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Abstract

We improve hardness results for the problem of embedding one finite metric into another with minimum distortion.
This problem is equivalent to optimally embedding one weighted graph into another under the shortest path metric.
We show that unlessP = NP, the minimum distortion of embedding one such graph into another cannot be efficiently
approximated within a factor less than9/4 even when the two graphs are unweighted trees. For weighted trees with
the ratio of maximum edge weight to the minimum edge weight ofα2 (α ≥ 1) and all but one node of constant
degree, we improve this factor to1 + α. We also obtain similar hardness results for extremely simple line graphs
(weighted). This improves and complements recent results of Kenyon et al. [12] and Papadimitriou and Safra [17].

1 Introduction

For twon-point metric spaces(X, ρ) and(Y, σ), theexpansionof a bijectionϕ : X → Y is defined asexp(ϕ) =
maxa6=b∈X

σ(ϕ(a),ϕ(b))
ρ(a,b) . Thedistortionof ϕ, denoteddist(ϕ), is the product ofexp(ϕ) andexp(ϕ−1). The expansion

of ϕ−1 is also referred to as thecontractionof ϕ and denotedcon(ϕ). Thedistortion betweenX and Y , denoted
dist(X, Y ), is the minimum distortion over all such bijections and may be thought of as a difference measure between
these metric spaces. This paper addresses the computational hardness of the problem of embedding one finite metric
space into another with minimum distortion.

The notion of distortion was originally studied for infinite metrics [11] in the analysis of Banach spaces. More
recently the embedding of finite metrics into Euclidean and otherLp metrics has been very successful for applications
in theoretical computer science, including approximation, learning, on-line algorithms, high-dimensional geometry,
and others [5, 16, 15, 10]. This notion has been extended in such directions as embedding a finite metric into a
distribution of metrics which has again found great success in approximation algorithms [1, 7]. This continues to be
an active area of research [2, 14].

We point out that the problems addressed in the works mentioned above are combinatorial in nature– that is, they
are concerned with embedding a finite metric into anotherclassof metrics and the focus is on providing bounds
for the distortion itself. However, we are interested in the algorithmic problem of embedding aspecificmetric into
anotherspecificmetric– i.e. we are interested in the worst case ratio of the distortion obtained by the algorithm under
consideration and the best possible distortion. This problem was introduced by Kenyon et al. [12]. The recent work of
Bădoiu et. al. [3] considers the algorithmic question of finding embeddings of a specific metric into a class of metrics.

In addition to the fact that the problem of finding low-distortion embeddings between two finite metrics is a very
natural question that by itself merits investigation, the problem is also likely to have much wider use than theoretical
computer science. To mention three examples, theorem proving and symbolic computation [19], database problems



such as queries over heterogeneous structured databases [20], and matching gels from electrophoresis [9] can all be
expressed as tree embedding problems. The problem has several other applications as well [12].

We note a basic fact that anyn-point metric may be realized as the shortest path metric of a weighted undirected
graph overn nodes, for example by making a complete graph whose adjacency matrix is the matrix of metric distances.
Due to this correspondence, we will exclusively focus on the problem of optimally embedding one graph into another.
We will implicitly identify a graph with the metric given by shortest paths on that graph. For a set of weighted graphs,
theirweight ratiois the ratio of the maximum to the minimum weights of edges in the graphs.

1.1 Previous Results

The only upper bounds on this problem known to us are by Kenyon et al. [12]. Given two point sets on the real line
with theL1 distance metric that have distortion less than3 + 2

√
2, there is a polynomial time algorithm to find an

embedding with the minimum distortion. Their second result finds the minimum distortion between an arbitrary graph
and a tree, in polynomial time if the degree of the tree and the distortion are constant. Their algorithm is exponential in
the degree of the tree and doubly-exponential in the distortion. Both algorithms are based on dynamic programming;
the latter is similar to those based on tree decompositions of graphs.

The situation for hardness results is a little more clear. Determining if there is an isometry—a distortion 1
embedding—between two graphs is the graph isomorphism problem, which is not known to be inP but which is
probably notNP-hard either. Kenyon et al. [12] show the problem isNP-hard to approximate within a factor of 2 for
general graphs and a factor of4/3 in the case where one of the graphs is an unweighted tree and the other is a weighted
graph with weights1/2 or 1. Papadimitriou and Safra [17] show that it isNP-hard to approximate within a factor of 3
the distortion between any two finite metrics realized as point sets inR3 where the distance metric is theL2 norm.

1.2 Our Results

Unweighted Trees (Section3.3) The problem isNP-hard to approximate within a factor less than9/4 for unweighted
trees. As far as we know, this is the first hardness result for embedding an unweighted graph into another. It
also improves the factor of2 result for general graphs [12] even when the graphs are unweighted.

Weighted Trees (Section3.2) The problem isNP-hard to approximate within a factor less than1 + α for anyα ≥ 1
and tree graphs with weight ratioΩ(α2). This is the first hardness result for embedding trees into trees and
improves the bound of2 for general graphs [12] at the expense of a larger weight ratio. Our result also holds
when all but one node of the underlying graphs have degree≤ 4; the problem is known to be easy in the
unweighted case when all nodes have constant degree and the distortion is small [12]. This result also improves
the bound of3 by Papadimitriou and Safra [17].

Weighted Line Graphs (Section4) The problem isNP-hard to approximate within a factor ofα for anyα > 1 and
line graphs with weight ratioΩ(α2n4), wheren is the number of nodes in the two graphs. This is the only bound
known for graphs with constant degrees and large weights.

