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Abstract

We improve hardness results for the problem of embedding one finite metric into another with minimum distortion.
This problem is equivalent to optimally embedding one weighted graph into another under the shortest path metric.
We show that unles® = NP, the minimum distortion of embedding one such graph into another cannot be efficiently
approximated within a factor less théyi4 even when the two graphs are unweighted trees. For weighted trees with
the ratio of maximum edge weight to the minimum edge weightd{a > 1) and all but one node of constant
degree, we improve this factor to+ «. We also obtain similar hardness results for extremely simple line graphs
(weighted). This improves and complements recent results of Kenyon &2kar{d Papadimitriou and Safraf).

1 Introduction

For two n-point metric spaceéX, p) and (Y, o), the expansiorof a bijectiony : X — Y is defined agzp(y) =
MaXq£he X %jbﬁ(b)). Thedistortionof ¢, denotedlist (i), is the product ofzp(p) andexp(¢o ). The expansion

of o1 is also referred to as theontractionof ¢ and denotedon(y). Thedistortion betweenX andY’, denoted
dist(X,Y), is the minimum distortion over all such bijections and may be thought of as a difference measure between
these metric spaces. This paper addresses the computational hardness of the problem of embedding one finite metric
space into another with minimum distortion.

The notion of distortion was originally studied for infinite metridd] in the analysis of Banach spaces. More
recently the embedding of finite metrics into Euclidean and athenetrics has been very successful for applications
in theoretical computer science, including approximation, learning, on-line algorithms, high-dimensional geometry,
and others§, 16, 15, 10]. This notion has been extended in such directions as embedding a finite metric into a
distribution of metrics which has again found great success in approximation algorith#s This continues to be
an active area of research [L4].

We point out that the problems addressed in the works mentioned above are combinatorial in nature— that is, they
are concerned with embedding a finite metric into anottiassof metrics and the focus is on providing bounds
for the distortion itself. However, we are interested in the algorithmic problem of embeddipgc#icmetric into
anotherspecificmetric—i.e. we are interested in the worst case ratio of the distortion obtained by the algorithm under
consideration and the best possible distortion. This problem was introduced by Kenyori &t dlhg recent work of
Badoiu et. al. B] considers the algorithmic question of finding embeddings of a specific metric into a class of metrics.

In addition to the fact that the problem of finding low-distortion embeddings between two finite metrics is a very
natural question that by itself merits investigation, the problem is also likely to have much wider use than theoretical
computer science. To mention three examples, theorem proving and symbolic comput@iticlatabase problems



such as queries over heterogeneous structured datalRakemsnd matching gels from electrophores®} ¢an all be
expressed as tree embedding problems. The problem has several other applicationslas well |

We note a basic fact that amypoint metric may be realized as the shortest path metric of a weighted undirected
graph ovemn nodes, for example by making a complete graph whose adjacency matrix is the matrix of metric distances.
Due to this correspondence, we will exclusively focus on the problem of optimally embedding one graph into another.
We will implicitly identify a graph with the metric given by shortest paths on that graph. For a set of weighted graphs,
their weight ratiois the ratio of the maximum to the minimum weights of edges in the graphs.

1.1 Previous Results

The only upper bounds on this problem known to us are by Kenyon etdl. Given two point sets on the real line

with the L, distance metric that have distortion less ti3an 21/2, there is a polynomial time algorithm to find an
embedding with the minimum distortion. Their second result finds the minimum distortion between an arbitrary graph
and a tree, in polynomial time if the degree of the tree and the distortion are constant. Their algorithm is exponential in
the degree of the tree and doubly-exponential in the distortion. Both algorithms are based on dynamic programming;
the latter is similar to those based on tree decompositions of graphs.

The situation for hardness results is a little more clear. Determining if there is an isometry—a distortion 1
embedding—between two graphs is the graph isomorphism problem, which is not known td dmiirwhich is
probably notNP-hard either. Kenyon et al1p] show the problem i&lP-hard to approximate within a factor of 2 for
general graphs and a factor4f3 in the case where one of the graphs is an unweighted tree and the other is a weighted
graph with weightd /2 or 1. Papadimitriou and Safrd 7] show that it isSNP-hard to approximate within a factor of 3
the distortion between any two finite metrics realized as point sés imhere the distance metric is tiig norm.

1.2 Our Results

Unweighted Trees (Section3.3) The problem isNP-hard to approximate within a factor less thyfi for unweighted
trees. As far as we know, this is the first hardness result for embedding an unweighted graph into another. It
also improves the factor @fresult for general graph4 2] even when the graphs are unweighted.

Weighted Trees (Section3.2) The problem ifNP-hard to approximate within a factor less thaa « for anya > 1
and tree graphs with weight ratid(a?). This is the first hardness result for embedding trees into trees and
improves the bound df for general graphslpP)] at the expense of a larger weight ratio. Our result also holds
when all but one node of the underlying graphs have degreg the problem is known to be easy in the
unweighted case when all nodes have constant degree and the distortion i 8malis result also improves
the bound o3 by Papadimitriou and Safrd 1].

