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Abstract

The floodlight illumination problem asks whether there exists a one-to-one placement ofn floodlights illuminating
infinite wedges of anglesα1, . . . , αn at n sitesp1, . . . , pn in a plane such that a given infinite wedgeW of angle
θ located at pointq is completely illuminated by the floodlights. We prove that this problem is NP-hard, closing an
open problem from 2001 [6]. In fact, we show that the problem is NP-complete even whenαi = α for all 1 ≤ i ≤ n
(theuniformcase) andθ =

Pn
i=1 αi (the tight case). On the positive side, we describe sufficient conditions on the

sites of floodlights for which there are efficient algorithms to find an illumination. We discuss various approximate
solutions and show that computing anyfiniteapproximation is NP-hard whileε-angleapproximations can be obtained
efficiently.

1 Introduction

Illumination problems generalize the well-known art gallery problem (see, e.g., [12, 13]). The task is to mount lights
at various sites so that a given region, typically a non-convex polygon, is completely illuminated. The sites can be
fixed in advance or not. The region may need to be illuminated from outside (like a soccer field) or from inside
(like an indoor gallery). The lights may behave like ideal light bulbs, illuminating all directions equally, or like
floodlights, illuminating a certain angle in a certain direction. We use the latter model of floodlights in this paper.
This model is quite natural and captures scenarios involving guards or security cameras with restricted angle of vision.
Illumination algorithms using floodlights have focused in the past on illuminating the interior of orthogonal polygons
[8, 1] and general polygons with restrictions on the floodlights used [2, 9, 7, 16]. There has also been work on the
stage illumination problem where one tries to illuminate lines rather than polygons [5].

The problem of illumination ofinfinite wedgesby floodlights was introduced by Bose et al. [3]. Refer to Figure 1
for the basic setup and definitions. Givenn sites andn floodlights, the task is to mount these floodlights, one at each
site, and orient them so that a givengeneralized wedgeis completely illuminated. Here a generalized wedge refers to
an infinite wedge with a continuous finite region adjacent to its apex removed. Formally,

Definition 1. FLOODLIGHT ILLUMINATION Problem
Instance: Sitesp1, . . . , pn in R2, anglesα1, . . . , αn > 0, and a generalized wedgeW of angleθ.
Question: Viewing the angles as spans of floodlights, is there an assignment of angles to sites along with angle
orientations, that completely illuminatesW?

A couple of natural restrictions of this problem are theuniformcase whereαi = α for all 1 ≤ i ≤ n, and thetight
case where

∑n
i=1 = θ. There is clearly no solution to the problem when

∑n
i=1 < θ. In the tight case, every solution

can be described by two permutationsσ andτ of {1, 2, . . . , n} [14]. Hereσ is an ordering of the floodlights andpτ(i)
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Figure 1: Basic definitions. W.l.o.g. the axis ofW always points along the negativex-axis inR2.

is the site at which floodlightασ(i) is mounted. Floodlight orientations in this solution are inferred fromσ andτ as
follows. pσ(1) is oriented so that its upper ray is parallel to the upper boundarywu of W , and for2 ≤ i ≤ n−1, pσ(i+1)

is oriented so that its upper ray is parallel to the lower ray ofpσ(i). The variant of the tight floodlight illumination
problem whereσ is fixed in advance will be called therestrictedcase. Observe that a tight and uniform problem is also
restricted because all choices ofσ are equivalent. Our results show that in general, for every choice ofσ, computingτ
is NP-complete.

Because of hardness of verification issues surrounding non-algebraic numbers, it is not clear whether the general
problem is in the class NP. In fact, it is not obvious that it even has an exponential time solution. Nonetheless, Steiger
and Streinu [14] proved that it can indeed be solved in exponential time by formulating it as a bounded quantifier
expression in Tarski’s algebra [15] and using the result of Grigor’ev [11] on the complexity of deciding the truth
value of such expressions. They also proved that the restricted floodlight illumination problem is the dual of a certain
monotone matchingproblem with lines and slabs. The exact complexity of this problem has been unknown [6]. We
resolve this open problem by showing the following.

Theorem 1. FLOODLIGHT ILLUMINATION is NP-hard. The tight, restricted, and uniform versions of the problem are
NP-complete.

This is an immediate consequence of the discussion of duality in Section 2.2 and our NP-completeness result for
a uniform version of monotone matching (Theorem 6). While we know of an NP-hardness reduction from the propo-
sitional satisfiability problem3SAT to the monotone matching problem, the one we give here is from an interesting
graph problem, that of finding adirected disjoint cycle cover, which we also prove to be NP-complete. Using this
latter problem leads to a simplified and more natural proof for the hardness of monotone matching. The problem is
also of independent result and a variant of it has subsequently been used by the authors in the context of a finite metric
embedding problem [4].

Although the general floodlight illumination problem is NP-hard, many special cases can be solved efficiently. We
outline sufficient conditions and list several common site configuration classes for which an efficient greedy algorithm
based on duallity [14] works correctly in the tight case. There are several natural notions of approximation for the
floodlight illumination problem. We consider two of these, afinite-approximation where one illuminates all but a finite
region ofW and anε angle-approximation where one illuminates all but an infinite wedge of small angleε within W .
We prove the following as an immediate consequence of Lemmas 14 and 15.

Theorem 2. For the tight floodlight illumination problem, computing a finite-approximation is NP-hard, where as for
anyε > 0, anε angle-approximation can be constructed in polynomial time.

2



2 Preliminaries

We begin by defining the monotone matching problem as recapitulating its duality with respect to the restricted flood-
light illumination problem. We then define the directed disjoint cycle cover problem and prove its NP-completeness.