2 Preliminaries

We begin with some basic properties of the distortion resulting from embedding a weighted undirected graphG into
another such graphH. Let [m] denote the set of integers from1 tom. LetdG anddH denote the shortest path distances
in G andH, respectively. Fix a bijectionϕ : G → H. We state the following results forexp(ϕ). Analogous results
hold for con(ϕ) which is nothing butexp(ϕ−1).

Lemma 1 ([12]). ϕ achieves its maximum expansion at some edge inG, i.e.,exp(ϕ) = max{a,b}∈E(G)
dH(ϕ(a),ϕ(b))

dG(a,b) .

Corollary 2. If G andH are unweighted thenexp(ϕ) is an integer.

Lemma 3. If G andH are unweighted andH has no edge-subgraph that is isomorphic toG thenexp(ϕ) ≥ 2.
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Proof. Let u andv be nodes ofG such that(u, v) ∈ E(G) but (ϕ(u), ϕ(v)) 6∈ E(H). Such nodes must exist because
H has no edge-subgraph isomorphic toG. dG(u, v) = 1 anddH(ϕ(u), ϕ(v)) ≥ 2, implying an expansion of at least
2.

We now state the problem we use in the reductions for ourNP-hardness proofs. It is a generalization of the
Hamiltonian cycle problem [8]. Let G = (V,E) be a directed graph overn vertices. G has adisjoint cycle cover
if there is a collection of vertex-disjoint cycles inG that contain every node inV , i.e., there exists a permutation
σ : [n] → [n] such that for alli ∈ [n], (vi, vσ(i)) ∈ E. G has aloosedisjoint cycle cover if it has a disjoint cycle cover
after adding two arbitrarily chosen edges toE.

The loose directed disjoint cycle cover testingproblem is a property testing problem defined as follows. Given a
directed graphG, output1 if G has a disjoint cycle cover and0 if G does not even have a loose disjoint cycle cover.
Note that in the remaining scenario, one is allowed to output anything.

Lemma 4. The loose directed disjoint cycle cover testing problem isNP-hard for graphs with indegree≤ 4 and
outdegree= 3.

Proof. This can be shown by an extension of the ideas used in theNP-completeness proof of the directed disjoint
cycle cover problem in an earlier paper by the authors [4] using in addition the fact that the Vertex Cover problem is
hard to approximate [6]. We omit the details.

Finally, we mention a combinatorial result about sum-free sequences that is used in one of our constructions. A
sequence ofn integers isk-way sum-freeif all nk sums ofk integers (not necessarily distinct) in it are distinct. Khanna
et al. [13] suggest a greedy algorithm to construct3-way sum-free sequences. Their result can be generalized to the
following.

Lemma 5. There exists a strictly increasing sequence of sizen in [n2k−1] that isk-way sum-free and is computable
in timeO(n2k−1).

3 Hardness of Embeddings between Tree Graphs

Consider the problem of finding a minimum distortion embedding between two given undirected tree graphs. We
give reductions from the loose directed disjoint cycle cover testing problem to the decision version of this embedding
problem on weighted as well as unweighted trees. The result for the weighted case holds even for graphs with all but
one node of degree at most4. We begin with a general construction that will be used in both reductions.

Given a directed graphG with outdegree= 3 and indegree≤ 4, we will construct a source treeS and a destination
treeD with the property that there exist0 < a < b such that

1. if G has a disjoint cycle cover thendist(S,D) ≤ a, and

2. if G has noloosedisjoint cycle cover thendist(S,D) ≥ b.

It follows from Lemma4 that it isNP-hard to approximatedist(S,D) within a factor less thanb/a.

3.1 The Construction

We describe in this section the construction ofS andD from G. Let Z+ denote the set of positive integers and
s : Z+ → Z+ be a strictly increasing monotonic function. Letv1, . . . , vn be the vertices ofG.

We will need two types of gadgets, acenter gadgetand for eachi ∈ [n], asize gadgetTi. The center gadget is a
rooted tree consisting ofn leaves, all at depth1. All edges in this gadget have weighty ∈ Z+. Its root is denoted by
cr and leaves byc`. The size gadgetTi is a rooted tree consisting ofs(i) leaves, all at depth1. All edges inTi have
weight1. The root ofTi is denoted bygr and the leaves byg`.

The source treeS is constructed as follows (see Fig.1). Start with a copy of the center gadget and associate with
eachc` node of it a distinct vertexvi of G. For anyi ∈ [n], let the successors ofvi in G be the verticesvi1 , vi2 , and
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Figure 1: A directed graph and the source and destination trees corresponding to it. For simplicity of depiction,
s(i) = i. Unmarked edges have a weight of1.

vi3 . Attach to thec` node corresponding tovi copies of the three size gadgetsTi1 , Ti2 , andTi3 by adding edges with
weightx ∈ Z+ to thegr nodes of these gadgets. Copies of any size gadgetTi in S will henceforth be denoted bySi.

The destination treeD is constructed similarly. As before, start with a copy of the center gadget. Fix an arbitrary
ordering of itsc` nodes. For alli ∈ [n], attach to theith c` node a copy of the size gadgetTi by adding an edge of
weightx to itsgr node. Thesen size gadgets are callednon-sparesize gadgets. Now letP be the multi-set{i | gadget
Ti is used inS}. We may assume thatP ⊇ [n], otherwise a disjoint cycle cover cannot exist. For eachi ∈ P \ [n],
attach a copy of the size gadgetTi directly to thecr node by adding edges of weightz ∈ Z+ to theirgr node. These
are calledsparesize gadgets. Copies of any size gadgetTi in D will henceforth be denoted byDi.

