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Abstract

The floodlight illumination problem asks whether there exists a one-to-one placemefidadlights illuminating
infinite wedges of anglea, ..., a, atn sitesps, ..., p, in a plane such that a given infinite wedgé of angle
0 located at poing is completely illuminated by the floodlights. We prove that this problem is NP-hard, closing an
open problem from 2001]6]. In fact, we show that the problem is NP-complete evenwherx forall 1 <i <n
(theuniformcase) and = >, «; (thetight case). On the positive side, we describe sufficient conditions on the
sites of floodlights for which there are efficient algorithms to find an illumination. We discuss various approximate
solutions and show that computing dinyite approximation is NP-hard while-angleapproximations can be obtained

efficiently.

1 Introduction

lllumination problems generalize the well-known art gallery problem (see, le.gl, [12, 13]). The task is to mount lights
at various sites so that a given region, typically a non-convex polygon, is completely illuminated. The sites can be
fixed in advance or not. The region may need to be illuminated from outside (like a soccer field) or from inside
(like an indoor gallery). The lights may behave like ideal light bulbs, illuminating all directions equally, or like
floodlights, illuminating a certain angle in a certain direction. We use the latter model of floodlights in this paper.
This model is quite natural and captures scenarios involving guards or security cameras with restricted angle of vision.
lllumination algorithms using floodlights have focused in the past on illuminating the interior of orthogonal polygons
[8, 1] and general polygons with restrictions on the floodlights used [2,[9.17, 16]. There has also been work on the
stage illumination problem where one tries to illuminate lines rather than polygons [5].

The problem of illumination oinfinite wedge®y floodlights was introduced by Bose et &l. [3]. Refer to Figure 1
for the basic setup and definitions. Giversites and: floodlights, the task is to mount these floodlights, one at each
site, and orient them so that a givgeneralized wedgis completely illuminated. Here a generalized wedge refers to
an infinite wedge with a continuous finite region adjacent to its apex removed. Formally,

Definition 1. FLOODLIGHT ILLUMINATION Problem

Instance Sitesps, ..., p, in R?, anglesa, ..., o, > 0, and a generalized wed@¥ of angled.

Question Viewing the angles as spans of floodlights, is there an assignment of angles to sites along with angle
orientations, that completely illuminatég?

A couple of natural restrictions of this problem are theformcase wherey; = o for all 1 < i < n, and thetight
case wherg""" , = 6. There is clearly no solution to the problem wheif'_; < 6. In the tight case, every solution
can be described by two permutatianandr of {1,2,...,n} [14]. Hereo is an ordering of the floodlights and ;)
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Figure 1: Basic definitions. W.l.0.g. the axiséf always points along the negativeaxis inR2.

is the site at which floodlight, ;) is mounted. Floodlight orientations in this solution are inferred froandr as
follows. p,(1) is oriented so that its upper ray is parallel to the upper boundagf W, and for2 < i < n—1, p,(i+1)

is oriented so that its upper ray is parallel to the lower rayQf). The variant of the tight floodlight illumination
problem wherer is fixed in advance will be called thestrictedcase. Observe that a tight and uniform problem is also
restricted because all choicesmére equivalent. Our results show that in general, for every choiee@mputingr

is NP-complete.

Because of hardness of verification issues surrounding non-algebraic numbers, it is not clear whether the general
problem is in the class NP. In fact, it is not obvious that it even has an exponential time solution. Nonetheless, Steiger
and Streinul[14] proved that it can indeed be solved in exponential time by formulating it as a bounded quantifier
expression in Tarski’s algebra [15] and using the result of Grigot’eV [11] on the complexity of deciding the truth
value of such expressions. They also proved that the restricted floodlight illumination problem is the dual of a certain
monotone matchingroblem with lines and slabs. The exact complexity of this problem has been unknown [6]. We
resolve this open problem by showing the following.

Theorem 1. FLOODLIGHT ILLUMINATION is NP-hard. The tight, restricted, and uniform versions of the problem are
NP-complete.

This is an immediate consequence of the discussion of duality in Séction 2.2 and our NP-completeness result for
a uniform version of monotone matching (Theofgm 6). While we know of an NP-hardness reduction from the propo-
sitional satisfiability problen3SAT to the monotone matching problem, the one we give here is from an interesting
graph problem, that of finding directed disjoint cycle covemhich we also prove to be NP-complete. Using this
latter problem leads to a simplified and more natural proof for the hardness of monotone matching. The problem is
also of independent result and a variant of it has subsequently been used by the authors in the context of a finite metric
embedding problen [4].

Although the general floodlight illumination problem is NP-hard, many special cases can be solved efficiently. We
outline sufficient conditions and list several common site configuration classes for which an efficient greedy algorithm
based on duallityl [14] works correctly in the tight case. There are several natural notions of approximation for the
floodlight illumination problem. We consider two of thesdirate-approximation where one illuminates all but a finite
region of W and are angleapproximation where one illuminates all but an infinite wedge of small angji¢hin 17/.

We prove the following as an immediate consequence of Lerhnjas 14 hnd 15.

Theorem 2. For the tight floodlight illumination problem, computing a finite-approximation is NP-hard, where as for
anye > 0, ane angle-approximation can be constructed in polynomial time.



2 Preliminaries

We begin by defining the monotone matching problem as recapitulating its duality with respect to the restricted flood-
light illumination problem. We then define the directed disjoint cycle cover problem and prove its NP-completeness.

