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Abstract

We propose an algorithm for Gaussian process-based nantiaaonical
correlation analysis (CCA) for learning common hidden e given

corresponding sets of heterogenous observations. Thesaltisa spaces
are linked via a single, reduced-dimensionality latentalde space. We
present results from two datasets demonstrating the thgusis ability

to synthesize novel data from learned correspondences. rg¥esifiow

that the method can be used to learn the nonlinear mappingbatcor-

responding views of objects, filling in missing data as néddesynthe-

size novel views. We then show that the method can be usedtira@

mapping between human degrees of freedom and robotic degfréree-

dom for a humanoid robot, allowing robotic imitation of humposes
from motion capture data.

1 Introduction

Finding common structure between two or more conceptstigedeart of analogical rea-
soning. Structural commonalities can often be used topotate novel data in one space
given observations in another space. For example, pradieti3D object’s appearance
given corresponding poses of another, related objectsrelidearning a parameterization
common to both objects. Another domain where finding comntarctire is crucial is
imitation learning, also called “learning by watching” [101, 5]. In imitation learning,
one agent, such as a robot, learns to perform a task by obgeawxbther agent, for exam-
ple, a human instructor. In this paper, we propose an effiffamework for discovering
parameterizations shared between multiple observatiacespusing Gaussian processes.

Gaussian processes (GPs) are powerful models for clasisifiand regression that sub-
sume numerous classes of function approximators, sucmgie $iidden-layer neural net-
works and RBF networks [7, 14, 8]. Recently, Lawrence preddabe Gaussian process
latent variable model (GPLVM) [3] as a new technique for muoedr dimensionality re-
duction and data visualization [12, 9]. An extension of timedel, the scaled GPLVM
(SGPLVM), has been used successfully for dimensionaliucdon on human motion



capture data for motion synthesis and visualization [2].

In this paper, we propose a generalization of the GPLVM mduel can handle multiple

observation spaces, where each set of observations is @adred by a different set of
kernel parameters. Observations are linked via a singleced-dimensionality latent vari-
able space. Our framework can be viewed as a nonlinear éotetascanonical correlation

analysis (CCA), a framework for learning correspondenegs/éen sets of observations.
Our goal is to find correspondences on testing data, givemigeli set of corresponding

training data from two observation spaces. Such an algoritan be used in a variety of
applications, such as inferring a novel view of an objecegia corresponding view of
a different object and estimating the kinematic paramdtars. humanoid robot given a
human pose.

Several properties motivate our use of GPs. First, finditgnlarepresentations for corre-
lated, high-dimensional sets of observations requireslingar mappings, so linear CCA
is not viable. Second, GPs reduce the number of free paresriatthe regression model,
such as number of basis units needed, relative to alteenagigression models such as
neural networks. Third, the probabilistic nature of GPslifates learning from multiple
sources with potentially different variances. Fourth,hatoilistic models provide an esti-
mate of uncertainty in classification or interpolating beéw data; this is especially useful
in applications such as robotic imitation where estimafamaoertainty can be used to de-
cide whether a robot should attempt a particular pose or@8's can also be sampled to
generate novel data, unlike many nonlinear dimensionadyction methods like LLE [9].

Fig. 1(a) shows the graphical model for Gaussian process (GFACCA). A latent space
X maps to two (or more) observation spad¢és’ using nonlinear kernels, and “inverse”
Gaussian processes map back from observations to latertticates. Synthesis employs
a map from latent coordinates to observations, while retiogremploys an inverse map-
ping. We demonstrate our approach on two datasets. Thesfastimage dataset contain-
ing corresponding views of two different objects. The ofiadje is to predict corresponding
views of the second object given novel views of the first based limited training set of
corresponding object views. The second dataset consigisrofn poses derived from
motion capture data and corresponding kinematic posesdrbomanoid robot. The chal-
lenge is to estimate the kinematic parameters for robot,mpgen a potentially novel pose
from human motion capture, thereby allowing robotic imdatof human poses. Our re-
sults indicate that the model generalizes well when onlytéichtraining correspondences
are available, and that the model remains robust even wiestiesting data is noisy.

2 GPCCA Modd

The goal of the GPCCA model is to find a shared latent variaddtarpeterization in a space
X that relates corresponding pairs of observations from twvon{ore) different spaces
Y, Z. The observation spaces might be very dissimilar, desp@@®bservations sharing a
common structure or parameterization. For example, a ®fmitt space may have very
different degrees of freedom than a human’s joint spadeoadth they may both be made
to assume similar poses. The latent variable space theaabdres the common pose
space.

