
A Packet Classification Algorithm for Multiple
Look-up Engines

Douglas Low, Jean-Loup Baer
Department of Computer Science and Engineering

University of Washington
{douglas, baer}@cs.washington.edu

Technical Report UW-CSE-2005-02-02

February 2005

Abstract— We present a packet classification algorithm
suitable for implementation on programmable network
processors (NP). The current trend for NPs is to have sev-
eral microengines with limited local storage capabilities.
The proposed algorithm is therefore decomposable into sev-
eral modules, both in terms of computation and of the in-
dexing data structure for classification purposes. We show
how this decomposition can lead to an efficient pipelined
process and how the decomposition of the index structure
can result in mapping into local storage the most often ac-
cessed and search intensive parts of the index.

The algorithm is tested on 3 Access Control Lists with
between 750 and 2300 rules. We show possible trade-offs
between local fast storage and number of memory accesses.
We compare storage and memory accesses with the same
metrics for a state-of-the-art algorithm using a monolithic
data structure.

I. INTRODUCTION

Internet Protocol (IP) packet classification is the pro-
cess of identifying the highest priority rule which matches
a packet header from a given set of rules. These rules
consist of a tuple of patterns which are matched against
several fields of a packet header. IP forwarding, i.e.,
longest prefix match of a destination address [1] or one-
dimensional classification, used to be the main task of
core Internet routers. Now multi-dimensional classifica-
tion is required to support applications such as differen-
tiated services [2], [3] and load balancing, which pro-
vide guarantees on packet transmission throughput and
latency, and firewalls, which deal with network secu-
rity. The growing speed of communication and the dic-
tum that there should be “no queuing before header pro-
cessing” [3] requires efficient algorithms to perform these
applications. Software implementations of these algo-

rithms are favored over hardware approaches, since Appli-
cation Specific Integrated Circuits (ASICs) lack flexibility
and Ternary Content Addressable Memories (TCAMs) [4]
lack scalability.

In this paper we present a packet classification algo-
rithm suitable for implementation on programmable net-
work processors (NP), which is the architecture of emerg-
ing router platforms. The common structure of an NP ar-
chitecture is a multiprocessor on a chip, with a control
processor and multiple microengines. Our algorithm uses
the control processor to preprocess data structures needed
for packet classification, while the microengines handle
the various parts of the classification process. The micro-
engines have a limited amount of control store and fast lo-
cal storage (SRAM). The local storage may be shared with
other microengines and direct communication is possible
with a subset of all the microengines. There is also slower
memory to store the set of packet classification rules. To
this end, this paper concentrates on designing a packet
classification algorithm which may be decomposed into
parallel or pipelined stages, with each stage assigned to a
microengine. During a stage a microengine accesses rela-
tively small data structures which fit into fast local storage
and accesses slow memory a bounded number of times.
The worst-case performance for packet classification is
the worst-case time of the slowest stage.

We formally define in Section II the set of rules, also
called a classifier, the problem that packet classification
solves, the performance metrics of interest and conditions
we place on the solution. We discuss previous work in
Section III and note that although the packet classifica-
tion problem can be posed in terms of multidimensional
computational geometry, the bounds on storage and speed
require using heuristics which take advantage of the struc-



ture of the sets of rules. We examine three rule sets to
exemplify typical structures observed.

Our algorithm is presented in Section IV. Similar to
several other algorithms, we treat the prefix matches used
for source and destination address fields differently from
the rest of the fields, namely source and destination ports
and protocol. We have two new contributions for address
prefix matches. The first contribution is in our handling of
rules with different prefix lengths and wildcards. Dividing
rules into “long” prefixes, “short” prefixes and wildcards
allows for significant memory savings. The second contri-
bution is how we prune the set of possible rule matches by
performing partial matches on source and destination ad-
dress fields in alternation, which generates a set of small
data structures (hash tables). We describe the preprocess-
ing of the set of rules to construct our index data structure
and the classification process for an incoming packet. We
sketch how to update the index in real-time. Building the
data structure takes an appreciable amount of time as com-
pared to classifying a packet but this is mitigated by only
needing to build the data structure once.

In Section V we show how our algorithm lends itself to
mapping onto several microengines. Using three rule sets
mentioned above, we derive the amount of local storage
required as well as the timing of the search operation, in
terms of the numbers of fast and slow memory accesses.
In Section VI we compare storage and memory accesses
with the Extended Grid of Tries (EGT) algorithm, which
is monolithic.

We summarize our contributions and results in Sec-
tion VII and suggest further areas for study.

II. DEFINITIONS, METRICS AND CRITERIA

A. Definition

A classifier is a set of N rules, S = R1, R2, . . . , RN ,
where each rule has k fields or dimensions corresponding
to k fields in a packet header. For each dimension a rule
prescribes either an exact match, a prefix match, a range
match or a wildcard (any value is a match). Each rule
has a priority and an associated action. Table I shows an
example classifier, although for brevity we omit the action
for a rule and the priority is implicit in the rule number,
with lower rule numbers having higher priority.

The packet classification process consists of finding the
rule Ri of highest priority that matches the packet header
in all dimensions. Then the action associated with the rule
is taken.

In this paper we consider only 5-dimensional classifiers
where the first two fields are the source and destination ad-
dresses with exact or prefix matches, the third and fourth
fields are source and destination ports with either exact

or range matches, and the last field is a protocol number
which requires an exact match.

B. Performance Metrics and Solution Criteria

Packet classification is a real-time task, i.e. there are
constraints on the time that can be allotted to it. The
performance metric of choice is the worst-case classifi-
cation time for an “adversary” packet. The processor time
to search data structures that are used as indices for the
dimensions of the classifier is often negligible compared
to the time to access them, thus worst-case time is gen-
erally translated into worst-case number of memory ac-
cesses. However the number of memory accesses can be
reduced by increasing the size of the data structures while
reducing their depth, i.e. worst-case series of memory ac-
cesses. In order to keep the data structures of reasonable
size e.g. the size of a second or third level cache, the mem-
ory usage cannot be unduly increased. Memory size is also
an important performance metric.

