
Probabilistic Query Answering Using Views

Nilesh Dalvi Dan Suciu∗

University of Washington, USA.

Abstract

The paper studies two probabilistic query evaluation problems. The
general setting is that we are given a probability distribution on all pos-
sible database instances and have to compute the probability of a tuple
belonging to the query’s answer. In the deterministic view problem, we
are given a set of view instances and are asked to determine the probabil-
ity of a tuple belonging to a query’s answer in presence of data statistics
and common world knowledge. This is related to the open world assump-
tion in query answering using views. We show that the data complexity is
NP-complete and identify important cases when it becomes PTIME, and
when the query can be answered by a datalog program. In the second
problem we consider, the views themselves are probabilistic: with uncer-
tainties associated with the tuples in the views. It is unclear a priori what
probability distribution on instances to assume here: we argue that a cer-
tain entropy-maximization distribution is the ”right one”, and show that
the problem can be answered in this case (under some restrictions), al-
beit with a high complexity. However, in some cases that we identify, the
problem can be reduced to the deterministic view problem and answered
with a datalog program on a probabilistic database.

1 Introduction

A probabilistic database is a probability distribution on all instances [6, 4, 15,
12, 11, 8]. The early motivation for probabilistic databases was to model un-
certainties at the tuple level: tuples are not known with certainty to belong to
the database, or represent noisy measurements, etc. The type of probabilistic
databases needed for such applications are tuple-independent probability distri-
butions, which have a relatively simple semantics.

Our interest in probabilistic databases lies in the promise they hold in large
scale data integration. Systems integrating dozens of databases, be it in the
scientific domain or in a large corporation, need to cope with a wide variety
of uncertainties. Examples of types of uncertainties include: different repre-
sentations of the same object in different sources; imperfect and noisy schema

∗Contact author: suciu@cs.washington.edu, tel. +1-206-685-1934, fax +1206-543-2969.

1



alignments; contradictory information across sources; constraint violations; in-
sufficient evidence to answer a given query. If standard query semantics were
applied to such data, all but the most trivial queries will return an empty answer.
The probabilistic approach holds the promise of coping with all types of uncer-
tainties in a uniform and principled way. Some recent projects are proposing to
use the probabilistic method to large scale data integration systems [21, 5].

However, in this scenario the probability applies to the instance level, not to
the tuple level. In particular it needs to allow correlations between tuples, both
positive and negative. This leads to a more complex semantics than the simple,
tuple-independent probabilistic databases studied in the past in the literature.
This paper proposes a probabilistic model for large scale data integration, and
studies the associated Probabilistic Query Answering Problem (PQAP). The
model extends the Local As View (LAV) data integration paradigm [17, 16], by
adding probabilities and statistics. To describe our approach, we briefly review
LAV next.

Assuming m local data sources to be integrated, the LAV approach starts
by defining a global mediated schema R̄. Then it defines each local source
i as a view vi(R̄) over the global schema. Users are allowed to ask queries
over the global, mediated schema, q(R̄), however the data is given as instances
J1, . . . , Jm of the local data sources. To answer the query, the following def-
inition is adopted. A global instance I is called possible if Ji ⊆ vi(I) for
i = 1, . . . ,m. Given a query q(R̄) on the global schema, a tuple t is called
a certain answer if t ∈ q(I) for all possible instances I. In LAV, the problem is
to compute all certain answers for q from J̄ .

Our new probabilistic model can be described as an extension of LAV, in
two ways: the local sources Ji are probabilistic, and there are statistics Σ on
the global schema R̄. The probability distribution on the global instance I is
specified indirectly, through Ji, the view definitions, and the statistics Σ: as
a result, complex correlations between tuples in I can be modeled this way.
We call any probability distribution on global instances I consistent if it agrees
with the probabilities observed in Ji, and with the statistics Σ. Of the many
consistent distributions we pick the distribution P that maximizes the entropy:
this is justified by the “principle of indifference”, stating that, all things being
equal, two unrelated events should have equal probabilities. The paper studies
the Probabilistic Query Answering Problem: given q, compute q(R̄) from the
probabilistic local sources J̄ and the statistics Σ.

The probabilistic model represents a new query answering paradigm, with
roots in random graphs, 0/1-laws, and knowledge representation. This paper
defines the model, and shows that query answering is decidable, and sometimes
tractable.

1.1 An Example

Suppose we integrate two sources: S1(N,D) contains employee names N and
departments D, and S2(D,B) contains departments D and buildings B. There
are no constraints: an employee may work in several departments and a depart-

2



S1 N D P
t1 Larry Big SalesDept 0.45
t′1 Frank Little HR 0.60

S2 D B P
t2 SalesDept EE1 0.25
t′2 HR EE1 0.15
t′′2 HR MGH 0.20

Figure 1: A view instance

ment may be spread across multiple buildings. We specify one global mediated
relation R(N,D,B), which lists employee names, their department, and their
building. The mappings are given by the following views v1, v2:

S1 : v1(N1, D1) : − R(N1, D1,−)
S2 : v2(D2, B2) : − R(−, D2, B2)

A user wants to find all employees in building EE1. This is expressed as:

q(N) : − R(N,−, EE1)

Suppose the views contain the tuples as shown in Fig. 1.1 and perhaps others
(we make the Open World Assumption). We call this a view instance, and
denote it with J . The sources are probabilistic: each tuple has an associated
probability, shown above. Some possible reasons for these probabilities are:
tuples may be the results of fuzzy matches between objects in yet other data
sources; some values may be misspelled; the views may have been computed by
queries with uncertain predicates. We are not concerned here with the source
of these probabilities, but expect the system to take them into account when
computing the probabilities of the query’s answer.

Ignoring first the probabilities, we note that standard query answering se-
mantics does not help us answer the query: neither Larry Big nor Frank
Little is a certain answer to q, hence the system will return an empty set
of answers. In our approach statistics on the mediated schema can be used to
answer the query.