Weighted Line Graphs (Section4) The problem ifNP-hard to approximate within a factor effor any« > 1 and
line graphs with weight rati®(a?n*), wheren is the number of nodes in the two graphs. This is the only bound
known for graphs with constant degrees and large weights.

2 Preliminaries

We begin with some basic properties of the distortion resulting from embedding a weighted undirected graph
another such grapH. Let[m] denote the set of integers frohio m. Letds anddy denote the shortest path distances
in G and H, respectively. Fix a bijectiop : G — H. We state the following results fetrp(p). Analogous results
hold for con(¢) which is nothing butzp(p—1).

dir(¢(a).0(0))

Lemma 1 ([12)). ¢ achieves its maximum expansion at some edgg ire.,exp(y) = maxyq pre () e (ah)

Corollary 2. If G and H are unweighted thearp(y) is an integer.

Lemma 3. If G and H are unweighted an@ has no edge-subgraph that is isomorphi@ithenexp(y) > 2.



Proof. Letu andv be nodes oy such thai(u,v) € E(G) but (¢(u), ¢(v)) € E(H). Such nodes must exist because
H has no edge-subgraph isomorphicodg (v, v) = 1 anddg (¢(u), ¢(v)) > 2, implying an expansion of at least
2. [

We now state the problem we use in the reductions forRrhardness proofs. It is a generalization of the
Hamiltonian cycle problemqd). Let G = (V, F) be a directed graph over vertices. G has adisjoint cycle cover
if there is a collection of vertex-disjoint cycles & that contain every node i, i.e., there exists a permutation
o : [n] — [n] such that for ali € [n], (vi,v,(;)) € E. G has doosedisjoint cycle cover if it has a disjoint cycle cover
after adding two arbitrarily chosen edgesfio

Theloose directed disjoint cycle cover testipgoblem is a property testing problem defined as follows. Given a
directed graply, outputl if G has a disjoint cycle cover artif G does not even have a loose disjoint cycle cover.
Note that in the remaining scenario, one is allowed to output anything.

Lemma 4. The loose directed disjoint cycle cover testing problemiishard for graphs with indegreec 4 and
outdegree= 3.

Proof. This can be shown by an extension of the ideas used ilNfheompleteness proof of the directed disjoint
cycle cover problem in an earlier paper by the authdfsi§ing in addition the fact that the Vertex Cover problem is
hard to approximateg]. We omit the details. O

Finally, we mention a combinatorial result about sum-free sequences that is used in one of our constructions. A
sequence of integers igc-way sum-fredf all n* sums ofk integers (not necessarily distinct) in it are distinct. Khanna
et al. [13] suggest a greedy algorithm to constr@evay sum-free sequences. Their result can be generalized to the
following.

Lemma 5. There exists a strictly increasing sequence of size [n2*~!] that is k-way sum-free and is computable
in time O (n?+~1).

3 Hardness of Embeddings between Tree Graphs

Consider the problem of finding a minimum distortion embedding between two given undirected tree graphs. We
give reductions from the loose directed disjoint cycle cover testing problem to the decision version of this embedding
problem on weighted as well as unweighted trees. The result for the weighted case holds even for graphs with all but
one node of degree at mastWe begin with a general construction that will be used in both reductions.

Given a directed grap@i with outdegree= 3 and indegree< 4, we will construct a source tregand a destination
treeD with the property that there exi8t< a < b such that

1. if G has a disjoint cycle cover thetist(S, D) < a, and
2. if G has ndoosedisjoint cycle cover thedist(S, D) > b.

It follows from Lemma4 that it isNP-hard to approximatéist(S, D) within a factor less thah/a.

3.1 The Construction

We describe in this section the construction®find D from G. Let Z+ denote the set of positive integers and
s : Z+ — ZT be a strictly increasing monotonic function. Lt . .., v, be the vertices of.

We will need two types of gadgetscanter gadgeand for each € [n], asize gadgeT;. The center gadget is a
rooted tree consisting of leaves, all at depti. All edges in this gadget have weightc Z™. Its root is denoted by
¢ and leaves by,. The size gadgef; is a rooted tree consisting efi) leaves, all at depth. All edges inT; have
weight1. The root ofT; is denoted by, and the leaves by,.

The source treé is constructed as follows (see Fif). Start with a copy of the center gadget and associate with
eache, node of it a distinct vertex; of G. For anyi € [n], let the successors of in G be the vertices;, , v;,, and
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Figure 1: A directed graph and the source and destination trees corresponding to it. For simplicity of depiction,
s(i) = i. Unmarked edges have a weightlof

v;,. Attach to thec, node corresponding tg copies of the three size gadgéis, T;,, andT;, by adding edges with
weightz € Z* to theg, nodes of these gadgets. Copies of any size gafgetS will henceforth be denoted hy;.