We shall see in the next section that most of the efficient
software algorithms require extensive preprocessing and
often rather complex data structures. An important crite-
rion for some packet classifiers is that it should be possible
to update rules quickly e.g. to block packets from particu-
lar IP addresses when under a denial of service attack. An
attribute of the packet classifier is thus online updates.

Our algorithm is geared towards network proces-
sors that have several microengines with associated fast
SRAM on-chip and slower DRAM off-chip. The algo-
rithm should take advantage of this architecture i.e. it
should be modular. Such modularity encompasses de-
composition into several processes which can be per-
formed concurrently and/or in a pipelined manner. A sec-
ond aspect of modularity is that the microengines assigned
to the processes only need to access a portion of the fast
memory. Similarly we should not require complete in-
terconnection between the microengines. Buses connect-
ing subsets of the microengines and banks of fast memory
should be sufficient, thus avoiding costly structures such
as crossbars or multistage interconnection networks.

Current classifiers can contain up to a few thousand
rules. It has been projected that this number could in-
crease by one order of magnitude. Scalability of the algo-
rithm is a criterion which cannot be neglected.

III. REVIEW OF PREVIOUS WORK AND

CHARACTERISTICS OF RULE SETS

A. Previous Work

Several researchers [5], [6] noted that packet classifi-
cation resembles the computational geometry problem in

2



TABLE I
AN EXAMPLE OF A PACKET CLASSIFIER. THE “ANY” VALUE IS A WILDCARD FOR A DIMENSION. THE ACTION FOR A RULE IS OMITTED

FOR BREVITY AND THE PRIORITY IS IMPLICIT IN THE RULE NUMBER – LOWER RULE NUMBERS HAVE HIGHER PRIORITY.

Source Destination Source Destination
Rule Address Address Port Port

Number Prefix Prefix Range Range Protocol

R0 0000* 01* 0 - 1023 1024 - 65535 17
R1 0000* 01* 1024 - 4999 1024 - 8000 8
R2 0000* 01* 5000 - 65535 8001 - 65535 8
R3 0000* 111* Any 0 - 1023 17
R4 0000* 111* Any 1024 - 65535 1
R5 0011* 01* Any 6000 - 7000 8
R6 01* 1* Any 7001 - 8000 8
R7 10* 0* Any 8001 - 9000 17

k-dimensional space stated as: Given a point (packet) and
a set of N k-dimensional objects (the packet classifier),
find the object that the point belongs to. If the objects
are non-overlapping, a slightly easier problem than packet
classification, the best bounds for k > 3 are O(log N)
time with O(Nk) space or O(log N k−1) time with O(N)
space. For classifiers of 1,000 rules of 10 bytes each (an
underestimate) and five dimensions, either too much space
(on the order of 10 million Gigabytes) would be used, or
the execution time would be too slow (on the order of
10,000 memory accesses). Thus there is a need to either
use special hardware or employ heuristics which take into
account the characteristics (semantics) of the rule sets.

1) Hardware Solutions: Many current classifiers of
limited size are based on Ternary Content Addressable
Memory (TCAM), which stores patterns of the form
(value, mask) by having each “bit” of the pattern be ei-
ther 0, 1 or “don’t care” (X). An input in has a match in
the TCAM if the logical intersections value ∧ mask and
in ∧ mask are equal. A row (k patterns) of the TCAM
represents a rule.

The great advantage of TCAMs is speed – all rules are
checked in parallel. There are however several drawbacks.
Each TCAM cell uses 16 transistors whereas an SRAM
cell uses 6, making TCAMs significantly more expensive.
TCAMs support only prefix and exact matches, therefore
ranges must be expanded into equivalent sets of prefixes.
There is no theoretical difficulty in doing so [7] but this
significantly increases the number of rules, requiring more
chip area. Since all rules are matched in parallel, the chip
consumes up to a factor of 100 more power than an SRAM
of similar capacity [4]. Online updates of TCAM-based
classifiers are difficult since either the rules have to be
sorted in priority order or a priority encoder is required,

which is difficult to modify online. These considerations
make TCAMs more suitable for IP lookup which only re-
quires prefix matches for the destination address. Current
research on how to partition TCAMs to reduce the power
consumption and exploration of new circuits to perform
range matches are underway [4].

Lakshman and Stiliadis have developed an algorithm
well suited to ASIC implementation [6]. Queries for each
dimension are converted into range matches. The total
range of a dimension is partitioned into non-overlapping
intervals and the rules that match the query for each in-
terval are encoded into a priority ordered bitmap vector.
The correct interval in each dimension is determined by
binary search. Each dimension can be searched in paral-
lel, producing a bit vector of the matching rules in that
dimension. However the final step of the algorithm that
involves finding the most significant bit in the intersec-
tion of the k bit vectors has O(N) time in the worst case.
Moreover the priority encoding in the bit vectors prevents
easy online updating.

2) Software Solutions: An excellent survey of soft-
ware solutions to the packet classification problem up to
2001 was performed by Gupta and McKeown [5]. We
review some recent approaches, citing previous papers
where relevant.

A number of solutions are based on trie search, a highly
successful technique for IP lookup [1]. Extension to sev-
eral dimensions is however fairly complex if one wants to
avoid backtracking when searching for a matching rule. In
the case where only source and destination address fields
are considered, an example of decomposition [8] which
we will be using, backtracking can be avoided by judi-
cious insertion of “jump” pointers which guide the search
in the second dimension trie when a leaf is reached. The

3



original grid of tries approach [9] has been recently ex-
tended using a path compression technique [10]. This Ex-
tended Grid of Tries algorithm (EGT) with path compres-
sion (EGT-PC) improves worst-case performance with
significant savings in memory usage. However online up-
dates are not feasible and it appears to be quite a challenge
to split the algorithm into several stages for pipelining.