Let Y, Z be matrices of observations (training data) drawn from epad dimensionality
Dy, Dy respectively. Each row represents one data point. These\atons are drawn so
that the first observatiop; corresponds to the observatign observatiory, corresponds
to observatiorz,, etc. up to the number of observatios Let X be a “latent space” of
dimensionalityDx < Dy, Dz. We initialize a matrix of latent pointX by averaging the
top Dx principal components oY, Z. As with the original GPLVM, we optimize over a
limited subset of training points (thective set) to accelerate training, determined by the
informative vector machine (IVM) [4]. The SGPLVM assumestth diagonal “scaling
matrix” W scales the variances of each dimendianf the’ Y matrix (a similar matrixv’



scales each dimension of Z). The scaling matrix is helpful in domains where different
output dimensions (such as the degrees of freedom of a rohothave vastly different
variances.

We assume that each latent paitgenerates a pair of observations z; via a nonlinear
function parameterized by a kernel matrix. GPs paramet¢hie functionsfy : X — Y
andf; : X — Z. The SGPLVM model uses an exponential (RBF) kernel, defitiieg
similarity between two data poinis x’ as:

k (X,X/) = ay exp (—/YTYHX - XI||2) + 6x7x’ﬁ}71 (1)

given hyperparameters for tRé spacefy = {ay,By,vy }. d represents the delta func-
tion. Following standard notation for GPs [7, 14, 8], theopsiP(6y ), P(6z), P(X),
the likelihoods P(Y), P(Z) for the Y,Z observation spaces, and the joint likelihood
Pep(X,Y,Z,0y,0,) are given by:
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whereaz, 8z, vz are hyperparameters for thespace, andy, v,,, respectively denote the

diagonal entries for matricé®’, V. LetY, K;l respectively denote th¥ observations
from the active set (with meamy subtracted out) and the kernel matrix for the active set.
The joint negative log likelihood of a latent poirtand observationg, z is:
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The model learns a separate kernel for each observatior,dpaica single set of common
latent points. A conjugate gradient solver adjusts modedpaters and latent coordinates
to maximize Eg. 6.

Given a trained SGPLVM, we would like to infer the parametarsne observation space
given parameters in the other (e.g., infer robot ppgézen human posg). We solve this



problem in two steps. First, we determine the most likelgnétcoordinatex given the
observatiory usingargmax, Lx (x,y). In principle, one could finc at %Lx = 0 using
gradient descent. However, to speed up recognition, weaddearn a separate “inverse”
Gaussian procesﬁ;1 : y — x that maps back from the spateto the spaceX. Once
the correct latent coordinatehas been inferred for a given the model uses the trained

SGPLVM to predict the corresponding observation

3 Reaults

We first demonstrate how the GPCCA model can be used to synghesw views of an
object, character or scene from known views of another objdaracter or scene, given a
common latent variable model. The GPCCA model was appliechéme pairs depicting
corresponding views of 3D objects. Different views show dlbgects rotated at varying
degrees out of the camera plane. We downsampled the imag2st82 grayscale pixels.
For fitting images, the scaling matric¥g, V are of minimal importance (since we expect
all pixels shoulda priori have the same variance). We also found empirically thatgusin

fr(x) = YTK;lk(x) instead of Eqn. 8 produced better renderings. We rescatédfea
to use the full range of pixel valugs. . . 255], creating the images shown in the figures.

Fig. 1(b) shows how GPCCA can extrapolate to novel datasets @ limited set of train-
ing correspondences. We trained the model using 72 comesppviews of two different
objects, a coffee cup and a toy truck. Fixing the latent coates learned during training,
we then selected 8 views of a third object (a toy car). We setHatent points correspond-
ing to those views, and learned kernel parameters for thea§as Empirically, priors on
kernel parameters are critical for acceptable performapasicularly when only limited
data are available such as the 8 different poses for the toylicahis case, we used the
kernel parameters learned for the cup and toy truck (bas&@ different poses) to impose
a Gaussian prior on the kernel parameters for the car (iepldt6) in Eqn. 4):

—10g P(Bcar) = —log Pap + (Bcar — 0,) " T3t (Bcar — 6,,) (14)

whered,,, 0,,, F;l are respectively kernel parameters for the car, the mearekparam-
eters for previously learned kernels (for the cup and truakyl inverse covariance matrix
for learned kernel parametei,, I', Lin this case are derived from only two samples, but
nonetheless successfully constrain the kernel paranfetdise car so the model functions
on the limited set of 8 example poses.