Using Statistics Suppose the system knows the following two statistics,
which we denote collectively as Σ: the expected number of tuples in R is ap-
proximatively σ = 800; and the expected number of occurrences of each depart-
ment in R is σ2 = 5 times. Then Larry Big is an answer with probability 1/5.
To see this imagine the five tuples in R that have R.D = SalesDept. One has
R.N = Larry Big, and one has R.B = EE1, and the probability that they are
the same is 1/5. The same informal reasoning applies to Frank Little, and
its probability is also 1/5. The system returns both answers, indicating their
probabilities. In this simple example the two probabilities are equal, but in
general they may differ, and the system ranks the answers according to their
probabilities.

3



Our informal argument exposes two important assumptions that we will
make throughout the paper. The first is that we need to know the statistics
σ and σ2 on the data. The role of σ2 is clear, since the query’s probability is
1/σ2. The role of σ is more subtle, since σ does not contribute directly to the
query’s probability. However, if we knew nothing about the expected size of
R, then, by the principle of indifference, every tuple over the domain of data
values belongs to R with probability 1/2. Then, every name in the domain
(not just Larry Big or Frank Little, but any name, say, from the phone book)
has a probability 1 − 1/2n ≈ 1 of being an answer, where n is the number of
all possible department names in the domain1. Without assuming a reasonable
bound on the size of R we cannot answer the query in practice. Thus, in our
theoretical development we will always assume σ (the expected cardinality of
a table) to be given, directly or indirectly, and that it is much smaller than n
(the size of the domain)2. Often, however, the probabilities we compute do not
depend on the exact value of some of the statistics.

The second important assumption is that the domain of all data values is
very large: this is just the other half of the statement above, saying that R
is small compared to the domain. We will assume that all attributes in all
relations have the same3 domain D, and that n → ∞, where n = |D|. As a
consequence, if we don’t know anything about a database instance I, then a
tuple t has probability ≈ 0 of belonging to I. This is an important property,
distinguishing probabilistic databases from knowledge representation [3] where,
for example, if x is a randomly chosen value from the universe, the probability
of Male(x) is ≈ 1/2.

Using Explicit Probabilities The meaning of the probabilities listed in
the instance J is the following. There exists some probability distribution on
all possible instances of R such that, after computing the views v1 and v2 the
five tuples in J have exactly the probabilities listed in the figure. This imposes
some strict constraints on the probability distribution on R, in addition to
those imposed by the statistics Σ. For example, the sum of the probabilities
of all instances that contain some tuple (Larry Big, SalesDept,−) is exactly
0.45, etc. Clearly, this distribution is not tuple-independent, because there is
interdependence between the tuples mentioned in J . The statistics requirements
add further correlations between tuples. The system needs to compute the
answers to q and their probabilities from the statistics and the view instance J
and their probabilities.

1For any person name p and department d the probability of (p, d, EE1) ∈ R is 1/2, implying
that the probability of ∃d.(p, d, EE1) ∈ R is 1− 1/2n.

2On other hand, σ2 is not critical. If missing, the expected number of occurrences of each
department is 1, and the probabilities of both answers increase to ≈ 1. We have studied this
case in [7].

3Typed attributes with multiple domains can also be handled (if all are big), but we restrict
to a single domain for presentation purposes.

4



2 Problem Definition (PQAP)

We define here our probabilistic model for data sharing, and define the query an-
swering problem. The model borrows ideas from both probabilistic databases [12]
and from models of belief [3], and adds specific features motivated by global data
sharing.

2.1 Preliminary Definitions

Basic Notations D denotes the finite domain, and its cardinality is n =
|D|. R1, . . . , Rk are the relation names in the relational schema. Attr(Ri)
denotes the set of attributes of Ri. Tuples are written in datalog notation,
e.g. R1(a, b, c), R2(b, b), R3(a, b, c), and Tup(Ri) is the set of all tuples over
relation Ri, while Tup =

⋃
i=1,k Tup(Ri) is the set of all tuples. There are

|Tup| =
∑

i narity(Ri) possible tuples over the domain D. A data instance I is
a set of tuples, I ⊆ Tup and RI

1, . . . , R
I
m denotes the relational instances for I.

We write Inst (= P(Tup)) for the set of all instances. We will consider only
conjunctive queries throughout the paper, unless otherwise stated, and denote
them as single-rule datalog programs. Variables are letters from the end of the
alphabet (x, y, z, u, v, . . .), constants are letters from the beginning of the alpha-
bet (a, b, c . . .), and we use standard terminology such as head variables, body,
subgoals, etc. All our results in this paper carry over to conjunctive queries
with the 6= predicate, but for simplicity we omit discussing such queries here.
When a query is boolean we will denote it with an upper case letter.

An important transformation that we will do repeatedly in the paper is to
convert view instances into a boolean query. Specifically, given a view v with
head variables x̄, we want to say that the tuple t belongs to its answer: we
can express that with the boolean conjunctive query v[t/x̄]. If J = {t1, . . . , tm}
is a set of tuples, we want to say that J is a subset of v’s answer. This is
standard in the Open World Assumption. We can say this either through m
boolean queries v[ti/x̄], i = 1,m, or with a single big boolean query given by
their conjunction. To illustrate, consider the view: v(x, y) ← R(x, a, z), S(z, y)
and J = {(a, b), (c, b)}, then the boolean query is given by: V ← R(a, a, z1),
S(z1, b), R(c, a, z2), S(z2, b).

Probabilistic Databases We define next:

Definition 2.1. A probabilistic database is a probability distribution on Inst,
i.e. P : Inst → [0, 1] s.t.