The destination tre® is constructed similarly. As before, start with a copy of the center gadget. Fix an arbitrary
ordering of itsc, nodes. For alf € [n], attach to theé'” ¢, node a copy of the size gaddEt by adding an edge of
weightz to its g, node. These size gadgets are calledn-sparesize gadgets. Now |62 be the multi-sefi | gadget
T; is used inS}. We may assume th@ 2 [n], otherwise a disjoint cycle cover cannot exist. For eaehP \ [n],
attach a copy of the size gaddggtdirectly to thec, node by adding edges of weightc Z* to their g, node. These
are calledsparesize gadgets. Copies of any size gadfgegh D will henceforth be denoted hi;.

Note that bothS andD have the same number of nodes and for evegy[n], the same number of copies of the
size gadgef;. Further,S andD each have exactly onge node,n ¢, nodes, andn g, nodes (recall the outdegree of
every vertex ofj is 3). Consider a mapping from S to D. Let A and B be sets of nodes i§ andD, respectively,p
fully mapsA to B if {p(u) | u € A} = B. ¢ mapsA exactlyto B if A andB are size gadgets witf). nodesa andb,
respectivelyy fully maps A to B, andy(a) = b.

The basic idea of the construction is tiiaencodes the input grapgh while D is setup so that the relationships
between the:, nodes and the non-spare size gadgets induce (via a low distortion embedding) a permutation on the
vertices ofG. This construction balances two conflicting desires. On one hand, it must be possible to match unused
size gadgets to the spare gadgets with small distortion when a disjoint cycle cover exists. Thus, the spare gadgets
cannot be too far from the successor-selection Par®n the other hand, a node corresponding to a vertéxrmust
be far enough from size gadgets not corresponding to its own successors so that choosing a predecessor incorrectly
gives large distortion.

Lemma 6. If G has a disjoint cycle cover thetist(S, D) < (y + z)(x + y)/(xz2).

Proof. As g has a disjoint cycle cover, there is a permutationn] — [n] such that for alf € [n], (¢, (7)) is an edge
in G. We construct a small distortion embeddip®f S into D. Consider any € [n]. By the definition ofs, anS;
gadgetA is attached to the, nodeu corresponding ta, ;) in S. Letp map A exactly to the non-spar®; gadgetB
of D andu to thec, node attached t®. This leave®n size gadgets af not yet mapped. Map each of these exactly
to spare size gadgets Bf Finally, lety map thec,. node ofS to thec, node ofD.

We claim thatezp(¢) = (v + 2z)/x. By Lemmal, we only need to consider the expansion of the edges dhe
(9r, ge) @and(c,, c¢) edges inS have an expansion af A (g,, ¢c,) edge inS has an expansion dfif the corresponding
S; gadget is mapped to a non-spdPegadget andy + z)/x otherwise. This proves the claim. We further claim that
exp(p~t) = (x + y)/x. Again using Lemmadl, the only edges irD that have expansion different fromare the
(cr, g~) €dges irD that give an expansion @& + y)/z. This completes the proof. O

Let ¢ be any embedding af into G. Since bothS andD contain edges of weight and all edge weights are in
7+, we have the following.

Proposition 7. exp(¢) > 1 andcon(yp) > 1.



Lemma 8. If G has no disjoint cycle cover and fully maps every non-spat®; gadget from anS; gadget and,
nodes from, nodes, then bothrp(p) andcon(y) are at leastl + 2y/x.

Proof. Fori € [n], consider the5; gadgetA; that maps to the non-spafe; gadgetB; of D. Let A; be attached to
the ¢, nodew; of S corresponding to vertex; of G. Let B; be attached to the, nodew; of D. If u; maps tow;
and(v;,v;) € E(G), think of vertexv; being chosen as the successor of vertgin G. SinceG does not have a
disjoint cycle cover, there must exist [n] such that.;, as defined above, does not maputo Fix suchi andj. Let
o(uj) = wg, ande(ug,) = w;, wherek, # i andk, # j. Letr be theg, node of4; andr’ be that ofB;. The edge
(uj,r) in S gives an expansion of at legst + 2y)/z = 1 + 2y/x because> mapsu; to wy, andr to a node within
B;. Similarly, the edgéw;, ') in D gives a contraction of at least+ 2y/x because ~! mapsw; to ux, andr’ to a
node withinA;. O

Lemma 9. If G has no loose disjoint cycle cover andully maps evenp; gadgets to &, gadget, then bothzp(y)
andcon(yp) are at leastl + 2y/x.

Proof. Since everyS; gadget fully maps to &; gadget, the center gadget&ffully maps to the center gadget dX.
We first consider the case whermmaps the:,. node ofS to thec, node inD. Everyc, node ofS must then map to a
c¢ node ofD and LemmaB completes the proof.

