use of Rostra for detecting redundant tests for advisedaavice methods
assumes that these methods are deterministic: for eactodyethy two executions
that begin with the same state reachable from the receidknathod arguments will
behave the same. In particular, this means that Rostra magtork on multi-threaded
code or on code that depends on timing.

Our approach detects redundant tests based on the stagebefimning of method
executions within the tests. We next describe how the statietermined for advised
and advice methods. We then describe how we minimize a tést lsased on these
states.

4.1 Detecting Redundant Tests for Advised Methods

Each execution of a test produces a sequence of method nalie @bjects of the wo-
ven class (under test). Each method call produces a mettemtition whose behavior
depends on the state of the receiver object and method argsiiethe beginning of
the execution. Each method execution can be representedheitactual method that
is invoked and a representation of the state (reachablerfecaiver object and method
arguments) at the beginning of the execution. We call su¢htarsethod-entry state.
We represent a method-entry state in this work using the ¥8tate technique
from the Rostra framework [21]. Each tests focuses on thie sthseveral objects,
including the receiver object and method arguments. LgcHie state of an object
consists of the values of the object’s fields, but some of #dgimay point to other
objects, and thus, globally the state of an object consistseostate of all reachable

Detecting Redundant Unit Tests for AspectJ Programs 7

objects. To represent the state of specific objects, wersavand collect the values
of fields reachable from these objects. During the travevgalperform a linearization
algorithm [21] on the collected field values with referengeds. In particular, when we
encounter a reference-type fidldinstead of collecting its value (which is a memory
address) in the state representation, we collect the follpvepresentation:

— collect “null” if (f ==nul I).

— collect “notnull” if (f !'= nul I') and there exists no previously encountered field
f' suchthatf ==f").

— collectf name’ wheref name’ is the name of the earliest encountered fieldsuch
that ==f')and ¢ '=nul I).

The linearization does not traverse the fields of basic ¢bjecg., aString or a
primitive-wrapper object such ast eger —whose oSt ri ng() methods return a unique
string. Instead, the linearization uses this string in tatesrepresentation.

The state representation of a method-entry state is bsa&cabquence of strings.
Comparing two state representations is reduced to complavmsequences of strings.
We denote with i near i ze(s) the state representation of a method-entry state

Definition 1. Two method-entry states s; and s, are equivalent iff
linearize(s;)=linearize(ss).

Definition 2. A method executiofim, s) is a pair of a method m and a method-entry
state s.

Definition 3. Two method executions (m, s1) and (ma, s2) are equivaleniff

(1) mip = ma, and
(2)linearize(s1) =linearize(ss).

Each test execution produces several method executiodgrlthe assumption that
equivalent method executions exhibit the same behavistintea method execution
equivalent to a previously tested one does not provide amyvadue in terms of in-
creasing fault detection or code coverage for the method.

Definition 4. Atest ¢ is redundantn testing advised methods for a test suite S iff for
each method execution produced by ¢, there exists an equivalent method execution of
some test from S.

Definition 5. Atest suite S is minimaliff thereisno ¢ € S such that ¢ is redundant for

S\{t}.

Minimization of a test suiteS” finds a minimal test suité C S’ that exercises the
same set of non-equivalent method executionS’adoes. Figure 3 shows the pseudo-
code of the test minimization algorithm. The algorithm fieee an original test suite
and produces a minimal test suite. It runs each test in thygnatitest suite and collect
the method executions produced by the execution of thelfest.the method execu-
tions produced by the test are a subset (in terms of equis@)ari the existing method
executions that are produced by previously executed tibstdest is a redundant test

8 Xie and Zhao and Marinov and Notkin

Set minimzation(Set origTests) {
Set net hodExecs = new Set();
Set nonRedundant Tests = new Set();
foreach (Test t in origTests) {
Set cur Met hodExecs = runAndCol | ect (t);
if !'(curMethodExecs subset nethodExecs) {
nonRedundant Tests. add(t);
met hodExecs = net hodExecs uni on cur Met hodExecs;