To test the model’s robustness to noise and missing dataamaomly selected 10 latent
coordinates corresponding to a subset of learned cup acklimage pairs. We then added
varying displacements to the latent coordinates and sgiztbe the correspondingpvel
views for all 3 observation spaces. Displacements variea 0 to 0.45 (all 72 latent co-
ordinates lie on the interval [-0.70,-0.87] to [0.72,0)56]he synthesized views are shown
in Fig. 1(b), with images for the cup and truck in the first tveavs. Latent coordinates in
regions of low model likelihood generate images that appkeiry or noisy. More interest-
ingly, despite the small number of images used for the camrtbdel correctly matches the
orientation of the car to the synthesized images of the cdprarck. Thus, the model can
synthesize reasonable correspondences (given a latenf @een if the number of training
examples used to learn kernel parameters is small.

Fig. 2 illustrates the recognition performance of the “ip&2 Gaussian process model as a
function of the amount of noise added to the inputs. Usindatent space and kernel pa-
rameters learned for Fig. 1, we present 72 views of the caffpewith varying amounts of
additive, zero-mean white noise, and determine the fracifdhe 72 poses correctly clas-
sified by the model. The model estimates the pose using Esteaeighbor classification
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Figure 1:Pose synthesis for Multiple Objects using GPCCA: (a) Graphical model for GPCCA.
The latent spac& maps to two (or more) observation spadés using a nonlinear kernel. “In-
verse” Gaussian process kernels map back from observatdatent coordinates. (b) The model
learns pose correspondences for images of the coffee cuanidick (Y andZ) by fitting kernel
parameters and a 2-dimensional latent variable spacer. |afing the latent coordinates for the cup
and truck, we fit kernel parameters for a novel object (thecey. Unlike the cup and truck, where
72 pairs of views were used to fit kernel parameters and latrdinates, only 8 views were used
to fit kernel parameters for the car. The model is robust tseai the latent coordinates; numbers
above each column represent the amount of noise added tatém toordinates used to synthesize
the images. Even at points where the model is uncertainc@tetil by the rightmost results in tie
andZ rows), the learned kernel extrapolates the correct viewmetay car (the “novel” row).

of the latent coordinates learned during training:

argmax k (x,x’) (15)

xl

The recognition performance degrades gracefully withéasing noise power. Fig. 2 also
plots sample images from one pose of the cup at several gifferoise levels. For two
of the noise levels, we show the “denoised” cup image selagieng the nearest-neighbor
classification, and the corresponding reconstruction@tihck. This illustrates how even
noisy observations in one space can be used to predict porr@sg observations in the
companion space.

Fig. 3 illustrates the ability of the model to synthesize eloviews of one object given a
novel view of a different object. A limited set of correspamgiposes (24 of 72 total) of a
cat figurine and a mug were used to train the GPCCA model. Tinairéng 48 poses of
the mug were then used as testing data. For each snapshetrofith we inferred a latent
point using the “inverse” Gaussian process model and useikéined GPCCA model to
synthesize what the cat figurine should look like in the saos2pA subset of these results
is presented in the rows on the leftin Fig. 3: the “Test” rolws\g novel images of the mug,
the “Inferred” rows show the model’s best estimate for theficairine, and the “Actual”
rows show the ground truth. Although the images for some$aseblurry and the model
fails to synthesize the correct image for pose 44, the maalaintheless manages to capture
fine detail on most of the images.

The grayscale plot at upper right in Fig. 3 shows model ua@@stoy (x) + oz(x), with
white where the model is highly certain and black where thelehds highly uncertain.
Arrows indicate the path in latent space formed by the trginmages. The dashed line
indicates latent points inferred from testing images ofrtheg. Numbered latent coordi-
nates correspond to the synthesized images at left. Tha kptace shows structure: latent
points for similar poses are grouped together, and tend teratbng a smooth curve in
latent space, with coordinates for the final pose lying ctosmordinates for the first pose
(as desired for a cyclic image sequence). The bar graph a&rldght compares model
certainty for the numbered latent coordinates; higher malisate greater model certainty
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Figure 2: Recognition using a Learned Latent Variable Space: After learning from 72 paired
correspondences between poses of a coffee cup and of a ¢ty tihe model is able to recognize dif-
ferent poses of the coffee cup in the presence of additiveewtuise. Fraction of images recognized
are plotted on the Y axis and standard deviation of whiteen@lotted on the X axis. One pose
of the cup (of 72 total) is plotted for various noise leveleggext for details). “Denoised” images
obtained from nearest-neighbor classification and theesponding images for thg space (the toy
truck) are also shown.