The aggregate bitvector algorithm developed by
Baboescu et al. [11], [9] follows the approach of Laksh-
man and Stiliadis [6] described in the previous section,
although it is intended to be a software solution. This al-
gorithm uses trie searches on each dimension to gener-
ate bit vectors of matching rules, rather than binary inter-
val searches. The aggregate bitvector exploits the sparse-
ness of the rule match bit vectors by maintaining a bitmap
recording which groups of bits are not all zero. The logi-
cal intersection needs only to be computed on the groups
of bits which are not all zero. Nonetheless the worst-case
time is still O(N).

B. Characteristics of Access Control Lists

The classifiers which we examined are obtained from
router access control lists (ACLs). They are ACLs 1 to 3
from a study by Kounavis et al. [12]. Following the ap-
proach taken by this study, we classify rules first by source
and destination address prefix pairs, then examine the re-
maining fields. We found it useful to divide rules into the
following categories:

1) Long source and long destination address prefixes
2) Long source and short destination address prefixes
3) Short source and long destination address prefixes
4) Short source and destination address prefixes
5) Source address wildcard
6) Destination address wildcard
7) Source and destination address wildcards

The criteria for considering address prefixes to be short
are (a) there are few of them so that they can be classi-
fied quickly in the search process and (b) there is a gap
between their length and the length of the shortest of the
long rules. As we will see later, limiting the number of
short prefixes reduces the amount of memory used by our
algorithm which extends short prefixes to build the ad-
dress indexing data structure, thus creating extra prefixes
and potentially duplicating rule matches. Rules with wild-
cards as the source and/or destination address prefix will
match any packet in these dimensions, therefore storing
these rules with the other rules wastes storage and they do
not require the generality of the algorithm described in the
next sections. Table II shows the number of rules in each
category for the ACLs.

TABLE II
NUMBER OF RULES OF ACLS 1, 2 AND 3 IN EACH RULE

CATEGORY.

Rule category ACL1 ACL2 ACL3

Long src and long dst 601 186 1824
Long src and short dst 54 151 87
Short src and long dst 72 159 71
Short src and short dst 22 12 35
Wildcard src 2 41 198
Wildcard dst 2 33 172
Wildcard src and dst 1 25 12

Total number of rules 754 607 2399

0

5

10

15

20

25

30

35

40

2 4 6 8 10

Fr
eq

ue
nc

y

Number of rules matching a src-dst address pair

216 65

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst

Src wildcard
Dst wildcard

Fig. 1. The distribution of the frequency of rules matching a partic-
ular source and destination address prefix for ACL1. The 2 outliers
not shown are from the long source and destination address prefixes
category at 34 and 37 rule matches, each with frequency 1.

0

5

10

15

20

2 4 6 8 10

Fr
eq

ue
nc

y

Number of rules matching a src-dst address pair

127
149

137

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst

Src wildcard
Dst wildcard

Fig. 2. The distribution of the frequency of rules matching a particular
source and destination address prefix for ACL2. There are no outliers.

4



0

10

20

30

40

50

60

70

2 4 6 8 10

Fr
eq

ue
nc

y

Number of rules matching a src-dst address pair

949 238

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst

Src wildcard
Dst wildcard

Fig. 3. The distribution of the frequency of rules matching a particular
source and destination address prefix for ACL3. There are 5 outliers
not shown. 2 of the outliers are from the long source and destination
address prefixes category, at 13 and 14 rule matches, with frequency
2 and 1 respectively. 3 of the outliers are from the wildcard desti-
nation address prefixes category, at 16, 17 and 18 rule matches, with
frequency 9, 5 and 2 respectively.

The distribution of the frequency of rules matching a
particular source and destination address prefix are shown
in Figures 1 to 3. Out of the 601 long source and long
destination address prefix rules in ACL1, 216 of them
are uniquely determined by the source and destination ad-
dress dimension pair. Previous papers [10], [9] note that
after source and destination address patterns have been
matched, the number of rules remaining to be differen-
tiated between is small (4 or less). We did not observe
this behavior in the ACLs we studied. Although in gen-
eral the number of remaining rules to be matched is less
than 10, there are notable outliers. For instance ACL1 has
2 cases where there are 34 and 37 matches respectively for
the long source and long destination address prefix cate-
gory. ACL3 has outliers from two rule categories, 13 and
14 rule matches for the long source and long destination
address prefixes and 16, 17 and 18 rule matches for the
wildcard destination address prefixes. A more efficient
method than a linear search of all these rules is required
to classify a packet. These outliers are the motivation for
the port range search data structure, which is described in
Section IV.

IV. CLASSIFICATION ALGORITHM

In this section, we first show how to build the data struc-
tures that allow us to classify incoming packets. Prepro-
cessing the ACL to facilitate a fast classification is crucial.
As important, for our purposes, is that the data structures
can be easily decomposed in small units, say of the order
of 512 to 1KB.

A. Preprocessing

We first build a data structure to perform a pruning of
candidate rules based on the prefix matches of source and
destination addresses. The outcome of this first step is
either: (1) a number of candidate rules less than some
threshold, say 5, or (2) all of the bits of the source and
destination addresses have been exhausted.

In case (2), we continue the pruning with a range search
on one of the port dimensions. If condition (1) is again
not met, we then go on the the second port dimension.
This procedure yields a set of candidate rules which due
to condition (1) may require some or all dimensions of the
packet to be checked. A rule can appear in many different
final rule sets, so to save memory, we store the rule num-
bers instead of the entire rule. The rules themselves are
stored in a separate data structure (i.e. ACL) which is not
used during a packet classification except during this final
stage of the search.

An abstract view of the source and destination address
pruning process is shown in Figure 4 for the ACL of Ta-
ble I. If we were to select a threshold of 3 for condi-
tion (1), i.e., we stop the pruning when we have only 1
or 2 candidate rules left to be checked, we would have to
perform a port range search only in one case (the leftmost
path in Figure 4).