}

return nonRedundant Tests;
Fig. 3. Pseudo-code of the test minimization algorithm.

and is discarded; otherwise, the test is a non-redundarmeksits produced method
executions are added to the existing method executionsnGitest suité’, there can
be several possible test suit&s— S’ that minimizeS’, depending on the order of run-
ning the tests irb’. In our implementation, our algorithm accepts a JUnit tagesand
uses the test-execution order enforced by the JUnit frame[®h

4.2 Detecting Redundant Tests for Advice

This section shows how we treat aspect class as the classtestiend advice methods
as public methods in the class under tests, and then adapppteach presented in
Section 4.1 for detecting redundant tests for advice methék also discuss how the
AspectJ compiler compiles pieces of advice into advice paghand present the defini-
tions of redundant tests for advice methods. We finally fithte the special treatments
of JoinPoint arguments for advice methods.

Compilation of Advice The AspectJ compiler compiles each aspect into an aspect
class and each piece of advice in the aspect into a publicstadit- method (called
advice method) in the aspect class [1, 8]. The parameters of this publitotkare the
same as the parameters of the advice, possibly in additisorteet hi sJoi nPoi nt
parameters (discussed separately in this section). The d@bthis public method is
usually the same as the body of the advice. At appropriagtitmts of the base class,
the AspectJ compiler inserts calls to compiled advice nathét each site of these
inserted calls, a singleton object of an aspect class isfitstined by calling the static
methodaspect O , which is defined in the aspect class. Then an advice method is
invoked on the aspect object.

Both pieces of before and after advice are compiled intocriethods of an as-
pect class in the preceding way; however, compiling and weasround advice is
more complicated. Normally a piece of around advice is atsopiled into a public
method. But it takes one additional argument:Amundd osur e object. A call to
proceed in the around advice method body is replaced with a calltaramethod on
theAr oundCl osur e object. However, when afr oundC osur e object is not needed,
the around advice is inlined in methods of the base classround advice method is
created in the aspect class for this case.

Redundant Tests for Advice Methods Except for the type of inlined around advice,
all pieces of advice are compiled into advice methods in esgasses. In unit testing

Detecting Redundant Unit Tests for AspectJ Programs 9

of an AspectJ program, we treat aspect classes and theaeaghdthods as lower-level
units comparing to the woven classes and their public method

Similar to the way of defining method-entry state, we can @ddidvice-entry state
for an advice method. Aadvice-entry state is the representation of the state (receiver
object and method arguments) at the beginning of the adv@escution. The receiver
object of an advice method is an aspect object (obtained bingaspect O). We
also treat advised methods in the base class where arourmtashinlined as special
advice methods. The receiver objects of these special methe the object of the
base class. We represent advice-entry states similar tesepting the method-entry
states (discussed in Section 4.1). Next we define adviag-statte equivalence, advice
execution, their equivalence, and redundant tests forcadwviethods, similar to the
corresponding ones for advised methods.

Definition 6. Two advice-entry states s; and s, are equivalent iff
linearize(s1)=linearize(ss).

Definition 7. Anadvice executiofia, s) isa pair of an advice method « and an advice-
entry state s.

Definition 8. Two adviceexecutions (a1, s1) and {(as, s2) are equivalentff

(1) a1 = ag, and
(2)linearize(sy) =linearize(ss).

Definition 9. A test ¢ is redundantn testing advice methods for a test suite S' iff for
each advice execution produced by ¢, there exists an equivalent advice execution of
some test from S.

