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Abstract

Shared attention refers to the simultaneous perceptual focus of two or more agents
on a single object in their shared environment. Shared attention is an important
tool in building robotic systems capable of complex, natural forms of learning,
such as imitation. This paper presents a probabilistic framework, based on Meltzoff
and Moore’s AIM model for imitation in infants, that emulates infants’ capacity
for shared attention. We also show the importance of context-dependent saliency
for disambiguating visual elements, and bootstrapping more complex interactions
between humans and robots. Our results demonstrate the value of a Bayesian per-
spective on shared attention and its application to imitation.

1 Introduction

Imitation is a powerful mechanism for transferring knowledge from a skilled
agent (the instructor) to an unskilled agent (or observer) using manipulation of
the shared environment. It has been broadly researched, both in apes [9,28] and
children [19,20], and in an increasingly diverse selection of machines [13,18].
The attraction of imitation for robotics is obvious: imitative robots offer dras-
tically reduced costs compared to robots requiring expert programming. Com-
plex interactive systems that do not require extensive configuration by the user
necessitate the use of a general-purpose learning mechanism such as imitation.

Email addresses: mhoffman@cs.washington.edu (Matthew W. Hoffman),
aaron@cs.washington.edu (Aaron P. Shon), grimes@cs.washington.edu (David
B. Grimes), rao@cs.washington.edu (Rajesh P.N. Rao).

Preprint submitted to Elsevier Science 6 June 2005



Imitative robots also offer testbeds for computational theories of social inter-
action, and provide modifiable agents for contingent interaction with humans
in psychological experiments.

1.1 Overview of shared attention

Successful imitation requires that instructor and observer simultaneously at-
tend to the same object or environmental state. Such simultaneous attention
is referred to as shared attention in the psychological literature. Shared atten-
tion between a human instructor and observer is often taken for granted, and
has been found to exist in infants as young as 42 minutes old [19]. Yet, as
with other human behaviors, shared attention is a deceptively simple concept,
overlaying many difficult problems.

In a recent paper, Breazeal and Scassellati proposed several complex questions
that must be addressed by any robotic imitation learning system [5]. Among
these questions are two that directly relate to shared attention:

(1) How should a robot know what to imitate?
(2) How should a robot know when to imitate?

A system for shared attention must address exactly these questions. An imi-
tative system must determine what to imitate; a system for shared attention
must determine whether an instructor is present, and if so, which components
of the instructor’s behavior are relevant to imitation. In the scope of shared
attention this task encompasses both finding an instructor and the ability to
recognize if no instructor is present.

Once an instructor has been located, the observer can turn to the question of
where the instructor is directing its attention. This step combines the questions
of what and when. The observer must first discern the instructor’s focus using
cues such as the instructor’s gaze, body gestures, verbalizations, etc. Deter-
mining what to imitate again comes into play as the observer must determine
which of these cues are being used to convey the instructor’s intent. The ques-
tion of when to act is then raised: the observer must determine when it has
acquired enough information to successfully imitate. This is closely related to
the exploration-exploitation tradeoff seen in reinforcement learning.

Action can be taken once the observer has determined where to look, but the
observer is now at an impasse: what really matters is the instructor’s atten-
tional focus. Consider, for example, a person told to look right. This informa-
tion is not useful unless the person has knowledge about the current task or
some method to determine why they must look right. Robotic observers learn-
ing from humans inevitably encounter the same obstacle: the robot can look
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right, but is unlikely to know the specific objects to which its attention is being
directed. Further, for the observer to direct its search towards relevant objects
or environment states, it must possess some method to segment the scene
and identify relevant subparts. The observer must then be able to associate
other factors with the scene, such as audio cues or task-dependent context,
and identify the most salient segment. The pursuit of all-purpose imitation
depends on having a model for saliency, i.e. a model of what components of
the environmental state are important in a given task. Ideally, saliency mod-
els would be task- or instructor-specific, representing the observer’s learned
context-dependent knowledge of how to allocate attentional resources.