∑
I P(I) = 1. Its entropy is:

H =
∑

I∈Inst

P[I] log
1

P[I]
(1)

We will use the terms probabilistic database and distribution interchange-
ably in the sequel. If P is a property on instances and f a numeric function,

5



then P ’s probability and f ’s expected value are:

P[P ] =
∑

I|P (I)=true

P[I] (2)

E[f ] =
∑

I

f(I)P[I] (3)

The conditional probability and the conditional expected value are given by:

P[P0|P ] =
P[P0P ]
P[P ]

E[f |P ] =
E[cP f ]
P[P ]

where P0P = P0 ∧P and cP (I) = 1 when P (I) = true, cP (I) = 0 when P (I) =
false. In this paper we are concerned with the probabilities and conditional
probabilities of boolean conjunctive queries and/or of constraints.

Constraints We restrict the constraints to functional dependencies (FD),
which we denote as usual Ā→ B̄, where Ā and B̄ are sets of attributes. Denote
Γ a (possibly empty) set of FDs. We write I |= Γ whenever the instance I
satisfies Γ, and write P |= Γ whenever the probabilistic database P has the
property: ∀I.P(I) > 0⇒ I |= Γ (i.e. P[Γ] = 1).

Statistics We consider two kinds of statistics in this paper, cardinalities
and fan-outs. A cardinality statistics on a relation R is a statement of the form
cardR(B̄) = σ, where B̄ ⊆ Attr(R) and σ > 0 is a number. A probability
distribution P is consistent with this statistics if E[|ΠB̄(RI)|] = σ. When
B̄ = Attr(R) then the statistics simply asserts the size of R and we write it
card(R) = σ.

A fanout statistics is a statement of the form fanoutR(Ā⇒ B̄) = σ, where
Ā, B̄ ⊆ Attr(R) and σ > 1 is a number. We define its meaning next. Given an
instance I and an A-tuple ā, the fanout of RI at ā is:

fanoutR,ā[Ā⇒ B̄](I) = |ΠĀ,B̄(σĀ=ā(RI))|

We say that P satisfies the statistics fanoutR[Ā ⇒ B̄] = σ, if ∀ā the expected
value of the fanout at ā over all instances that contain ā is σ:

∀ā. E[fanoutR,ā[Ā⇒ B̄] | ā ∈ ΠĀ(RI)] = σ (4)

We denote Σ a set of statistics for our relational schema and write P |= Σ
whenever P satisfies all statistics in Σ. We have argued in Sec. 1.1 for the
need of an upper bound on the expected size of each relation. For that, we
will require that Σ “covers” all attributes in all relations. However, some sets
of fanout statistics are quite hard to analyze: for example, given R(A,B) and
cardR(A) = σ1, cardR(B) = σ2, it seems difficult to compute the expected
size of R. For that reason we will make the following simplifying assumption
throughout the paper: that for each relation R the fanout statistics on R form

6



chain, covering all attributes in R exactly once. More precisely, we require Σ to
contain precisely the following statistics about R, and no others:

cardR[Ā1] = σ1 > 0
fanoutR[∪j<iĀj ⇒ Āi] = σi > 1, i = 2, . . . , k

where k ≥ 1, and Ā1 ∪ . . . ∪ Āk is a partition of Attr(R). With this restriction
it is always possible to compute the expected size of R:

Proposition 2.2. If P is any distribution consistent with the above statistics
on R, then the expected size of R is

∏k
i=1 σi.

Proof. Let B̄i =
⋃

j≤i Āj and let cardR[Bi] denote the number of distinct values
of attributes Bi. By definition, E[cardR(B̄1)] = E[cardR(Ā1)] = σ1.

Next, we show that for i ≥ 1, E[cardR(B̄i+1)] = σi∗E[cardR(B̄i)], which
establishes the proposition.

If b̄i = (ā1, ā2, · · · , āi) is a vector of values for attributes B̄i, let P [B̄i =
b̄i] denote the probability that b̄i occurs among the distinct values of B̄i. By
linearity of expectations, we have

E[cardi+1] =
∑
b̄i+1

P [B̄i+1 = b̄i+1]

=
∑
b̄i+1

P [B̄i = b̄i]∗P [Āi+1 = Āi|B̄i = b̄i]

Here b̄i+1 range over all possible values of B̄i+1 from the domain. Grouping the
terms by distinct values of B̄i, we have

E[cardR(B̄i+1)] =
∑
b̄i

P [B̄i = b̄i]∗
∑
āi+1

P [Āi+1 = Āi|B̄i = b̄i]


=

∑
b̄i

P [B̄i = b̄i]∗σi+1

= σi+1∗
∑
b̄i

P [B̄i = b̄i]

= σi+1∗E[cardR(B̄i)]

The theorem then follows from the fact that the expected size of R is just
E[cardR(B̄k)].

As a simple example, the following two statistics model the scenario in our
motivating example.

cardR[D] = σ1 = σ/σ2 = 800/5 = 160
fanoutR[D ⇒ N,B] = σ2 = 5

7



The expected size of R is 160∗5 = 800.
Finally, we note that a functional dependency and a fanout statistics may

conflict. For example no probability distribution is consistent with both A→ B
and fanout(A ⇒ B) = 2. To eliminate such cases, we assume that whenever
we have a functional dependency where A occurs on the left and B on the right,
then the stratum of A is higher than or equal to that of B: i.e. A ∈ Āi, B ∈ Āj

and i ≥ j.
Probabilistic Facts Given a view v, a tuple t, and a probability p ∈ [0, 1],

a probabilistic fact, or probabilistic view is a statement of the form P[t ∈ v] = p.
We have discussed how to convert the statement t ∈ v into a conjunctive query
V = v[t/x̄]. Hence, a probabilistic fact can also be expressed as P[V ] = p. It
is thus an assertion on the probability distribution that states that the sum of
probabilities of all data instances satisfying V is p. When p = 1 then we call it
a deterministic fact (view). We will denote with F a set of probabilistic facts
(including any deterministic facts), and write P |= F if all the probabilistic
facts in F hold in P. It is important to keep in mind that F is derived from
two separate entities: a set of view definitions v1, v2, . . ., and a view instance J ,
which is a set of tuples with associated probabilities. When we study the data
complexity we keep the views fixed and vary J .