Then we can adapt the test minimization algorithm shown gufé 3 for minimiz-
ing a test suite for testing advice methods.

thisJoinPoint Arguments The body of a piece of advice can use three special vari-
ables, i.e.t hi sJoi nPoi nt St ati cPart,thi sEncl osi ngJoi nPoi nt StaticPart,
andt hi sJoi nPoi nt to discover both static and dynamic information about the cu
rent join point [1, 8]. The Aspect] compiler detects whiclkedpl variables are re-
ferred within the body of the advice and extends the sigeatfithe advice method
with corresponding parameters for these referred speaigies. For example, the
NonNegat i veAr g aspect shown in Figure 2 invokes

t hi sJoi nPoi nt. get Args()
to retrieve the arguments of the current join point and iesk

t hi sJoi nPoi nt. get Si gnature().toShortString()
to get the method signature name associated with the cyaianpoint. The AspectJ
compiler extends the signature of the advice method withaaluitional parameter:

Joi nPoi nt t hi sJoi nPoi nt .
The JoinPoint type and the return typetafi sJoi nPoi nt . get Si gnat ure() are in
the packages whose names start withd. aspectj . ” We refer to a type defined in
these packages as AgpectJ-library type.

10 Xie and Zhao and Marinov and Notkin

At runtime, if we are not careful in collecting the state, wayntollect more infor-
mation than that desired as the advice-entry state. ThiddAmappen if we traversed
and collected all the fields reachable from the sJoi nPoi nt argument, which con-
tains reflective information about the current join poimt.fact, the aspect execution
behavior is affected only by the return values of those nubtiadls transitively invoked
ont hi sJoi nPoi nt . For example, only the return values of

t hi sJoi nPoi nt. get Args(), and
t hi sJoi nPoi nt. get Si gnature().toShortString()
are relevant for affecting the behavior of tkenNegat i veAr g aspect.

To address this issue of JoinPoint argument state, we usscabpyeatment during
object-field traversal for state representation. When weenter an AspectJ-library-
type object during the traversal, we stop collecting thelfiaf the object. Instead, we
capture the relevant parts of the JointPoint state by dilig@nd traversing the val-
ues of all object fields reachable from the return of a methadticthe method call
is invoked on an AspectJ-library-type object within the extpexecution (during this
return-object-field traversal, we still avoid collectirttetfields of an AspectJ-library-
type object). For example, the returntdfi sJoi nPoi nt . get Args() is an object ar-
ray to hold the method arguments of the current join point.tw@eerse and collect
the values of fields reachable from these method argumeptsrasf the advice-entry
state. In addition, the return ohi sJoi nPoi nt . get Si gnat ur e() is an object with
an AspectJ-library typeor g. aspectj . | ang. Si gnat ure. We do not traverse and
collect the object fields of this signature object because #n Aspectl-library-type
object. Thent oShort String() is invoked on this signature object and the method
return is ast r i ng, containing the short-form name of the method signaturealdie
collect this string as part of the advice-entry state.

5 Experience

We have implemented a test-minimization tool for Aspectypams by modifying Ros-
tra, our previous tool for detecting redundant object+aee unit tests [21]. We have
applied our tool on a variety of AspectJ programs. This sealescribes our experience
on several typical AspectJ programs. Most of these prograens used by Rinard et
al. [17] in evaluating their classification system for agp@iented programs. Table 1
lists the programs that we use. For each program, we firstifeaaven class bytecode
to Jtest 4.5 [16] to generate tests. (Jtest allows the ussgttthe length of sequences
between one and three, and we set it as three.) The secomdrcofurable 1 shows the
number of tests generated by Jtest. After weaving the basead, aspects, and gener-
ated tests, we run these generated tests with our tool fectieg redundant tests for
advised methods. We then rerun these tests with the tookfecting redundant tests
for advice. For either run, the tool reports the percentdgedundant tests (Columns 3
and 4), the number of non-redundant tests (Columns 5 andesiytmber of nonequiv-
alent method or advice executions (Columns 7 and 8), anduimbdar of nonequivalent
class or aspect object states (Columns 9 and 10). The résuligvised methods and
advice are put in the columns with the titles of “meth” andvadespectively.