Robotic systems, such as those of Scassellati and Demiris [25,11], are already
able to demonstrate impressive mimicry results. Both groups have separately
focused on tracking the gaze of a human instructor and mimicking the motion
of the instructor’s head in either a vertical or horizontal direction. Richly
contingent human-robot interaction comparable to infant imitation, however,
has proven much more difficult to attain. Price [22], for example, addresses the
problem of learning a forward model of the environment [16] via imitation (see
section 1.3), although the correspondence with cognitive findings in humans
is unclear. Other frameworks have been previously proposed for imitation
learning in machines [1,3,25], but many of these are not designed around a
coherent probabilistic formalism. Many of these approaches seem grounded
in deterministic responses to environmental states—an approach which fails
to capture the variability and error inherent in sensory input. Separately,
Triesch and colleagues have used robotic platforms to study shared attention
in infants [12], specifically examining the gaze following interaction between
children and robots.

In this paper, we present a Bayesian framework that combines bottom-up
attentional tracking with top-down saliency models to identify objects in a
scene. Our algorithms employ Bayesian inference because of its robustness
to noise and missing data, tractability under large data sets, and unifying
mathematical formalism. The robotic system described in this paper tracks a
human instructor’s gaze gestures to locate an object, then learns an instruc-
tor and task-specific saliency model. Our biologically-inspired, model-based
approach extends previous robotic gaze imitation results in three main ways:
i) it provides a Bayesian description of imitation in general, and gaze track-
ing in particular; ii) it incorporates infant imitation findings into a rigorous
algorithmic and model-based framework; and iii) the system learns simple,
context-dependent probabilistic models for saliency. Our results show the value
of a Bayesian approach to developing shared attention between humans and
robots.
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1.2 The Active Intermodal Mapping model

At the highest level, our model of human-robot interaction is based on the work
of Meltzoff and Moore, particularly the Active Intermodal Mapping (AIM)
hypothesis [20]. This hypothesis views infant imitation as a goal-directed,
“matching-to-target” process in which infants compare their own motor states
(derived from proprioceptive feedback) with the observed states of an adult
instructor. This comparison takes place by mapping both the internal propri-
oceptive states of the observer and the visual image of the instructor into a
single, modality-independent space. Mismatch in this modality-independent
space drives the motor planning system to perform corrective actions, bring-
ing the infant’s state in line with the adult’s. Fig. 1 juxtaposes the elements
of AIM and our system.

Other researchers have engaged in similar efforts to link infant development,
specifically AIM, to systems for developmental robotics [6,4,3].

1.3 Motor models and Bayesian action selection

Many robotic systems model the environment, whether using a static map
of an area or running a dynamic simulator of the world over time. Forward
and inverse models [16] are commonplace in studies of low-level motor control.
For example, Wolpert and colleagues have modeled paired forward and inverse
models for motor control and imitation, and investigated possible neurological
implementations [2,14]. Forward and inverse models also provide a framework
for using higher-level models of the environment to yield knowledge about
actions to take, given a goal. Probabilistic forward models predict a distri-
bution over future environmental states given a current state and an action
taken from that state. Probabilistic inverse models encode a distribution over
actions given a current state, desired next state, and goal state.

Learning an inverse model is the desired outcome for an imitative agent, since
inverse models select an action given a current state, desired next state, and
goal state. However, learning inverse models is difficult for a number of reasons,
notably that environmental dynamics are not necessarily invertible; i.e., many
actions could all conceivably lead to the same environmental state. In practice,
it is often easier to acquire a forward model of environmental dynamics to make
predictions about future state. By applying Bayes’ rule, it becomes possible to
rewrite a probabilistic inverse model in terms of a forward model and a policy
model (with normalization constant k) [23,24]:

P (at|st, st+1, sG) = kP (st+1|st, at) P (at|st, sG) (1)
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Actions can be selected in one of two ways given such an inverse model. The
observer can select the action with maximum posterior probability, or the
observer can sample from P (at|st, st+1, sG), a strategy known as “probability
matching” [17], which seems to be used in at least some cases by the brain.
Our present system uses only maximum a priori (MAP) estimates to select
actions, which suffices to demonstrate the value of our approach.