Now suppose thap maps the:,. node ofS to ac, nodew; of D. As all gadgets are fully mapped, there is,a
nodewu; of S corresponding to vertex; of G be mapped to the, node ofD. Let B; be theD; gadget attached to
w,;. From the arguments we made above, it follows that if we want at least onep@p) andcon(yp) to be strictly
less thanl + 2y/x, then only one of two things can happen. First, a size gadget S that does not correspond to
a successor af; is mapped taB; and every other size gadget maps correctly w.r.t. the successor relationghimin
this caseexp(yp) > 1 + 2y/x while con(y) may be at most + y/x. However, if A; corresponds to vertex;, by
adding the edgév;, v;), we have a disjoint cycle cover, contradicting the absencdadsecycle cover. Second3;
and at most two other non-spare size gaddggtand B, in D are mapped from size gadgetsSrthat correspond to
successors;, v, andv, of v;, and every other size gadget maps correctly w.r.t. the successor relationghiim this
casecon(p) > 1+ 2y/x while exp(p) may be at most + y/z. The successor af; is well-defined in this case, but
v, andv, may not be successors of thenodes inS mapped to the, nodes ofB; and B,. If those nodes are; and
vy, by adding edgesv,, v,) and (v, ve), we have a disjoint cycle cover, again contradicting the absence of a loose
cover. O

3.2 Hardness for Weighted Trees

We first consider general weighted trees with unbounded degree and then modify the reduction so that exactly one
node in bothS andD has non-constant degree. Lebe an embedding af into D. We begin by showing that for
suitably weightedS andD, the distortion is large if» does not map size gadgets correctly.

Lemma 10. If s(1) > n andy does not fully map every,; gadget to aD; gadget, therlist(p) > = - min{z, z}.

Proof. Supposeeap(p) < min{z, z}. Fori € [n], s(i) > s(1) > n. Since the center gadgets have only- 1
nodes, every size gadgetdhmust have at least one node thatnaps to a size gadget . Recall that all edges
within size gadgets i have weightl while every edge going out of size gadgetslirhas weightmin{z, z}. To
keepexp(p) < min{z, z}, every node of any size gadgetshmust map within a single size gadgetZn Since for
all i € [n], S andD have the same number 8f and D; gadgets, respectively, this can happen only if evrgadget
fully maps to aD; gadget. A similar argument shows thatp(»~1) <  only if every D; gadget fully maps to as;
gadget. O

Theorem 11. For o > 1, it is NP-hard to approximate the distortion between two trees with weight r@{ia?)
within a factor less than + «.

Proof. LetG, S, andD be as in SectioB.1lwithz =a+ 1,y =a(la+1)/2,z=z+y = (o + 1)(a + 2)/2, and
s(i) = i+ nfori € [n]. The weight ratio of S, D} is (o + 1)(« + 2)/2. If G has a disjoint cycle cover then by
Lemmab dist(S,D) < 14 2y/xz =1+ «. If G does not have a loose disjoint cycle cover then by Lem@reasd 10,
dist(S,D) > min{x - min{z, 2}, (1 + 2y/x)?}, which is(1 + «)2. The result follows from Lemma. O



Let V be the number of nodes i (andD). In the above constructiodly = ©(n?). Thec, nodes ofS andD
have degrees and3n, respectively, which i®(v/N). Thec, nodes have degregsand?, respectively. Thg, nodes
have degrees between= ©(v/N) and2n, while theg, nodes have degree We strengthen the above result by
describing a modification to the construction®andD that allows only theie, nodes to have degree 4.

Theorem 12. For 0 < ¢ < 1/2 and« > 1, it is NP-Hard to approximate the distortion between two trees viNth
nodes, weight rati62(a?), exactly one node of degré€y N¢), and all other nodes of degree 4 within a factor less
thanl + a.

Proof. First assume that = 1/2. Replace eacly; gadget, which was a depth one tree with) = ¢ + n leaves,
with a newS;] gadget which is a line graph a4+ n + 1 nodes. Replace eadh; gadget with a newD; gadget in
a similar fashion. Everything else remains the same. This clearly satisfies the degree requirement on graphs in the
statement of the Theorem. Further, it is easy to see that Propositind Lemmag® and10 still hold. It follows that
the approximation factor guarantee of Theorklapplies for these modified trees as well.
For0 < e < 1/2, all we need to do is increase the number of nodes in each size gadget. tet/e and
s(i) = i +n +nP~1. Now bothS andD haveN = ©(nP) nodes, have one node of degfeg: = N'/?), and have
all other nodes of degre€ 4. The approximation factor guarantee does not change. O

3.3 Hardness for Unweighted Trees

The construction from SectioB.1 needs slight modification in order to obtain hardness results for the unweighted
case. Letj, S, andD be as in SectioB.1with z = y = z = 1 ands(i) = 2¢ - (f(¢) + 2n°), wherec = 4n + 2 and

f is a strictly increasing-way sum-free sequence of sizén [n°] guaranteed by Lemna These parameters imply

six useful properties of, namely,s(-) is even,s(-) is a multiple ofc, 2s(1) > s(n), 2s(n) < 3s(1), |s(¢) — s(j)| is

large fori # j, ands(1), s(2), ..., s(n) is a strictly increasing-way sum-free sequence. Furthermore, we have that
¢ > |Edges(G)| = 3n. We will repeatedly use the fact th&tandD each have: + 1 center gadget nodes afid g,
nodes.

