
Graphical Models for Planning and Imitation in Uncertain
Environments

Deepak Verma DEEPAK@CS.WASHINGTON.EDU

Rajesh Rao RAO@CS.WASHINGTON.EDU

Department of CSE,
University of Washington,
Seattle, WA 98195 USA.

Technical Report 2005-02-01, Department of CSE, UW, February, 2005

Abstract
We show that the problems of planning, policy learning, and goal-based imitation can be addressed within

a unified framework based on probabilistic inference in graphical models. Planning is viewed as probabilistic
inference of an action sequence in a Dynamic Bayesian Network (DBN), given an initial state and a desired
goal state. We describe how planning can be used to bootstrap the learning of goal-dependent policies by
utilizing feedback from the environment and a learned environment model. We demonstrate several differ-
ent strategies for plan execution and policy learning in the context of the standard navigation problem for a
stochastic maze environment. In contrast to conventional planning and policy learning methods, our approach
does not require a reward or utility function, although constraints such as shortest path to goal can be in-
corporated within the graphical model. Our results demonstrate that the approach can be used to handle the
challenging case of partially observable states (e.g., POMDPs). To illustrate the versatility of the approach,
we show that the same graphical model that was used for planning and policy learning can also be used for
inferring the goals of an observed teacher, for executing actions under uncertain goals, and for imitating the
teacher even when the demonstration by the teacher was incomplete.

1. Introduction

Two fundamental problems in AI are planning and policy learning. Planning involves computing a sequence
of actions that will take an agent from its current state to a desired goal state. While classical planning
typically dealt with deterministic environments, planning in uncertain environments has received considerable
attention in recent years [DW91, BG00]. A parallel line of research has focused on learning policies [Bly99,
BDH99] which prescribe the optimal action to take in any given state so as to maximize total future expected
reward. If a model of the environment is available, learning the optimal policy reduces to straightforward
dynamic programming (DP); in the absence of a model, methods from reinforcement learning [SB98, BT96]
such as TD-learning and Q-learning have proved useful.

In this paper, we show that the problems of planning and policy learning can solved in a unified manner
using inference in probabilistic graphical models. We demonstrate the applicability of the framework to
the problems of goal inference and imitation. The main contributions of this paper are: (1) An efficient
method for planning under uncertainty based on the most probable explanation (MPE) of hidden variables
in a graphical model (cf. [Att03]), (2) A planning-based method for learning optimal policies that does not
require an artificial reward structure to be imposed on the problem, (3) A new policy learning method for the
challenging case of partially observable MDPs (POMDPs), (4) Methods for inferring the goals of an observed
teacher, for acting under uncertain goals, and for goal-based imitation (offline and online) even in cases where
the teacher provides an incomplete demonstration.

1



2. Graphical Models for Planning and Policy Learning

Let ΩS be the set of states in the environment, ΩA the set of all possible actions available to the agent, and
ΩG the set of possible goals. We assume all three sets are finite. For the present paper, we assume that goals
represent states that the agent wants to reach. So each goal g represents a target state Goalg ∈ ΩS . At time t

the agent is in state st and executes action at. gt represents the current goal that the agent is trying to reach
at time t. Executing the action at changes the agent’s state in a stochastic manner given by the transition
probability P (st+1 | st, at), which is assumed to be independent of t i.e., P (st+1 = s′ | st = s, at = a) =
τs′sa.

Starting from an initial state s1 = s and a desired goal state g, the agent’s aim is to reach the goal state
by a series of actions a1:T , where T represents the maximum number of time steps allowed (the “episode
length”). Note that we do not require T to be exactly equal to the shortest path to the goal, just as an upper
bound on the shortest path length. We use a, s, g to represent a specific value for action, state, and goal
respectively. Also, when obvious from the context, we use s for st = s, a for at = a and g for gt = g. The
problem formulated above can be considered a special case of a Markov Decision Process (MDP) [BDH99]
if we choose a suitable reward function. As in the case of MDPs, the strategy to choose the optimal set of
actions is critically dependent on the observability of the state. There exist three cases of interest:

t+1a

t+1sts

ta

tr

to

t+1g
tg

t+1r

t+1o

t+1a

t+1sts

ta t+1a

t+1sts

ta

(c)