The present system does not learn a policy model, and instead assumes a
uniform prior over actions that (according to the forward model) will move the
Biclops’ motor state closer to the goal motor state. The system simply chooses
the MAP estimate of at during training and testing based on observing the
instructor’s head pose. The policy model is implemented using a grid-based
empirical distribution.
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Fig. 1. Active Intermodal Mapping hypothesis for infant imitation: (a)
The Active Intermodal Mapping (AIM) hypothesis of facial imitation by Meltzoff
and Moore [20] argues that infants match observations of adults with their own
proprioception using a modality-independent representation of state. Mismatch de-
tection between infant and adult states is performed in this modality-independent
space. Infant motor acts cause proprioceptive feedback, closing the motor loop. The
photographs show an infant tracking the gaze of an adult instructor (from [7]). (b)
Our probabilistic framework matches the structure of AIM. Transforming instruc-
tor-centric coordinates to egocentric coordinates allows the system to remap the
instructor’s gaze vector into either a motor action that the stereo head can exe-
cute (for gaze tracking), or an environmental state (a distribution over objects the
instructor could be watching) to learn instructor- or task-specific saliency.
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2 Probabilistic framework

The power of our approach to imitation lies in our probabilistic model of
shared attention. We have argued why shared attention is important for build-
ing robots that can imitate, but just as important is a model that is strongly
grounded in a rigorous probabilistic formalism. Ad hoc algorithms are not sat-
isfying solutions in that they provide no underlying intuition for the imitative
process. Nor are these approaches readily extensible or reviewable by the tools
of mathematics.

In this paper we present a Bayesian approach to shared attention, focusing
on the interaction between one instructor and one observer (although this can
readily be transformed in the case of multiple agents). We accomplish this
by presenting the observer with some set of objects with which the instructor
will interact. By watching the instructor at each time-step of this process, the
observer is then able to learn the saliency model of these objects, which it can
then apply to further interactions.

In this framework we provide a distinction between two sets of environmental
cues, attentional and saliency. Attentional cues provide information about the
instructor and the direction of their attention—it is easiest to think of these
as tracking the instructor’s body: gaze tracking, hand tracking, etc. Saliency
cues are best thought of as identifiers attached to the objects themselves: size,
color, texture, audio cues, etc. This distinction allows us to view interaction in
two stages: the attentional cues give rough estimates for the focus of attention,
whereas the saliency cues provide the ability to fine tune this focus. The use
of attentional cues to provide an initial rough estimate is detailed in section
3.

Let X be a discrete random variable representing the object to which the
instructor is attending. The observer can combine a learned saliency model S

with other attentional cues in the scene {A1, . . . , An} such as hand-tracking
or other body-cues. Here S represents a prior distribution over objects or
environment states O = {O1, . . . , Ok} given by the saliency cues attached to
each object . The true value of X can then be estimated using its MAP value,
the value maximizing the probability

X = argmax
X∈O

P (X|S,A1, . . . , An, O1, . . . , Ok).

These random variables can be encoded as a Bayesian network, as shown in
Fig. 2, which makes inference much more tractable. Using the properties of
such a network formulation we can then calculate the probability distribution
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Fig. 2. Model of Shared Attention: This Bayesian network models the inter-
actions of random variables that can be used to build shared attention. The set
of variables {O1, . . . , Ok} represent the saliency of each object given their inher-
ent saliency cues, while X represents the current state of attention, or where the
instructor is looking. The variable S denotes the underlying saliency model, a dis-
tribution over objects, and the set {A1, . . . , An} represents attentional cues such as
gaze or hand tracking.

of X given its Markov blanket, i.e.

P (X|S,A1...n, O1...k) = P (X|Blanket(X))

= P (X|Parents(X))
∏

Z∈Children(X)

P (Z|Parents(Z)) (2)

= P (X|S)P (A1|X) · · ·P (An|X), (3)

which scales linearly with the number of attentional cues and the complexity
of the saliency model.