The Problem We will now state formally the Probabilistic Query An-
swering Problem studied in this paper, denoted PQAP. We are given a triple
(Γ,Σ, F ), and a boolean query Q. Consider all probabilistic databases P that
satisfy:

P |= Γ, P |= Σ, P |= F

and denote PΓ,Σ,F the distribution that has the maximum entropy H. The
problem is to compute:

µΓ,Σ,F [Q] = lim
n→∞

PΓ,Σ,F [Q]

As a variation, we are given a non-boolean query q, and want to return the set
of pairs (t, µΓ,Σ,F [t ∈ v]) where the probability is µΓ,Σ,F [t ∈ v] > 0.

Justification Maximizing the entropy is justified by the principle of indif-
ference, which states that we should assume equal probabilities if there is no
evidence to the contrary. We argue that it is a reasonable definition to adopt.
We have done some preliminary inquiries into alternative definitions, e.g. start-
ing from some canonical distribution then seeking to minimize the cross-entropy,
and have found that it leads only to slight variations in µ[Q].

We take the limit n → ∞ to study the behavior when the domain of
databases is very large compared to active domain, as we discussed in Sec 1.1.
Also, PΓ,Σ,F (Q) is a very complex expression in n, and it is impossible to
compute it exactly in most practical cases. The limit expression, however, is
computable, as we will show.

Finally, we will analyze the complexity of the PQAP in two ways. The query
complexity is the complexity measured as a function of the sizes of Γ,Σ, F , and
Q. The data complexity is the complexity measured as a function of the size of
J , the view instances that were used to build the probabilistic facts F .

8



Outline In the rest of the paper we study/solve several cases of the PQAP.
These cases can be classified into two groups:
Deterministic Views All facts in F are deterministic. Here we show (1) there
exists an algorithm for computing µΓ,Σ,F [t ∈ q], (2) under certain restrictions,
there exists a rewriting of q in datalog over the instance J that returns all tuples
t that are probable (µ[t ∈ q] > 0) or almost certain (= 1). (3) in general, both
query and data complexity are NP-hard,
Probabilistic Views Here we show (1) there exists an algorithm that com-
putes µΓ,Σ,F [t ∈ q]. (2) the query above for the almost certain answers, when
evaluated on the probabilistic instance J , returns the set (t, µΓ,Σ,F [t ∈ q]).

3 Deterministic Views

We consider here the case when there are only deterministic views (deterministic
facts). We identify the set of deterministic facts with one boolean conjunctive
query V , e.g. by converting a set of statements of the form ti ∈ vj . Recall that Γ
is a set of functional dependencies, Σ is a set of statistics, and n is the size of the
domain D. Our general problem is to compute µΓ,Σ,V [Q] = limn→∞PΓ,Σ,V [Q].
We call a tuple t a probable answer to q if µΓ,Σ,V [t ∈ q] > 0; we call it an almost
certain answer if µΓ,Σ,V [t ∈ q] = 1. When V is derived from a view instance J ,
we will consider the problem of computing all probable answers, or all almost
certain answers from J .

We proceed in three steps. First we study the probabilities of queries under
a specific binomial distribution based on Σ. Next, we show the relation of
this distribution to the entropy-maximizing distribution and describe how to
compute PΓ,Σ,V . Third, we study this as a function of J .

3.1 The Binomial Distribution

The binomial distribution P introduced here is associated to a set of statistics Σ.
We will define it, then show how to compute limn→∞P[Q | V,Γ] for conjunctive
queries Q,V

3.1.1 Definition

Consider a single relation R(A1, . . . , Am) with m attributes, and let us start
by assuming a single cardinality statistics on R, cardR[A1, . . . , Am] = σ. The
binomial distribution is the following. For each tuple in Dm set its probability
p = σ/nm (assuming n “large enough”, i.e. n > σ1/m). Tuples in R are
chosen independently and with probability p. Hence, the binomial distribution
is P[I] = p|I|(1− p)nm−|I|.

The probability P[I 6= ∅] is 1− (1− σ/nm)nm

; the expected cardinality of a
nonempty I is σ/(1− (1−σ/nm)nm

). Consider the function f(x) = x/(1− (1−
x/nm)nm

), x ≥ 0. It is strictly increasing, and f(0) = 1, hence f(x) = σ has a
unique solution ∀σ > 1, denote it σ̂. Consider the binomial distribution σ̂: the
expected size of a nonempty I is σ.

9



Consider now an arbitrary set of statistics on R:

cardR(Ā1) = σ1

fanoutR(B̄i−1 ⇒ Āi) = σi (2 ≤ i ≤ k)

where B̄i =
⋃

j≤i Aj . We define the following distribution, which we still call
“binomial”. Denote mi = |B̄i|, and R(i) = ΠB̄i

[R], for i = 1, . . . , k. The
generative model starts by choosing randomly an instance for R(1), using a
binomial distribution for σ1: i.e., the expected size of R(1) is σ1. Next, for
each tuple b̄1 ∈ R(1) generate a random non-empty instance of tuples ā2, using
binomial distribution σ̂2 (σ̂2 exists since σ2 > 1): R(2) consists of all tuples
(b̄1, ā2) thus generated. The expected size of R(2) is σ1σ2. In general, generate
R(i) as follows: for each tuple b̄i−1 ∈ R(i−1) generate a random nonempty
instance of tuples āi using binomial distribution σ̂i. R(i) consists of all tuples
(b̄i−1, āi). Finally, output R = R(k). This gives us a probability distribution P,
which satisfies all the fanout constraints. For any instance I, there is an explicit
formula for P[I], which we give now. Let Ni = n|Āi| denote the size of the
universe for attributes Āi. Let si = |I(i)|. Also, let p1 = σ1/N1 and pi = σ̂i/Ni

for i ≥ 2. Then, we have

P[R = I] =
∏

i=1,k

psi
i (1− pi)Ni−si

(1− (1− pi+1)Ni+1)si
(5)

In the above equation, the term in the numerator is the probability under
binomial distribution for occurance of the values of Āi. The term in the de-
nominator accounts for the fact that for each value of Āi, we are choosing a
non-empty set of values for attributes Āi+1. Similarly, we have the following

P[R ⊇ I] =
∏

i=1,k

(
pi

1− (1− pi+1)Ni+1
)si (6)

When the schema consists of multiple relations R1, . . . , Rk, the binomial
distribution is defined independently on each relation. In the sequel, P denotes
a binomial distribution associated to some statistics Σ.