(b)(a)

Figure 1: (a) The standard MDP (or FOMDP) model: The dependencies between the nodes from time step t to t + 1

are represented by the transition probabilities and the dependency between actions and states is encoded by
the policy. (b) The No Observations MDP (NOMDP) model: The agent receives no observations and must
compute an entire action sequence through planning. Dotted line represents a possible dependence between
consecutive actions. (c) The POMDP model (with goal and “reached” nodes) used in this paper.

Fully Observable MDP (FOMDP or just MDP): The state st is fully observed. The agent needs to compute
a stochastic policy π̂t(a | s, g) that maximizes the probability P (sT+1 =Goalg | st = s, gt = g). For a large
time horizon (T�1), the policy is independent of t i.e. π̂t(a | s, g) =π̂(a | s, g) (a stationary policy). The
graphical model for this case is shown in Fig. 1a. Goals are not explicitly shown in this graphical model
because there is typically either only a single goal state or goal information is encoded in the reward model.
Non Observable MDP (NOMDP): In this case, the state st cannot be observed and the only information
available to the agent is the initial state. The agent thus needs to compute an optimal plan, i.e.,a sequence of
actions â1:T that maximizes the probability P (sT+1 = Goalg | s1 = s, a1:T ). Assuming uniform prior over

2



actions this is same as maximizing P (a1:T | s1 =s, gt =g). Fig. 1b shows the graphical model for NOMDPs.
We use the algorithm in [Att03] to compute the optimal plan for NOMDPs. This algorithm is also applicable
if action at is conditioned on the previous action at−1 as given by P (at | at−1) (dotted line in Fig. 1b). For
the present paper, we set P (at | at−1) to uniform probabilities.
Partially Observable MDP (POMDP): In this case, the state st is hidden but it is possible to observe some
aspects of it. Given the current state st =s, an observation o is produced with the probability P (ot =o | st =
s) = ζso. In this paper, we assume the observations are discrete and drawn from the set ΩO , although the
approach can be easily generalized to the case of continuous observations (as in HMMs, for example). We
extend the POMDP model to include a goal variable gt and a “reached” variable rt, resulting in the graphical
model in Fig. 1c. The goal variable gt represents the current goal the agent is trying to reach while the variable
rt is a boolean variable that assumes the value 1 whenever the current state equals the current goal state and 0
otherwise. In this paper, we use rt to help infer the shortest path to the goal state (given an upper bound T on
path length); this is done by constraining the actions that can be selected once the goal state is reached (see
next section). Note that rt can also be used to model the switching of goal states (once a goal is reached) and
to implement hierarchical extensions of the present model. The current action at now depends not only on
the current state but also on the current goal gt, and whether we have reached the goal (as indicated by rt).
The FOMDP model is obtained as a special case of this model when ΩO = ΩS , ζso = δ(s, o), and there is a
single goal g.
The Maze Domain: To illustrate the proposed approach, we use the standard stochastic maze domain that
has been traditionally used in the MDP and reinforcement learning literature [SB98, Att03]. Figure 2 shows
the 7× 7 maze used in the experiments. Solid squares denote a wall. There are five possible actions:
up,down,left,right and stayput. Each action takes the agent into the intended cell with a high
probability. This probability is governed by the noise parameter η, which is the probability that the agent will
end up in one of the adjoining (non-wall) squares or remain in the same square. For example, for the maze in
Fig. 2, P ([3, 5] | [4, 5], left)=η while P ([4, 4] | [4, 5], left)=1− 3η (we use [i,j] to denote the cell in
ith row and jth column from the top left corner).