Basic Aspects. Many aspects (such as the ones shown in Figure 2) log or chesek b
classes. Our tool detects the same percentage of redurdtsitdr advised methods on

Detecting Redundant Unit Tests for AspectJ Programs 11

Aspect] program | tests %r-tests nr-tests ne-methexed ne-objstates
meth | adv | meth | adv | meth | adv | meth | adv
NonNegative 44 | 72.7| 90.9 12 4 16 5 6 1
NonNegativeArg 44 | 72.7 | 93.2 12 3 13 6 6 1
Instrumentation 44 | 72.7 | 84.1 12 7 12 8 6 4
Telecom 798 | 95.2 | 98.5 38| 12 52 21 21 2
BusinessRulelmpl| 439 | 94.1| 97.7 26| 10 35 12 6 2
StateDesignPattern 129 | 48.8 | 36.4 66 | 82 82| 172 47 | 74

Table 1. Results of applying the test-minimization tool on Jtestayated tests

the three aspects in Figure 2 (shown in the first three data adwable 1). However,
interestingly the tool detects different numbers of normlant method executions
when we weavét ack with these aspects. The numbers are different becausettwead
in theNonNegat i ve aspect invokest ack. i t er at or (), increasing the total number
of nonequivalent method executions, and the Aspect] cemipierts an extra static
initializer methodkcl i ni t > into theSt ack class for preparing the joinpoint reflection
within NonNegat i veAr g. In general, when a base class is woven with different aspect
running the same test suite on the woven class with our toghtrproduce different
numbers of non-redundant tests, nonequivalent methoduimaes, or nonequivalent
object states for advised methods.

Telecom. The Telecom program is an example available with the Aspaistiibu-
tion [1]. It simulates a community of telephone users. Onddase class iSonnect i on,
which has six non-constructor methods. It has an integet fieht e to indicate the
state of the connection. THE ni ng aspect records the phone connection time (we
have replaced @i ner class’sst art Ti me andst opTi me with some constants to make
method executions deterministic for testing purposes}a@si | | i ng aspect uses the
connection time to bill the dialer. Neither aspect declamg object field for itself but
declare some object fields for other classes. Thereforégoluletects the states of these
two aspects to be empty at runtime (only two nonequivalepeetsstates are exercised
during test execution). THE ni ng aspect declares two piecesabft er advice for the
cal | of Connecti on’sconpl et e() anddr op() methods and the arguments of these
pieces of advice are the targainnect i on object of these method calls. Therefore,
our tool determines that the inputs to these pieces of adre¢heConnect i on ob-
ject states. Th@i | | i ng aspect also defines two piecesabft er advice. One piece
of advice is for thecal | of Connect i on’s constructor; the advice’s argument is the
constructor’s first argument (indicating the dialer). Thieew piece of advice is for the
cal | of Connection’s drop() and its argument is the targébnnect i on object.
Some method executions @bnnect i on do not produce any advice execution and
some nonequivalent method executions produce equivaliteaexecutions because
only some parts of method inputs (receiver objects or arguishare visible and usable
to advice executions. Our tool detects that about one tHitienon-redundant tests
for advised methods are in fact redundant for advice.

Aspects for Business Rule I mplementation. Two aspects of business rules for a bank-
ing system are used as examples in Section 12.5 of /A 8].munBal anceRul eAspect
defines a piece dfef or e advice for the execution &fccount ’'s debi t method. An-

12 Xie and Zhao and Marinov and Notkin

otherOver dr af t Prot ecti onRul eAspect defines another piece dkf or e advice
for the execution ofAccount 's debi t method?. Neither aspect declares any object
field for itself; our tool detects only two nonequivalent aspstates exercised by the
generated tests. The arguments to both pieces of advichatargetriccount object
and the argument (the withdrawal amount) of dle®i t . Our tool detects that about 40
percent of the non-redundant tests for advised methods éaetiredundant for advice.