3.1.2 Query Probability

We show here how to compute P[Q] and µ[Q | V ] for a binomial distribution.
The explicit formulas we give are very powerful, since these probabilities are
almost impossible to compute with brute force. Importantly, we need these
formulas later, when we study query answering over probabilistic facts. The
results here are non-trivial extensions of earlier results in [7].

We first give a overview of our plan to compute P[Q]. For every boolean
conjunctive query Q, we define two parameters, A(Q) and C(Q), which we call
the arity and coefficient of Q. The parameters are defined in such a way that

10



P[Q] is closely related to the quantity C(Q)nA(Q) and an exact value is obtained
by summing this quantity over all unifications of Q.

We now formally state the method to compute P[Q]. We have a set of func-
tional dependencies Γ and a set of statistics Σ. We need to introduce several no-
tations. Consider one relation name R in the relational schema, and assume that
the statistics in Σ define the following partition on its attributes: Ā1, . . . , Āk.
Define B̄i =

⋃
j≤i Āj . We introduce k new relation names: R(1)(B̄1), . . .,

R(k)(B̄k); we may identify R(k) with R, since they have the same attributes.
Define the proper arity of R(i) to be A(R(i)) = |Āi|. Also, define the proper
attributes of R(i) to be the attributes Āi.

If Q is a boolean conjunctive query Q, we view it as a canonical database,
by interpreting each variable in its body as a constant: hence RQ denotes all
subgoals in Q referring to the relation name R. Denote Q(∗) a new query, over
the extended relational schema, whose canonical database is the following: for
each relation R, the instance of R(i) is ΠB̄i

(RQ), for i = 1, . . . , k. Notice that
Q(∗) has the same variables and constants as Q, and that it contains all subgoals
of Q (since R(k) = R), plus new subgoals referring to the new relation names.
By abuse of notation, if g is a subgoal in some query, we denote A(g) the proper
arity of the relation to which g refers. We define the arity of Q to be:

A(Q) =
∑

g∈subgoals(Q(∗))

A(g) (7)

Given a query Q, we call a variable free if it occurs among the proper at-
tributes of only a single sub-goal of Q(∗). We call a sub-goal of Q(∗) a trivial
subgoal if all of its proper attributes have free variables.

We now define the coefficient of a query Q. To start with, we assume that
Q(∗) does not contain any trivial sub-goals as they need different treatment.
Let σ1, . . . , σk be the numbers used in the k statistics on R. For each i, we
define the coefficient of R(i) to be C(R(i)) = σi/(1− e−σi+1).4 Again by abuse
of notation, if g is a subgoal in some query, we denote C(g) the coefficient of the
relation to which g refers. If Q(∗) does not contain trivial sub-goals, we define
the coefficient of Q to be:

C(Q) =
∏

g∈subgoals(Q(∗))

C(g) (8)

We have the following lemma.

Lemma 3.1. Let Q be any boolean conjunctive query containing only ground
terms, i.e. no variable symbols. Then, µn(Q) is asymptotically equal to C(Q)/nA(Q).
Note that Q does not contain any trivial subgoals.

Proof. Let I denote the canonical database for Q. Apply Eq 6 and the defini-
tions of C(Q) and A(Q).

4For an intuition, look at Eq (6), describing the probability of I viewed as a query, where the
numerator contributes σi to the coefficient and the denominator contributes to (1− e−σi+1 ).

11



We now describe how to handle trivial sub-goals. Consider all trivial sub-
goals corresponding to the relation R(i) and let them be l in number. They
together contribute the following single term in the product for C(Q):

1− e−σi

∑
0≤j≤l

(σi)j

j!
(9)

Thus, C(Q) is the product of C(g) for each non-trivial subgoal g in Q(∗) and
the terms in Eq 9 for each corresponding group of trivial sub-goals.

Define a substitution h on a query Q to be any function from the variables in
Q to variables and constants in Q. Also, define h(Q) to be the query obtained
by applying the substitution to each variable in Q: h(Q) partitions the subgoals
of Q into equivalence classes, where g and g′ are in the same equivalence class
if h(g) = h(g′). Call h a most general unifier if for any other substitution h′

producing the same partition as h, there exists f s.t. h′ = f ◦ h. We call a
query G a most general unifying query for Q if G = h(Q) where h is some most
general unifier for Q(∗). For example, assume a ternary table R(A,B,C) and
the query Q = R(a, x, y), R(z, b, b). Assume a cardinality constraint on R, i.e.
k = 1, hence Q(∗) = Q. There are exactly two most general unifying queries: Q
itself and G = R(a, b, b); the query G′ = R(a, x, b), R(z, b, b) is not most general
unifying. Suppose now that we have one fanout statistics C ⇒ A,B. Then
Q(∗) = R(1)(y), R(a, x, y), R(1)(b), R(z, b, b), and we are allowed to “unify” y and
b, hence the most general unifying queries are now Q, G, and G′. We denote
MGUQΓ(Q) the set of most general unifying queries of Q (we include only one
copy up to isomorphism) that satisfy Γ (when viewed as canonical databases).
Its size is at most exponential in Q.