Given no other information, the underlying saliency model S is not directly
observable. Imitation must in this case rely solely on the attentional cues,
with S uniformly distributed over objects. However, as time progresses dur-
ing some interaction, objects will be selected and the model updated so as
to approach the true saliency distribution. This model can also be stored, on
a per-instructor, per-task basis, allowing the use of previously learned infor-
mation. We perform this object selection using each object’s saliency cues, as
detailed in section 4.
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3 Using attentional cues

The process currently used to test our shared attention framework deals with
close interaction between a robotic observer and a human instructor. As such
we limit our attentional cues to a subset of the instructor’s body, specifically
gaze direction. Letting G denote the gaze vector of the instructor we can
substitute into Eqn. (3), yielding

P (X|S, G) = P (X|S)P (G|X). (4)

In this instance G is a 3-dimensional vector projected onto the 2-dimensional
image space. We can view this as a vector with some Gaussian noise, which
allows us to estimate P (G|X) by computing the likelihood that attention is
directed towards X given its Gaussian cloud.

The following section (3.1) details the algorithms used to track the gaze vector,
while section (3.2) gives a brief overview of the uses of multiple cues.

3.1 Gaze tracking

By tracking and imitating the gaze of an instructor the observer is able to
direct their own gaze to follow, in an attempt to attain shared attention. We
begin this process by learning a feature-based geometric model of the head
and use that to find a vector along the instructor’s line of sight—a method
based on work of Wu and Toyama [29]. This algorithm builds an ellipsoidal
model of points, so that each point maintains the probability of local image
features of the head (based on training images). Features are found in training
images using a large-scale Gaussian and rotation-invariant Gabor templates
at four different scales. Training is then done by building a model of the gaze
direction across many example images. Relations between features found in
testing images are then compared to ascertain the final directional vector.

One difficulty with this method is that it requires a tight bounding box around
the head in testing and in training images. In both instances we find the in-
structor’s head using a feature-based object detection framework developed
by Viola and Jones [27]. This framework uses a learning algorithm based on
AdaBoost to find efficient features and classifiers, and combines these classi-
fiers in a cascade that can quickly discard unlikely features in test images. We
use this set of algorithms because of their high detection rate and speed for
detecting faces: on a standard desktop it can proceed at over 15 frames per
second.
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Facial identification with this framework, however, is limited in the pan and tilt
angles that can still be recognized, plus or minus approximately 5–7 degrees.
In order to account for this we apply our algorithms to find the face position,
and continue to track the head across different movements. We apply the
Meanshift algorithm [10] to track the head outside of this window of valid
rotations. This is not a major limitation, as the observer also needs a signal
that they’ve caught the attention of the instructor: seeing eye-to-eye in this
case.

The observer thus begins tracking the instructor’s gaze when the instructor
looks at the observer, a traditional signal of attention. At this point the ob-
server can maintain the location of the instructor’s head via a tight bounding
box on the instructor’s face. This bounding box allows the observer to deter-
mine the instructor’s gaze angle, by using the previously learned head-position
model. Finally a simple Kalman filter can be used to find the most likely of
these gaze-vectors.

3.2 Extension to multiple cues

Because our process involves close interaction with the instructor, we are able
to limit our attentional cues to gaze tracking: whatever error is accumulated
in the tracking step can be corrected using saliency cues (see section 4). There
are, however, many applications in which these assumptions may not apply.
Consider, for example, a mobile robot guiding a museum tour: previous work
in this area has focused on touch-screen displays for interaction [8,26]. A robot
of this nature might be able to use hand and arm gestures, such as pointing,
to attend to specific artworks. Coupled with saliency features such as simple
audio keywords (e.g. “tell me about the Mona Lisa”) this could facilitate
complex human-to-robot interaction.

Our probabilistic framework, meanwhile, provides the flexibility needed to
accommodate multiple inputs. The output of each of these attentional signals
should be a vector in the image space with additive Gaussian noise. The joint
distribution can be found by convolving these various distributions, allowing
us to easily find the MAP vector.