State Design Pattern Aspect. The state design pattern had been implemented using
AspectJ by Hannemann and Kiczales [@eueSt at eAspect declares three object
fields with types ofQueueEnpty, QueueNor nal , and QueueFul | . The base class
Queue declares ast at e field that can be assigned with any of these three fields.
QueueSt at eAspect declaresthree piecesafft er advice, one fortheal | of Queue’s
constructor (the advice assig@seueEnpt y to st at €), one for thecal | of Queue’s

i nsert (the advice assigr@ieueNor mal or QueueFul | tost at e), one for thecal |

of Queue’sr enpveFi r st (the advice assigrn@ieueNor mal or QueueEnpt y tost at e).
Interestingly the aspect-object states are more compticéitan the base-class-object
states; this phenomenon is not common among Aspect]J preg@ubsequently the
tool detects that non-redundant tests for advice are marethe ones for advised meth-
ods.

Summary. Our tool can often detect a high percentage of redundarst testdvised
methods among the tests generated by Jtest. This phenofmanbren observed in the
experiments of evaluating Rostra [21]. Furthermore, oal ¢an detect an even higher
percentage of redundant tests for advice. Thus, usuallgrfexgts need to be inspected
when focusing on advice rather than advised methods. Ouptdputs traces of state
information for nonequivalent method/advice executiams$ elass/aspect object states;
the user can inspect these traces for correctness. Usnalspeect-object state is empty
or contains fewer object fields than base classes; therafmesize of the exercised
aspect-object state space is smaller than the size of theise@ base-class-object state
space. One interesting exceptional case is the state desigmn aspect; for this aspect,
we detect more non-redundant tests for advice than for edvigethod.

6 Related Work

The work in this paper is built on our previous work on Rostrdramework for de-
tecting redundant unit tests of object-oriented progra2i$. [We use the definition of
equivalent method executions (proposed in Rostra) forsadvimethods and extend
the definition to equivalent aspect executions for advieeo fionequivalent method
executions might still produce the same set of nonequivalspect executions. This
phenomenon is similar to the observation in Rostra: twcstesth different method
sequences might still produce the same set of nonequivaletitod executions.
Souteret al. [18] identified the code associated with a particular maiatee task
(referred as a concern) and performed testing tasks wigieotso the concern. They

2 The original version in the book [12] requires ttebi t execution for the advice to be in-
voked underneath a method inCheckCl ear anceSyst emclass; we comment this con-
straint out for the generated tests to exercise both aspects

Detecting Redundant Unit Tests for AspectJ Programs 13

instrumented only the concern for collecting runtime infation so that they could
reduce the space and time cost of running tests. They alggestegl organizing tests
according to concerns, so that tests could be selected anitizeéd given a concern.
A concern in an application corresponds to an aspect in ar@3program. Their
approach selects a test if the test covers the aspect evenshine input to the aspect
has been exercised by previously selected tests. &tau[26] used the same approach
for selecting relevant tests for an aspect. When testingp@&ch using our approach, we
selects a test if the test covers the aspect and the inpuétagpect is different from
any previously exercised input. Therefore, our approatdttefewer tests with respect
to an aspect than these two previous approaches but preseevgame quality of tests
selected by these approaches for testing the aspect.

Xu et al. [22] proposed a testing approach for aspect-oriented progbased on an
aspect flow graph. The graph consists of an aspect scopersidid (ASSM), which is
a combination of class and aspect state models and the maidcatlvice flow graphs,
and can be used to represent some classes together with solitiereal advice that
may affect the behavior of these classes. Based on the ASSM akpect-oriented
program, one can produce necessary test suites for tesg@mgagram. Their approach
first analyzes how the behaviors of classes can be dynanffeated by aspects, and
then constructs an ASSM to generate a set of code based $est ddey also define a
test coverage criterion for testing aspect-oriented g Their work focuses on how
to construct some abstract models for supporting aspéstied testing, whereas our
work focuses mainly on how to reduce the redundant unit tg@ktn performing unit
testing on AspectJ programs using existing test-generéims such as Jtest [16].