For a query G ∈ MGUQΓ(Q) let V (G) denote the number of distinct vari-
ables in G, and D(G) = A(G)− V (G) the degree of G. For a query Q define:

expΓ(Q) = min{D(G) | G ∈MGUQΓ(Q)}
MGUQ0

Γ(Q) = {G | G ∈MGUQΓ(Q), D(G) = expΓ(Q)}
coeffΓ(Q) =

∑
{C(G) | G ∈MGUQ0

Γ(Q)}

The following gives the query probability:

Theorem 3.2. Let Σ be a set of statistics, P the binomial distribution for Σ,
and Γ a set of functional dependencies. Let Q be a conjunctive query. Then:

P[Q|Γ] =
coeffΓ(Q)
nexpΓ(Q)

+ O(
1

nexpΓ(Q)+1
)

The proof is deferred to Section 5.1. In the sequel we will drop the subscript
Γ when Γ = ∅, e.g. write MGUQ(Q).

Example 3.3 Let R(A,B) be a binary relation, assume no functional depen-
dencies and one single cardinality constraint cardR(A,B) = σ. Consider the
query:

Q = R(a,−), R(−, b)

12



We make the anonymous variables explicit, denoting the query R(a, y), R(x, b).
Then MGUQ(Q) contains exactly two queries:

Q = R(a, y), R(x, b)
Q′ = R(a, b)

Both have D(Q) = D(Q′) = 2 (since the true arity of R is 2, and Q has 2
variables, Q′ has none), hence MGUQ0(Q) = MGUQ(Q). The coefficients
are C(Q) = σ2, C(Q′) = σ. Hence exp(Q) = 2,coeff(Q) = σ + σ2, and by
Theorem3.2:

P[Q] =
σ2 + σ

n2
+ O(

1
n3

)

To appreciate the power of this theorem, let us compute P[Q] directly, using
the fact that each tuple has an independent probability p = σ/n2. We get the
following exact formula:

P[Q] = 1− (1− p)[1− (1− (1− p)n−1)2]

which can be simplified to (σ2 + σ)/n2 + O(1/n3). This brute force approach
becomes intractable for more complex queries, or more complex statistics.

It follows immediately how to compute the limit conditional probability
µ[Q|V,Γ] = limn→∞P[Q|V,Γ]:

Corollary 3.4.

µ[Q | V,Γ] =

{
coeffΓ(QV )
coeffΓ(Q) when expΓ(QV ) = expΓ(V )

0 when expΓ(QV ) > expΓ(V )

Example 3.5 Consider our example in Sec. 1.1: we have a ternary relation
R(N,D,B) and the two statistics: cardR(D) = σ1, fanoutR(D ⇒ N,B) = σ2.
Consider the views v1, v2 defined in Sec. 1.1, and assume we know only two
deterministic facts: t1 ∈ v1 and t2 ∈ v2. We want to compute the probability
that LarryBig is in EE1. This corresponds to the following boolean view V and
boolean query Q:

V : − R(LarryBig, SalesDept,−), R(−, SalesDept, EE1)
Q : − R(LarryBig,−, EE1)

We start by computing V (∗):

V (∗) : − R(1)(SalesDept),
R(LarryBig, SalesDept,−), R(−, SalesDept, EE1)

The arity of V is A(V ) = 1 + 2 + 2 = 5, hence its degree is D(V ) = 5− 2 = 3,
since V has two variables; its coefficient is C(V ) = σ1σ

2
2 . MGUQ(V ) contains

13



two queries, namely V itself and W :- R(LarryBig, SalesDept, EE1), and both
have D(V ) = D(W ) = 3. Hence:

exp(V ) = 3
coeff(V ) = σ1σ

2
2 + σ1σ2

Consider now MGUQ(QV ). Here there is a single query with degree 3, namely
W above, obtained now by unifying all three subgoals in QV . Hence:

exp(QV ) = 3
coeff(QV ) = σ1σ2

It follows that µ[Q|V ] = 1/(1 + σ2). This is a precise answer that is slightly
different from the informal result 1/σ2 obtained in Sec. 1.1, as there we did not
account for the very small probability that the SalesDept may have many more
than σ2 employees: this contributes to a decrease from 1/σ2 to 1/(1 + σ2).

Example 3.6 Functional dependencies affect µ, as the following example illus-
trates. Assume R(A,B,C, D, E) with cardinality statistics card(R) = σ, and
consider the view and query:

V : − R(a, b, d, f, g),
R(a,−, c, f,−), R(a′,−, c′, f,−),
R(−, b,−, f, h), R(−, b′,−, f, h)

Q : − R(−, b, c,−,−)

Then MGUQ0(V ) = {V1, V2} where:

V1 : − R(a, b, d, f, g), R(a, b, c, f, h), R(a′, b′, c′, f, h)
V2 : − R(a, b, d, f, g), R(a, b′, c, f, h), R(a′, b, c′, f, h)

D(V1) = D(V2) = exp(V ) = 15, and C(V1) = C(V2) = σ3. Considering Q,
MGUQ0(QV ) = {V1} and µ[Q | V ] = 1/2. If we add the FD A → B, then
V2 6|= Γ and MGUQ0

Γ(V ) = MGUQ0
Γ(QV ) = {V1} and µ[Q | V,Γ] = 1. In

general, adding FD’s may increase or decrease µ, or increase exp(−).

Definition 3.7. Let Q, V be two queries.

• Q is called probable given V if µ[Q | V,Γ] > 0.

• Q is called almost certain given V if µ[Q | V,Γ] = 1.

Consider a non-boolean view q; a tuple t is called:

• a probable answer, if µ[t ∈ q | V,Γ] > 0.

• an almost certain answer, if µ[t ∈ q | V,Γ] = 1.

14



For an illustration, assume a cardinality statistics card(R) = σ. Consider
first V : −R(a,−), R(−, b) and the query q(x, y) :- R(x, y). Then the tuple
t = (a, b) is a probable answer to q, since µ[t ∈ q | V ] = 1/(1 + σ). Consider
now V :- R(a, b,−), R(−, b, c) and the query q(x, z) :- R(x,−, z). Then (a, c) is
an almost certain answer to q, since µ[t ∈ q] = σ/σ = 1: note that it is not a
certain answer [1].