Note that bothS andD have the same number of nodes and for everyi ∈ [n], the same number of copies of the
size gadgetTi. Further,S andD each have exactly onecr node,n c` nodes, and3n g` nodes (recall the outdegree of
every vertex ofG is 3). Consider a mappingϕ from S toD. Let A andB be sets of nodes inS andD, respectively.ϕ
fully mapsA to B if {ϕ(u) | u ∈ A} = B. ϕ mapsA exactlyto B if A andB are size gadgets withgr nodesa andb,
respectively,ϕ fully mapsA to B, andϕ(a) = b.

The basic idea of the construction is thatS encodes the input graphG while D is setup so that the relationships
between thec` nodes and the non-spare size gadgets induce (via a low distortion embedding) a permutation on the
vertices ofG. This construction balances two conflicting desires. On one hand, it must be possible to match unused
size gadgets to the spare gadgets with small distortion when a disjoint cycle cover exists. Thus, the spare gadgets
cannot be too far from the successor-selection partD. On the other hand, a node corresponding to a vertex inG must
be far enough from size gadgets not corresponding to its own successors so that choosing a predecessor incorrectly
gives large distortion.

Lemma 6. If G has a disjoint cycle cover thendist(S,D) ≤ (y + z)(x + y)/(xz).

Proof. AsG has a disjoint cycle cover, there is a permutationσ : [n] → [n] such that for alli ∈ [n], (i, σ(i)) is an edge
in G. We construct a small distortion embeddingϕ of S intoD. Consider anyi ∈ [n]. By the definition ofσ, anSi

gadgetA is attached to thec` nodeu corresponding tovσ(i) in S. Let ϕ mapA exactly to the non-spareDi gadgetB
of D andu to thec` node attached toB. This leaves2n size gadgets ofS not yet mapped. Map each of these exactly
to spare size gadgets ofD. Finally, letϕ map thecr node ofS to thecr node ofD.

We claim thatexp(ϕ) = (y + z)/x. By Lemma1, we only need to consider the expansion of the edges ofS. The
(gr, g`) and(cr, c`) edges inS have an expansion of1. A (gr, c`) edge inS has an expansion of1 if the corresponding
Si gadget is mapped to a non-spareDi gadget and(y + z)/x otherwise. This proves the claim. We further claim that
exp(ϕ−1) = (x + y)/x. Again using Lemma1, the only edges inD that have expansion different from1 are the
(cr, gr) edges inD that give an expansion of(x + y)/z. This completes the proof.

Let ϕ be any embedding ofS into G. Since bothS andD contain edges of weight1 and all edge weights are in
Z+, we have the following.

Proposition 7. exp(ϕ) ≥ 1 andcon(ϕ) ≥ 1.
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Lemma 8. If G has no disjoint cycle cover andϕ fully maps every non-spareDi gadget from anSi gadget andc`

nodes fromc` nodes, then bothexp(ϕ) andcon(ϕ) are at least1 + 2y/x.

Proof. For i ∈ [n], consider theSi gadgetAi that maps to the non-spareDi gadgetBi of D. Let Ai be attached to
the c` nodeuj of S corresponding to vertexvj of G. Let Bi be attached to thec` nodewi of D. If uj maps towi

and(vj , vi) ∈ E(G), think of vertexvi being chosen as the successor of vertexvj in G. SinceG does not have a
disjoint cycle cover, there must existi ∈ [n] such thatuj , as defined above, does not map towi. Fix suchi andj. Let
ϕ(uj) = wk1 andϕ(uk2) = wi, wherek1 6= i andk2 6= j. Let r be thegr node ofAi andr′ be that ofBi. The edge
(uj , r) in S gives an expansion of at least(x + 2y)/x = 1 + 2y/x becauseϕ mapsuj to wk1 andr to a node within
Bi. Similarly, the edge(wi, r

′) in D gives a contraction of at least1 + 2y/x becauseϕ−1 mapswi to uk2 andr′ to a
node withinAi.

Lemma 9. If G has no loose disjoint cycle cover andϕ fully maps everySi gadgets to aDi gadget, then bothexp(ϕ)
andcon(ϕ) are at least1 + 2y/x.

Proof. Since everySi gadget fully maps to aDi gadget, the center gadget ofS fully maps to the center gadget ofD.
We first consider the case whenϕ maps thecr node ofS to thecr node inD. Everyc` node ofS must then map to a
c` node ofD and Lemma8 completes the proof.

Now suppose thatϕ maps thecr node ofS to a c` nodewi of D. As all gadgets are fully mapped, there is ac`

nodeuj of S corresponding to vertexvj of G be mapped to thecr node ofD. Let Bi be theDi gadget attached to
wi. From the arguments we made above, it follows that if we want at least one ofexp(ϕ) andcon(ϕ) to be strictly
less than1 + 2y/x, then only one of two things can happen. First, a size gadgetAi in S that does not correspond to
a successor ofvj is mapped toBi and every other size gadget maps correctly w.r.t. the successor relationship inG. In
this case,exp(ϕ) ≥ 1 + 2y/x while con(ϕ) may be at most1 + y/x. However, ifAi corresponds to vertexvi, by
adding the edge(vj , vi), we have a disjoint cycle cover, contradicting the absence of aloosecycle cover. Second,Bi

and at most two other non-spare size gadgetsBk andB` in D are mapped from size gadgets inS that correspond to
successorsvi, vk andv` of vj , and every other size gadget maps correctly w.r.t. the successor relationship inG. In this
case,con(ϕ) ≥ 1 + 2y/x while exp(ϕ) may be at most1 + y/x. The successor ofvj is well-defined in this case, but
vk andv` may not be successors of thec` nodes inS mapped to thec` nodes ofBk andB`. If those nodes arevs and
vt, by adding edges(vs, vk) and(vt, v`), we have a disjoint cycle cover, again contradicting the absence of a loose
cover.