Alexanderet al. [2] proposed a fault model for aspect-oriented programmvirgch
includes six types of faults that may occur for aspect-aedrsystems. Although the
model is useful for guiding the development of testing cagertools for aspect-oriented
programs, unlike our approach, it does not provide a coaenethod for testing aspect-
oriented programs.

Zhao [23, 24] proposed a data-flow-based unit testing ajprfta aspect-oriented
programs. For each aspect or class, the approach perforeesiéivels of testing: intra-
module, inter-module, and intra-aspect or intra-classngsHis work focused on unit
testing of aspect-oriented programs based on data flow,eakeur work focuses on
detecting redundant unit tests for AspectJ program basesbpatt states, in order to
reduce the unit testing cost.

Krishnamurthiet al. [11] verified aspect advice modularly by formally modeling a
program fragment as a state machine and a piece of advicetagearschine. They
treated joinpoints as function calls. Our approach alsoligitly models a piece of
advice as a state machine and focuses on testing aspects.

Zhao and Rinard [25] developed Pipa, a behavioral intergpeeification language
(BISL) for AspectJ for formal verification. Pipa is a simpledapractical extension to
Java Modeling Language (JML) [13], a BISL designed for J&pa uses a similar way
as JML to specify AspectJ classes and interfaces, and exdid, with just a few new
notations, to specify AspectJ aspects. By transforming apeétJ program together
with its Pipa specification into a standard Java program dit. specification, one
can formally verify AspectJ programs by using existing Jithsed tools. Programmers
can write specifications in Pipa for Aspect] programs andtliem for correctness

14 Xie and Zhao and Marinov and Notkin

checking during test execution thus avoiding inspectifortf. However, when running
generated tests is relatively expensive for regressidmggsve can still minimize or
prioritize generated tests for regression testing basezhjoivalent method executions
or advice executions proposed in our approach.

7 Conclusion and Future Work

We have proposed an automated approach for detecting redtumit tests for AspectJ
programs. Redundant tests are defined for two types of witgsed methods and
pieces of advice. We have formally defined inputs to eithee tyf units based on object
states. We have used the Rostra framework [21] to detechdzohi tests for advised
methods and adapted the framework to detect redundanféestdvice. In this work,
we have focused on detecting redundant tests and remowanglilefore the inspection
of test executions. By doing so, we can still generate test®\§pectJ programs by
reusing existing Java test-generation tools and then puxstps their generated tests by
removing redundant tests for AspectJ programs.

In future work, we plan to develop techniques and tools foeatly generating
non-redundant tests for AspectJ programs. In testing ohaslvised methods, we can
use the test generation techniques for Java programs bgimagoiedundant tests [20].
In test generation for an advised method, we have directalsndon choosing which
inputs to exercise the method. In test generation for a piéeelvice, we do not have
direct controls on the inputs to the advice but have contrahputs to advised methods,
which invoke the advice. We have shown that different inpoiesn advised method can
produce the same input for a piece of advice. Before we dgtuah these different
inputs to the advised method, we plan to use static or dynamadysis to determine
which parts of inputs to the advised method are relevantéairtputs to the advice.
Then we can predict whether an input to the advised methold ¢ead to a new input
to the advice. Based on this prediction, we can generatdsripuhe advised method
that can lead to new inputs to the advice with a high probigbili

References

1. Aspectd compiler 1.2, May 2004t t p: / / ecl i pse. or g/ aspectj /.

2. R.T. Alexander, J. M. Bieman, and A. A. Andrews. Towardsgiistematic testing of aspect-

oriented programs. Technical Report CS-4-105, Departwigdomputer Science, Colorado

State University, Fort Collins, Colorado, 2004.