2.1 Monotone Matching

Suppose we are givemlines in the planep + 1 vertical lines defining: finite width vertical slabs, and two points,
one on the leftmost vertical line and one on the rightmost. Call this-arrangement of lines, slabs, and poirisd
denote itby(L, S, A, p) whereL = {(m1,¢1), ..., (mn,cy)} isthe setof liney = m;xz 4+ ¢;, S = {s1,...,5n+1} IS

the set of vertical lines = s; forming slabs, and andp are the two special points on the lines= s; andz = s,,41,
respectively. Amonotone matchin (L, S, A, p) is a set ofn line segments, each a portion of a unique line and
spanning a unique slab, such that the following holds: (1) the left endpoint of the first segment i afi)vbe left
endpoint of each subsequent segment is above the right endpoint of the segment in the previous slgbisalld(3)
the right endpoint of the last segment.

Definition 2. MONOTONE MATCHING Problem [14]:
Instance An n-arrangementL, S, A, p) of lines, slabs, and points iR?.
Question Does this arrangement contain a monotone matching?

Analogous to the floodlight illumination case, define the specialirgitbrm version UNIFORM MONOTONE
MATCHING to be the problem where all slabs have the same width. We prove this variant to be NP-complete in
Sectior 3.P.

2.2 Duality Between Floodlight Illumination and Monotone Matching

The restricted floodlight problem can be related to the monotone matching problem through duality [14]. The dual of
a pointp with coordinatega, ) is the line,, with equationy = ax + b; the dual of a lin¢ with equationy = mx + b

is the pointp, with coordinateg—m, b). It is well known that this dual transformation preserves incidence and height
ordering; i.e. ifp intersectd then their duals also intersect, anghiis abovel then’,, is abovep;.

We now describe the dual of the floodlight illumination problem using the notation of Higureahdw,, are dual
to points\ andp; asw; has larger slope in the orientation of the figure, its dubhs smaller: coordinate. The points
in the vertical line containing are dual to lines that are paralleldg. The vertical strip betweek andp corresponds
to the wedge angle. The lirgbetween\ andp is dual to the intersection aef; andw,,. The segment of between\
andp corresponds to the lines with slope less tharand greater thaw, that have common intersection with and
w,; this is exactly the set of lines that form the wedge and reverse wedge of

Each sitep; corresponds to a liné; which together make up the set of linés As we are in the restricted
version of the problem, the angle of the first floodlightvis As described above, the tightness of the problem implies
that the first floodlight must be oriented so that its upper ray is parallel,to This corresponds in the dual to a
vertical slabS; beginning aip and extending to the left a width proportionalde (if S; extends frons; to sz, then
a = tan~! 2o — tan~! 7). The next floodlight then corresponds to a skbextending to the left of;, continuing
to the final floodlight which is a vertical slaf), ending at\.

A solution to the restricted problem is an assignment of sites to floodlights. In the dual this is a 1-1 assignment of
lines h; to slabsS;. The illumination wedge of the first floodlight must overlap, which corresponds to the right
endpoint of the segment of the likg assigned ta; being abovep. Continuing, the right endpoint of the segment
associated witkt, must start above the left endpoint of the segmentgfand so on, until the left endpoint of the
segment af,, is below.

If we flip the dual problem from left to right, in deference to those of us who read from left to right, we see we
have reduced the restricted illumination problem to the monotone matching problem with lines.

Note that the unrestricted tight illumination problem corresponds to an extended matching problem where the
widths of slabs are given and must be arranged in a partition of the slab belveselp and then a matching found.

The uniform illumination problem corresponds to the uniform matching problem, where the slabs are all of the same
width, making, in particular, their order immaterial.



2.3 Directed Disjoint Cycle Cover

As a tool for our main result, we prove NP-completeness of an interesting problem on directed graphs which naturally
reduces to monotone matching. We also prove that this problem remains NP-complete even when the vertices of the
graph are restricted to have small degrees. This latter version is not critical but makes our NP-completeness proof for
MONOTONE MATCHING cleaner.

Definition 3. DIRECTED DISJOINT CYCLE COVER Problem:

Instance A directed graplG = (V, E).

Question Is there a directed disjoint cycle cover f@ri.e., a setC = {C1,..., Cy} of vertex disjoint directed cycles
in G such that every vertex € V' is in some cycleC; € C?

Theorem 3. DIRECTED DISJOINT CYCLE COVER is NP-complete, even for graphs with indegree and outdegree
each bounded above by 3, as well as for graphs with outdegree exactly 3 and indegree at most 4.

Proof. See Appendik A. O

The theorem is proved by a reduction from ¥#RTEX COVER problem in a manner very similar to the reduction
to theHAMILTONIAN CYCLE problem given by Garey and Johnspbni[10]. Our argument for the hardness of the bounded
degree cases, however, is much simpler than those known for other similar graph problems. We use the second of the
two degree restrictions in our reduction for monotone matching. For simplicity, we allow directed graphs to have
self loops, though our proofs can be modified to work even for graphs with no self loops. A self loop is assumed to
contribute one to both the indegree and the outdegree of the corresponding vertex.

3 NP-Completeness of Monotone Matching

3.1 Monotone Matching with Pseudolines

We begin by defining a variant of the monotone matching problem thapsseslolineinstead of lines. A pseudoline

is a curve inR? that intersects any vertical line in exactly one point. A collection of pseudolines is a set of pseudolines

no two of which intersect more than once. For computational purposes, we shall assume that the point of intersection
of two pseudolines can be computed efficiently from their input representatiarrangements of pseudolines, slabs,

and points, and monotone matchings with pseudolines are defined analogous to the case of straight lines. The problem
PSEUDOLINE MONOTONE MATCHING is also defined analogously. The pseudolines used in our constructions will

all be piecewise linear functions. In this section, we prove the following result.