3. Planning and Plan Execution Strategies

In this section, we investigate solutions to the problem of planning an action sequence given the general
graphical model in Fig. 1c. This would be used to boot strap policy learning. For simplicity, we assume full
observability (ζso =δ(s, o)), although the solution generalizes easily to the partially observable case. We also
assume that the environment model τ is known (the problem of learning τ is addressed in the next section).
The problem of planning can then be stated as follows: Given a goal state g, an initial state s, and number of
time steps T , what is the sequence of actions â1:T that maximizes the probability of reaching the goal state?
The maximum a posteriori (MAP) action sequence is:

â1:T =argmax
a1:T

P (a1:T | s1 =s, sT+1 =Goalg) (1)

Planning can thus be viewed as a probabilistic inference problem over a Dynamic Bayesian Network (DBN)
[Att03]. The exact solution to inference of a subset of hidden variables in a Bayesian Network is known
to be NP-complete [Coo90]. This problem is also a special case of solving a NOMDP problem with a
specific reward function, an NP-complete problem in its most general form [PT87]. An efficient solution
for a specific case was proposed recently by [Att03], but the approach does not generalize easily to arbitrary
graphical models.

We propose a more tractable solution, namely, computing the most probable explanation (MPE) for a
graphical model, given a set of known variables. This is a straightforward inference problem computable
using standard techniques (such as the junction tree algorithm used for the results in this paper) and gener-
alizes easily to arbitrary graphical models. When applied to the graphical model in Fig. 1c, our proposal for
planning amounts to computing:

ā1:T , s̄2:T+1, ḡ1:T , r̄1:T = argmax P (a1:T , s2:T , g1:T , r1:T | s1 =s, sT+1 =Goalg) (2)

3



Note that there may exist cases where ā1:T 6= â1:T . However, the MPE-based plan is typically a good
approximation to the MAP plan, is efficiently computable, and provides flexibility by allowing arbitrary
graphical models. More importantly, the MPE-based plan can also be used to learn optimal policies, as
described in section 4.

When using the MPE method, the “reached” variable rt can be used to compute the shortest path to the
goal. For P (a | g, s, r), we set the prior for the stayput action to be very high when rt = 1 and uniform
otherwise. This breaks the isomorphism of the MPE action sequences with respect to the stayput action,
i.e., for s1 =[4,6], goal=[4,7], and T = 2, the probability of right,stayput becomes much higher
than that of stayput,right (otherwise, they have the same posterior probability). Thus, the stayput
action is discouraged unless the agent has reached the goal. This technique is quite general, in the sense that
we can always augment ΩA with a no-op action and use this technique based on rt to push the no-op actions
to the end of a T -length action sequence for a pre-chosen upper bound T .

 1   2

 3

 4

 5  6  7  8

 9 10 11 12

(c) ExcuteAndVerify

 1

 2   3

 4

 5  6  7  8

 9 10 11 12 13

(d) Greedy/Local

0.421

0.573 0.690

(a) Example Plans

 1

 2

  3

 4   5  6  7

  8  9 10 11

 12

13

14 15 16 17

18 19 20 21 22

(b) PlanAndExecute

Figure 2: Planning and Action Selection: (a) shows three example plans (action sequences) computed using the MPE
method. The plans are shown as colored lines capturing the direction of actions. The numbers denote proba-
bility of success of each plan. The longer plans have lower probability of success as expected. (b) Example
of a path followed the agent when utilizing the Plan-and-Execute strategy. Numbers denote states (locations)
visited by the agent. (c) and (d) Representative paths of the agent when executing the Execute-and-Verify and
Greedy/Local strategies respectively.

The success of a plan is very sensitive to noise in the environment, as captured by the transition proba-
bilities τ . A plan may fail when a single action in the plan “fails” (i.e., results in an unexpected state). This
becomes more likely as plan length increases (see Fig. 2a). To examine this effect, we conducted the fol-
lowing experiment1: Starting from each of the valid locations in Fig. 2a, we computed the MPE plan ā1:T to

1. This experiment is similar to the one in [Att03] but since the maze structure and goal state were not described in that paper, our
results cannot be compared to the results reported therein.