The only change to the construction is to modify the non-spare size gaddetdnistead of being depth one trees
with s(7) leaves, they are now depth two trees witl) /2 nodes at depth one, each of which has a single depth two
leaf. The root and depth one nodes are denotegl.landg, as before, the depth two leaves are denoted,bsind the
depth one and two nodes are together denotegy b}l other notation is unchanged. Like the original construction,
bothS andD have the same number of nodes and for eéaaadget there is a correspondibg gadget with the same
number of nodes.

Let ¢ be any embedding of into D. We will prove the following lemmas in the rest of this section using
Propositionsl6 and18, respectively.

Lemma 13. If G has no disjoint cycle cover anddoes not fully map every; gadget to aD; gadget, therzp(p) > 3.

Lemma 14. If G has no disjoint cycle cover and does not fully map every; gadget to aD; gadget, then either
con(p) > 3 orexp(p) > 5.

Theorem 15. It is NP-Hard to approximate the distortion between two unweighted trees within a factor lesg than

Proof. If G has a disjoint cycle cover then by an argument similar to LerBnaast(S, D) < 4. Assume thaf does
not have a loose disjoint cycle cover (and hence no disjoint cycle cover eitherfully maps everyS; gadget to a
D, gadget then by an argument similar to Lemnalist(¢) > 9. If it does not then Lemma3, 13, and14 imply
dist(e) > 9. The result follows from Lemma. O

Proposition 16. If any of the following failezp(¢) > 3.
1. No size gadget i& maps to thgj; nodes of two distinct size gadgetsin
2. Nodes of no two size gadgetsSrare both mapped to thg nodes of a single size gadgetZin

3. No node of art; gadget maps to g; node of aD; gadget forj # i.



4. Theg, node of anyS; gadgetA maps within the uniqu®, gadgetB whoseg; nodesA maps to, or possibly to
thec, node ofD if B is a spare gadget.

5. Thec, node ofS is not mapped to a non-spare gadget or thenodes of a spare gadget .
6. Noc, node inS is mapped to a non-spare gadget or fhenodes of a spare gadget .

Proof. Suppose]) fails and a size gadget in S maps to thgj; nodes of two distinct size gadgeBsandC in D.
Any gy node of B is at least distance 5 away from afgynode ofC', while all nodes inA are within distance 2 of each
other. Hencegzp(y) > 5/2. By Corollary2, exp(p) > 3.

Suppose?) fails with an.S; gadget4 and anS), gadgetC' mapping to thej; nodes of a singlé); gadgetB. A
andC together have at leasti) + s(k) — s(j) > 2s(1) — s(n) > 2¢(2 + n°) nodes mapped outside. Since there
are only4dn + 1 nong; nodes inD (n + 1 in the center gadget arih g, nodes), a node ol or C must be mapped to
ayg; node of a size gadget iR other thanC'. This violates ).

To see B), suppose that af; gadget4d maps to & node of aD; gadgetB for j # 4. If j < ¢, by our choice of
s(+), atleasc nodes ofA are mapped outsidB. However, there are onln + 1 < 2¢ nongg nodes inD. Therefore,
a node ofA must be mapped to@ node of a size gadget i other thanB. This violates {). If on the other hand
j > i, aD; gadget has at leastmore g; nodes than the number gf nodes of anS; gadget and there are only
4n + 1 < c nonygg nodes inS. Therefore, a node of a size gadgEt# A of S must also be mapped toga node of
B, violating ).

(4) when B is a spare gadget follows immediately fror) @nd @). If B is a non-sparé; gadget, 8) implies
that A must be aD, gadget. Further, we claim that must have a node that maps tg;anode of B, from which @)
follows. To see this, recall that hass(i)/2 + 1 > 4n + 1 more nodes than thg nodes ofB. Now use 8) and the
fact thatD has only4n + 1 nong,; nodes.

Supposeyg) fails with thec, node ofS mapping to node: of a non-spare gadgét in D. To maintainexp(p—!) <
2, all n of the ¢, nodes inS must be mapped to nodes within distar2cef « in D. This in particular means that at
leastn — 2 of the ¢, nodes inS are mapped t@; nodes ofB. The g, nodes of the corresponding size gadgets, at
least3(n — 2) of them, must then be mapped within distaricef the g; nodes ofB, violating @) and resulting in
exp(p) > 3. The case when thg. node ofS maps to g, node of a spare gadgetnis similar.

Suppose ) fails with ac, node inS labeledv; mapping to node: of a non-spare gadget iR. Letv;, v, and
ve be the successors of in the graphG. To ensurezzp(yp) < 2, theg, nodes of the threg;, S, and.S, gadgets
adjacent to the, node inS labeledv; must be mapped to nodes within distalaaf » in D. By (4), however, at most
two g, nodes can be mapped amongst nodes that are within distafeg causingeazp(y) > 3. The case when &
node ofS maps to gy, node of a spare gadgetinis similar. O

Proof of Lemmal3. By Propositionl16 (1), (4), (5), and @), no node other than that of a unigqi$e gadget can be
mapped to any non-spafe; gadget or the, nodes of a spar®; gadget. It follows that all non-spare gadgets are fully
mapped. We further claim that al} nodes ofS are mapped to, nodes ofD, in which case the proof is complete by
Lemma8. The claim holds because of the following. Observe that since all non-spare gadgets are fully mapped, all
nodes ofS must map within the center gadget®Bfto ensurexp(y) < 2. Further, by the assumption in the lemma,

at least one spare gadgtis partially mapped from a gadgétin S. By (4), the g. node of A must map to the,

node ofD, making the latter unavailable for tlag nodes ofS. O

We begin the contraction argument by stating a straightforward but crucial property gf tiwgles of the size
gadgets irD.