For the range match on the port dimensions and the
search of the candidate rules, we use conventional data
structures – an array of non-overlapping intervals in the
range case and an array in the second. The originality of
the algorithm lies in the pruning for the prefix matches.
As can be seen in Figure 4, we perform the pruning by
building a trie with interleaving pattern matching between
bits of the source and destination addresses.

We now give a more concrete representation of the ad-
dress search data structure.

1) Address Search Structure: We store the children of
the internal nodes of the address search structure in hash
tables. The size and fill factor of the hash tables can be
determined so that we have structures of the size we de-
sire and we can limit the number of comparisons required
in a hash table look-up (close to 1). The goal is to en-
sure the modularity of the data structures so that they can
fit into the fast memory of microengines. In Figure 4 the
first level of source nodes would in fact be a single hash
table of 8 elements with a fill factor of 0.75. On the left-
most path the next hash table would be 4 elements with
the same 0.75 fill factor if we want to have sizes that are
power of 2 (otherwise 3 elements would be OK). We use
open addressing in our hash table implementation since it
does not need additional memory to store linked lists to
resolve hash collisions and is as fair as chaining when the

5



01 11 01

0 0 1

1

R3
R4

R0
R1
R2

000 001

1 1 0 0

010 011 100 101

R5

R6 R6 R7 R7

s3

d2d2 d1 d1 d1 d1

s1 s1 s1

d1

Fig. 4. Address classification data structure for the classifier in Ta-
ble I. s# and d# represent # source and destination address bits matched
respectively. Rectangles represent internal nodes, circles represent
leaves which link to the next stage of the packet classification algo-
rithm.

fill factor is less than 0.75 [13].
When a set of rules is being considered during the

multi-bit trie construction, the short address prefixes need
to be extended so that all of them have the same length for
the k-bit lookup at a trie node. Recall from Section III-B
that to limit the amount of extension of rules, we filter out
rules with short source or destination address prefixes and
build separate indices for them. We also do this for those
rules with wildcards for source and/or destination address
prefixes.

We record the smallest priority p of the rules in each
hash table and port interval search array. When we per-
form classification (c.f. Section IV-B), we compare the
priority k of the best rule match found so far with p and
stop the search if k < p.

2) Optimization: To find the required child of a trie
node, we perform a hash table look-up using a fixed num-
ber of bits (Section IV-A.1). We extend short address pre-
fixes, e.g., 00 extended to 4 bits results in the 4 prefixes
0000, 0001, 0010 and 0011. A straightforward implemen-
tation of the data structure duplicates subtries. Instead we
can replace each copy of a subtrie with a pointer to a sin-
gle entry. Note, however, that the same number of hash
table entries are still required. To determine which sub-
tries would be redundant and should therefore be merged
together, we build a DAG (directed acyclic graph) using
the address prefixes as keys. Each leaf node in the DAG
points to a list of rules with that particular address prefix.
Our algorithm processes prefixes in order of increasing

length and for each prefix length l, we perform two steps:
(1) insert all prefixes with length l (duplicates lead to rule
lists with multiple entries) and (2) extend all prefixes (i.e.
the leaf nodes) to length l + 1. In step (2) the two new
children of a leaf node point to the same rule list as their
parent did. Applying the DAG building algorithm to the
ACL in Table I, we obtain the data structure in Figure 5.

01 11 01

0 0 1

1

R3
R4

R0
R1
R2

000 001 010 011 100 101

1 0

R5

s3

d2d2

s1 s1 s1

d1

R7R6

d1 d1

Fig. 5. Address search data structure for the classifier in Table I,
which is optimized to remove redundant subtries for R6 and R7. s# or
d# represent # source or destination address bits matched respectively.
Rectangles represent internal nodes, circles represent leaves which link
to the next stage of the packet classification algorithm.

The DAG cannot eliminate all redundant nodes, it can
only eliminate redundant children of a node. To illustrate
this point, consider the rule set in Table III; its correspond-
ing address search data structure in Figure 6 has redundant
(R8, R9) leaves.

Our data structure building algorithm skips the port in-
terval arrays and goes directly to the candidate rule set
search if the rules do not have distinct values in the source
and/or destination port dimensions. Figure 7 shows the
port interval arrays built for the rules in Table I. Rules R3
to R7 have wildcards for the source port dimension and
rules R5 to R7 are all single rules, as are R0 to R2 after
the source port search is performed. For sake of exam-
ple we show the port range search structures here, even
though in some cases the number of rules is less than the
threshold of 3 used in the example and a candidate rule set
search would actually be used in that case.

We begin pruning the source and destination wildcard
address rule category using the source port field because
the address search structure does not distinguish between
rules in this category.

6



TABLE III
AN EXAMPLE OF A PACKET CLASSIFIER WHICH DEMONSTRATES THE LIMITATION OF THE PREFIX DAG IN REMOVING REDUNDANT

NODES. THE “ANY” VALUE IS A WILDCARD FOR A DIMENSION. THE ACTION FOR A RULE IS OMITTED FOR BREVITY AND THE PRIORITY

IS IMPLICIT IN THE RULE NUMBER – LOWER RULE NUMBERS HAVE HIGHER PRIORITY.

Source Destination Source Destination
Rule Address Address Port Port

Number Prefix Prefix Range Range Protocol

R8 0* 0* 1024 - 1024 Any 8
R9 0* 0* Any 8000 - 8000 Any

R10 00* 00* 5000 - 8000 Any 17
R11 01* 1* Any Any 8

01

d1

0

d2

00

00 101

R11R8
R9

R8
R9

R8
R9
R10

s2

Fig. 6. Address search data structure for the rules in Table III. The
redundant nodes containing the rules R8 and R9 cannot be eliminated
using a prefix DAG. s# and d# represent # source and destination ad-
dress bits matched respectively. Rectangles represent internal nodes,
circles represent leaves which link to the next stage of the packet clas-
sification algorithm.