K. Beck. Extreme programming explained. Addison-Wesley, 2000.

B. Beizer.Software Testing Techniques. International Thomson Computer Press, 1990.

L. Bergmans and M. Aksits. Composing crosscutting careeising composition filters.

Commun. ACM, 44(10):51-57, 2001.

6. C. Csallner and Y. Smaragdakis. JCrasher: an automatistizess tester for Javgoftware:
Practice and Experience, 34:1025-1050, 2004.

7. J. Hannemann and G. Kiczales. Design pattern implementatJava and AspectJ. Froc.
17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 161-173, 2002.

8. E. Hilsdale and J. Hugunin. Advice weaving in AspectJPiac. 3rd International Confer-
ence on Aspect-Oriented Software Development, pages 26—35, 2004.

ok w

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Detecting Redundant Unit Tests for AspectJ Programs 15

. JUnit, 2003 ht t p: // www. j uni t. org.
. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. kpgeM. Loingtier, and J. Ir-

win. Aspect-oriented programming. Rroc. 11th European Conference on Object-Oriented
Programming, pages 220-242. 1997.

S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifyaspect advice modularly. Proc.
12th International Symposium on the Foundations of Software Engineering, November 2004.
R. LaddadAspectJ in Action. Manning, 2003.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary desifJML: A behavioral inter-
face specification language for Java. Technical Report FTR@®8Department of Computer
Science, lowa State University, June 1998.

K. Lieberherr, D. Orleans, and J. Ovlinger. Aspectiuige programming with adaptive
methods.Commun. ACM, 44(10):39-41, 2001.

C. Pacheco and M. D. Ernst. Eclat documents. Online nha@eh 2004. http://
peopl e. csail . m t. edu/ peopl e/ cpacheco/ ecl at/ .

Parasoft. Jtest manuals version 4.5. Online manualil 2003. http://ww.
parasoft.coni.

M. Rinard, A. Salcianu, and S. Bugrara. A classificatipstem and analysis for aspect-
oriented programs. IRroc. 12th International Symposium on the Foundations of Software
Engineering, November 2004.

A. L. Souter, D. Shepherd, and L. L. Pollock. Testing witspect to concerns. IRroc.
International Conference on Software Maintenance, page 54, 2003.

P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutddmlegrees of separation: multi-
dimensional separation of concerns. Rroc. 21st International Conference on Software
Engineering, pages 107-119, 1999.

T. Xie, D. Marinov, and D. Notkin. Improving generatiohabject-oriented test suites by
avoiding redundant tests. Technical Report UW-CSE-00B1University of Washington
Department of Computer Science and Engineering, Seatfie Jah. 2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework fdetecting redundant object-
oriented unit tests. IfProc. 19th |IEEE International Conference on Automated Software
Engineering, pages 196—-205, Sept. 2004.

W. Xu, D. Xu, V. Goel, and K. Nygard. Aspect flow graph fostiag aspect-oriented pro-
grams. InProc. 8th IASTED International Conference on Software Engineering and Appli-
cations, 2004.

J. Zhao. Tool support for unit testing of aspect-oridrgeftware. InProc. OOPS.A 2002
Wbrkshop on Tools for Aspect-Oriented Software Devel opment, Nov. 2002.

J. Zhao. Data-flow-based unit testing of aspect-orieptegrams. InProc. 27th |IEEE
International Computer Software and Applications Conference, pages 188—-197, Nov. 2003.
J. Zhao and M. Rinard. Pipa: A behavioral interface sjpation language for AspectJ. In
Proc. Fundamental Approaches to Software Engineering, pages 150-165, April 2003.

Y. Zhou, D. Richardson, and H. Ziv. Towards a practicaraepch to test aspect-oriented
software. InProc. 2004 Workshop on Testing Component-based Systems (TECOS 2004),
Net.ObjectiveDays, Sept. 2004.

H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test@@ge and adequachCM
Comput. Surv., 29(4):366—427, 1997.