4



10
-3

10
-2

10
-1

0

10

20

30

40

50

Noise η

A
vg

. n
um

be
r 

of
 S

te
ps

Action Selection Strategies

PlanAndExecute
GreedyLocal
ExecuteAndVerify

Figure 3: Comparison of Three Action Selection/Control Strategies: The plots show average number of steps taken
to reach the goal state as a function of noise η for three different control strategies (see text). Each data point
was computed by averaging over 500 runs.

reach the shaded goal location ([4,7]). For each such plan, we computed the the probability of reaching the
goal state at or before time T + 1 and averaged it over all initial locations. For noise parameter η=0.02, the
average probability of reaching the goal equals 0.619. It drops to 0.155 for η=0.1. The corresponding num-
bers for the MAP plan â1:T are 0.633 and 0.470, respectively. This suggests that the MPE method produces
results comparable to the MAP method in the low noise regime while the MAP planning method is clearly
better when the noise levels are high. However, when the noise levels are high, the probability of success
becomes quite low and a policy-based method for reaching the goal state may be preferable (see section 4).

If the state is observable at each time step, an alternative to planning an entire action sequence a priori is
to compute the MAP action at each time step based on the current state:

ãt = argmax
at

P (at | st =s, sT+1 =Goalg) (3)

Eq. 3 can be efficiently computed by calculating the marginal probability for at, a standard computation in
inference engines for graphical models.

Given the above algorithms for computing actions, we consider three action selection and control strate-
gies for reaching a goal state:

• Plan-and-Execute (“open loop” control): Execute the MAP or MPE plan (â1:t or ā1:T ). If the goal
state is not reached, start with the current state as the new initial state and recalculate a new plan.
Repeat until the goal state is reached. This constitutes an “open loop” control strategy where feedback
from the environment is precluded during action execution. For the results discussed below, we used
the MPE plan in the implementation of this strategy.

• Greedy (Local): At each time step, execute ãt as given by Eq. 3. Repeat until the goal state is reached.

• Execute-and-Verify (“closed loop” control): Compute the MPE plan and state sequence ā1:T , s̄2:T

using equation 2. At time step t, execute āt and compare the new state so
t+1 with the predicted state

s̄t+1. If the two states do not match, recompute the MPE sequences starting from so
t+1 and repeat. This

strategy does not wait until the entire plan is executed before replanning (as in Plan-and-Execute). It
also does not necessarily require inference at each time step as in the Greedy method.

Results: We compared the three action selection/control strategies in terms of the average number of time
steps taken to reach a fixed goal location from random initial locations. A uniform prior was used for P (a1:T ).
As seen in Figure 3, while the Greedy and Execute-and-Verify strategies scale gracefully with increasing noise

5



η, the Plan-and-Execute method takes exponentially more steps to reach the goal state because it requires that
all actions succeed, the probability of which goes down exponentially (< (1−η)PathLength) with increasing
η. This is consistent with the intuition that Plan-and-Execute is a poor strategy for noisy domains where
plans are prone to failure and where closed-loop strategies perform better. The Greedy and Plan-and-Execute
methods give identical results in this experiment because for the maze problem, both strategies reduce to
finding the shortest path to the goal state, resulting in the same action for a given state. However, there are
cases where the Greedy method may not necessarily compute a globally optimal action (see the Appendix for
an example).

4. Policy Learning

Executing a plan in a noisy environment may not always result in the goal state being reached. However, in
the instances where a goal state is indeed reached, the executed action sequence can be used to bootstrap the
learning of an optimal policy π̂(a | s, g), which represents the probability for action a in state s when the
goal state to be reached is g. We define optimality in terms of reaching the goal using the shortest path. Note
that the optimal policy may differ from the prior P (a|s, g) which would count all actions executed in state s

for goal g, regardless of whether the plan was successful.
For policy learning, the MPE planning method (Eq. 2) is preferable over the MAP method (Eq. 1)