B. Packet Classification

The packet classification algorithm searches for the
best matching rule (lowest rule number / highest prior-
ity) in all seven categories of rules. These rule categories
are searched in the order given in Section III-B. The
non-wildcard categories are searched in three successive
stages: (1) an address search, (2) a port range search and
(3) a candidate rule set search. The source and destination
address wildcard categories have similar search stages, al-
though the first stage does not search the wildcarded ad-
dress dimension. The source and destination address wild-
cards category search uses only stages (2) and (3).

The address search involves a multi-bit trie (or DAG)
look-up. Each node in the address search structure stores
both the number of address bits to use in the hash table
lookup and whether they are from the source or destina-
tion address dimension. The port range search is a bi-
nary search performed on non-overlapping intervals. The
candidate rule set search is a linear search through rule

1024
4999

0
1023

R5

R5 R6

R6

R7

R7

65535
5000

65535
10240

1023

R3
R4R2

R1
R0

Source
port

interval
arrays

Destination
port

interval
arrays

R0 R1 R2 R4R3

Leaves of search structure

Fig. 7. Source and destination port classification structures for the
classifier in Table I, which are optimized to remove searches over rules
whose port dimension values are identical. Rules R3 and R4 have
identical source port dimension values, while R5 to R7 are all single
rules, as are R0 to R2 after the source port classification is performed.

numbers but due to condition (1) in Section IV-A, the in-
coming packet might not have been matched against all
dimensions of the rules. Therefore the set indicates which
dimensions of the packet remain to be checked.

For sake of brevity in the following examples using the
classifier in Table I, assume that addresses are 5 bits in
length. Suppose we have a packet with source address
00001 (in binary), destination address 01100 (in binary),
source port 256, destination port 6000 and protocol 17.
Starting from the root node in Figure 5, the first three
source bits of the packet (000) determine that the leftmost
child is to be traversed to. The first two bits of the destina-
tion address of the packet (01) determine that the leftmost

7



child is the next node to be traversed to. The fourth source
bit of the packet (0) selects the only child of the node at
this point, which is a leaf of the search structure. We then
move to the port range search structure in Figure 7, start-
ing from the top-left node labelled with R0 R1 R2. The
source port of the packet (256) is found in the first inter-
val of the source port search array. The destination port
of the packet (6000) is found in the first (and only) inter-
val of the destination port search array. At this point only
the protocol needs to be compared in a linear search of an
array of rules. We obtain a match for the protocol value
17, therefore the packet matches rule R0. The remaining
rule category search structures i.e., those described in Sec-
tion III-B besides the “long-long” one, would be searched
to determine if there were a matching rule with a higher
priority, although in this case we only have one search
structure.

Consider now a packet with source address 10101 (in
binary), destination address 11100 (in binary), source port
128, destination port 50 and protocol 7. Starting from the
root node in Figure 5, the first three source bits of the
packet (101) determine that the rightmost child is to be
traversed to. The first bit of the destination address of the
packet (1) does not correspond to a child of the current
node, so the search fails to find a matching rule in Table I
for the packet. The other rule category search structures
would be searched to find a matching rule. Only if those
searches all fail is there in fact no matching rule for the
packet.

C. Update

The data structure that we propose lends itself well to
on-line updates. Its modularity is such that when changes
are made to either one node of the trie or a port range
structure or a linear array, only that part of the structure
needs to be locked temporarily to prevent the classifier
reading partially updated data.

Deleting a rule does not present any difficulty. It is suf-
ficient to search for the rule and delete it from the final
rule sets to which it belongs. When inserting a rule, we
first check the search path to determine where the rule
should be inserted. If the search path for the addresses
prefix matches does not exist, a new path will have to be
created from the node where this new path diverges from
old ones. In that case, some of the optimizations of Sec-
tion IV-A.2 might have to be undone. If the path already
exists, then we might have to create a new level in the trie
if the number of rules in the final set exceeds the thresh-
old, and/or modify the range structure.

Note that we have not addressed the priority factor in
the insertion. At this point we assume that rules that are

not of either lowest or highest priority compared to those
that have the same source-destination address fields won’t
be inserted on-line. This is consistent with current prac-
tice.

V. MAPPING TO MICROENGINES

In this section we describe the network processor archi-
tecture that we developed our algorithm for, the amount of
memory used to hold the indices of the ACLs we studied
and derive upper bounds on the worst-case time to per-
form packet classification.

A. Network Processor Architecture

The NP architecture we studied is a multiprocessor on a
chip, with a control processor and multiple microengines.
We use the control processor to build the index structures,
while the microengines handle the classification process.
The microengines have a limited amount of control store
and a two level memory hierarchy, consisting of a small
amount (say 8KB per microengine) of fast local storage
(SRAM) and a larger (megabytes), slower off-chip mem-
ory (DRAM). We consider the best case where local mem-
ory is shared between all microengines, although decom-
posed index structures would allow for more limited shar-
ing of local memory.

One possible arrangement of microengines to classify
packets would be a pipeline, as shown in Figure 8. Each
category of rules is processed by a separate microengine
or group of microengines sharing the same data, except
for the three categories of rules with wildcards in the
source and/or destination addresses. Since there are com-
paratively few of these rules, these categories are handled
together by a single microengine and the address prefix
search is restricted to one dimension. Recall from Sec-
tion IV-A.1 that rule priorities are stored in the classifi-
cation structures so that when a rule match is found, the
remaining structures do not have to be searched if they do
not contain rules of higher priority. To maximize the bene-
fit of this short-circuiting search, the pipeline stages are ar-
ranged so that rules which have longer source-destination
address pairs and presumably higher priority are in earlier
stages than rules with shorter source-destination address
pairs and lower priority.

B. Memory Usage

An ACL uses around 20 bytes per rule; ACLs 1, 2 and 3
occupy 15KB, 12KB and 47KB of memory respectively.
ACLs are stored in slow memory since there are relatively
few accesses to them as compared to the indices.