4 Saliency cues

In humans, shared attention via gaze following bootstraps more complex tasks,
such as learning the names of objects that are the foci of attention and im-
itating manipulations of objects. Many sources of saliency can be used to
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establish shared attention, and our framework provides a simple mechanism
for combining these different sources. Our system employs a bottom-up at-
tentional algorithm, combined with various saliency cues to build a learned
model, giving an instructor-specific saliency prior over objects. This model is
then combined with a top-down prior imposed by the instructor’s attentional
cues, as described in the previous section, to yield a context-specific estimate
of the object most likely being gazed at by the instructor.

Our present system considers only one task: following the instructor’s gaze to
a single object. In this tracking task, the goal state sG is achieved when ob-
server and instructor have centered the same object in their respective visual
fields. If sG denotes a discrete-valued random variable, the distribution over
objects the instructor could be looking at is P (sG). Our system begins with
a single, generic model of saliency based on a biologically-inspired bottom-up
attentional algorithm developed by Itti and Koch [15]. This algorithm re-
turns a saliency “mask” (see Fig. 3(f)) where the grayscale intensity of a pixel
is proportional to saliency as computed from feature detectors for intensity
gradients, color, and edge orientation. The use of this algorithm allows inter-
esting subsets of the scene to be efficiently selected for higher level analysis
using other saliency cues. Such an approach is mirrored in the behavior and
neuronal activity of the primate visual system.

Thresholding the mask, then performing connected components on the thresh-
olded image produces a set of discrete objects the system considers as candi-
dates for sG. To these candidates we can then use and convolve the various
saliency cues, Si, which with normalization will give us the distribution over
objects. This distribution can then be combined with the attentional cues
described in section 3 to obtain the MAP object (see Fig. 3(ghi)). Once the
object has been determined, the system uses information about the object,
the saliency cues, to update the instructor-specific model as described below.
The final outcome of this process is a model that aims to identify, given a
set of objects, a distribution over which object the instructor considers most
salient to the task at hand.

As the system gathers more data on particular instructors, it builds up a
context-specific model of what each instructor considers salient. One approach
to this problem is to model saliency using simple features, such as color and
size, which are easily extracted from images. For such an approach we can
extract the size of each object and use the pixel values for color (in the YUV
color space, as this provides more robustness to lighting changes). Figure 3
shows an example of this approach during both training and testing.

For each instructor, we learn a different Gaussian mixture model in YUV color
space using the well known expectation maximization (EM) algorithm. In this
context the EM algorithm assumes that we know the parameters of the mixture
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model, and then infers the probability that each data point belongs to each
Gaussian cluster. Each mixture model is trained on object pixels segmented
using the bottom-up saliency method. Each training point pi in this model is
a vector of the form: pi = 〈ui, vi, zi,o〉, where ui and vi are the UV values of
pixel i, and where zi,o is the size of the object o (in pixels) from which pixel i

was drawn.

In testing, the system uses the learned model to predict the goal states for
specific instructors. The Gaussian mixture model yields a prior estimate on
which object, o, the system should look at (before the instructor’s attentional
vectors are inferred) based on pixels in connected components. The average
vector p over all Nx pixels in connected component x determines which Gaus-
sian cluster connected component x is drawn from. The maximum likelihood
estimate from this computation assigns a mixture component label co to the
object. The mixture model prior for Gaussian component co determines the a

a) b) c) d)
 .1        .3        .1        .4        .1  .1        .3        .1        .4        .1  .1        .3        .1        .4        .1  .1        .3        .1        .4        .1

.167   .336   .110     .220    .167 .114   .347   .114     .339    .086 .100   .305   .100     .395    .100
S=0 S=15 S=35 S=50

e)

.067

.200   .200   .200     .200    .200

.067.204
(.200) (.067)

.067 .264
(.267)

.264
(.267)

.067

(.067)
(.066)

(.066)

h) i)

f) g)