Observation 17. If a g, node of a size gadgét in D does not have as its image under! in S a node with neighbors
only those nodes that are images of nodeB pthec, node attached t®, or thec,. node ofD, thenexp(y) > 5.

Proof. Let = be theg, node in question, and let be a neighbor ofp~! () that is not an image of a node as listed
above. Then by examining the construction we see that the distance betwadp(u) is at least 5. O

Define thesuccessor clusteX corresponding to a vertexof G to be thec, nodeu of S corresponding t@ and
the three size gadgets , , A, , and A, attached toit. LeQ% C {1,...,n} be themulti-set defined by)¥, = {r |

JXx



some nong, node of aD, gadget maps under—! to a none, node ofX }. The multiplicity ofr in Q% is the number
of D,’s that map in this way toX. Since the number of center gadget node®iis onlyn + 1, s% = Zre% s(r)

can be less thanx = s(ix) + s(jx) + s(kx) by at mostn + 1. However, sinces; andsx are both multiples of
c>n+1,s% > sx.

Proposition 18. If any of the following failcon(p) > 3 or exp(p) > 5.
1. Q% = {ix,jx, kx}.

2. Theg, node of anyD; gadgetB is mapped within the unique successor clusteto which B's nony;, nodes
map.

3. Thec, node ofD maps to the:,. node ofS.
4. Theg, nodes ofS are occupied only by the size gadget nodeP of

5. If a ¢, node ofD is mapped to a node of a successor clustetthen nodes from exactly three size gadget® of
map intoX. (X may have othet, nodes ofD mapped into it as well.)

6. If a ¢, node ofD is mapped to the, node of a successor clustéf, then three size gadgets Dffully map to
the none, nodes ofX .

7. If no ¢, node ofD is mapped to a node of a successor clusterthen nodes from exactly three size gadgets of
D map intoX and thec, node ofX is occupied by a node from a fourth size gadgePof

8. Every successor cluster $iis fully mapped from exactly ong node and three size gadgetsiof

9. If a ¢, nodew in D is mapped to a successor clust&;, then the root- of the size gadgeB attached tov is
mapped taX .

Proof. In this proof unless mentioned otherwise the mapping under consideratiort is

To prove () first note thafQ¥%,| > 3 as2s(n) < 3s(1) by the choice of(-) while s% > sx > 3s(1). Suppose
Q% # {ix,jx,kx} (this includes the casg)%| > 4). Let Z be the set of size gadgets B that are indexed
by Q%. By the choice ofs(-), s% exceedssy by at least2c. Since there are onlyn + 1 nony, nodes inS,
¢ > 2¢— (4n + 1) = 4n + 3 nodes of size gadgets & must map tgy, nodes ofS \ X. Call the set of these nodes
Y. If any node inY is ag, node ofD, thenexp(o~1) > 5/2 because of any, node of the corresponding gadget
that witnesses the membership®fin Z. If all nodes in)’ areg; nodes ofD, then consider the’ corresponding,
nodes that nodes ¥ are attached to (note that all of these have to h& s otherwise the argument we just made
works). At mosin + 1 of these can map to nagi-nodes ofS. Thec’ — (4n + 1) > 2 remaining nodes must map to
the g, nodes ofX, resulting inexp(o 1) > 6.

Consider ). (1) implies that all but at most g, nodes ofB map tog, nodes ofX. Hence they, node of B must
also map withinX to ensureexp(p 1) < 2.

To see B), suppose the, node ofD is mapped to a node of successor clusteX. To achieveezp(¢p 1) < 2, all
2n of the g, nodes of spare gadgetsihmust map within distance of « in S. This in particular means that at least
n of them are mapped to nodes ®f This violates {) and Q).

(4) follows from (3) by noting that the:; nodes need to map within distarZef the ¢, node.

If (5) fails, letv be ac, node ofD that is mapped to a nodeof X. By (4), u is either ac, node or ag, node.
Suppose first that it is@ node. SinceR) fails, there is a size gadg#tin D that has a hode mapping #6 and another
adjacent node mapping outside ThenB contains two nodes that are mapped at least distauagpart because they
cannot map to the, node of X or to thec, node ofS.

Suppose on the other hand thas theg, node of size gadget in X. Consider the sef of size gadgets if® that
have a node mapping toga node ofA. Since the size of each gadgetdns 1 mod ¢, the number ofj, nodes ofA is
0 mod ¢, and|Z| < |Edges(G)| = 3n < ¢, there exists a size gadgBte Z that also maps outsidé. In particular,

B must have a node mapped to thenode of X which is the only node of outside A within distance 2 of they,
nodes ofA. Since by 4) thec, node ofS is already occupied by the. node ofD, no size gadget (other than possibly
B) mapping to a node outsid€ can also map withidk’ without causing:zp(p~!) > 3. (5) now follows from ().