8



Packet

Highest priority
matching rule so far

Search rules with long
source and long destination

address prefixes

Other non−wildcard
address prefix search

Wildcard address
prefix search

Highest
priority

matching
rule

Packet

Fig. 8. Packet classification using a pipeline of microengines. Each
category or groups of categories of rules is processed by a separate mi-
croengine. The other non-wildcard address prefix search stage encom-
passes all three long-short, short-long and short-short rule categories,
since the data structures for these categories tend to be small and able
to all fit into a single microengine fast memory. Likewise the wildcard
address prefix stage encompasses the remaining rule categories.

The tuning parameter we use to control the amount of
memory used to build the indices for the ACLs is the max-
imum size of a hash table in the address search structure.
Larger hash table sizes lead to a wider and shorter address
search structure at the expense of creating extra hash table
entries from extending short address prefixes. The port
interval arrays do not have direct tuning parameters, their
sizes and numbers depend on the results of rules classified
by the address search structure. We can control the max-
imum size for a candidate rule set but to keep searches
efficient, this size should be on the order of 4 rules. Thus
reasonable values for this tuning parameter have negligi-
ble effect on the memory used by the indices. The total
memory used by the index for each rule category as the
maximum hash table size varies from 8 to 128 is shown
in Figures 9 to 11. Overall memory usage is shown in
Table IV.

Although the port interval arrays represent only a small
portion of the required storage, the binary search on them
must be efficient, therefore they have highest priority for

being stored in fast local storage. The address search
structure has the next highest priority for fast memory. If
it does not entirely fit, the lowest parts of the structure
can be stored in slow memory because they are accessed
less frequently than the top levels. In any remaining fast
memory we store the candidate rule sets, otherwise we
store these data structures in slow memory, since there are
fewer accesses to these data structures.

The memory used by the index data structures for the
source and destination address wildcard rules is unaf-
fected by the maximum hash table size because an ad-
dress search structure is not built for these rules. Instead
the candidate rule matches are pruned using a source port
interval array. Since the memory used by this category
is both limited (under 200 bytes) and independent of the
maximum hash table size, we exclude these results from
the figures.

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140

M
em

or
y 

us
ed

 (
K

B
)

Maximum hash table size

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst
Src wildcard
Dst wildcard

Fig. 9. ACL1 memory usage versus maximum hash table size.

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140

M
em

or
y 

us
ed

 (
K

B
)

Maximum hash table size

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst
Src wildcard
Dst wildcard

Fig. 10. ACL2 memory usage versus maximum hash table size.

We can see that separating rules into categories lets

9



0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

M
em

or
y 

us
ed

 (
K

B
)

Maximum hash table size

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst
Src wildcard
Dst wildcard

Fig. 11. ACL3 memory usage versus maximum hash table size.

TABLE IV
OVERALL MEMORY USAGE FOR ACL1, ACL2 AND ACL3 INDEX

STRUCTURES. THE TOTALS ARE NOT BROKEN DOWN BY RULE

CATEGORY.

ACL1 ACL2 ACL3

Hash tables 8856 11560 41280
Port arrays 1716 478 6508
Candidate rule arrays 4548 3994 16514

Total 15120 16032 64302

us choose different maximum hash table sizes for each
search structure, which enables greater flexibility in con-
trolling memory usage. In ACL 1 we could choose a max-
imum hash table size of 128 for the long source and long
destination address rule category and 64 for the rest of the
categories.

Assume for the following discussion that we select a
maximum hash table size of 64. There is no problem in
fitting all of the indices for ACLs 1 and 2 into the fast
memory of 3 microengines (24KB). However ACL3 re-
quires on the order of 64KB of memory to store its indices.
In particular the long source and long destination address
classification index occupies about 50KB of memory and
requires placing parts of the index into slower memory
according to the priorities discussed earlier in this section.
Storing parts of the index in slower memory has implica-
tions for worst-case performance, which we explain in the
following section.

C. Bounds on Classification Time

The worst-case time required to classify an incoming
packet is bounded by the number of memory references

required in each pipeline stage in Figure 8. It is prefer-
able to have 1 or 2 more fast memory accesses and use
a smaller hash table size to reduces overall memory us-
age and avoid storing parts of the index in slow memory.
Slow memory takes at least 5 times as long as fast mem-
ory to access, therefore the increased memory references
is offset by the fact that these references are to fast mem-
ory. The aim is to balance the memory references per-
formed in each pipeline stage, which are bounded by the
sum of the worst-case address search structure memory
references and the remaining memory references to the
port arrays and candidate rule sets.

The worst-case address search structure memory refer-
ences required for each ACL as the maximum hash ta-
ble size is varied from 8 to 128 is shown in Figures 12
to 14. We choose a maximum hash table size which min-
imizes both the worst-case memory references and mem-
ory used. Very small hash tables (16 entries or less) tend
to be fuller for a given fill factor, leading to worse perfor-
mance because of greater numbers of hash table look-up
collisions and thus memory references, although they are
to fast memory. Our performance analysis might not work
as well with small hash tables, since we use open address-
ing for our hash tables on the assumption that collisions
are rare.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140

T
ri

e 
de

pt
h

Maximum hash table size

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst
Src wildcard
Dst wildcard

Fig. 12. ACL1 maximum trie depth versus maximum hash table size.

The worst-case number of memory references for the
port array searches for ACLs 1 to 3 are shown in Table V.
The candidate rule sets require in the worst-case 5 mem-
ory references to search. The port array and the candidate
rule set search memory references are unaffected by the
maximum hash table size tuning parameter.

The following worst-case memory reference analysis
assumes a maximum hash table size of 64. The number
of memory references ACL1 requires to search the indices
are 14 for the long source and long destination addresses,

10



TABLE V
WORST-CASE NUMBER OF MEMORY REFERENCES FOR OUR ALGORITHM TO THE PORT ARRAYS FOR ACLS 1, 2 AND 3.