3.2 Hardness for Weighted Trees

We first consider general weighted trees with unbounded degree and then modify the reduction so that exactly one
node in bothS andD has non-constant degree. Letϕ be an embedding ofS into D. We begin by showing that for
suitably weightedS andD, the distortion is large ifϕ does not map size gadgets correctly.

Lemma 10. If s(1) > n andϕ does not fully map everySi gadget to aDi gadget, thendist(ϕ) ≥ x ·min{x, z}.

Proof. Supposeexp(ϕ) < min{x, z}. For i ∈ [n], s(i) ≥ s(1) > n. Since the center gadgets have onlyn + 1
nodes, every size gadget inS must have at least one node thatϕ maps to a size gadget inD. Recall that all edges
within size gadgets inS have weight1 while every edge going out of size gadgets inD has weightmin{x, z}. To
keepexp(ϕ) < min{x, z}, every node of any size gadget inS must map within a single size gadget inD. Since for
all i ∈ [n], S andD have the same number ofSi andDi gadgets, respectively, this can happen only if everySi gadget
fully maps to aDi gadget. A similar argument shows thatexp(ϕ−1) < x only if everyDi gadget fully maps to anSi

gadget.

Theorem 11. For α ≥ 1, it is NP-hard to approximate the distortion between two trees with weight ratioO(α2)
within a factor less than1 + α.

Proof. Let G, S, andD be as in Section3.1with x = α + 1, y = α(α + 1)/2, z = x + y = (α + 1)(α + 2)/2, and
s(i) = i + n for i ∈ [n]. The weight ratio of{S,D} is (α + 1)(α + 2)/2. If G has a disjoint cycle cover then by
Lemma6 dist(S,D) ≤ 1 + 2y/x = 1 + α. If G does not have a loose disjoint cycle cover then by Lemmas9 and10,
dist(S,D) ≥ min{x ·min{x, z}, (1 + 2y/x)2}, which is(1 + α)2. The result follows from Lemma4.
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Let N be the number of nodes inS (andD). In the above construction,N = Θ(n2). Thecr nodes ofS andD
have degreesn and3n, respectively, which isΘ(

√
N). Thec` nodes have degrees4 and2, respectively. Thegr nodes

have degrees betweenn = Θ(
√

N) and2n, while theg` nodes have degree1. We strengthen the above result by
describing a modification to the construction ofS andD that allows only theircr nodes to have degree> 4.

Theorem 12. For 0 < ε ≤ 1/2 andα ≥ 1, it is NP-Hard to approximate the distortion between two trees withN
nodes, weight ratioΩ(α2), exactly one node of degreeΘ(N ε), and all other nodes of degree≤ 4 within a factor less
than1 + α.

Proof. First assume thatε = 1/2. Replace eachSi gadget, which was a depth one tree withs(i) = i + n leaves,
with a newS′

i gadget which is a line graph oni + n + 1 nodes. Replace eachDi gadget with a newD′
i gadget in

a similar fashion. Everything else remains the same. This clearly satisfies the degree requirement on graphs in the
statement of the Theorem. Further, it is easy to see that Proposition7 and Lemmas9 and10 still hold. It follows that
the approximation factor guarantee of Theorem11applies for these modified trees as well.

For 0 < ε < 1/2, all we need to do is increase the number of nodes in each size gadget. Letp = 1/ε and
s(i) = i + n + np−1. Now bothS andD haveN = Θ(np) nodes, have one node of degreeΘ(n = N1/p), and have
all other nodes of degree≤ 4. The approximation factor guarantee does not change.

3.3 Hardness for Unweighted Trees

The construction from Section3.1 needs slight modification in order to obtain hardness results for the unweighted
case. LetG, S, andD be as in Section3.1with x = y = z = 1 ands(i) = 2c ·

(
f(i) + 2n5

)
, wherec = 4n + 2 and

f is a strictly increasing3-way sum-free sequence of sizen in [n5] guaranteed by Lemma5. These parameters imply
six useful properties ofs, namely,s(·) is even,s(·) is a multiple ofc, 2s(1) � s(n), 2s(n) < 3s(1), |s(i) − s(j)| is
large fori 6= j, ands(1), s(2), . . . , s(n) is a strictly increasing3-way sum-free sequence. Furthermore, we have that
c > |Edges(G)| = 3n. We will repeatedly use the fact thatS andD each haven + 1 center gadget nodes and3n gr

nodes.
The only change to the construction is to modify the non-spare size gadgets inD. Instead of being depth one trees

with s(i) leaves, they are now depth two trees withs(i)/2 nodes at depth one, each of which has a single depth two
leaf. The root and depth one nodes are denoted bygr andg` as before, the depth two leaves are denoted byg′`, and the
depth one and two nodes are together denoted byg`. All other notation is unchanged. Like the original construction,
bothS andD have the same number of nodes and for eachSi gadget there is a correspondingDi gadget with the same
number of nodes.