Lemma 4. PSEUDOLINE MONOTONE MATCHING is NP-complete.

We begin by defining some configurations, or gadgets, of pseudolines that will be useful for our proof. Our
construction for the straight line matching problem will follow by reconstructing these gadgets from straight lines.

The most important gadget is tfiercing gadgetshown in Figur¢ 2. This is a sequence of slabs associated with
pseudolines that forces the line used previous to the gadget to end below a chosen point, and the line used after the
gadget to start above another chosen point. Retenote theegion of interestor the monotone matching problem,

i.e., a rectangular region covering horizontally all the slabs and covering vertically all intersections of pseudolines in
PL with these slabs. Thekyregion begins abov& and thegroundregion begins belowR.

Lemma 5 (Forcing Gadget Property). Refer to Figurd P for the labeling of forcing gadgets. Given a monotone
matching instance, if for all pairé” and F’ of forcing gadgets composed/of/, s andh/, ¢’ s’, respectively, if, and

h' do not intersect, and pointof F is belowh’ if F” follows I, then in any valid matching; is used in slabd and/

is used in slakB. This holds for any number of additional lines, as long as they appear above the ground and below
the sky.

Proof. ¢ cannot be used before sld@h as it begins in the ground, no other lines intergeotfore B, and the ground
is below the starting point. If is used after slals3, then the line used subsequently must begin in the high sky. As
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Figure 2: The forcing gadget. The arrows show how any lines used before or after the gadget are constrained.

the only lines in the high sky are from previous forcing gadgets, and there are no intersections in the high sky, then all
future lines chosen will be in the high sky. As the high sky is abavany such matching must end abgyeand so
will not be a valid matching.

Now, given that must be used in slaB, as its starting point is in high ground, the only precursors it could have
is h, someh’ from a forcing gadget befor, or some line from the low ground. As argued in the beginning of this
proof, no lines in the low ground can be used. We prove that the precursor could not come fibprecedingt’ by
induction on the number of forcing gadgets.Flfis the first forcing gadget, thelnmust be used; if there are forcing
gadgets beford”, then we can inductively assume that all the corresponélingere used in their corresponding
gadgets, so thdt must be used in slal.

Finally, as our arguments were based on the presence or absence of pseudolines in the ground and sky, any number
of additional lines appearing between the ground and sky do not affect the behavior of the forcing gadget. [

Proof of Lemma@}4 This problem is in NP because a potential monotone matching can be easily verified in polynomial
time. The proof of NP-hardness is by a reduction frbrRECTED DISJOINT CYCLE COVER, which, by Theorem
@, is NP-complete. Suppose we are given a directed gfaphe will construct an arrangemefPL, S, A, p) of
pseudolines, slabs, and points such tHdias a disjoint cycle cover iffPL, S, A, p) € PSEUDOLINE MONOTONE
MATCHING. By Theorenj B, we may assume the outdegree of all verticésisnexactly 3 and the indegree is at most
4. W.l.o.g. we will assume that every vertex@hhas indegree at least one, for if not th@rdoes not have a disjoint
cycle cover and can be easily mapped to a trivial instance of monotone matching with no solution.

We need two types of graph-related gadgets. et (V, E). We will have gadgetdn(v) and Out(u) for
u,v € V as shown in FigurE]3. Léi(v) C E beinthe in-edges af, and letO(u) C E be the out-edges af. By our
choice ofG, |Z(v)| < 4 and|O(u)| = 3. The gadgeln(v) will allow us to select exactly one predecessowaind
exactly one successor of leading to a directed disjoint cycle cover as long as the predecessors and successors are
consistent. Selecting a successor will be done indirectly by selecting and ruling out é&¥et)y— 1 out-edges of..

Forced end

| | |
Forced end | | |
| | |
T T T
| | |

I | -~
E— oo
P |
P4
el ! I
Forced start | . Forced start

Figure 3: Graph gadgels:(v) andOut(u). The arrows denote sites set by forcing gadgets placed between the graph
gadgets|Z(v)| < 4 and|O(u)| = 3.

Letn = |V| andm = |E|. We will usem primary pseudolines, each corresponding to an edde. ile will
abuse notation and talk of an edge F as being used in a particular slab; this will mean that the primary pseudoline
corresponding te is used at that slab. There will be a number of auxiliary pseudolines used in forcing gadgets.
The Out(-) gadgets andn(-) gadgets will be arranged in sequence as shown in Fjdure 4. The primary pseudoline



corresponding to edgeu, v) will first pass throughOut(u), and then pass throudim(v). Each pseudoline will
intersect another pseudoline at most once, depending on the relationship betwebmn(theindOut(-) gadgets.

In(v,)

- Out(vy)

Out(vs)

GROUND

Figure 4: Overall view of the reduction fromIRECTED DISJOINT CYCLE COVER. Forcing gadgets appear between
In(-) andOut(-) gadgets, to match the arrows in Fighfe 3, excepOait(v,) andIn(v, ), where the first and last
arrows, respectively, determine the starting and ending paiatslp for the monotone matching instance.