If (6) fails then there exists a size gaddebf D that has a node (say) that maps taX and one of its neighbors
(sayy) that maps ta5 \ X. Since the, node ofX and thec, node are already occupied; ! expands the edger, y)
by at leasB3. Otherwise by the choice of(-), the three size gadgets 1 that map to they, nodes ofX (which are
guaranteed bys)) must then fully map to the nos- nodes ofX.

If (7) fails, let By, B>, and B3 be the three size gadgetsinhthat have nodes mapping to thenodes ofX and
some node of any of these gadgets is mapped te,thede ofX. Now no node of a fourth size gadgetZihcan be
mapped to a node of unlessexp(¢~!) > 3 (due to @)). HenceB, B,, and B3 fully map to theg, andg, nodes of
X.

For (8), suppose that two, nodesy; andvs in D are mapped to a single successor cludfeBy (4) and @), v;
andvy, must map to the,. nodes-; andr, of gadgetsd; and A,, respectively, ofX in S. Consider as in the argument
for (5) the setZ; of size gadgets if® that have a node mapping tganode ofA;. Since the size of each gadgets in
Z is 1 mod ¢, the number ofy, nodes of4; are0 mod ¢, | 21| < |Edges(G)| = 3n < ¢, there exists a size gadget
B € 2, that also maps outsidé; . In particular, forezp(¢ 1) < 2, a node ofB; must be mapped to the node of
X as well. DefineZ, and B, similarly for A,. An identical argument shows that a nodeR) is mapped to they
node ofX as well. Hence&3; and B; are identical. Thu®? = B; = Bs is a gadget that maps tg nodes of both4;
andA., which meand3 maps adjacent to both andvs. This by Observatiod7 impliesexp(y) > 5.

Suppose in violation of9) a ¢, nodewv in D is mapped to a successor cluskérand the root of the size gadget
B attached ta is mapped to a successor clusteet X. Assumeezp(p~!) < 3. Thus,v must map to the, node of
X and and- to thec, node ofY". B maps some of itg; nodes tay, nodes of a gadget of Y, otherwise a, node of
B is far from ag; node ofB, or Observatiorl7is violated. Further, asis mapped to the, of Y, all of B must map
into A. However, the number of nodes #is 1 mod ¢ while the number ofj; nodes ofB is 0 mod ¢ which implies
that a node of some other size gadgedf D must map to thg,. node ofA (a node ofC cannot map to g, node of
A as then(p~!) > 3) which by Observatiod7 impliesexp(p) > 5. O

Proof of Lemmal4. From Propositionl8 (8) and @), any non-spare size gadgetih and thec, node of D it is
attached to must map within the same successor clustgruinderp—!. Consequently, Propositial8 (8) can be
strengthened to say that every successor clust8rdaarresponding to a nodeis fully mapped from exactly oney
node inD, the size gadgeB attached to it and two spare size gadgets. 4s) is sum-free,B must correspond to a
successor of. Since there are exactlyc, nodes inD, this assigns a unique successor to each modstablishing a
disjoint cycle and the contradiction which proves the lemma. O

4 Hardness of Embeddings Between Line Graphs with Large Weights

A line graphis an acyclic connected graph of maximum degree two, that is, a line of vertices.

Theorem 19. Given two line graphs with nodes and weight rati®(v?), for anyk > 1 andb with b = Q(kn?), itis
NP-hard to determine if the distortion between them is less tiaror at leastb.

Proof. As with previous results, our reduction is from the directed disjoint cycle cover problem, where we assume
the input graphg has outdegree- 3. The construction is similar as well in that we have size gadgets related to
the successors of each vertex, which are intended to map to a spare or non-spare gadget. Because of the simplified
topology of a line, we must use large edge weights in place of organizing gadgets around a tree.

Letvy,...,v, be the vertices of. As before, the source line graphwill be an encoding off and the destination
line graphD will be constructed so that an embeddingSointo D of small distortion will encode a unique successor
for eachv;. This is equivalent to finding a disjoint cycle cover@f

The construction is parametrized byb, ¢, andd, which will be specified later. Referring to Fig.may improve
the read of the following paragraphs. The constructionrhiypes ofsize gadgetshich are used in botl§ andD. A
size gadget of typé denotedl}, is a line graph with 4+ 1 nodes connected by edges of weigjib. b will be chosen
so that mapping afi; gadget inS to aT); gadget inD will result in expansion at leastif ¢ # j.

The source grap8 is constructed as follows. Size gadgets are arranged with nodes corresponding to each vertex
to form anedge-selectiogadget. If vertew; has successots, , v;,, andv;,, the edge-selection gadge} associated
with v; contains a copy of size gadgédfs , T;,, andT), attached together in a line by edges of lengtfollowed by a
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Figure 2: A sample construction of line grapfi@ndD from input graphg.

vertex representing;, also attached with an edge of lengthThe edge-selection gadgets are separated by an edge of
lengthb. Let P be the multi-se{: | gadgetT; is used inS}. We may assume th@ 2 [n], otherwise a disjoint cycle
cover cannot exist.