Let ϕ be any embedding ofS into D. We will prove the following lemmas in the rest of this section using
Propositions16and18, respectively.

Lemma 13. If G has no disjoint cycle cover andϕ does not fully map everySi gadget to aDi gadget, thenexp(ϕ) ≥ 3.

Lemma 14. If G has no disjoint cycle cover andϕ does not fully map everySi gadget to aDi gadget, then either
con(ϕ) ≥ 3 or exp(ϕ) ≥ 5.

Theorem 15. It is NP-Hard to approximate the distortion between two unweighted trees within a factor less than9/4.

Proof. If G has a disjoint cycle cover then by an argument similar to Lemma6, dist(S,D) ≤ 4. Assume thatG does
not have a loose disjoint cycle cover (and hence no disjoint cycle cover either). Ifϕ fully maps everySi gadget to a
Di gadget then by an argument similar to Lemma9, dist(ϕ) ≥ 9. If it does not then Lemmas3, 13, and14 imply
dist(ϕ) ≥ 9. The result follows from Lemma4.

Proposition 16. If any of the following fail,exp(ϕ) ≥ 3.

1. No size gadget inS maps to theg` nodes of two distinct size gadgets inD.

2. Nodes of no two size gadgets inS are both mapped to theg` nodes of a single size gadget inD.

3. No node of anSi gadget maps to ag` node of aDj gadget forj 6= i.
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4. Thegr node of anySi gadgetA maps within the uniqueDi gadgetB whoseg` nodesA maps to, or possibly to
thecr node ofD if B is a spare gadget.

5. Thecr node ofS is not mapped to a non-spare gadget or theg` nodes of a spare gadget inD.

6. No c` node inS is mapped to a non-spare gadget or theg` nodes of a spare gadget inD.

Proof. Suppose (1) fails and a size gadgetA in S maps to theg` nodes of two distinct size gadgetsB andC in D.
Any g` node ofB is at least distance 5 away from anyg` node ofC, while all nodes inA are within distance 2 of each
other. Hence,exp(ϕ) ≥ 5/2. By Corollary2, exp(ϕ) ≥ 3.

Suppose (2) fails with anSi gadgetA and anSk gadgetC mapping to theg` nodes of a singleDj gadgetB. A
andC together have at leasts(i) + s(k)− s(j) ≥ 2s(1)− s(n) ≥ 2c(2 + n5) nodes mapped outsideB. Since there
are only4n + 1 non-g` nodes inD (n + 1 in the center gadget and3n gr nodes), a node ofA or C must be mapped to
ag` node of a size gadget inD other thanC. This violates (1).

To see (3), suppose that anSi gadgetA maps to ag` node of aDj gadgetB for j 6= i. If j < i, by our choice of
s(·), at least2c nodes ofA are mapped outsideB. However, there are only4n+1 < 2c non-g` nodes inD. Therefore,
a node ofA must be mapped to ag` node of a size gadget inD other thanB. This violates (1). If on the other hand
j > i, a Dj gadget has at leastc moreg` nodes than the number ofg` nodes of anSi gadget and there are only
4n + 1 < c non-g` nodes inS. Therefore, a node of a size gadgetA′ 6= A of S must also be mapped to ag` node of
B, violating (2).

(4) whenB is a spare gadget follows immediately from (1) and (3). If B is a non-spareSi gadget, (3) implies
thatA must be aDi gadget. Further, we claim thatA must have a node that maps to ag′` node ofB, from which (4)
follows. To see this, recall thatA hass(i)/2 + 1 > 4n + 1 more nodes than theg` nodes ofB. Now use (3) and the
fact thatD has only4n + 1 non-g` nodes.

Suppose (5) fails with thecr node ofS mapping to nodeu of a non-spare gadgetB inD. To maintainexp(ϕ−1) ≤
2, all n of the c` nodes inS must be mapped to nodes within distance2 of u in D. This in particular means that at
leastn − 2 of the c` nodes inS are mapped tog` nodes ofB. Thegr nodes of the corresponding size gadgets, at
least3(n − 2) of them, must then be mapped within distance2 of the g` nodes ofB, violating (4) and resulting in
exp(ϕ) ≥ 3. The case when thecr node ofS maps to ag` node of a spare gadget inD is similar.

Suppose (6) fails with a c` node inS labeledvi mapping to nodeu of a non-spare gadget inD. Let vj , vk, and
v` be the successors ofvi in the graphG. To ensureexp(ϕ) ≤ 2, thegr nodes of the threeSj , Sk, andS` gadgets
adjacent to thec` node inS labeledvi must be mapped to nodes within distance2 of u in D. By (4), however, at most
two gr nodes can be mapped amongst nodes that are within distance2 of u, causingexp(ϕ) ≥ 3. The case when ac`

node ofS maps to ag` node of a spare gadget inD is similar.

Proof of Lemma13. By Proposition16 (1), (4), (5), and (6), no node other than that of a uniqueSi gadget can be
mapped to any non-spareDi gadget or theg` nodes of a spareDi gadget. It follows that all non-spare gadgets are fully
mapped. We further claim that allc` nodes ofS are mapped toc` nodes ofD, in which case the proof is complete by
Lemma8. The claim holds because of the following. Observe that since all non-spare gadgets are fully mapped, allc`

nodes ofS must map within the center gadget ofD to ensureexp(ϕ) ≤ 2. Further, by the assumption in the lemma,
at least one spare gadgetB is partially mapped from a gadgetA in S. By (4), thegr node ofA must map to thecr

node ofD, making the latter unavailable for thec` nodes ofS.