We claim that when arranged as in Fig@e 4 along with appropriate forcing gadgets fokrgachnd Out(-)
gadget, exactly one € Z(v;) is used inIn(v;) and exactly one € O(v;) is not used iMut(v;), for1 <i < n. To
see this, refer to Figufd 3. Because of the forcing gadgets, exactly one pseudoline must belu$ed and must
correspond to an edgee Z(v;). Similarly, exactly two pseudolines must be usedint(v;), leaving out exactly
one pseudoline corresponding to an edgeO(v;). Furthermore, the edges selected in this way are consistent, i.e., if
edge(u, v) is selected idn(v), then it is also the only edge left unselectedint(u).

A directed disjoint cycle cover df is equivalent to a permutationon the vertices, where(v) is the predecessor
of v in the cycle containing. If such a permutation exists then a monotone matching exists: don't select the edge
corresponding tar—!(u) in Out(v) and select the edge correspondingrte) in In(v). Conversely, if a monotone
matching exists then the permutatiortan be recovered by letting v) correspond to the edge that is usediirfv).
This completes the reduction. O

3.2 Uniform Monotone Matching

We now prove NP-completeness of the uniform case with straight lines. As mentioned earlier, NP-hardness of this
problem subsumes NP-hardnes®8EUDOLINE MONOTONE MATCHING proved in the previous section. The argu-
ment, however, is more involved and reuses many key concepts developed in the earlier proof.

Theorem 6. UNIFORM MONOTONE MATCHING is NP-complete.

Proof. Being a sub-problem dfSEUDOLINE MONOTONE MATCHING, the problem is in NP. We prove NP-hardness
by a reduction fronDIRECTED DISJOINT CYCLE COVER in a manner similar to the proof of Lemra 4. L@t=
(V, E) be a graph of outdegree exactly 3 and indegree at most 4. We will construct an arran@enseit p) of lines,
slabs, and points such th@thas a directed disjoint cycle cover {ff,, S, A, p) € UNIFORM MONOTONE MATCHING.

The key changes from the previous proof are the new construction of the forcing gadgets and the addition of a
“buffer” zone between th&n and Out gadgets to convert primary pseudolines into straight lines. The basic idea of
the buffer zone is to make the lines behave as paralelnpn-intersecting) lines in the region of interest as required
in the graph gadgets of FigUrg 3. We first spell out the details of construction of the lines corresponding to the edges of



G and then specify how to construct the forcing gadgets with lines. For the rest of the proof, we will assume w.l.0.g.
that the slab widthv = 1.

The graph gadgets are arranged as shown in F@ure 5 with a buffer area consistingro$labs (orb*24” forcing
gadgets). We will use a coordinate system as shown in F@ure 5 for the ease of exposition. The grapingagdget
has its forced start point & + 35 — 3,n — j) and forced end point &b + 3j,n — j + 1) while the graph gadget
Out(v;) has its forced start and end pointg4t— 4, —i) and(4¢, 1 — ), respectively. The line corresponding to edge
(vi,v;j) connects the points-1, —i) and(b + 35 — 3,n — j).

(0,0 (4,0) (4n
Out(v;)
-1,-1 Out(vs)
Out(vy,)
0.%n)

GROUND

Figure 5: Overall view of the reduction froMIRECTED DISJOINT CYCLE COVER for the uniform case. Forcing
gadgets appear in the buffer area and betvlegn) andOut(-) gadgets to match the arrows in Fig@e 3, except for
Out(v;) andIn(v,) where the first and last arrows, respectively, determine the starting and ending paimis

for the uniform monotone matching instance. For clarity, only the lines corresponding to outgoing edges &mem
shown: the edges afe;,v;), (v1, v2) and(vy, v,,).

Fix b = 10n2. We now show that the lines corresponding to the outgoing edges from any graph gadget do not
intersect each other in the horizontal intenélsin] and[b, b 4+ 3n], that is, they are effectively parallel as needed in
Figurel::is. For any edgév;, v;) the slope of the corresponding line is bounded from aboveiby # = 27"
The maximum y coordinate for the line corresponding«dg v;) in the horizontal interval0, 4n] is given byy,, =
—i 4+ m - 4n. Substituting the value of andb, we havey,, < —i + 1. Thus, no two lines intersect in the interval
[0,4n]. One can similarly show that no two lines intersect in the intefiyal+ 3n).

To complete the proof we specify the forcing gadgets. We rgetm‘cing gadgetsr{ each from thdn andOut
gadgets ané%” from the buffer area). The scheme is presented in F@ure 6. Note the (high and low) sky and ground
regions. For thé*" forcing gadget, thé line connects,, which is at heighiz* — 2kn, andp,, the forced end point
at the boundary of slald. The/ line of the gadget connecig (which is one higher thapsy, the intersection of with
the boundary of slal?) andq, the forced start point at the boundary of siab

We claim that the height of, is (strictly) bounded from above and below by — 2kn andn* — 2(k + 1)n,
respectively. By our overall construction in Fig{ijep5,is alway higher tham; and their difference is bounded from
above byn. The bounds on the height ¢f follow from recalling that each slab has width one.

We now argue that in a valid uniform monotone matchihgs chosen in slabl and line/ is chosen in slatB
as was proved in Lemnjg 5. We first show thas selected in slatB. For the sake of contradiction assume that
was chosen after slaB. By the lower bound on the height g8, we cannot come down from the sky as all fi{e
lines of the subsequent gadgets are bejewvhich is a contradiction as the ending point is below the sky.\viere
chosen before slaB, its precursor cannot include afyline from a previous forcing gadget because then the starting
point A would have to be below ground, which is not the case. It also cannot have fing from a previous forcing
gadget as a precursor as all those lines are higheratgnconstruction. Hencé, is selected in slali3. From the
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Figure 6: The forcing gadget with straight lines. The arrows show how any lines used before or after the gadget are
constrainedg is higher tharp, by 1. For thek'" gadgetp, is at heightn* — 2kn.

above argument the only precursorstafould beh or someh’ from some previous forcing gadget which, as before
by induction, is impossible. Thug, is selected in slabl and! in slab B, fulfilling the requirements of the forcing
gadget. O

Corollary 7. MONOTONE MATCHING is NP-complete.