The following is a characterization of these two properties:

Proposition 3.8. For any conjunctive queries Q, V :

1. The following statements are equivalent:

(a) µ[Q | V ] > 0

(b) MGUQ0
Γ(QV ) ⊆MGUQ0

Γ(V )

(c) ∃U ∈MGUQ0
Γ(V ) s.t. there exists a homomorphism h : Q→ U .

2. µ[Q | V ] = 1 iff MGUQ0
Γ(QV ) = MGUQ0

Γ(V ).

Proof.

1. We will prove this by showing (a)⇒ (b)⇒ (c)⇒ (a).

(a) ⇒ (b) Lets assume that µ[Q | V ] > 0. Then, we have expΓ(QV ) =
expΓ(V ). Let η(QV ) be any query in MGUQ0

Γ(QV ). Thus, D(η(QV )) =
expΓ(QV ) = expΓ(V ). Since goals(η(V )) ⊆ goals(η(QV )), by Lemma 5.6,
D(η(QV )) ≥ D(η(V )). Thus, expΓ(V ) ≥ D(η(V )), which shows that
they are equal (since expΓ(V ) ≤ D(η(V )) for all η). Thus, D(η(QV )) =
D(η(V ) and again by Lemma 5.6, η(QV ) and η(V ) are equivalent. Also,
since D(η(V )) = expΓ(η(V )), η(V ) ∈MGUQ0

Γ(V ). Thus, we have shown
that for every query in MGUQ0

Γ(QV ), there is an equivalent query in
MGUQ0

Γ(V ). Hence, MGUQ0
Γ(QV ) ⊆MGUQ0

Γ(QV ).

(b) ⇒ (c) Since MGUQ0
Γ(QV ) ⊆ MGUQ0

Γ(QV ), there exists a query
η(QV ) in MGUQ0

Γ(QV ) that also belongs to MGUQ0
Γ(V ). The above ar-

gument shows that η(QV ) is equivalent to η(V ) and η(V ) ∈MGUQ0
Γ(V ).

If we put U = η(V ) and h = η, we see that h has to be a homomorphism
from Q to U .

(c) ⇒ (a) Let U = η(V ). Thus, h is a homomorphism from Q to η(V ).
Consider the query h(η(V Q)). It is equivalent to U . Hence, expΓ(QV ) ≤
D(U) = expΓ(V ), which means µ[Q | V ] > 0.

2. For⇒ direction, suppose µ[Q | V ] = 1. By part 1, we have MGUQ0
Γ(QV ) ⊆

MGUQ0
Γ(QV ). Also, coeffΓ(QV ) =

∑
{C(G) | G ∈MGUQ0

Γ(QV )} and
coeffΓ(V ) =

∑
{C(G) | G ∈MGUQ0

Γ(V )}. For them to be equal, we must
have MGUQ0

Γ(QV ) = MGUQ0
Γ(QV ). The other direction holds trivially.

15



3.2 The Entropy Maximization Distribution

We now return to our original goal in the PQAP, of computing the entropy
maximization distribution: so far we have shown only how to compute the
binomial distribution. We show here that they are approximatively equal. We
start by showing that P and PΣ (i.e. no FD’s, no view) are equal.

Proposition 3.9. PΣ = P

Proof. (Sketch) To give a flavor of the proof, we consider the case when there
is a single relation R(A1, . . . , Am), and Σ contains only the following:

cardR(A1) = σ1

fanoutR(A1 ⇒ A2) = Σ1

For any value a of attribute A1, let χ[Ai=a] denote the function on the set of
database instances that takes value 1 if I contains a tuple with I.Ai = a and 0
otherwise.

Now, PΣ is defined by:

f1(x̄) =
∑

I

xI − 1 = 0 (10)

f2(x̄) =
∑

I

xIcardR(A1)− σ1 = 0 (11)

∀a : fa(x̄) =
∑

I

xIχ[A1=a](I)fanoutR(A1 ⇒ A2)− σ2 = 0 (12)

H(x̄) =
∑

(xI log 1/xI) = is maximized (13)

By the Lagrange multipliers method, ∃λ1, λ2 and λa for each a such that:

∀I.
∂H

∂xI
− λ1

∂f1

∂xI
− λ2

∂f2

∂xI
−

∑
a

λa
∂fa

∂xI
= 0

By substituting the functions in the above equation and simplifying, we see
that PΣ is off the form:

xI = ABcardRAi

∏
a∈R.Ai

CfanoutR(A1⇒A2)

for some constants A,B and C. If we examine Eq (5) for P, we see that function
P has the same form as above. Also, we know that P satisfies Equations (10)-
(13), since P by construction, satisfies all the statistics. Hence, P = PΣ.

Next we relate the binomial distribution to PΣ,Γ,V . We first relate PΣ,Γ,V [Q]
to PΣ,Γ[Q | V ], then the latter to PΣ[Q | V,Γ]. Since both Γ and V are boolean
properties on instances, the two steps are instances of the following lemma:

16



Lemma 3.10. Let Σ be a set of statistics, and let P1, P2 be any two boolean
properties on instances. Then there exists a different set of statistics Σ̂ s.t. for
any boolean query5 Q:

PΣ,P1,P2 [Q] = PΣ̂,P1
[Q | P2]

Σ̂ is related to Σ in the following way. Let S(I) = σ be in Σ, where S(I) =
cardR(I) or fanoutR,ā(I). Then the expected value of S on all instances satis-
fying P2 is σ, i.e.:

EΣ̂,P1
[S|P2] = σ (14)

Proof. (Sketch) We illustrate the first part only for the case treated in the proof
of Prop 3.9, and we assume P1 = true. Denote P = P2 and χP the charac-
teristic function of P . We proceed as in the proof of Prop 3.9, adding a new
constraint, f3(x̄) =

∑
I χP xI − 1 = 0. The solution xI is now of the form

xI = χP ABcardRAi
∏

a∈R.Ai
CfanoutR(A1⇒A2). Hence PΣ,P looks like some bi-

nomial distribution (but with different statistics), only it drops to 0 on instances
that don’t satisfy P : PΣ,P [I] is fPΣ̂[I] when I |= P and 0 otherwise. Here
f is a normalization factor, which follows immediately to be 1/PΣ̂[P ]. Thus
PΣ[I] = PΣ̂[I | P ]. The second statement is immediate.