2.1 Monotone Matching

Suppose we are givenn lines in the plane,n + 1 vertical lines definingn finite width vertical slabs, and two points,
one on the leftmost vertical line and one on the rightmost. Call this ann-arrangement of lines, slabs, and pointsand
denote it by(L, S, λ, ρ) whereL ≡ {(m1, c1), . . . , (mn, cn)} is the set of linesy = mix + ci, S ≡ {s1, . . . , sn+1} is
the set of vertical linesx = si forming slabs, andλ andρ are the two special points on the linesx = s1 andx = sn+1,
respectively. Amonotone matchingin (L, S, λ, ρ) is a set ofn line segments, each a portion of a unique line and
spanning a unique slab, such that the following holds: (1) the left endpoint of the first segment is aboveλ, (2) the left
endpoint of each subsequent segment is above the right endpoint of the segment in the previous slab, and (3)ρ is above
the right endpoint of the last segment.

Definition 2. MONOTONE MATCHING Problem [14]:
Instance: An n-arrangement(L, S, λ, ρ) of lines, slabs, and points inR2.
Question: Does this arrangement contain a monotone matching?

Analogous to the floodlight illumination case, define the specializeduniform versionUNIFORM MONOTONE
MATCHING to be the problem where all slabs have the same width. We prove this variant to be NP-complete in
Section 3.2.

2.2 Duality Between Floodlight Illumination and Monotone Matching

The restricted floodlight problem can be related to the monotone matching problem through duality [14]. The dual of
a pointp with coordinates(a, b) is the line`p with equationy = ax+ b; the dual of a linè with equationy = mx+ b
is the pointp` with coordinates(−m, b). It is well known that this dual transformation preserves incidence and height
ordering; i.e. ifp intersects̀ then their duals also intersect, and ifp is abovè then`p is abovep`.

We now describe the dual of the floodlight illumination problem using the notation of Figure 1.wl andwu are dual
to pointsλ andρ; aswl has larger slope in the orientation of the figure, its dualλ has smallerx coordinate. The points
in the vertical line containingλ are dual to lines that are parallel towl. The vertical strip betweenλ andρ corresponds
to the wedge angle. The lineq betweenλ andρ is dual to the intersection ofwl andwu. The segment ofq betweenλ
andρ corresponds to the lines with slope less thanwl and greater thanwu that have common intersection withwl and
wu; this is exactly the set of lines that form the wedge and reverse wedge ofW .

Each sitepi corresponds to a linehi which together make up the set of linesL. As we are in the restricted
version of the problem, the angle of the first floodlight isα1. As described above, the tightness of the problem implies
that the first floodlight must be oriented so that its upper ray is parallel towu. This corresponds in the dual to a
vertical slabS1 beginning atρ and extending to the left a width proportional toα1 (if S1 extends froms1 to s2, then
α = tan−1 x2 − tan−1 x1). The next floodlight then corresponds to a slabS2 extending to the left ofS1, continuing
to the final floodlight which is a vertical slabSn ending atλ.

A solution to the restricted problem is an assignment of sites to floodlights. In the dual this is a 1-1 assignment of
lineshi to slabsSj . The illumination wedge of the first floodlight must overlapwu, which corresponds to the right
endpoint of the segment of the lineh1

i assigned tos1 being aboveρ. Continuing, the right endpoint of the segment
associated withS2 must start above the left endpoint of the segment ofS1, and so on, until the left endpoint of the
segment atSn is belowλ.

If we flip the dual problem from left to right, in deference to those of us who read from left to right, we see we
have reduced the restricted illumination problem to the monotone matching problem with lines.

Note that the unrestricted tight illumination problem corresponds to an extended matching problem where the
widths of slabs are given and must be arranged in a partition of the slab betweenλ andρ and then a matching found.
The uniform illumination problem corresponds to the uniform matching problem, where the slabs are all of the same
width, making, in particular, their order immaterial.
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2.3 Directed Disjoint Cycle Cover

As a tool for our main result, we prove NP-completeness of an interesting problem on directed graphs which naturally
reduces to monotone matching. We also prove that this problem remains NP-complete even when the vertices of the
graph are restricted to have small degrees. This latter version is not critical but makes our NP-completeness proof for
MONOTONE MATCHING cleaner.

Definition 3. DIRECTED DISJOINT CYCLE COVER Problem:
Instance: A directed graphG = (V,E).
Question: Is there a directed disjoint cycle cover forG, i.e. , a setC = {C1, . . . , Ck} of vertex disjoint directed cycles
in G such that every vertexv ∈ V is in some cycleCi ∈ C?

Theorem 3. DIRECTED DISJOINT CYCLE COVER is NP-complete, even for graphs with indegree and outdegree
each bounded above by 3, as well as for graphs with outdegree exactly 3 and indegree at most 4.

Proof. See Appendix A.

The theorem is proved by a reduction from theVERTEX COVER problem in a manner very similar to the reduction
to theHAMILTONIAN CYCLE problem given by Garey and Johnson [10]. Our argument for the hardness of the bounded
degree cases, however, is much simpler than those known for other similar graph problems. We use the second of the
two degree restrictions in our reduction for monotone matching. For simplicity, we allow directed graphs to have
self loops, though our proofs can be modified to work even for graphs with no self loops. A self loop is assumed to
contribute one to both the indegree and the outdegree of the corresponding vertex.

3 NP-Completeness of Monotone Matching

3.1 Monotone Matching with Pseudolines

We begin by defining a variant of the monotone matching problem that usespseudolinesinstead of lines. A pseudoline
is a curve inR2 that intersects any vertical line in exactly one point. A collection of pseudolines is a set of pseudolines
no two of which intersect more than once. For computational purposes, we shall assume that the point of intersection
of two pseudolines can be computed efficiently from their input representation.n-arrangements of pseudolines, slabs,
and points, and monotone matchings with pseudolines are defined analogous to the case of straight lines. The problem
PSEUDOLINE MONOTONE MATCHING is also defined analogously. The pseudolines used in our constructions will
all be piecewise linear functions. In this section, we prove the following result.