We begin the contraction argument by stating a straightforward but crucial property of theg′` nodes of the size
gadgets inD.

Observation 17. If a g′` node of a size gadgetB inD does not have as its image underϕ−1 in S a node with neighbors
only those nodes that are images of nodes ofB, thec` node attached toB, or thecr node ofD, thenexp(ϕ) ≥ 5.

Proof. Let x be theg′` node in question, and letu be a neighbor ofϕ−1(x) that is not an image of a node as listed
above. Then by examining the construction we see that the distance betweenx andϕ(u) is at least 5.

Define thesuccessor clusterX corresponding to a vertexv of G to be thec` nodeu of S corresponding tov and
the three size gadgetsAiX

, AjX
, andAkX

attached to it. LetQϕ
X ⊆ {1, . . . , n} be themulti-set defined byQϕ

X = {r |

7



some non-g′` node of aDr gadget maps underϕ−1 to a non-c` node ofX}. The multiplicity ofr in Qϕ
X is the number

of Dr ’s that map in this way toX. Since the number of center gadget nodes inD is only n + 1, sϕ
X =

∑
r∈Qϕ

X
s(r)

can be less thansX = s(iX) + s(jX) + s(kX) by at mostn + 1. However, sincesϕ
X andsX are both multiples of

c > n + 1, sϕ
X ≥ sX .

Proposition 18. If any of the following fail,con(ϕ) ≥ 3 or exp(ϕ) ≥ 5.

1. Qϕ
X = {iX , jX , kX}.

2. Thegr node of anyDi gadgetB is mapped within the unique successor clusterX to whichB’s non-g′` nodes
map.

3. Thecr node ofD maps to thecr node ofS.

4. Theg` nodes ofS are occupied only by the size gadget nodes ofD.

5. If a c` node ofD is mapped to a node of a successor clusterX, then nodes from exactly three size gadgets ofD
map intoX. (X may have otherc` nodes ofD mapped into it as well.)

6. If a c` node ofD is mapped to thec` node of a successor clusterX, then three size gadgets ofD fully map to
the non-c` nodes ofX.

7. If no c` node ofD is mapped to a node of a successor clusterX, then nodes from exactly three size gadgets of
D map intoX and thec` node ofX is occupied by a node from a fourth size gadget ofD.

8. Every successor cluster inS is fully mapped from exactly onec` node and three size gadgets ofD.

9. If a c` nodev in D is mapped to a successor clusterX, then the rootr of the size gadgetB attached tov is
mapped toX.

Proof. In this proof unless mentioned otherwise the mapping under consideration isϕ−1.
To prove (1) first note that|Qϕ

X | ≥ 3 as2s(n) < 3s(1) by the choice ofs(·) while sϕ
X ≥ sX ≥ 3s(1). Suppose

Qϕ
X 6= {iX , jX , kX} (this includes the case|Qϕ

X | ≥ 4). Let Z be the set of size gadgets ofD that are indexed
by Qϕ

X . By the choice ofs(·), sϕ
X exceedssX by at least2c. Since there are only4n + 1 non-g` nodes inS,

c′ ≥ 2c − (4n + 1) = 4n + 3 nodes of size gadgets inZ must map tog` nodes ofS \X. Call the set of these nodes
Y. If any node inY is ag` node ofD, thenexp(ϕ−1) ≥ 5/2 because of anyg` node of the corresponding gadgetB
that witnesses the membership ofB in Z. If all nodes inY areg′` nodes ofD, then consider thec′ correspondingg`

nodes that nodes inY are attached to (note that all of these have to be inZ as otherwise the argument we just made
works). At most4n + 1 of these can map to non-g` nodes ofS. Thec′ − (4n + 1) ≥ 2 remaining nodes must map to
theg` nodes ofX, resulting inexp(ϕ−1) ≥ 6.

Consider (2). (1) implies that all but at most 3g` nodes ofB map tog` nodes ofX. Hence thegr node ofB must
also map withinX to ensureexp(ϕ−1) ≤ 2.

To see (3), suppose thecr node ofD is mapped to a nodeu of successor clusterX. To achieveexp(ϕ−1) ≤ 2, all
2n of thegr nodes of spare gadgets inD must map within distance2 of u in S. This in particular means that at least
n of them are mapped to nodes ofX. This violates (1) and (2).

(4) follows from (3) by noting that thec` nodes need to map within distance2 of thecr node.
If (5) fails, let v be ac` node ofD that is mapped to a nodeu of X. By (4), u is either ac` node or agr node.

Suppose first that it is ac` node. Since (5) fails, there is a size gadgetB inD that has a node mapping toX and another
adjacent node mapping outsideX. ThenB contains two nodes that are mapped at least distance3 apart because they
cannot map to thec` node ofX or to thecr node ofS.

Suppose on the other hand thatu is thegr node of size gadgetA in X. Consider the setZ of size gadgets inD that
have a node mapping to ag` node ofA. Since the size of each gadget inZ is 1 mod c, the number ofg` nodes ofA is
0 mod c, and|Z| ≤ |Edges(G)| = 3n < c, there exists a size gadgetB ∈ Z that also maps outsideA. In particular,
B must have a node mapped to thec` node ofX which is the only node ofS outsideA within distance 2 of theg`

nodes ofA. Since by (4) thecr node ofS is already occupied by thecr node ofD, no size gadget (other than possibly
B) mapping to a node outsideX can also map withinX without causingexp(ϕ−1) ≥ 3. (5) now follows from (1).
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If (6) fails then there exists a size gadgetB of D that has a node (sayx) that maps toX and one of its neighbors
(sayy) that maps toS \X. Since thec` node ofX and thecr node are already occupied,ϕ−1 expands the edge(x, y)
by at least3. Otherwise by the choice ofs(·), the three size gadgets inD that map to theg` nodes ofX (which are
guaranteed by (5)) must then fully map to the non-c` nodes ofX.