Proof. Membership in NP follows from an argument identical to the onéefoiFORM MONOTONE MATCHING. NP-
hardness follows from Theorgm 6 becausFORM MONOTONE MATCHING trivially reduces to this problem. [

4 Illumination Algorithms for the Tight Case

In this section we look at algorithms to solve the floodlight illumination problem in the tight case. We characterize
several special cases that can be solved in polynomial time. We also give approximation algorithms for the problem.
For this section, we will use the notations and definitions from Seftion 1. We begin with some properties of floodlight
illuminations which will be used later in this section but may also be of independent interest.

4.1 Properties of Floodlight Illumination

The first lemma shows how the position of certain floodlights are fixed by the problem instance. Next we prove a
necessary condition for the existence of a solution. We then state a lemma which will be used in proving hardness of
certain kind of approximations to the floodlight illumination problem. We end with a brief mention of a variant of the
problem that is easy to solve.

Lemma 8. In the tight case, any floodlight illuminating at infinity the upper boundayyof a generalized wedgé”
must be parallel to and located abous,.

Proof. Let the floodlightf illuminating w,, be mounted at sitp,,. As we are considering the tight case, the upper
boundaryf, of the region illuminated by must be parallel tav,, (see discussion in Sectiph 1.7, is beloww,, f
will not illuminate an infinite sliceS of W including the boundary,, . O

Lemma 9. A tight floodlight illumination problem on generalized wedges has a solution only if there is at least one
site in the reverse wedge.

Proof. Suppose there are no sites in the reverse wedge. Referring to Section 2.2, consider the dual of the problem
where we work from right to left assigning sites to floodlights. The lines in the dual corresponding to sites fall into
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Figure 7: Two cases for the shape of overall illuminated region in the tight case

three categories: those abgvand\ (the duals ofw,, andwy), corresponding to sites above the wedges; those below

the duals and )\, corresponding to sites below the wedge; and those that run bepwaeedy, corresponding to sites

in the forward wedge. As we are in the tight case, if there are sites in the forward wedge, we cannot possibly have
a solution. Hence all points are either above or below both of the dual starting and end points. In particular, no line
above the dual points intersects a line below the dual points in the problem slab defined by the dual points. This means
that we cannot use any of the lines below the starting point and hence, we cannot have a matching as there are not
enough lines which can be used. O

Lemma 10. Suppose the sum of the angles:dfoodlights isa. If they illuminate a wedgél” of anglec, then the
overall illuminated region is of the foriii’’ U S, whereWW’ O W is a wedge of angle: aligned withiV and S is a
finite region.

Proof. We prove by induction om the weaker statement that ignores the requireriéht> W above. This will,
however, suffice for the proof becausdiif’ did not include all ofi’, W’ U S would also not include all of¥ since
S is finite. This will contradict the precondition.

For the base case af= 1, W = W andS = ¢. Forn > 1, note that the floodlight angles are tight relativéfo
Hence, the firsk — 1 floodlights must together cover some wedge of argle a,,, wherea,, is the angle of the:”
floodlight (see Figurp]7). By induction, the region illuminated by the first 1 floodlights is of the formiv” U 57,
whereW” is a wedge of angle. — «,, and.S’ is finite. Again, since the angles are tight, the only way to extend this
region to coverl’ of anglea is to mount then? floodlight f at a sitep that is above the lower boundauy of the
already illuminated region and have its upper boundaraligned withw;. Let W’ be the wedge of angle defined
by the upper boundary,, of the already illuminated region and the lower boundgref f. As seen from the two
cases in Figurg]7, the overall illuminated regiomig U S, wheres is finite. O

Finally, we mention a relaxation of the problem which makes it easy. fisgable sitescan always solve any tight
problem instance: assign two arbitrarily chosen first and last floodlights (the ones parallel to the wedge boundaries) to
the movable sites, and move these sites back and inside the reverse wedge far enough so that every other site is within
the reverse of the residual wedge. Now use Falct 11.

4.2 A Greedy Algorithm

We briefly describe a duality-based greedy algorith@}eedygiven by Steiger and Streinu_[14] for the floodlight
illumination problem which takes an additional input: the order in which the floodlight angles are chosen, that is,
permutatiorns from Sectiorj [L. Note that for the uniform case, where each floodlight angle is the same, the permutation
o does not come into play andgreedyis applicable. At each stepﬁlgreedyassigns the current floodlight angle in

o to the positionp which would leave the maximum number of positions inside the reverse wedge of the residual
wedge obtained by placing the current floodlight anglepoffhere is also a natural interpretation,d)éreedyin the

dual monotone matching problem, where one chooses a line for a slab that maximizes the number of choices for the
next slab. We will refer to this monotone matching aIgorithmé%$M We complete the description (zfgreedyby

eedy
stating a simple property of it.



Fact 11. If all sites are contained inside the reverse wedjé, then.Agreeqysuccessfully illuminated” after any
assignment of floodlights to positions. Equivalently, if the first special point in a monotone matching problem is below

all lines and the second is above all, t fé,‘édysuccessfully finds a matching.