Lemma 4. PSEUDOLINE MONOTONE MATCHING is NP-complete.

We begin by defining some configurations, or gadgets, of pseudolines that will be useful for our proof. Our
construction for the straight line matching problem will follow by reconstructing these gadgets from straight lines.

The most important gadget is theforcing gadget, shown in Figure 2. This is a sequence of slabs associated with
pseudolines that forces the line used previous to the gadget to end below a chosen point, and the line used after the
gadget to start above another chosen point. LetR denote theregion of interestfor the monotone matching problem,
i.e., a rectangular region covering horizontally all the slabs and covering vertically all intersections of pseudolines in
PL with these slabs. Theskyregion begins aboveR and thegroundregion begins belowR.

Lemma 5 (Forcing Gadget Property). Refer to Figure 2 for the labeling of forcing gadgets. Given a monotone
matching instance, if for all pairsF andF ′ of forcing gadgets composed ofh, `, s andh′, `′, s′, respectively, ifh and
h′ do not intersect, and points of F is belowh′ if F ′ followsF , then in any valid matching,h is used in slabA and`
is used in slabB. This holds for any number of additional lines, as long as they appear above the ground and below
the sky.

Proof. ` cannot be used before slabB, as it begins in the ground, no other lines intersect` beforeB, and the ground
is below the starting point. If̀ is used after slabB, then the line used subsequently must begin in the high sky. As
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Figure 2: The forcing gadget. The arrows show how any lines used before or after the gadget are constrained.

the only lines in the high sky are from previous forcing gadgets, and there are no intersections in the high sky, then all
future lines chosen will be in the high sky. As the high sky is aboveρ, any such matching must end aboveρ, and so
will not be a valid matching.

Now, given that̀ must be used in slabB, as its starting points is in high ground, the only precursors it could have
is h, someh′ from a forcing gadget beforeF , or some line from the low ground. As argued in the beginning of this
proof, no lines in the low ground can be used. We prove that the precursor could not come from anh′ precedingF by
induction on the number of forcing gadgets. IfF is the first forcing gadget, thenh must be used; if there are forcing
gadgets beforeF , then we can inductively assume that all the correspondingh′ were used in their corresponding
gadgets, so thath must be used in slabA.

Finally, as our arguments were based on the presence or absence of pseudolines in the ground and sky, any number
of additional lines appearing between the ground and sky do not affect the behavior of the forcing gadget.

Proof of Lemma 4.This problem is in NP because a potential monotone matching can be easily verified in polynomial
time. The proof of NP-hardness is by a reduction fromDIRECTED DISJOINT CYCLE COVER, which, by Theorem
3, is NP-complete. Suppose we are given a directed graphG. We will construct an arrangement(PL, S, λ, ρ) of
pseudolines, slabs, and points such thatG has a disjoint cycle cover iff(PL, S, λ, ρ) ∈ PSEUDOLINE MONOTONE
MATCHING. By Theorem 3, we may assume the outdegree of all vertices inG is exactly 3 and the indegree is at most
4. W.l.o.g. we will assume that every vertex inG has indegree at least one, for if not thenG does not have a disjoint
cycle cover and can be easily mapped to a trivial instance of monotone matching with no solution.

We need two types of graph-related gadgets. LetG = (V,E). We will have gadgetsIn(v) andOut(u) for
u, v ∈ V as shown in Figure 3. LetI(v) ⊂ E be in the in-edges ofv, and letO(u) ⊂ E be the out-edges ofu. By our
choice ofG, |I(v)| ≤ 4 and|O(u)| = 3. The gadgetIn(v) will allow us to select exactly one predecessor ofv and
exactly one successor ofu, leading to a directed disjoint cycle cover as long as the predecessors and successors are
consistent. Selecting a successor will be done indirectly by selecting and ruling out exactly|O(u)| − 1 out-edges ofu.

I(v)

{

Forced start

Forced end

O(u)

{
Forced end

Forced start

Figure 3: Graph gadgetsIn(v) andOut(u). The arrows denote sites set by forcing gadgets placed between the graph
gadgets.|I(v)| ≤ 4 and|O(u)| = 3.

Let n = |V | andm = |E|. We will usem primary pseudolines, each corresponding to an edge inE. We will
abuse notation and talk of an edgee ∈ E as being used in a particular slab; this will mean that the primary pseudoline
corresponding toe is used at that slab. There will be a number of auxiliary pseudolines used in forcing gadgets.
TheOut(·) gadgets andIn(·) gadgets will be arranged in sequence as shown in Figure 4. The primary pseudoline
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corresponding to edge(u, v) will first pass throughOut(u), and then pass throughIn(v). Each pseudoline will
intersect another pseudoline at most once, depending on the relationship between theirIn(·) andOut(·) gadgets.

SKY

GROUND

In(v1)

In(v2)

In(vn)

. . .

. . .

Out(v1)

Out(v2)

Out(vn)

Figure 4: Overall view of the reduction fromDIRECTED DISJOINT CYCLE COVER. Forcing gadgets appear between
In(·) andOut(·) gadgets, to match the arrows in Figure 3, except forOut(v1) andIn(vn), where the first and last
arrows, respectively, determine the starting and ending pointsλ andρ for the monotone matching instance.