If (7) fails, letB1, B2, andB3 be the three size gadgets inD that have nodes mapping to theg` nodes ofX and
some node of any of these gadgets is mapped to thec` node ofX. Now no node of a fourth size gadget inD can be
mapped to a node ofX unlessexp(ϕ−1) ≥ 3 (due to (3)). HenceB1, B2, andB3 fully map to thegr andg` nodes of
X.

For (8), suppose that twoc` nodesv1 andv2 in D are mapped to a single successor clusterX. By (4) and (6), v1

andv2 must map to thegr nodesr1 andr2 of gadgetsA1 andA2, respectively, ofX in S. Consider as in the argument
for (5) the setZ1 of size gadgets inD that have a node mapping to ag` node ofA1. Since the size of each gadgets in
Z1 is 1 mod c, the number ofg` nodes ofA1 are0 mod c, |Z1| ≤ |Edges(G)| = 3n < c, there exists a size gadget
B1 ∈ Z1 that also maps outsideA1. In particular, forexp(ϕ−1) ≤ 2, a node ofB1 must be mapped to thec` node of
X as well. DefineZ2 andB2 similarly for A2. An identical argument shows that a node ofB2 is mapped to thec`

node ofX as well. HenceB1 andB2 are identical. ThusB = B1 = B2 is a gadget that maps toc` nodes of bothA1

andA2, which meansB maps adjacent to bothv1 andv2. This by Observation17 impliesexp(ϕ) ≥ 5.
Suppose in violation of (9) a c` nodev in D is mapped to a successor clusterX and the rootr of the size gadget

B attached tov is mapped to a successor clusterY 6= X. Assumeexp(ϕ−1) < 3. Thus,v must map to thec` node of
X and andr to thec` node ofY . B maps some of itsg′` nodes tog` nodes of a gadgetA of Y , otherwise ag` node of
B is far from ag′` node ofB, or Observation17 is violated. Further, asr is mapped to thec` of Y , all of B must map
into A. However, the number of nodes inA is 1 mod c while the number ofg` nodes ofB is 0 mod c which implies
that a node of some other size gadgetC of D must map to thegr node ofA (a node ofC cannot map to ag` node of
A as then(ϕ−1) ≥ 3) which by Observation17 impliesexp(ϕ) ≥ 5.

Proof of Lemma14. From Proposition18 (8) and (9), any non-spare size gadget inD and thec` node ofD it is
attached to must map within the same successor cluster inS underϕ−1. Consequently, Proposition18 (8) can be
strengthened to say that every successor cluster inS corresponding to a nodev is fully mapped from exactly onec`

node inD, the size gadgetB attached to it, and two spare size gadgets. Ass(·) is sum-free,B must correspond to a
successor ofv. Since there are exactlyn c` nodes inD, this assigns a unique successor to each nodev, establishing a
disjoint cycle and the contradiction which proves the lemma.

4 Hardness of Embeddings Between Line Graphs with Large Weights

A line graphis an acyclic connected graph of maximum degree two, that is, a line of vertices.

Theorem 19. Given two line graphs withn nodes and weight ratioΩ(b2), for anyk > 1 andb with b = Ω(kn2), it is
NP-hard to determine if the distortion between them is less thanb/k or at leastb.

Proof. As with previous results, our reduction is from the directed disjoint cycle cover problem, where we assume
the input graphG has outdegree= 3. The construction is similar as well in that we have size gadgets related to
the successors of each vertex, which are intended to map to a spare or non-spare gadget. Because of the simplified
topology of a line, we must use large edge weights in place of organizing gadgets around a tree.

Let v1, . . . , vn be the vertices ofG. As before, the source line graphS will be an encoding ofG and the destination
line graphD will be constructed so that an embedding ofS intoD of small distortion will encode a unique successor
for eachvi. This is equivalent to finding a disjoint cycle cover ofG.

The construction is parametrized bya, b, c, andd, which will be specified later. Referring to Fig.2 may improve
the read of the following paragraphs. The construction hasn types ofsize gadgetswhich are used in bothS andD. A
size gadget of typei, denotedTi, is a line graph withi + 1 nodes connected by edges of weight1/b. b will be chosen
so that mapping anTi gadget inS to aTj gadget inD will result in expansion at leastb if i 6= j.

The source graphS is constructed as follows. Size gadgets are arranged with nodes corresponding to each vertexvi

to form anedge-selectiongadget. If vertexvi has successorsvj1 , vj2 , andvj3 , the edge-selection gadgetEi associated
with vi contains a copy of size gadgetsTj1 , Tj2 , andTj3 attached together in a line by edges of lengthc, followed by a

9



2 4

c

v2

b cc

v1

b

3 1 4

b

2

c

v4

c

v3

4

1 d

2

d

42

1 d

v? 3

1 d

1

1 d

v4 v3

v1 v2

G

c

v?v?v?