To construct the destination grah one copy ofl;,i € [n], is combined with a special vertex by an edge of
length 1 to formn successor-selectiogadgetsS;, i € n. The successor-selection gadgets are arranged linearly, each
separated by an edge of lengthAfter the last successor-selection gadgefpare size gadgdist appears, composed
of size gadgetq}, for k € P \ [n], each separated by an edge of lengttWe now choosé so that the total length
(diameter) ofD is a; asg has outdegree exactly three and indegree at most 4 we havethét —n — 2n?/b)/(3n).

Choose the remaining parameters so that

max{1,18n? -k} < c < b/3
9(n?/b+n) < a<b/(3k)

These parameters imply thét> a/(9n). If b is chosen tightly, the weight ratio will b@ (b/(1/b)) = O(k*n*). The
proof now follows from the following claims.

Claim 20. If G has a disjoint cycle cover thetist(S, D) < b/k.

In the disjoint cycle cover, let,;, be the successor of. For eachi € [n], map theT’(; size gadgetA in the
edge-selection gadgéj; to the size gadget in the successor-selection gagiggtwith the vertex inS for v; mapping
to the special vertex i ;. The remaining size gadgets i) map to their correspondents in the spare size gadgets.
In this case, expansion occurs by separating a size gadget from another size gadget within its edge-selector gadget,
or separating it from its special vertex. In the maximum distance ig while in S the distance between gadgets,is
giving an expansion af/c. By Lemmal, as no other edges are expanded, this gives the expansion for the embedding.
The contraction of this embedding is the maximum of the contraction between a size gadget and its vertex, and the
contraction between two vertices. A size gadget is at most a disgarfcem its vertex inS, and ends up at least a
distance 1 from its vertex if. Two vertices are at most distan@e+ 3c)n in S, and are at least distande> a/(9n)
in D. Hence the contraction is at most

(b+3c)n
a/(9n)

asc < b/3. Combining the expansion and contraction, we have that the distortion is atm§3a, 18n2b/c} < b/k
by our choice of parameters. This proves the claim.

maX{BC, } < max {30, 18n2b/a}

Claim 21. If G does not contain a disjoint cycle cover théist(S, D) > b.

As there does not exist a unique assignment of successors, the embedding must do one of the following two things.
First, it may map a size gadget incorrectly. The two claims below shows this immediately leads to large distortion.
Otherwise, if all the size gadgets are mapped correctly, then a werbexS must be mapped to a special vertexin
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adjacent to a size gadget of type that does not appear in its edge-selection gatigiet ihis case the contraction is

at least, asb is a lower bound on the distance between a vertex and any size gadget from a different edge-selection
gadget, and 1 is the distance between a special vertex and its size gadget in a successor-selection gadget. As the size
gadgets are mapped isometrically, expansion in this case is at least 1, so the total distortion i$ aslekstned.

Claim 22. If a vertex is mapped to a size gadget point thést(S, D) > b.

Contraction is at least/(1/b) as inS a vertex is at least distaneein{c, b} = ¢ from any other point, and i®
it will be distancel /b from the adjacent point in the size gadget it is mapped into. Now as the vertex is mapped into
a size gadget, a pigeonhole argument says some size gadget points will be split up at some place in the embedding,
leading to expansion at least(1/b), as 1 is the minimum distance between non-size gadget poifi?s ifhus the
total distortion is at leasth?> > b asb, ¢ > 1.

Claim 23. If a size gadget of typeis mapped to a size gadget of type # j, then distortion is at least.

By the previous claim we can assume that all size gadgets are mapped into other size gadgets. This implies we
may assume without loss of generality that j, which means several points of the first size gadget overflow from
the second. In this case at least two points originally separatedibgf this size gadget are separated by at least 1
in D, giving expansion at least As we have chosea < b, at least one of thé-edges inS must contract, giving
contraction at least 1. Hence the distortion is at |éast claimed. O

Corollary 24. For o > 0, it is NP-hard to approximate the distortion between two line graphs witiodes and
weight ratio2(a?n*) within a factor ofa.

5 Conclusion

We have shown that the problem of finding a minimum distortion embedding between two metrics is hard to approx-
imate within constant factors on even extremely simple graphs, such as weighted lines or unweighted trees. While
our constants improve previous results, we believe they are still far from the true story: it seems likely that even
approximating distortion in unweighted graphs is much harder than what we know.

One natural relaxation to the graph embedding problem is to find the distortion of embedding a constant fraction
of one graph to another. While this quantity will in general be far from the true distortion, it may provide a good
enough measure of graph difference for certain applications. Other notions of distortion may also be useful. Rabi-
novich [L8] has used average distortion to study the MinCut-MaxFlow gap in uniform-demand mulitcommodity flow.
Other possibly interesting measures are max-distortion, which is the maximum of expansion and contraction rather
than the product, and Gromov-Hausdorff distance, which has applications in analysis. The problem remains open in
all these scenarios.
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