Rule category ACL1 ACL2 ACL3

Long source and long destination 6 3 4
Long source and short destination 0 0 3
Short source and long destination 2 0 0
Short source and short destination 3 0 0
Source wildcard 0 0 2
Destination wildcard 0 0 6
Source and destination wildcards 0 4 5

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

T
ri

e 
de

pt
h

Maximum hash table size

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst
Src wildcard
Dst wildcard

Fig. 13. ACL2 maximum trie depth versus maximum hash table size.

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

T
ri

e 
de

pt
h

Maximum hash table size

Long src and long dst
Long src and short dst
Short src and long dst
Short src and short dst
Src wildcard
Dst wildcard

Fig. 14. ACL3 maximum trie depth versus maximum hash table size.

34 for the other non-wildcard addresses and 15 for the
wildcard addresses. ACL2 requires 12, 25 and 26 mem-
ory references and ACL3 requires 15, 28 and 32 memory
references, respectively.

As mentioned in the previous section, all the indices
for ACLs 1 and 2 can easily fit into 24KB of fast mem-

ory. Since each individual index occupies at most 8KB
of fast memory, one microengine can be assigned to a
pipeline stage handling the processing of a single index.
To balance the number of memory references made per
pipeline stage, we would divide those stages which make
greater numbers of memory references into smaller sub-
stages, and assign a separate microengine to each sub-
stage.

While ACL3 appears superficially to have the same or-
der of worst-case memory references as ACLs 1 and 2, the
first stage of the pipeline for ACL3 accesses a far larger
index. If the fast memory is globally shared, the larger
index can simply be stored using additional microengines
to provide the required fast memory. If the fast memory is
only locally accessible, the top levels of the address search
structure of the index would be stored in fast memory and
the lower levels would be stored in slow memory. There-
fore about 3 of the 15 total memory accesses may be to
slower memory. If slow memory takes on the order of 5
times as long to access as fast memory, these 15 memory
accesses take time equivalent to 27 fast memory accesses.
Therefore the pipeline stages are balanced in worst-case
performance.

As an alternative to storing the lowest level of the ad-
dress search structure in slow memory is to devote sev-
eral microengines to the classification process. Each mi-
croengine is responsible for classifying a packet using
only a portion of the index, the partitioning of the index
and the required communication between microengines of
partially classified packets is a topic that we are currently
investigating.

Using a maximum hash table size of 32 for ACL3
would reduce overall memory used by about 7KB while
incurring an additional 1 or 2 address search structure
memory references for four of the seven rule categories.
Going to a maximum hash table size of 16 to reduce mem-
ory usage further is not worthwhile due to the hash table
performance degradation discussed earlier in this section.

11



In practice the deepest path in the address search struc-
ture does not align with the largest port arrays and can-
didate rule sets. Furthermore only an incoming packet
which fails to match any rules induces worst-case be-
havior. Rule matches in early stages of the classification
pipeline allow later searches to be skipped.

VI. COMPARISON WITH EGT

It is interesting to compare the memory requirements
and the number of memory references that are achieved
by our algorithm with some state of the art monolithic
algorithm like EGT1 Recall that our algorithm has for
goals to generate modular data structures and to be easily
pipelined. Thus even if the monolithic approach were su-
perior in a single workstation environment, our algorithm
could be more efficient in a network processor setting. As
it turns out, on the ACLs that we tested, our algorithm is
competitive with EGT (and EGT-PC) even in an environ-
ment for which it is not primarily intended.

Tables IV and VI show the breakdown of memory us-
age by our algorithm and EGT. The candidate rule lists in
EGT are dynamically built during the search of the source
and destination IP address fields and then the remaining
fields are searched linearly. In contrast, once the desti-
nation and source IP address fields have been searched,
our algorithm uses binary search of port arrays. It would
be non-trivial to extend EGT to have this capability as it
would require matching a dynamically generated and ar-
bitrary length candidate rule list to a statically built search
structure.

The memory footprint of EGT is approximately 6 times
that of our algorithm and even with path compression, for
which Baboescu et al. [10] report reduces memory used
to around 1/3, EGT-PC still occupies twice the memory.
Moreover our index data structures are decomposable and
can be distributed between the memories of several micro-
engines.

TABLE VI
MEMORY USED BY EGT INDEX STRUCTURES FOR ACL1 AND

ACL3.

ACL1 ACL3

Trie nodes 142676 413720
Rule nodes 3016 9596

Total 145692 423316

1We are unable to run the original EGT code found in [10] on ACL2.
We were not able either to generate the correct data structures using
EGT-PC. We hope to fix these problems by publication time.

We used ClassBench [14] to generate packet traces
to evaluate the performance of EGT and our algorithm,
which is shown in Tables VII and VIII. The packet traces
for ACL1 and ACL3 contain 7548 and 67824 packets
respectively. Even examining trie node references only,
which gives an advantage to EGT due to the aforemen-
tioned port array search which our algorithm uses, EGT
requires 5 times as many memory references for ACL1
and 2.5 times for ACL3 as our algorithm. Path compres-
sion can reduce the number of trie node references made
by EGT by a factor of 2 to 3. Therefore as a first approx-
imation our algorithm makes fewer trie node references
than EGT with path compression on ACL1 and is on par
with ACL3.

Examining non-trie references, which path compres-
sion does not reduce, on ACL1 EGT makes around
130,000 compared to 180,000 for our algorithm, and on
ACL3, 2.2 million compared to 1 million. Our algorithm
benefits significantly from being able to perform port ar-
ray searches for ACL3. Also our algorithm is intended to
be pipelined, therefore memory references can be made
concurrently.

TABLE VII
MEMORY REFERENCES MADE BY EGT WHEN CLASSIFYING

ACL1 AND ACL3 PACKET TRACES.

ACL1 ACL3

Trie 708810 4294358
Non-trie 132432 2208374
Candidate rule 80592 1311746
ACL 51840 896628

Total 841242 6502732

TABLE VIII
MEMORY REFERENCES MADE BY OUR ALGORITHM WHEN

CLASSIFYING ACL1 AND ACL3 PACKET TRACES.