We claim that when arranged as in Figure 4 along with appropriate forcing gadgets for eachIn(·) andOut(·)
gadget, exactly onee ∈ I(vi) is used inIn(vi) and exactly onee ∈ O(vi) is not used inOut(vi), for 1 ≤ i ≤ n. To
see this, refer to Figure 3. Because of the forcing gadgets, exactly one pseudoline must be used inIn(vi) and must
correspond to an edgee ∈ I(vi). Similarly, exactly two pseudolines must be used inOut(vi), leaving out exactly
one pseudoline corresponding to an edgee ∈ O(vi). Furthermore, the edges selected in this way are consistent, i.e., if
edge(u, v) is selected inIn(v), then it is also the only edge left unselected inOut(u).

A directed disjoint cycle cover ofG is equivalent to a permutationπ on the vertices, whereπ(v) is the predecessor
of v in the cycle containingv. If such a permutation exists then a monotone matching exists: don’t select the edge
corresponding toπ−1(u) in Out(v) and select the edge corresponding toπ(v) in In(v). Conversely, if a monotone
matching exists then the permutationπ can be recovered by lettingπ(v) correspond to the edge that is used inIn(v).
This completes the reduction.

3.2 Uniform Monotone Matching

We now prove NP-completeness of the uniform case with straight lines. As mentioned earlier, NP-hardness of this
problem subsumes NP-hardness ofPSEUDOLINE MONOTONE MATCHING proved in the previous section. The argu-
ment, however, is more involved and reuses many key concepts developed in the earlier proof.

Theorem 6. UNIFORM MONOTONE MATCHING is NP-complete.

Proof. Being a sub-problem ofPSEUDOLINE MONOTONE MATCHING, the problem is in NP. We prove NP-hardness
by a reduction fromDIRECTED DISJOINT CYCLE COVER in a manner similar to the proof of Lemma 4. LetG =
(V,E) be a graph of outdegree exactly 3 and indegree at most 4. We will construct an arrangement(L, S, λ, ρ) of lines,
slabs, and points such thatG has a directed disjoint cycle cover iff(L, S, λ, ρ) ∈ UNIFORM MONOTONE MATCHING.

The key changes from the previous proof are the new construction of the forcing gadgets and the addition of a
“buffer” zone between theIn andOut gadgets to convert primary pseudolines into straight lines. The basic idea of
the buffer zone is to make the lines behave as parallel (i.e. non-intersecting) lines in the region of interest as required
in the graph gadgets of Figure 3. We first spell out the details of construction of the lines corresponding to the edges of
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G and then specify how to construct the forcing gadgets with lines. For the rest of the proof, we will assume w.l.o.g.
that the slab widthw = 1.

The graph gadgets are arranged as shown in Figure 5 with a buffer area consisting ofb− 4n slabs (orb−4n
2 forcing

gadgets). We will use a coordinate system as shown in Figure 5 for the ease of exposition. The graph gadgetIn(vj)
has its forced start point at(b + 3j − 3, n − j) and forced end point at(b + 3j, n − j + 1) while the graph gadget
Out(vi) has its forced start and end points at(4i−4,−i) and(4i, 1− i), respectively. The line corresponding to edge
(vi, vj) connects the points(−1,−i) and(b + 3j − 3, n− j).

. . .

In(v1)

In(v2)

In(vn)

. . .

Out(v1)

Out(v2)

Out(vn)

GROUND

SKY

BUFFER

(0, 0) (4, 0) (b, 0)

(b + 3n, 0)
(4n, 0)

(−1,−1)

(b, n)

(0,−n)

Figure 5: Overall view of the reduction fromDIRECTED DISJOINT CYCLE COVER for the uniform case. Forcing
gadgets appear in the buffer area and betweenIn(·) andOut(·) gadgets to match the arrows in Figure 3, except for
Out(v1) andIn(vn) where the first and last arrows, respectively, determine the starting and ending pointsλ andρ
for the uniform monotone matching instance. For clarity, only the lines corresponding to outgoing edges fromv1 are
shown: the edges are(v1, v1), (v1, v2) and(v1, vn).

Fix b = 10n2. We now show that the lines corresponding to the outgoing edges from any graph gadget do not
intersect each other in the horizontal intervals[0, 4n] and[b, b + 3n], that is, they are effectively parallel as needed in
Figure 3. For any edge(vi, vj) the slope of the corresponding line is bounded from above bym = n−(−n)

b = 2n
b .

The maximum y coordinate for the line corresponding to(vi, vj) in the horizontal interval[0, 4n] is given byym =
−i + m · 4n. Substituting the value ofm andb, we haveym < −i + 1. Thus, no two lines intersect in the interval
[0, 4n]. One can similarly show that no two lines intersect in the interval[b, b + 3n].

To complete the proof we specify the forcing gadgets. We needb
2 forcing gadgets (n each from theIn andOut

gadgets andb−4n
2 from the buffer area). The scheme is presented in Figure 6. Note the (high and low) sky and ground

regions. For thekth forcing gadget, theh line connectsp0, which is at heightn4 − 2kn, andp1, the forced end point
at the boundary of slabA. The` line of the gadget connectsq0 (which is one higher thanp2, the intersection ofh with
the boundary of slabB) andq1, the forced start point at the boundary of slabB.

We claim that the height ofq2 is (strictly) bounded from above and below byn4 − 2kn andn4 − 2(k + 1)n,
respectively. By our overall construction in Figure 5,p1 is alway higher thanq1 and their difference is bounded from
above byn. The bounds on the height ofq2 follow from recalling that each slab has width one.