S

D

size gadget

︸ ︷︷ ︸
edge-selection gadget

︸ ︷︷ ︸︸ ︷︷ ︸
successor-selection gadget spare gadgets

1/b

Figure 2: A sample construction of line graphsS andD from input graphG.

vertex representingvi, also attached with an edge of lengthc. The edge-selection gadgets are separated by an edge of
lengthb. LetP be the multi-set{i | gadgetTi is used inS}. We may assume thatP ⊇ [n], otherwise a disjoint cycle
cover cannot exist.

To construct the destination graphD, one copy ofTi, i ∈ [n], is combined with a special vertex by an edge of
length 1 to formn successor-selectiongadgetsSi, i ∈ n. The successor-selection gadgets are arranged linearly, each
separated by an edge of lengthd. After the last successor-selection gadget, aspare size gadgetlist appears, composed
of size gadgetsTk for k ∈ P \ [n], each separated by an edge of lengthd. We now choosed so that the total length
(diameter) ofD is a; asG has outdegree exactly three and indegree at most 4 we have thatd ≥ (a−n− 2n2/b)/(3n).

Choose the remaining parameters so that

max{1, 18n2 · k} < c ≤ b/3

9(n2/b + n) ≤ a < b/(3k)

These parameters imply thatd ≥ a/(9n). If b is chosen tightly, the weight ratio will beO
(
b/(1/b)

)
= O(k2n4). The

proof now follows from the following claims.

Claim 20. If G has a disjoint cycle cover thendist(S,D) < b/k.

In the disjoint cycle cover, letvπ(i) be the successor ofvi. For eachi ∈ [n], map theTπ(i) size gadgetA in the
edge-selection gadgetEi to the size gadget in the successor-selection gadgetSπ(i) with the vertex inS for vi mapping
to the special vertex inSπ(i). The remaining size gadgets inEi map to their correspondents in the spare size gadgets.

In this case, expansion occurs by separating a size gadget from another size gadget within its edge-selector gadget,
or separating it from its special vertex. InD, the maximum distance isa, while inS the distance between gadgets isc,
giving an expansion ofa/c. By Lemma1, as no other edges are expanded, this gives the expansion for the embedding.

The contraction of this embedding is the maximum of the contraction between a size gadget and its vertex, and the
contraction between two vertices. A size gadget is at most a distance3c from its vertex inS, and ends up at least a
distance 1 from its vertex inD. Two vertices are at most distance(b + 3c)n in S, and are at least distanced ≥ a/(9n)
in D. Hence the contraction is at most

max
{

3c,
(b + 3c)n
a/(9n)

}
≤ max

{
3c, 18n2b/a

}
asc < b/3. Combining the expansion and contraction, we have that the distortion is at mostmax{3a, 18n2b/c} < b/k
by our choice of parameters. This proves the claim.

Claim 21. If G does not contain a disjoint cycle cover thendist(S,D) ≥ b.

As there does not exist a unique assignment of successors, the embedding must do one of the following two things.
First, it may map a size gadget incorrectly. The two claims below shows this immediately leads to large distortion.
Otherwise, if all the size gadgets are mapped correctly, then a vertexvi in S must be mapped to a special vertex inD
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adjacent to a size gadget of type that does not appear in its edge-selection gadget inS. In this case the contraction is
at leastb, asb is a lower bound on the distance between a vertex and any size gadget from a different edge-selection
gadget, and 1 is the distance between a special vertex and its size gadget in a successor-selection gadget. As the size
gadgets are mapped isometrically, expansion in this case is at least 1, so the total distortion is at leastb as claimed.

Claim 22. If a vertex is mapped to a size gadget point thendist(S,D) ≥ b.

Contraction is at leastc/(1/b) as inS a vertex is at least distancemin{c, b} = c from any other point, and inD
it will be distance1/b from the adjacent point in the size gadget it is mapped into. Now as the vertex is mapped into
a size gadget, a pigeonhole argument says some size gadget points will be split up at some place in the embedding,
leading to expansion at least1/(1/b), as 1 is the minimum distance between non-size gadget points inD. Thus the
total distortion is at leastcb2 ≥ b asb, c ≥ 1.

Claim 23. If a size gadget of typei is mapped to a size gadget of typej, i 6= j, then distortion is at leastb.

By the previous claim we can assume that all size gadgets are mapped into other size gadgets. This implies we
may assume without loss of generality thati > j, which means several points of the first size gadget overflow from
the second. In this case at least two points originally separated by1/b of this size gadget are separated by at least 1
in D, giving expansion at leastb. As we have chosena < b, at least one of theb-edges inS must contract, giving
contraction at least 1. Hence the distortion is at leastb as claimed.

Corollary 24. For α > 0, it is NP-hard to approximate the distortion between two line graphs withn nodes and
weight ratioΩ(α2n4) within a factor ofα.

5 Conclusion

We have shown that the problem of finding a minimum distortion embedding between two metrics is hard to approx-
imate within constant factors on even extremely simple graphs, such as weighted lines or unweighted trees. While
our constants improve previous results, we believe they are still far from the true story: it seems likely that even
approximating distortion in unweighted graphs is much harder than what we know.

One natural relaxation to the graph embedding problem is to find the distortion of embedding a constant fraction
of one graph to another. While this quantity will in general be far from the true distortion, it may provide a good
enough measure of graph difference for certain applications. Other notions of distortion may also be useful. Rabi-
novich [18] has used average distortion to study the MinCut-MaxFlow gap in uniform-demand mulitcommodity flow.
Other possibly interesting measures are max-distortion, which is the maximum of expansion and contraction rather
than the product, and Gromov-Hausdorff distance, which has applications in analysis. The problem remains open in
all these scenarios.
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