4.3 Special Site Configurations

In this section we consider special illumination problems where the sites are restricted to obey certain properties.
This allows us to characterize cases Wh.dé%M produces the right answer for the corresponding tight floodlight

eedy
illumination problem.

Definition 4. Sitesp, p2,...,p, areangle-separated with respect to wedgeé of angle« if p, ¢ W, for every

1 < i # j < n, whereW; is the wedge of angler located atp; and aligned withi?" (see Figur¢ [8). Sites in

a floodlight illumination problem arangle-separatedf they are angle-separated with respect to the wedge to be
illuminated.

We note that an equivalent way of defining angle-separation with respect to a Wédgéh boundary slopes
m, andm, is to require that for all site pair®, p’), the line joiningp andp’ has slope not ifm;, m,]. While the
former definition is natural for the proof of the following lemma, this latter definition might be more convenient for
algorithmic implementations.

° I d
Wa angle-separate

. “-e locations

wregg())rzjllgl;;?}nated by Ot wr
P

f no locations here
wy by angle separation

N

generalized wedgd’

Figure 8: Angle separation implies all sites must bé&lifi for a solution to exist.

Lemma 12. If the sites in a tight floodlight illumination problem on generalized wedges are angle-separated, there is
no solution unless all sites are contained in the reverse wedge.

Proof. Consider the dual (refer to Sectipn2.2). The wetliggfor sitep; corresponds in the dual to the segment of

the line/,,, between the starting and ending points, that is, the problem slab. If there is a site that is not in the reverse
wedge then there exists a line above the endpoint or a line below the starting point. This implies that one cannot use at
least one line in the matching and thus, a matching cannot exist. O

Proposition 13 (Sufficient Condition for Agreeqy)- If the sites in a tight floodlight illumination problem on general-
ized wedges are angle-separated, tb%}eedyalways produces the right answer.

Proof. If all sites are contained inside the reverse wedge, by[Fact 11, a solution is always fomty,;legg for any
assignment of floodlights to sites. On the other hand, if at least one site is outside the reverse wedgg, by Fact 12, there
is no solution anddgreeqy Of course, doesn't find one. O

It follows that the floodlight illumination problem for generalized wedgeof anglea and with boundaries of
slopesmn,, andm; is easy to solve when, for instance, all sites are on a straight line whose slope i$gmgtin,|, or
on a circular arc whose endpoint tangents have slope riot;inn, |, or in a vertical zig-zag pattern with angle greater
thana, etc. (see Figurl 9).
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slopem,, RS P
Q > <
slopem; - ~o
generalized wedgd line circular arcs zig-zag

Figure 9: A few natural site configurations for which the problem is easy.

4.4 Approximate Illuminations

Theorenj I motivates the study of approximation algorithms for the floodlight illumination problem. There are several

natural ways to approximate wedge illumination. After giving precise definitions of some of these, we prove a negative
result that illuminating all but a finite portion of a wedge is, in the tight case, not any easier than illuminating the whole

wedge. This motivates other reasonable notions of approximation that leave unlit relatively small but infinite regions
of the wedge.

Definition 5. Let F be an illumination of a wedg#’.
1. Fis afinite-approximationif it illuminates W \ S, whereS is a finite region.

2. F is ane angle-approximatiorif it iluminates W \ S., whereS. is a union of wedges whose total angle is at
moste.

Lemma 14. There is a solution to a tight floodlight illumination problem on a wedigef and only if there is no
finite-approximation to it.

Proof. We prove the sufficient condition. Suppose there is a finite-approximate illumination 17. Let W be of
anglea. By definition, F must illuminate a wedg&/* of angle« that is aligned withi¥” but is possibly contained
strictly within W. Since the floodlight angles are tight relativelio*, by Lemmg ID, the overall region illuminated
by F is of the formW’ U S, whereW’ is a wedge of angle: aligned withi¥* (and hence witi?) and S is finite.

If W ¢ W/, thenWW’ \ W is an infinite regionR. As S is finite, W’ U S will not cover an infinite portion of this
infinite regionR of W, contradicting the fact thaf illuminates all but a finite region dfV’. It follows thatWW C W,
implying thatWW is completely illuminated byF and providing an exact solution. The other direction of the proof is
trivial. O

This Lemma implies that computing a finite-approximation is NP-hard because computing the exact solution is. It
also implies that there is a solution to the tight floodlight problem on a generalized Wédffj¢here is a solution to
the tight floodlight problem on the underlying normal wed@é. In this sense, generalized wedges don't make the
problem any harder. However, they provide a convenient tool for analysis, allowing, for instance, stronger inductive
claims.

Note thate angle-approximate illumination means all bubf the wedge is illuminated “at infinity”. It would be
interesting to find an algorithm for the stronger approximation where the resulting illuminated area is a smaller wedge
but located at the same apexi&s

Lemma 15. For anye > 0, ane angle-approximation to the tight floodlight problem can be found efficiently.

Proof. An ¢ angle-approximation can be achieved by adding two movablesjtasdp,, adding two floodlights/,
andf, of angles /2 each, reducing any one original floodlight anglezbgnd proceeding as follows. Mount floodlight
fa at sitep,, orient it so that its upper boundary is parallel to and illuminates the upper bouagaf/V, and move

it far and low enough ifV" so that all other sites are above its lower boundary. Perform a similar operatifn on

11



andp, starting with the lower boundany, of . The regioniW’ of W not illuminated by these two floodlights is a
generalized wedge of angle— ¢, wherex is the wedge angle d¥. Further, all remaining sites live withiw'”. By
Lemmd 1}, we can illuminatd’’" exactly using the remaining floodlights. Now remafeand f,, and add angle
back to the floodlight whose angle was reduced. This completesahgle-approximation. O
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A NP-Hardness of the Directed Disjoint Cycle Cover Problem

Proof of Theorerfi|3We begin by giving a proof of the following Lemma that proves NP-completeness of the problem
without degree restrictions, and then use it to prove the Theorem:

Lemma 16. DIRECTED DISJOINT CYCLE COVER is NP-complete.