We now argue that in a valid uniform monotone matching,h is chosen in slabA and line` is chosen in slabB
as was proved in Lemma 5. We first show that` is selected in slabB. For the sake of contradiction assume that`
was chosen after slabB. By the lower bound on the height ofq2, we cannot come down from the sky as all theh′

lines of the subsequent gadgets are belowq2 which is a contradiction as the ending point is below the sky. If` were
chosen before slabB, its precursor cannot include any`′ line from a previous forcing gadget because then the starting
pointλ would have to be below ground, which is not the case. It also cannot have anyh′ line from a previous forcing
gadget as a precursor as all those lines are higher than` by construction. Hence,̀ is selected in slabB. From the
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High sky

Low ground

Low sky

High ground

Must start above here

A B

Must end below here

h

p0

p1

`

p2

q0

q2

q1

Figure 6: The forcing gadget with straight lines. The arrows show how any lines used before or after the gadget are
constrained.q0 is higher thanp2 by 1. For thekth gadget,p0 is at heightn4 − 2kn.

above argument the only precursors of` could beh or someh′ from some previous forcing gadget which, as before
by induction, is impossible. Thus,h is selected in slabA andl in slabB, fulfilling the requirements of the forcing
gadget.

Corollary 7. MONOTONE MATCHING is NP-complete.

Proof. Membership in NP follows from an argument identical to the one forUNIFORM MONOTONE MATCHING. NP-
hardness follows from Theorem 6 becauseUNIFORM MONOTONE MATCHING trivially reduces to this problem.

4 Illumination Algorithms for the Tight Case

In this section we look at algorithms to solve the floodlight illumination problem in the tight case. We characterize
several special cases that can be solved in polynomial time. We also give approximation algorithms for the problem.
For this section, we will use the notations and definitions from Section 1. We begin with some properties of floodlight
illuminations which will be used later in this section but may also be of independent interest.

4.1 Properties of Floodlight Illumination

The first lemma shows how the position of certain floodlights are fixed by the problem instance. Next we prove a
necessary condition for the existence of a solution. We then state a lemma which will be used in proving hardness of
certain kind of approximations to the floodlight illumination problem. We end with a brief mention of a variant of the
problem that is easy to solve.

Lemma 8. In the tight case, any floodlight illuminating at infinity the upper boundarywu of a generalized wedgeW
must be parallel to and located abovewu.

Proof. Let the floodlightf illuminating wu be mounted at sitepu. As we are considering the tight case, the upper
boundaryfu of the region illuminated byf must be parallel towu (see discussion in Section 1. Ifpu is belowwu, f
will not illuminate an infinite sliceS of W including the boundarywu.

Lemma 9. A tight floodlight illumination problem on generalized wedges has a solution only if there is at least one
site in the reverse wedge.

Proof. Suppose there are no sites in the reverse wedge. Referring to Section 2.2, consider the dual of the problem
where we work from right to left assigning sites to floodlights. The lines in the dual corresponding to sites fall into
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regionS′ regionS′

αn

p

region already
illuminatednew wedgeW ′ nth floodlight

αn p

Figure 7: Two cases for the shape of overall illuminated region in the tight case

three categories: those aboveρ andλ (the duals ofwu andw`), corresponding to sites above the wedges; those below
the dualsρ andλ, corresponding to sites below the wedge; and those that run betweenρ andλ, corresponding to sites
in the forward wedge. As we are in the tight case, if there are sites in the forward wedge, we cannot possibly have
a solution. Hence all points are either above or below both of the dual starting and end points. In particular, no line
above the dual points intersects a line below the dual points in the problem slab defined by the dual points. This means
that we cannot use any of the lines below the starting point and hence, we cannot have a matching as there are not
enough lines which can be used.

Lemma 10. Suppose the sum of the angles ofn floodlights isα. If they illuminate a wedgeW of angleα, then the
overall illuminated region is of the formW ′ ∪ S, whereW ′ ⊇ W is a wedge of angleα aligned withW andS is a
finite region.

Proof. We prove by induction onn the weaker statement that ignores the requirementW ′ ⊇ W above. This will,
however, suffice for the proof because ifW ′ did not include all ofW , W ′ ∪ S would also not include all ofW since
S is finite. This will contradict the precondition.

For the base case ofn = 1, W ′ = W andS = φ. Forn > 1, note that the floodlight angles are tight relative toW .
Hence, the firstn− 1 floodlights must together cover some wedge of angleα− αn, whereαn is the angle of thenth

floodlight (see Figure 7). By induction, the region illuminated by the firstn − 1 floodlights is of the formW ′′ ∪ S′,
whereW ′′ is a wedge of angleα − αn andS′ is finite. Again, since the angles are tight, the only way to extend this
region to coverW of angleα is to mount thenth floodlight f at a sitep that is above the lower boundarywl of the
already illuminated region and have its upper boundaryfu aligned withwl. Let W ′ be the wedge of angleα defined
by the upper boundarywu of the already illuminated region and the lower boundaryfl of f . As seen from the two
cases in Figure 7, the overall illuminated region isW ′ ∪ S, whereS is finite.

Finally, we mention a relaxation of the problem which makes it easy. Twomovable sitescan always solve any tight
problem instance: assign two arbitrarily chosen first and last floodlights (the ones parallel to the wedge boundaries) to
the movable sites, and move these sites back and inside the reverse wedge far enough so that every other site is within
the reverse of the residual wedge. Now use Fact 11.

4.2 A Greedy Algorithm

We briefly describe a duality-based greedy algorithmAgreedygiven by Steiger and Streinu [14] for the floodlight
illumination problem which takes an additional input: the order in which the floodlight angles are chosen, that is,
permutationσ from Section 1. Note that for the uniform case, where each floodlight angle is the same, the permutation
σ does not come into play andAgreedyis applicable. At each step,Agreedyassigns the current floodlight angle in
σ to the positionp which would leave the maximum number of positions inside the reverse wedge of the residual
wedge obtained by placing the current floodlight angle onp. There is also a natural interpretation ofAgreedyin the
dual monotone matching problem, where one chooses a line for a slab that maximizes the number of choices for the
next slab. We will refer to this monotone matching algorithm asAMM

greedy. We complete the description ofAgreedyby
stating a simple property of it.
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Fact 11. If all sites are contained inside the reverse wedgeW r, thenAgreedysuccessfully illuminatesW after any
assignment of floodlights to positions. Equivalently, if the first special point in a monotone matching problem is below
all lines and the second is above all, thenAMM

greedysuccessfully finds a matching.