Fig. 3. Learned saliency prior: (a,b,c,d) The upper values give the true saliency
distribution. The lower values give the current estimate for this distribution, given
S samples. Progressing from (a) to (d) shows the estimate approaching the true
distribution as number of samples increases. (e) After training, we validate the
learned saliency model using a set of testing objects. Next to each testing object
is its estimated probability of saliency, with the true probability (according to the
instructor) shown in parentheses. (f) A neurally-plausible bottom-up algorithm [15]
provides a pixel-based, instructor-generic prior distribution over saliency, which the
system thresholds to identify potentially salient objects. (g) Thresholded saliency
map. (h) Intersection of instructor gaze vector and the table surface, with additive
Gaussian noise. (i) Combination of (g) and (h) yields a MAP estimate for the most
salient object in the training set (the blue wallet).
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priori probability that the instructor will gaze at object o, where C is the set
of Gaussian clusters in the mixture model and µc, Σc respectively denote the
mean and covariance matrix for cluster c :

co = argmax
c∈C

(

(

1

Nx

Nx
∑

i

pi − µc

)T

Σ−1
c

(

1

Nx

Nx
∑

i

pi − µc

)

)

, (5)

P (sG = o) = P (co) . (6)

The system then combines this prior likelihood with attentional cues as de-
scribed using our probabilistic model to determine an MAP estimate of where
to look in 3D space.

5 Human-robot interaction

Direct interaction between a robotic observer and human instructor provides
a perfect example of our approach to shared attention, and further, shows its
usefulness as a tool for imitation. The robotic system used throughout this
example is a Biclops active stereo vision head from Metrica, Inc. We learned a
probabilistic forward model for this system by fitting a linear regression model
to a set of 597 movements of the head. The model estimates encoder position
error (in degrees) given an initial state and an action taken from that state.
Acceleration was held to a constant 50 degrees/s2. A cross-validation set of
896 movements established that residual error in the regression model follows
a zero-mean Gaussian distribution.

5.1 Setup and gaze-tracking results

The setup for the following set of experiments involves an instructor and
robotic observer (hereafter referred to as the robot) set at opposite ends of a
table (shown in 4(a)). Initial tests within this framework focus on ascertaining
the error in our gaze-tracking algorithms. The tracker was first trained using
video sequences from two different instructors looking in known directions.
Once completed, the tracking algorithm was tested on in- and out-of-sample
instructors looking at two different positions on the table. Each different ses-
sion was recorded as a success if the robot correctly aligned its gaze in the di-
rection of the instructor’s gaze. These tests showed accuracy of approximately
90%, both for in- and out-of-sample data (details are shown in Fig. 4(b)).

As can be seen in Fig. 3(e), however, accurate tracking does not alleviate the
problems imposed by a cluttered scene. The next set of tests deal with this
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Subj. Succ. Tot. Accur.
one: 43 46 93.4%

two: 17 20 87.5%

three: 4 4 100.0%

64 70 91.4%

a) b)

Gaze−tracking results:

Fig. 4. Experimental setup: Testing of the framework and algorithms espoused
by this paper involves an interactive session between an instructor and a robotic
observer. During the test shown in (a) the observer tracks the instructor’s gaze to
objects on the table and attempts to identify the most salient object. The table
in (b) shows the accuracy of the gaze-tracking algorithm in distinguishing between
two locations, tested with three different subjects. Only the first of these subjects
is in the training set.

problem of ambiguity. The instructor and robot are still placed at opposite
ends of a table, but now objects are randomly arranged on the table. The in-
structor has some internal saliency model (unknown to the robot) and chooses
objects based on this model. Once an object has been chosen, the instructor
looks towards the object, and the robot must track the instructor’s gaze to
the table in an attempt to determine the most salient object.

5.2 System results

Once the robot has oriented to an object in the scene, we have the robot
“ask” the instructor whether they have found the correct object. This allows
us to track the accuracy of our system—as time progresses the robot should
correctly identify objects in fewer and fewer steps. Figure 5 plots the accu-
racy of our platform, where lower numbers represent more accurate object-
identification. The actual values plotted are the number of object hypotheses
proposed by the robot, i.e. the number of incorrect proposals plus 1. Each of
the plotted tests was performed over 5 trials, with the average value being
shown.