of [Att03]. This is because each individual action ât in a MAP plan is chosen so as to maximize the
probability of the entire sequence a1:T succeeding. In other words, ât is the optimal action to take for
a specific belief distribution obtained after executing â1:t−1 and to be followed by ât+1:T . As a result,
ât might not be the optimal local action given a particular state. For example, if s1 =[3,5] and the
goal is [4,7], the MAP plan for T = 5 is down,right,right,right,right2 while MPE plan is
down,right,right,stayput,stayput. The MPE plan thus produces actions that are consistent
with the optimal actions to take in a given state. In addition, we use the Plan-And-Execute method rather than
the Greedy Method as the latter might yield actions that are not consistent with the globally optimal policy
(see the Appendix for details).
MDP Policy Learning: Algorithm 1 shows a planning-based method for learning policies for an MDP (both
τ and π are assumed unknown and initialized to a prior distribution, e.g., uniform). The agent selects a random
start state and a goal state (according to P (g1)), infers the MPE plan ā1:T using the current τ , executes it, and
updates the frequency counts for τs′sa based on the observed st and st+1 for each at. The policy π̂(a | s, g)
is only updated (by updating the action frequencies) if the goal g was reached. To learn an accurate τ , the
algorithm is biased towards exploration of the state space initially based on the parameter α (the “exploration
probability”). α decreases by a decay factor γ (0<γ <1) with each iteration so that the algorithm transitions
to an “exploitation” phase when transition model is well learned and favors the execution of the MPE plan.
POMDP Policy Learning: In the case of partial observability, Algorithm 1 is modified to compute the
plan ā1:T based on observation o1 = o as evidence instead of s1 = s in Eq.2. The plan is executed
to record observations o2:T+1, which are then used to compute the MPE estimate for the hidden states:
s̄o
1:T+1

, ḡ1:T , r̄1:T+1 = argmax P (s1:T+1, g1:T , r1:T+1 | o1:T+1, ā1:T , gT+1 =g). The MPE estimate s̄o
1:T+1

is then used instead of so
1:T+1

to update π̂ and τ .
Experiments: We tested the above algorithm in the maze domain with η = 0.02 and three goal locations:
[4,7], [2,7] and [1,2]. The prior P (g1) was set to uniform probabilities, with α initialized to 1 and
γ = 0.98. When computing the MPE plan during policy learning, the current policy π̂(a | s, g) was not
substituted in the graphical model of Fig. 1c (a uniform P (a|s, g) was assumed). This helped ensure that
exploration was unbiased. For the POMDP case, we focused on learning π̂ and assumed τ was given. We used
P (ot | st) ∝ e−3‖st−ot‖ if ot is valid where ‖st−ot‖ is the Manhattan distance between the observation ot

and state st on the maze. This yields about 0.85 probability of generating st as ot and 0.15 distributed across
nearby cells.

2. To see why, consider the situation in which â2 or â3 fails.

6



Algorithm 1 Policy learning in an unknown environment

1: Initialize transition model τs′sa, policy π̂(a | s, g), α, and numTrials.
2: for iter = 1 to numTrials do
3: Choose random start location s1 based on prior P (s1).
4: Pick a goal g according to prior P (g1).
5: With probability α:
6: a1:T = Random action sequence.
7: Otherwise:
8: Compute MPE plan as in Eq.2 using current τs′sa.

Set a1:T = ā1:T

9: Execute a1:T and record observed states so

2:T+1.
10: Update τs′sa based on a1:T and so

1:T+1.
11: If the plan was successful, update policy π̂(a | s, g) using a1:T and so

1:T+1.
12: α=α×γ

13: end for

10
1

10
2

10
3

0

30

60

90

120

150

180

E
rr

or

Iteration

(a)

Error in P(s
t+1

|s
t
,a

t
)

Error in policy

(b)

10
1

10
2

10
3

0

30

60

90

120

150

180

E
rr

or

Iteration

(c)

Error in policy

(d)

Figure 4: Learning Policies for an MDP and a POMDP: (a) shows the error in the transition model and policy w.r.t
the true transition model and optimal policy for the maze MDP. (b) The optimal policy learned for one of the
3 goals. (c) and (d) show corresponding results for the POMDP case (the transition model was assumed to be
known). The long arrows represent the maximum probability action while the short arrows show all the high
probability actions when there is no clear winner.