4.3 Special Site Configurations

In this section we consider special illumination problems where the sites are restricted to obey certain properties.
This allows us to characterize cases whereAMM

greedyproduces the right answer for the corresponding tight floodlight
illumination problem.

Definition 4. Sitesp1, p2, . . . , pn areangle-separated with respect to wedgeW of angleα if pi 6∈ Wj for every
1 ≤ i 6= j ≤ n, whereWj is the wedge of angleα located atpj and aligned withW (see Figure 8). Sites in
a floodlight illumination problem areangle-separatedif they are angle-separated with respect to the wedge to be
illuminated.

We note that an equivalent way of defining angle-separation with respect to a wedgeW with boundary slopes
mu andml is to require that for all site pairs(p, p′), the line joiningp andp′ has slope not in[ml,mu]. While the
former definition is natural for the proof of the following lemma, this latter definition might be more convenient for
algorithmic implementations.
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pu

α

wu

wl

no locations here

generalized wedgeW

Wu

region illuminated by W r
u

by angle separation

angle-separated
locations

floodlightf

Figure 8: Angle separation implies all sites must be inW r for a solution to exist.

Lemma 12. If the sites in a tight floodlight illumination problem on generalized wedges are angle-separated, there is
no solution unless all sites are contained in the reverse wedge.

Proof. Consider the dual (refer to Section 2.2). The wedgeWj for sitepj corresponds in the dual to the segment of
the line`pj between the starting and ending points, that is, the problem slab. If there is a site that is not in the reverse
wedge then there exists a line above the endpoint or a line below the starting point. This implies that one cannot use at
least one line in the matching and thus, a matching cannot exist.

Proposition 13 (Sufficient Condition forAgreedy). If the sites in a tight floodlight illumination problem on general-
ized wedges are angle-separated, thenAgreedyalways produces the right answer.

Proof. If all sites are contained inside the reverse wedge, by Fact 11, a solution is always found byAgreedyfor any
assignment of floodlights to sites. On the other hand, if at least one site is outside the reverse wedge, by Fact 12, there
is no solution andAgreedy, of course, doesn’t find one.

It follows that the floodlight illumination problem for generalized wedgeW of angleα and with boundaries of
slopesmu andml is easy to solve when, for instance, all sites are on a straight line whose slope is not in[ml,mu], or
on a circular arc whose endpoint tangents have slope not in[ml,mu], or in a vertical zig-zag pattern with angle greater
thanα, etc. (see Figure 9).
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zig-zagcircular arcsline

slopemu

slopeml

generalized wedgeW

α

Figure 9: A few natural site configurations for which the problem is easy.

4.4 Approximate Illuminations

Theorem 1 motivates the study of approximation algorithms for the floodlight illumination problem. There are several
natural ways to approximate wedge illumination. After giving precise definitions of some of these, we prove a negative
result that illuminating all but a finite portion of a wedge is, in the tight case, not any easier than illuminating the whole
wedge. This motivates other reasonable notions of approximation that leave unlit relatively small but infinite regions
of the wedge.

Definition 5. LetF be an illumination of a wedgeW .

1. F is afinite-approximationif it illuminatesW \ S, whereS is a finite region.

2. F is anε angle-approximationif it illuminates W \ Sε, whereSε is a union of wedges whose total angle is at
mostε.

Lemma 14. There is a solution to a tight floodlight illumination problem on a wedgeW if and only if there is no
finite-approximation to it.

Proof. We prove the sufficient condition. Suppose there is a finite-approximate illuminationF for W . Let W be of
angleα. By definition,F must illuminate a wedgeW ∗ of angleα that is aligned withW but is possibly contained
strictly within W . Since the floodlight angles are tight relative toW ∗, by Lemma 10, the overall region illuminated
by F is of the formW ′ ∪ S, whereW ′ is a wedge of angleα aligned withW ∗ (and hence withW ) andS is finite.
If W 6⊆ W ′, thenW ′ \ W is an infinite regionR. As S is finite, W ′ ∪ S will not cover an infinite portion of this
infinite regionR of W , contradicting the fact thatF illuminates all but a finite region ofW . It follows thatW ⊆ W ′,
implying thatW is completely illuminated byF and providing an exact solution. The other direction of the proof is
trivial.

This Lemma implies that computing a finite-approximation is NP-hard because computing the exact solution is. It
also implies that there is a solution to the tight floodlight problem on a generalized wedgeW iff there is a solution to
the tight floodlight problem on the underlying normal wedgeW ′. In this sense, generalized wedges don’t make the
problem any harder. However, they provide a convenient tool for analysis, allowing, for instance, stronger inductive
claims.

Note thatε angle-approximate illumination means all butε of the wedge is illuminated “at infinity”. It would be
interesting to find an algorithm for the stronger approximation where the resulting illuminated area is a smaller wedge
but located at the same apex asW .

Lemma 15. For anyε > 0, anε angle-approximation to the tight floodlight problem can be found efficiently.