1/[oy (x) + 0z(x)]. The model appears particularly uncertain for the blurfgrired im-
ages, such as 8, 14, and 26.

Fig. 4 shows an application of our framework to the problenmobbtic imitation of human
actions. We trained the GPCCA model on a dataset containingh poses (acquired with
a Vicon motion capture system) and corresponding poses gjisiHOAP-2 humanoid
robot. Note that the robot has 25 degrees-of-freedom whibér dignificantly from the
degrees-of-freedom of the human skeleton used in motiotuapAfter training on 43
roughly matching poses (only linear time scaling appliedlign training poses), we tested
the model by presenting a set of 123 human motion capturesp@ggch includes the
original training set). As illustrated in Fig. 4 (inset p&ehuman and robot skeletons),
the model was able to correctly infer appropriate robot kiagc parameters given a range
of novel human poses. These inferred parameters were usedjunction with a simple
controller to instantiate the pose in the humanoid roba (detos in the inset panels)

4 Discussion

Our Gaussian process CCA model provides a novel method fdinear canonical corre-
lation analysis. Our results demonstrate the model'styftiéir diverse tasks such as im-
age synthesis and robotic programming by demonstratioe. GRCCA model is closely
related to the notion of dependent Gaussian processedigates in [1], which uses a
separate kernel (convolved with a white noise process) tiplecthe outputs rather than
parameterizing a covariance function over the outputs.

The problems addressed by our model can also be framed as aftgpnlinear CCA. Our
method differs from the latent variable method proposed 8} by using Gaussian process
regression. Disadvantages of our method with respect farftRide lack of global opti-
mality for the latent embedding; advantages include fewgependent parameters and the
ability to easily impose priors on the latent variable sp@iece GPLVM regression uses
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Figure 3: Synthesis of Novel Views using GPCCA: After training on 24 paired images of a mug
with a cat figurine (out of 72 total paired images), we ask thadleh to infer what the remaining
48 poses of the cat would look like given 48 novel views of thagymThe system uses an inverse
Gaussian process model to infer a 2D latent point for eadiieod8 novel mug views, then synthesizes
a corresponding view of the cat figurine. At left we plot thevglonug images given to the system
(“novel”), the synthesized cat images (“inferred”), ané #ctual views of the cat figurine from the
database (“actual”). At upper right we plot the model uraiety in the latent space. The 24 latent
coordinates from the training data are plotted as arrowslewite 48 novel latent points are plotted
as crosses on a dashed line. At lower right we show modeliogrts/oy + oz for each training
point. Note the low certainty for the blurry inferred imadabeled 8, 14, and 26.

conjugate gradient optimization instead of eigendecoitipa¥. Empirically we found the
flexiblity of the GPLVM approach desirable for modeling aetisity of data sources.

Our framework learns mappings between each observatiae spal a latent space, rather
than mapping directly between the observation spaces.r#kes visualization and inter-
action much easier. An intermediate mapping to a latentesfgaglso more economical in
the limit of many correlated observation spaces. Rather lrning all pairwise relations
between observation spaces (requiring a number of paresrogiadratic in the number of
observation spaces), our method learns one generativereniheerse mapping between
each observation space and the latent space (so the nunpimeaaieters grows linearly).

From a cognitive science perspective, such an approacimikasio the Active Intermodal
Mapping (AIM) hypothesis of imitation [5]. In AIM, an imitadtg agent maps its own
actions and its perceptions of others’ actions into a singledality-independent space.
This modality-independent space is analogous to the |amdble space in our model.
Our model does not directly address the “correspondendsend in imitation [6], where
correspondences between an agent and a teacher are bsthtiiiough some form of un-
supervised feature matching. However, it is reasonablegorae that imitation by a robot
of human activity could involve some initial, explicit cegpondence matching based on
simultaneity. Turn-taking behavior is an integral part afritan-human interaction. Thus,
to bootstrap its database of corresponding data pointdya oould invite a human to take
turns playing out motor sequences. Initially, the human ldiémitate the robot’s actions
and the robot could use this data to learn correspondengesthe GPCCA model; later,
the robot could check and if necessary, refine its learnedehiydattempting to imitate the
human’s actions.
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Figure 4: GPCCA for Robotic Imitation of Human Actions: The plot in the center shows the
latent training points (red circles) and model precisioraygcale plot), with examples of recovered
latent points for testing data (blue diamonds). Inset Easiedw the pose of the human motion capture
skeleton, the simulated robot skeleton, and the humanbiat for each example latent point. As seen
in the panels, the model is able to correctly infer robot pdsem the human walking data.
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