Results: Figure 4a shows the error in the learned transition model and policy as a function of the number of
iterations of the algorithm. Error in τs′sa was defined as the squared sum of differences between the learned
and true transition parameters. Error in the learned policy was defined as the number of disagreements
between the optimal deterministic policy for each goal computed via policy iteration and argmax

a
π̂(a |

7



s, g), summed over all goals. Both errors decrease to zero with increasing number of iterations. The policy
error decreases only after the transition model error becomes significantly small because without an accurate
estimate of τ , the MPE plan is typically incorrect and the agent rarely reaches the goal state, resulting in little
or no learning of the policy. Figs. 4b shows the maximum probability action argmax

a
π̂(a | s, g) learned for

each state (maze location) for one of the goals. It is clear that the optimal action has been learned by the
algorithm for all locations to reach the given goal state. The results for the POMDP case are shown in Fig. 4c
and d. Only policy error is plotted as the transition probabilities are given. Like the MDP case, the optimal
policy is learnt and Fig. 4c shows the maximum probability action. As can be seen, the approach learns the
right policy even in case of partial observability.

5. Inferring Goals and Goal-Based Imitation

Consider a task where the agent gets observations o1:t from observing a teacher and seeks to imitate the
teacher. We model teacher observation as a partially observable MDP (POMDP) and use P (ot = o | st =
s) = ζso in Fig. 1c with ζso same as in Section 4. Also, for P (a|s, g, rt = 0), we use the policy π̂(a | s, g)
learned as in the previous section.3 The goal of the agent is to infer the intention of the teacher given a
(possibly incomplete) demonstration and to reach the intended goal using its policy (which could be different
from the teacher’s optimal policy). Using the graphical model formulation the problem of goal inference
reduces to finding the marginal P (gT | o1:t′). Imitation is accomplished by choosing the goal with the
highest probability and executing actions to reach that goal.

Fig. 5a shows the results of goal inference for the set of noisy teacher observations in Fig. 5b. The
three goal locations are indicated by red, blue, and green squares respectively. Note that the inferred goal
probabilities correctly reflect the putative goal(s) of the teacher at each point in the teacher trajectory. In
addition, even though the teacher demonstration is incomplete, the imitator can perform goal-based imitation
by inferring the teacher’s most likely goal as shown in Fig. 5c.

6. Online Imitation with Uncertain Goals

Now consider a task where the goal is to imitate a teacher online (i.e., simultaneously with the teacher). The
teacher observations are assumed to be corrupted by noise and may include significant periods of occlusion
where no data is available. The graphical model framework provides an elegant solution to the problem
of planning and selecting actions when observations are missing and only a probability distribution over
goals is available. The best current action can be picked using the marginal P (at | o1:t), which can be
computed efficiently for the graphical model in Fig. 1c. This marginal is equal to

∑
i P (at|gi, o1:t)P (gi|o1:t),

i.e., the policy for each goal weighted by the likelihood of that goal given past teacher observations, which
corresponds to our intuition of how actions should be picked when goals are uncertain.

Fig. 6a shows the inferred distribution over goal states as the teacher follows a trajectory given by the
noisy observations in Fig. 6b. Initially, all goals are nearly equally likely (with a slight bias for the nearest
goal). Although the goal is uncertain and certain portions of the teacher trajectory are occluded4, the agent
is still able to make progress towards regions most likely to contain any probable goal states and is able to
“catch-up” with the teacher when observations become available again (Fig.. 6c).