ACL1 ACL3

Trie 132550 1833623
Non-trie 181073 1005782
Port array 8886 497392
Candidate rule 105176 327834
ACL 67011 180556

Total 313623 2839405

The previous paragraph discussed throughput, however
many classification algorithms are geared to worst case
performance.

12



On ACL1 the worst case number of memory references
made by EGT for a packet is 168, of which 90 are to the
trie. On ACL3 the values are 204 and 84 respectively.
EGT-PC uses up to a factor of 3 less trie memory refer-
ences. The worst case number of trie references for ACL1
would be reduced by 60 and for ACL3 by 56, thus the
total worse case memory references could be reduced to
around 108 and 148. These memory references determine
the worst case processing time per packet.

On ACL1 the worst case number of memory references
made by our algorithm for a packet is 71, while on ACL3
it is 97. This is better than what is achieved by EGT-
PC. Furthermore our algorithm is pipelined and the mem-
ory references are made concurrently to private fast mem-
ory or to banked slower memory. Assuming that there is
no buffering in the pipeline, the minimum delay between
packets being sent into the processing pipeline must be
at least the time taken by the longest stage. This time is
less than the time taken to process a packet, which de-
pends on the total number of memory references required,
because processing on packets occurs concurrently. For
ACL1 the packet with the worst case number of mem-
ory references is distinct to the packet which has the stage
with the longest processing time. That particular packet
uses 60 memory references in total, 34 of which occur
in the longest stage, which is the one handling rules with
long source and destination address prefixes. For ACL3
the packet with the worst case number of memory refer-
ences is the same as the one with the longest processing
stage, which is again the one handling long source and
destination address prefixes. 53 of the 97 total memory
references are made by the longest processing stage.

In summary, on limited testing, our algorithm performs
better than EGT and as well as EGT-PC, both in terms of
throughput and worse case memory accesses, when run in
a workstation environment. It is superior both in perfor-
mance relative to EGT-PC on a workstation and ease of
mapping the index data structures to small local memory
modules when run on network processors.

VII. CONCLUSION

Our packet classification algorithm is suitable for im-
plementation on programmable network processors which
have a multiprocessor on a chip architecture. Such an ar-
chitecture contains a control processor, which we use to
preprocess the data structures needed for packet classifi-
cation, and several microengines, which we use to handle
the various parts of the classification process. The micro-
engines have a limited amount of control store and fast
local storage, plus there is a slower global memory for
additional storage.

The prefix matches used for source and destination ad-
dress fields in a packet are treated differently from the
matches performed on source and destination port and
protocol fields. This approach is common to several other
packet classification algorithms. We have two new con-
tributions for address prefix matches. The first contribu-
tion is in our handling of rules with different prefix lengths
and wildcards. Dividing rules into “long” prefixes, “short”
prefixes and wildcards allows for significant memory sav-
ings. The second contribution is how we prune the set of
possible rule matches by performing partial matches on
source and destination address fields in alternation.

We show how our algorithm lends itself to map-
ping onto several microengines arranged in a processing
pipeline. Each microengine accesses relatively small data
structures which fit into fast local storage and accesses
slow memory a bounded number of times. We derive this
amount of local storage required as well as the timing of
the search operation, in terms of the numbers of fast and
slow memory accesses.

We compare our algorithm with EGT which is mono-
lithic. Even though our algorithm is not intended for exe-
cution on a single processor, it has a smaller memory foot-
print than EGT and makes less memory references when
classifying packets.

We are currently examining how larger rule sets impact
the local data structures. In particular we need to deter-
mine how to decompose the address search structure and
distribute it amongst the fast local memories of the micro-
engines processing a pipeline stage.

REFERENCES

[1] Vrini Srinivasan and George Varghese, “Fast address lookups
using controlled prefix expansion,” ACM TOCS, vol. 17, no. 1,
pp. 1–40, Feb. 1999.

[2] “Differentiated services (diffserv),”
http://www.ietf.org/html.charters/diffserv-charter.html, 2001.

[3] V. Kumar, T. Lakshman, and D. Stiliadis, “Beyond best effort:
Architectures for the differentiated services of tomorrow’s inter-
net,” IEEE Communications Magazine, vol. 36, no. 5, pp. 152–
164, May 1998.

[4] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification
using extended tcams,” in Proc. of 11th IEEE ICPM’03, 2003.

[5] Pankaj Gupta and Nick McKeown, “Algorithms for packet clas-
sification,” IEEE Network, vol. 15, no. 2, pp. 24–32, Mar. 2001.

[6] T. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in
Proc. of ACM SIGCOMM’98, 1998, pp. 191–202.

[7] Anja Feldmann and S. Muthukrishnan, “Tradeoffs for packet
classification,” in Proc. INFOCOM 2000, 2000, pp. 193–202.

[8] T. Woo, “A modular approach to packet classification: Algo-
rithms and results,” in Proc. INFOCOM 2000, 2000, pp. 1213–
1222.

[9] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” in Proc. of ACM SIGCOMM’98,
1998, pp. 203–214.

13



[10] Florin Baboescu, Sumeet Singh, and George Varghese, “Packet
classification for core routers: Is there an alternative to CAMs?,”
in Proc. of INFOCOM 2003, 2003.

[11] Florin Baboescu and George Varghese, “Scalable packet classi-
fication,” in Proc. of ACM SIGCOMM’01, 2001, pp. 199–210.

[12] Michael E. Kounavis, Alok Kumar, Harrick Vin, Raj Yavatkar,
and Andrew T. Campbell, “Directions in packet classification
for network processors,” in Second Workshop on Network Pro-
cessors (NP2), 2003.

[13] Donald Knuth, The Art of Computer Programming. Vol 3,
Searching and Sorting, Addison-Wesley, Reading, Ma, 1973.

[14] David E. Taylor and Jonathan S. Turner, “Classbench: A packet
classification benchmark,” in Proc. of IEEE INFOCOM 2005,
2005.

14