The first of these plots, (a), shows the accuracy of the robot using random
guesses to determine the object. The plot shown in (b) uses gaze-tracking
information, and a random guess over objects in the robot’s field of view.
Finally, the plot in (c) combines the information gained from gaze-tracking
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Fig. 5. Combined results: The above plots show the accuracy of our system at
identifying 10 different objects to which the instructor is directing their attention,
averaged over 5 trials. Plot a) shows the system using only random guesses as to
the object, while plot b) shows the inclusion of gaze information. Plot c) combines
learned saliency information with gaze tracking—beginning with a uniform prior
when no model is known.

and the current learned saliency model to propose the most likely object. It
should be noted that the final two plots align closely for the first 5 to 6 steps,
a trend which occurs as a result of how these trials were performed. The robot
begins each trial with no prior information as described in the previous section;
as such it is expected that both this approach and just gaze-tracking perform
with approximately the same accuracy. However, it can be seen that as time
progresses the saliency approach continues to improve, with steadily declining
error—while the approach using only gaze-tracking maintains the same level
of accuracy.
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6 Conclusion

The importance of imitation as a means to acquire knowledge and skills has
been recognized by a growing number of researchers in the robotics community.
Two such researchers include Breazeal and Scassellati who in [5] lay out an
approach to robotic imitation and outline the requirements for an imitative
system. They use saliency, both determined by an object’s inherent properties
(texture, color, etc) and by task context, to determine what to imitate in a
scene, and use prior knowledge about social interactions to recognize failures
and assist in fine-tuning their model of saliency. A similar system is put to
further use with Kismet [6] (and more recently with Leonardo [4]). Breazeal
and Scassellati’s results are impressive and their work has been important
in illustrating the issues that must be addressed to achieve robotic imitation
learning. Their work, however, lacks some features for performing complex
imitation tasks. The approach espoused by their work does not appear to
employ a single unifying framework or mathematical formalism for imitation.
Kismet’s attention seems deterministically driven, with fixed responses and
expressions, limiting its applicability in less controlled environments. This lack
of a unifying framework makes their system difficult to compare and contrast
with results from the cognitive literature.

Earlier research on head and gaze imitation has been performed by Demiris
et al [11]. This work, however, is limited to gaze imitation with no capacity
for shared attention; the system merely mimics the instructor’s head position
and makes no attempt to follow their gaze. The work of Nagai et al in [21]
more closely investigates joint attention in robotic systems, focusing on the
use of neural networks to learn a mapping between the instructor’s face and
gaze direction. This, however, presents a limited model of shared attention,
and making it difficult to include further information: hand gestures, audio
cues, etc. Our system, further, includes a Bayesian network model of shared
attention which allows for the inclusion of various sources of data.

This paper presents a Bayesian framework for imitation learning, and shows
how shared attention fits into the framework. The framework builds on Melt-
zoff and Moore’s AIM hypothesis for human imitative acts. We anticipate
extending our saliency learning and gaze tracking system to the HOAP-2 hu-
manoid platform in the near future. Our algorithmic framework is hardware-
agnostic, except for the forward model; instructor head pose estimation and
the prior model will not change under this platform. Once we learn the forward
dynamics of the humanoid’s head, gaze following and saliency model learning
will employ the same codebase as the Biclops head. This extension will in
turn enable more complex imitative tasks to be learned. We believe that this
method can be put to greater use in task-specific environments. Using the cur-
rent set of Lego

TM objects, this could be a task such as “build a fire truck”.
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Such a task would involve different sizes and shapes of building-blocks, with a
predominance of red blocks, allowing an easy-to-understand model of saliency
for the Biclops to learn. We also anticipate expanding our saliency learning
system to accommodate more attentional cues (such as auditory information
and pointing) and richer saliency models.
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