7. Conclusions

This paper proposes the use of graphical models for addressing a set of important problems including plan-
ning, policy learning, goal inference, and imitation within a single unified framework. We demonstrated the

3. A more versatile approach worthy of further investigation is to learn and use teacher-specific policies for imitation.
4. We simulated occlusion using a special observation symbol which carried no information about current state, i.e., P (occluded |

s)=ε for all s (ε � 1)

8



2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

G
oa

l P
ro

b=
 P

(G
T
 | 

O
1:

t)

t

(a) Goal inference

 Goal 1 [4,7]
 Goal 2 [1,2]
 Goal 3 [2,7]

 1

 2   3

 4

 5   6

 7  8  9  10 11

12

(b) Teacher Observations (c) Imitator States

 1

 2

 3  4  5  6

 7  8  9 10

Figure 5: Goal Inference and Goal-Based Imitation: (a) shows the goal probabilities inferred at each time step from
teacher observations. (b) shows the teacher observations, which are noisy and include a detour while en route
to the red goal. The teacher demonstration is incomplete and stops short of the red goal. (c) The imitator infers
the most likely goal using (a) and performs goal-based imitation while avoiding the detour (The numbers t in
a cell in (b) and (c) represent ot and st respectively).

viability of our approach in a simple stochastic maze navigation task. A major advantage of the proposed
approach is its ability to handle partial information, especially the challenging case of POMDPs.

Our approach builds on the proposals of several previous researchers. It extends the approach of [Att03]
from planning in a traditional state-action Markov model to a full-fledged graphical model involving states,
actions, and goals with edges for capturing conditional distributions denoting policies. The indicator variable
rt used in our approach is similar to the ones used in some hierarchical graphical models [TMK04, FST98,
BPV04]. However, these papers do not address the issue of action selection or planning. The proposed
approach also extends a previous Bayesian model for imitation proposed in [RSM04], which assumed the
availability of the complete teacher trajectory during demonstration and did not address the issue of planning.

Although our initial results are encouraging, several important questions remain. First, how well does
the proposed approach scale to large-scale real-world problems? The relatively small state space of the
maze navigation task greatly simplifies the problem of learning the environment model and the policies for
various goal states. For larger state spaces, we intend to explore hierarchical extensions of the current model,
potentially allowing planning at multiple time scales and policy learning at multiple levels of abstraction. A
second line of research actively being pursued is the investigation of graphical models for continuous state
and/or action spaces. Clearly, applications such as controlling a robotic arm or maintaining balance in a biped
robot are better expressed in the continuous domain. We expect the insights gained from the current discrete
state space model to be extremely helpful in formulating graphical models for planning and policy learning
in continuous state spaces.

9



2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

G
oa

l P
ro

b=
 P

(G
T
 | 

O
1:

t)

t

(a) Goal inference

 Goal 1 [4,7]
 Goal 2 [1,2]
 Goal 3 [2,7]

 1 2 6   7

 8

 9

10 11 14

15 16 17

(b) Teacher Observations

 1 2 3 4 5 6

 7

 8

 9

10 11 12 13 14 15

16 17 18 19

(c) Online Imitator States

Figure 6: Online Imitation with Uncertain Goals: (a) shows the goal probabilities inferred by the agent at each time
step for the noisy teacher trajectory in (b). (b) Observations of the teacher. Missing numbers indicate times at
which the teacher was occluded. (c) The agent is able to follow the teacher trajectory even when the teacher
is occluded based on the evolving goal distribution in (a).

References

[Att03] H. Attias. Planning by probabilistic inference. In Proceedings of the 9th Int. Workshop on AI and Statistics,
2003.

[BDH99] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and computational
leverage. Journal of AI Research, 11:1–94, 1999.

[BG00] B. Bonet and H. Geffner. Planning with incomplete information as heuristic search in belief space. In Proc.
6th International Conf. on Artificial Intelligence Planning and Scheduling, pages 52–61, 2000.

[Bly99] J. Blythe. An overview of planning under uncertainty. AI Magazine, 20(2):37–54, 1999.

[BPV04] H. Bui, D. Phung, and S. Venkatesh. Hierarchical hidden Markov models with general state hierarchy. In
AAAI 2004, 2004.

[BT96] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

[Coo90] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artif.
Intell., 42(2-3):393–405, 1990.

[DW91] T. L. Dean and M. P. Wellman. Planning and control. Morgan Kaufmann Publishers Inc., 1991.