Proof. The problem is clearly in NP because given a description of §Ggt. . . , C}. } as a certificate of membership,
one can easily verify in polynomial time that eaCh 1 < i < k, is a directed cycle in the given gragh theC;’s are
vertex disjoint, and they together cover all vertice€:of

Let VERTEXCOVER = {{(G, k) | G is a directed graph with a vertex cover of size VERTEX COVER is NP-
complete[[10]. Our proof of NP-hardness is by a reduction fiuBRTEX COVER. The reduction is very similar to the
proof of NP-hardness of theAMILTONIAN CIRCUIT problem given by Garey and Johnsonl[10]. Our description of
the reduction will closely follow the one they present. L6t k) be an instance ofERTEX COVER. We will construct
a directed grapli:’ such thatG has a vertex cover of sizeiff G’ has a directed disjoint cycle cover. In fa6t, will
be such that it has a directed disjoint cycle cover iff it has a directed Hamiltonian circuit. Hence, our proof gives an
alternate argument for the NP-hardnes®ECTED HAMILTONIAN CIRCUIT [10].

The construction can be viewed in terms of component gadgets connected together by communication links. First,
the graph’ hask “selector” verticesiy, as, . . . , ar, which will be used to seledt vertices from the vertex séf for
G. Second, for each edge inc F, G’ contains a “cover-testing” component that will be used to ensure that at least
one endpoint ot is among the selecteedvertices. The component fer= {u, v} is illustrated in Figur¢ J0. It as 4
vertices,V! = {(u, e, top), (u, e, bot), (v, e, top), (v, e, bot) }, and 6 directed edges;., shown in the figure.

AR . AR . N e
A} ’ A} 4 \ 4
(u, e, top) (v, e, top) f y /
(u, e, bot) (v, e, bot) E‘
1 I 1 1 1 1
1 \ ’ A\ ! A\
V4 AN V4 AN Z AN

Figure 10: Cover-testing component for edge- {u, v}, along with the three possible configurations of a directed
disjoint cycle cover on this component

It is easily seen that any disjoint cycle cover f@f must involve edges oF. in one of the three configurations
shown in Figuré T0. This is because any other choice of edges will leave at least one of the gadget vertices impossible
to cover. Thus, for example, if the circuit “enters” this componer{tat, top), it must “exit” at (u, e, bot) and visit
either all four vertices iV or just the two.

Additional edges in our overall construction will serve to join pairs of cover-testing components or to join a
cover-testing component to a selector vertex. For each vertexV, let the edges incident on be ordered (ar-
bitrarily) as e,1, €u[2]; - - - » u[deg(v)], Wheredeg(v) denotes the degree ofin G. All the cover-testing compo-
nents corresponding to these edges (haviras endpoint) are joined together by the following connecting edges:

El = {((v, eypi), bot), (v, eyfiy1), top)) : 1 <i < deg(v)}. As shown in F|gur@1, this creates a single patliin
that includes exactly the verticés, y, z) havingz = v.

The final connecting edges @ join the first and Iast vertices from each of these paths to every one of the selector
vertices,ay, az, ..., ax. These edges are” = {(as, (v, €,1),top)), (v, €xdeg(v)), bOt), i) : 1 < i < kv e V}.

The final graphG’ hasV = {a; : 1 <i <k} U (Upep V2) andE’ (Ueer B U (Uypev E,) UE". G' can clearly
be constructed frond’ andk in polynomial time.

We now argue the correctness of the construction. Suppose firgt'tihais a directed disjoint cycle covér Pick
any cycleC € C. C must traverse vertices 6¥' in a particular way, namely, it must start w.l.0.g. at a selector vertex
a;, go through all cover-testing components corresponding to the edges incident on a particular vertéxand
either return tay; to finish the cycle or return te;, j # ¢, to continue covering in this manner before finally returning
to a;. This is because (A) each cover-testing component must be covered in one of the three configurations shown
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(U‘, €u[1]s f()[))

(v, eyp1), bot)
U, €y 2]7t0p)
(v, e, 2],b0t E j
1) 1 €u[deg(v)]» top)
v ev[3],top 9

(v, ev[;]7 bot |

(v s €odeg(v)]s bot)
Figure 11: Path joining all cover-testing components for edges fdmaving vertexv as an endpoint

in Figure[10, and (B) edges A, force C to traverse all cover-testing components of edges incident iarorder.

Hence, thé: vertices from{ay, as, . . ., ax } divideC into k paths, each corresponding to a distinct vertex V. Since

C must include all vertices from every one of the cover-testing components, and since vertices from the cover-testing
component for edge € E can be traversed only by a path corresponding to an endpointevery edge i’ must

have at least one endpoint among thésselected vertices. Therefore, this set:ofertices forms the desired vertex

cover forG of sizek.