Proof. An ε angle-approximation can be achieved by adding two movable sitespa andpb, adding two floodlightsfa

andfb of angleε/2 each, reducing any one original floodlight angle byε, and proceeding as follows. Mount floodlight
fa at sitepa, orient it so that its upper boundary is parallel to and illuminates the upper boundarywu of W , and move
it far and low enough inW r so that all other sites are above its lower boundary. Perform a similar operation onfb

11



andpb starting with the lower boundarywl of W . The regionW ′ of W not illuminated by these two floodlights is a
generalized wedge of angleα− ε, whereα is the wedge angle ofW . Further, all remaining sites live withinW ′r. By
Lemma 11, we can illuminateW ′r exactly using the remaining floodlights. Now removefa andfb, and add angleε
back to the floodlight whose angle was reduced. This completes theε angle-approximation.
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A NP-Hardness of the Directed Disjoint Cycle Cover Problem

Proof of Theorem 3.We begin by giving a proof of the following Lemma that proves NP-completeness of the problem
without degree restrictions, and then use it to prove the Theorem:

Lemma 16. DIRECTED DISJOINT CYCLE COVER is NP-complete.

Proof. The problem is clearly in NP because given a description of a set{C1, . . . , Ck} as a certificate of membership,
one can easily verify in polynomial time that eachCi, 1 ≤ i ≤ k, is a directed cycle in the given graphG, theCi’s are
vertex disjoint, and they together cover all vertices ofG.

Let VERTEXCOVER = {〈G, k〉 | G is a directed graph with a vertex cover of sizek}. VERTEX COVER is NP-
complete [10]. Our proof of NP-hardness is by a reduction fromVERTEX COVER. The reduction is very similar to the
proof of NP-hardness of theHAMILTONIAN CIRCUIT problem given by Garey and Johnson [10]. Our description of
the reduction will closely follow the one they present. Let〈G, k〉 be an instance ofVERTEX COVER. We will construct
a directed graphG′ such thatG has a vertex cover of sizek iff G′ has a directed disjoint cycle cover. In fact,G′ will
be such that it has a directed disjoint cycle cover iff it has a directed Hamiltonian circuit. Hence, our proof gives an
alternate argument for the NP-hardness ofDIRECTED HAMILTONIAN CIRCUIT [10].

The construction can be viewed in terms of component gadgets connected together by communication links. First,
the graphG′ hask “selector” verticesa1, a2, . . . , ak, which will be used to selectk vertices from the vertex setV for
G. Second, for each edge ine ∈ E, G′ contains a “cover-testing” component that will be used to ensure that at least
one endpoint ofe is among the selectedk vertices. The component fore = {u, v} is illustrated in Figure 10. It as 4
vertices,V ′

e = {(u, e, top), (u, e, bot), (v, e, top), (v, e, bot)}, and 6 directed edges,E′
e, shown in the figure.

(v, e, top)

(v, e, bot)

(u, e, top)

(u, e, bot)

Figure 10: Cover-testing component for edgee = {u, v}, along with the three possible configurations of a directed
disjoint cycle cover on this component

It is easily seen that any disjoint cycle cover forG′ must involve edges ofE′
e in one of the three configurations

shown in Figure 10. This is because any other choice of edges will leave at least one of the gadget vertices impossible
to cover. Thus, for example, if the circuit “enters” this component at(u, e, top), it must “exit” at (u, e, bot) and visit
either all four vertices inV ′

e or just the two.
Additional edges in our overall construction will serve to join pairs of cover-testing components or to join a

cover-testing component to a selector vertex. For each vertexv ∈ V , let the edges incident onv be ordered (ar-
bitrarily) as ev[1], ev[2], . . . , ev[deg(v)], wheredeg(v) denotes the degree ofv in G. All the cover-testing compo-
nents corresponding to these edges (havingv as endpoint) are joined together by the following connecting edges:
E′

v =
{
((v, ev[i], bot), (v, ev[i+1], top)) : 1 ≤ i < deg(v)

}
. As shown in Figure 11, this creates a single path inG′

that includes exactly the vertices(x, y, z) havingx = v.
The final connecting edges inG′ join the first and last vertices from each of these paths to every one of the selector

vertices,a1, a2, . . . , ak. These edges are:E′′ =
{
(ai, (v, ev[1], top)), ((v, ev[deg(v)], bot), ai) : 1 ≤ i ≤ k, v ∈ V

}
.

The final graphG′ hasV = {ai : 1 ≤ i ≤ k} ∪ (
⋃

e∈E V ′
e ) andE′ = (

⋃
e∈E E′

e) ∪ (
⋃

v∈V E′
v) ∪E′′. G′ can clearly

be constructed fromG andk in polynomial time.
We now argue the correctness of the construction. Suppose first thatG′ has a directed disjoint cycle coverC. Pick

any cycleC ∈ C. C must traverse vertices ofG′ in a particular way, namely, it must start w.l.o.g. at a selector vertex
ai, go through all cover-testing components corresponding to the edges incident on a particular vertexv ∈ V , and
either return toai to finish the cycle or return toaj , j 6= i, to continue covering in this manner before finally returning
to ai. This is because (A) each cover-testing component must be covered in one of the three configurations shown
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(v, ev[3], bot)

(v, ev[1], top)

(v, ev[1], bot)

(v, ev[deg(v)], top)

(v, ev[deg(v)], bot)

(v, ev[3], top)

(v, ev[2], bot)

(v, ev[2], top)

Figure 11: Path joining all cover-testing components for edges fromE having vertexv as an endpoint

in Figure 10, and (B) edges inE′
v forceC to traverse all cover-testing components of edges incident onv in order.

Hence, thek vertices from{a1, a2, . . . , ak} divideC into k paths, each corresponding to a distinct vertexv ∈ V . Since
C must include all vertices from every one of the cover-testing components, and since vertices from the cover-testing
component for edgee ∈ E can be traversed only by a path corresponding to an endpoint ofe, every edge inE must
have at least one endpoint among thosek selected vertices. Therefore, this set ofk vertices forms the desired vertex
cover forG of sizek.