[FST98] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden Markov model: Analysis and applications. Mach.
Learn., 32(1):41–62, 1998.

[PT87] C. Papadimitriou and J. N. Tsisiklis. The complexity of Markov decision processes. Math. Oper. Res.,
12(3):441–450, 1987.

[RSM04] R. P. N. Rao, A. P. Shon, and A. N. Meltzoff. A Bayesian model of imitation in infants and robots. In Imitation
and Social Learning in Robots, Humans, and Animals. Cambridge University Press, 2004.

10



[SB98] R. S. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 1998.

[TMK04] G. Theocharous, K. Murphy, and L. P. Kaelbling. Representing hierarchical pomdps as dbns for multi-scale
robot localization. ICRA, 2004.

Appendix A. Sub-optimality of the Greedy Method

We presented three action selection strategies in the Section 3. We used the Plan-And-Execute strategy for
learning the optimal policy. One might be tempted to think that an optimal policy can be easily learned by
simply calculating the greedy action ã for each possible s (with T �1) and setting π̂(s)= ã. However, such
a strategy may yield sub-optimal results. The greedy action is chosen so as to maximize the probability of
success over all possible futures. It makes no assumption about potential optimal action(s) being executed
after ã1 and hence sums over all possibilities. An optimal policy, on the other hand, tries to find an action for
s which when followed by other optimal actions, maximizes the expected probability of success. To illustrate
the point, consider the scenario outlined in Fig.7:

2P

S 1P G1A

2A 1,2A

1,2A

1A

2A

1,2ASink

Figure 7: Counterexample for showing that the Greedy Action ã can be different from the optimal policy action
π̂(s).

There are five states: S, G, P1, P2 and Sink. S is the start state s1 and G is the goal state. (sT+1 =G).
The transition probability table τ is defined as follows:

• For the start state S: τP1SA1
=1; and τP2SA2

=1 (Remember that τs′ss =P (s′|s, a))

• Both G and Sink are “absorbing” states i.e. τssa =1 for s ∈ {G, Sink}, for all a.

• For state P1, τGP1A1
=1 and τSinkP1A2

=1

• For state P2, τGP2A1,2
=β and τP2P2A1,2

=1 − β.

Consider the optimal action for the start state S. The globally optimal policy action π̂(S)=A1. However,
the greedy action is ã1 = A2 (as long as β is not too low). To see why, consider the case where T = 2 i.e.,
s1 = S, s3 = G. The greedy method computes the likelihood of the action a1 = A1 or A2 according to
P (a1|s1 = S, s3 = G). Assuming a uniform prior over actions, we get:

P (a1|s1 = S, s3 = G) ∝ P (a1, s1, s3)

=
∑

a2,s2

P (s1, a1, s2, a2, s3)

11



= P (s1)P (a1|s1)
∑

a2,s2

P (s2|s1, a1)P (a2|s2)P (s3|s2, a2)

∝
∑

s2

P (s2|s1, a1)
∑

a2

P (a2|s2)P (s3|s2, a2)

Now, P (a2|s2) = 0.5 for all s2, a2 and P (s2|s1, ai) = δ(s2, Pi) for i = 1, 2. So the above expression
simplifies to

P (a1 = Ai|s1 = S, s3 = G) ∝
∑

a2

P (s3 = G|Pi, a2)

For a1 = A1 the above term reduces to 1 and for a2 = A2, the above term reduces to 2β since the goal is
reached by both a2 = A1 and a2 = A2 with probability β. So if β > 0.5, ã1 = A2 else ã1 = A1. Where
as the optimal policy π̂(s1) is always A1 as long as β < 1. The discrepancy arises ,because, in the greedy
method, to compute merit of a1 =A1, it has to sum over the possibility that a2 might be A2 which takes it to
the Sink. Where as, while computing the optimal policy , the computation is done with the information that
π̂(P1) = A1 and hence prefers as A1 for π̂(S) = A1 as there is some probability (1 − β) of not reaching G

when taking a1 =A2.

12