Conversely, supposgy, v, ...,vx} = VC C V is a vertex cover foz with [V C| = k. It is readily seen that
the following edges form a directed disjoint cycle covei®f From the cover-testing component representing each
edgee = {u,v} € E, choose the edges specified in Figure 10 depending on whigthef N V' C equals{u} , {u, v}
or {v}. One of these three possibilities must hold becddégis a vertex cover fof7. Next, choose all the edges in
E, for1 <i < k. Finally, choose the edgés;, (v;, e,,[17, top)) for 1 < i < k, edges((vi, €y, [deg(v,)]> bOL), @iy1)
for 1 < i < k, and the edg€(v, €y, [deg(vy,))> DOt), a1). This forms a directed Hamiltonian circuit fé’ and, in
particular, a directed disjoint cycle cover. O

We return to the proof of Theorg 3. The restricted degree problemis in NP because, by[Ldmma 16, the unbounded
degree version is in NP. For NP-hardness, suppose we are given an in&taig¢eof VERTEX COVER. Use the
construction in the proof of Lemnja[L6 to obtain a graptwhich has a directed disjoint cycle coverdfhas a vertex
cover of sizek. Notice that each of thé selector verticea;, 1 < ¢ < k, of G’ have indegree as well as outdegree
n = |V(G)| corresponding to the edges ', then vertices(v, e, 1], top), v € V, have indegreé and outdegree 2,
and then vertices(v, e,[4¢4()], b0t), v € V, have indegree 2 and outdegreeT he rest of the vertices have indegree as
well as outdegre@. We will describe a polynomial time process to conv&ftinto a directed graply”” with indegree
and outdegree each bounded abov& b§” will have a directed disjoint cycle cover iff’ does. Further, we will give
a very simple way to convef®”’ into a graphG* that has outdegree exactly 3 and indegree bounded above@y 4.
will have a directed disjoint cycle cover iff”” does. This will finish the proof of the Theorem. A similar construction
can alternatively be used to obtain a graph with indegree exactly 3 and outdegree bounded above by 4.

In the rest of the proof, we describe how to reduce the degree éfshkector vertices. A similar technique can be
used to reduce the degrees of Bnedegreek edge gadget vertices as well; we omit the details of this part for simplicity.
The construction o7 is based on the “degree gadget” shown in Figure 12. Start by m&Kirthhe subgraph of’
obtained by deleting all edges involving theelector vertices,, . .., ax. Letvy, vq, ..., v, be the vertices ofs. The
ith selector vertex:; in G’ has incoming edges frofv;, €v,[deg(v;)]> bOt) @and outgoing edges t@y, e, 1), top) for
1 < j < k. Create vertice¥//” = {b/" | 1< j <n}andV2" = {b54 |1 < j <n}in G” and connect them as
shown in Figuré 1j2. Notice that vertex in G’ has mdegree and outdegree exactly 1, while the other degree gadget
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vertices have indegree and outdegree either 2 or 3. Overall, the verti€&saseV (G') U Ule(vjf U v2ur), all of
which have indegree as well as outdegree bounded above by 3.

(7*'714176% 1[deg(vn 1)]’b0t)

(Vn-1, €v,_,1, tOD)

—
Y
S
=
=
=
3
=
B
N
=
~
=

(Um Cv, [deg(vn)]> b()t)

(Una R fOp)

out out
bi.n bi,n—l

Figure 12: Degree gadget for tiié selector vertex

We now argue tha€?”’ has a directed disjoint cycle cover ' does. By construction, cycle covers in the two
graphs behave identically on vertices other than the selector vertices and those of the degree gadgets. The only way to
covera; in G is to enter from(v,, e, [deg(v,))> Ot) @nd leave tdv,, e, (1), top) for somev,, v, € V(G). Similarly,
the only way to covet; in G” is to enter from(v,, e, [deg(v, )] OL), traverse throughi”, ..., b, covera;, traverse
throughbgt, . .. ,b;“t, and leave tqv,, e, |1}, top) for somev,, v, € V(G). The remaining degree gadget vertices in
Vin U veut must be covered by self loops. This shows that cycle covets mndG” behave essentially identically
even on the selector vertices and the degree gadgets. Henlaas a directed disjoint cycle cover @&’ has one.

G* is constructed fronGz” as follows. Start withG* = G”. Let K, denote the directed complete graph on 4
vertices. Note that each vertex &f, has indegree as well as outdegree exactly 3.zLet |[V(G")| andq be the
sum of the outdegrees of the vertices®df. Create3p — ¢ copies ofK, and add them t6:*. For each outdegree 2
vertexv in G, add an outgoing edge to an arbitrarily selected vertex of an unmarked'¢pagd mark that copy (see
Figure[I3). Similarly, do this for each outdegree 1 vertex, connecting it to two copi&s.oThe number of edges
added thus i8p — ¢, which exactly matches the number of copied@f created inG*. Every vertex ofG* now has
outdegree exactly 3. The indegree of the original vertices ftghrhasn’t changed and is therefore at most 3. The
indegree of exactly one vertex in each copy/of has changed, and it has increased to 4. He@¢djas the desired

degree properties.
Copies of K4 ' ; ' ; ' ;

S 7
Vertices fromG” o7 o = “«l o=
N N N AR

Figure 13: Using copies dk, to make outdegrees exactly 3

Since the copies oK, do not have any outgoing edge, the only cycles they can be involved in a disjoint cycle
cover stay within that copy. This ensures that:if has a disjoint cycle cover, the®” does too. On the other hand,
if G” has a disjoint cycle cover, then one 8¢ consists of cycles corresponding to the covetiihalong with one
4-cycle for each copy of th&’,. Hence G* has a directed disjoint cycle cover & does. O
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