Conversely, suppose{v1, v2, . . . , vk} = V C ⊆ V is a vertex cover forG with |V C| = k. It is readily seen that
the following edges form a directed disjoint cycle cover ofG′. From the cover-testing component representing each
edgee = {u, v} ∈ E, choose the edges specified in Figure 10 depending on whether{u, v} ∩ V C equals{u} , {u, v}
or {v}. One of these three possibilities must hold becauseV C is a vertex cover forG. Next, choose all the edges in
E′

vi
for 1 ≤ i ≤ k. Finally, choose the edges(ai, (vi, evi[1], top)) for 1 ≤ i ≤ k, edges((vi, evi[deg(vi)], bot), ai+1)

for 1 ≤ i < k, and the edge((vk, evk[deg(vk)], bot), a1). This forms a directed Hamiltonian circuit forG′ and, in
particular, a directed disjoint cycle cover.

We return to the proof of Theorem 3. The restricted degree problem is in NP because, by Lemma 16, the unbounded
degree version is in NP. For NP-hardness, suppose we are given an instance〈G, k〉 of VERTEX COVER. Use the
construction in the proof of Lemma 16 to obtain a graphG′ which has a directed disjoint cycle cover iffG has a vertex
cover of sizek. Notice that each of thek selector verticesai, 1 ≤ i ≤ k, of G′ have indegree as well as outdegree
n = |V (G)| corresponding to the edges inE′′, then vertices(v, ev[1], top), v ∈ V , have indegreek and outdegree 2,
and then vertices(v, ev[deg(v)], bot), v ∈ V , have indegree 2 and outdegreek. The rest of the vertices have indegree as
well as outdegree2. We will describe a polynomial time process to convertG′ into a directed graphG′′ with indegree
and outdegree each bounded above by3. G′′ will have a directed disjoint cycle cover iffG′ does. Further, we will give
a very simple way to convertG′′ into a graphG∗ that has outdegree exactly 3 and indegree bounded above by 4.G∗

will have a directed disjoint cycle cover iffG′′ does. This will finish the proof of the Theorem. A similar construction
can alternatively be used to obtain a graph with indegree exactly 3 and outdegree bounded above by 4.

In the rest of the proof, we describe how to reduce the degree of thek selector vertices. A similar technique can be
used to reduce the degrees of the2n degree-k edge gadget vertices as well; we omit the details of this part for simplicity.
The construction ofG′′ is based on the “degree gadget” shown in Figure 12. Start by makingG′′ the subgraph ofG′

obtained by deleting all edges involving thek selector verticesa1, . . . , ak. Letv1, v2, . . . , vn be the vertices ofG. The
ith selector vertexai in G′ has incoming edges from(vj , evj [deg(vj)], bot) and outgoing edges to(vj , evj [1], top) for
1 ≤ j ≤ k. Create verticesV in

ai
=

{
bin
i,j | 1 ≤ j ≤ n

}
andV out

ai
=

{
bout
i,j | 1 ≤ j ≤ n

}
in G′′ and connect them as

shown in Figure 12. Notice that vertexai in G′′ has indegree and outdegree exactly 1, while the other degree gadget
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vertices have indegree and outdegree either 2 or 3. Overall, the vertices ofG′′ areV (G′) ∪
⋃k

j=1(V
in
ai

∪ V out
ai

), all of
which have indegree as well as outdegree bounded above by 3.
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Figure 12: Degree gadget for theith selector vertex

We now argue thatG′′ has a directed disjoint cycle cover iffG′ does. By construction, cycle covers in the two
graphs behave identically on vertices other than the selector vertices and those of the degree gadgets. The only way to
coverai in G′ is to enter from(vx, evx[deg(vx)], bot) and leave to(vy, evy[1], top) for somevx, vy ∈ V (G). Similarly,
the only way to coverai in G′′ is to enter from(vx, evx[deg(vx)], bot), traverse throughbin

x , . . . , bin
n , coverai, traverse

throughbout
1 , . . . , bout

y , and leave to(vy, evy[1], top) for somevx, vy ∈ V (G). The remaining degree gadget vertices in
V in

ai
∪ V out

ai
must be covered by self loops. This shows that cycle covers inG′ andG′′ behave essentially identically

even on the selector vertices and the degree gadgets. Hence,G′ has a directed disjoint cycle cover iffG′′ has one.
G∗ is constructed fromG′′ as follows. Start withG∗ = G′′. Let K4 denote the directed complete graph on 4

vertices. Note that each vertex ofK4 has indegree as well as outdegree exactly 3. Letp = |V (G′′)| andq be the
sum of the outdegrees of the vertices ofG′′. Create3p − q copies ofK4 and add them toG∗. For each outdegree 2
vertexv in G, add an outgoing edge to an arbitrarily selected vertex of an unmarked copyK4 and mark that copy (see
Figure 13). Similarly, do this for each outdegree 1 vertex, connecting it to two copies ofK4. The number of edges
added thus is3p − q, which exactly matches the number of copies ofK4 created inG∗. Every vertex ofG∗ now has
outdegree exactly 3. The indegree of the original vertices fromG′′ hasn’t changed and is therefore at most 3. The
indegree of exactly one vertex in each copy ofK4 has changed, and it has increased to 4. Hence,G∗ has the desired
degree properties.

Copies ofK4

Vertices fromG′′

Figure 13: Using copies ofK4 to make outdegrees exactly 3

Since the copies ofK4 do not have any outgoing edge, the only cycles they can be involved in a disjoint cycle
cover stay within that copy. This ensures that ifG∗ has a disjoint cycle cover, thenG′′ does too. On the other hand,
if G′′ has a disjoint cycle cover, then one forG∗ consists of cycles corresponding to the cover inG′′ along with one
4-cycle for each copy of theK4. Hence,G∗ has a directed disjoint cycle cover iffG′′ does.
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