We consider now the relationship between Σ and Σ̂. One can think of Σ as
a perturbation of Σ̂ (and not the other way around), given by Equation (14).
It turns out that the perturbation is small, but the exact relationship is rather
complex. We consider this separately for V and for Γ.

Perturbation due to the view We will only describe here the case where
Σ consists of cardinality statistics for each relation, which we denote card(Ri) =
σi, for i = 1, . . . , k. Then, in Σ̂ the statistics become card(Ri) = σ̂i. Intuitively,
we expect σi to be greater than σ̂i, roughly by the amount equal to the number
of subgoals of Ri in V . The exact formula is as follows. Recall that we assimilate
every query G with its canonical database. Define:

Gi(G) = number of subgoals in G that refer to Ri

Then, we prove the following in the full version of the paper:

Proposition 3.11. For every i = 1, . . . , k:

σi = σ̂i +

∑
G∈MGUQ0

Γ(V ) Gi(G)C(G)∑
G∈MGUQ0

Γ(V ) C(G)
(15)

Notice that σi − σ̂i ≤ Gi(V ).

We defer the proof to Sec 5.1 (see Corollary 5.14).
To find Σ̂ one needs to solve Equation (15). This can be of higher order,

since the expressions C(G) are polynomials in the variables σ̂i. However, the
5In fact, this holds for any boolean property Q.

17



perturbations σi − σ̂i are always bound by Gi(V ), the number of subgoals in V
that refer to Ri, and often it is OK take Σ̂ ≈ Σ.

The case of fanout statistics is complicated by the fact that Σ̂ has a more
general form of fanout statistics than we consider in this paper: it needs to allow
different σ’s for different ā’s in Equation (4) (see Sec. 2). For practical purposes
we argue that one should always take Σ̂ = Σ.

Perturbations due to FDs We show that the FDs cause even smaller
perturbations, i.e. PΣ,Γ[Q] is very close to PΣ[Q|Γ] and becomes equal asymp-
totically. More formally,

Proposition 3.12. For any statistics Γ and FDs Σ,

|PΣ,Γ[Q]
PΣ[Q|Γ]

− 1| ≤ O(
1
n

)

The intuition behind this is that a data instance chosen randomly from
distribution PΣ satisfies functional dependencies with very high probability:
recall from Sec. 2.1 that we have required Γ and Σ to have no conflicts. This
is because a functional dependency is the negation of a conjunctive query with
6=, to which Theorem 3.2 applies; hence 1 − PΣ[Γ] ≤ O(1/n). Using this we
can prove that adding functional dependencies as additional constraint does
not change the statistics asymptotically (although it does change the query
probabilities, see Example 3.6).

Based on our discussion, we argue that the entropy maximization distribu-
tion µΣ,Γ,V [−] should always be replaced with the conditional binomial distribu-
tion µΣ[− | V,Γ]. The error is small, and, if we are only interested in probable
answers, or almost certain answers, then Proposition 3.8 implies that there is
no error at all.

3.3 Query Answering

Given Σ,Γ, V and a query q, we study the following two query answering prob-
lems: (1) compute all probable answers, (2) compute all almost certain answers.
In the corresponding two decision problems, we have a boolean query Q and
ask whether Q is probable, or almost certain respectively. We consider both
the query complexity, and the data complexity, when V is obtained from a view
instance J : in that case we write V = VJ and study the complexity as a function
of J .

It follows from Proposition 3.8 that the problems discussed in this section
are independent on the values of the statistics Σ (but do depend on the attribute
partitions). Thus, we will omit Σ.

Probabilistic Query Rewriting We will assume Γ = ∅ in our discussion:
extensions to Γ 6= ∅ are non-trivial and are deferred to the full paper. We assume
arbitrary statistics, but our examples only illustrate cardinality statistics.

Fix a set of views v̄ = (v1, . . . , vm), and a query q. Define:

p(J) = {t | t is a probable answer to q}
ac(J) = {t | t is an almost certain answer to q}

18



We are interested in special cases when p and/or ac can be expressed as queries.
We call a probable rewriting of q a query expression for p, and an almost certain
rewriting of q a query expression for ac. We note that neither p nor ac need to
be monotone as the following example shows:

Example 3.13 Consider the views and the query below:

v1(x, y, u) : − R(x, y,−, u)
v2(y, z) : − R(−, y, z,−)

v3(y, z, u) : − R(−, y, z, u)
q(x, z) : − R(x,−, z)

Let J1 = {(a, b, d)}, J2 = {(b, c1)}, J3 = ∅. Then one can check that (a, c1) is
an almost certain answer to q: µ[q(a, c1)] = 1. Add the tuple {(b, c2, d)} to J3,
and now µ[q(a, c1)] = 0. Hence, both p(J) and ac(J) are non-monotone.

Next, we show that, in general, both p and ac need to be at least recursive.

Example 3.14 Consider the view and query below:

v(x, y) : − R(x, z), R(y, z)
q() : − R(a, z), R(b, z)

An instance J for v represents a graph, and we can prove that both p(J) and
ac(J) are precisely the transitive closure of J . This is because MGUQ0(VJ)
consists of a single query, representing the connected components of J : by
Prop. 3.8, in order for q() to be probable, there must be a homomorphism from
q() to VJ , hence a, b are in the same connected component. Hence, both p and
ac can be computed by a simple datalog program.

To see why, let J = {(m,n), (n, p), (r, s)}, then VJ is:

VJ : − R(m, z1), R(n, z1), R(n, z2), R(p, z2), R(r, z3), R(s, z3) (16)

and the unique unifier with minimum D is:

U : − R(m, z), R(n, z), R(p, z), R(r, z3), R(s, z3)

Clearly both the probable answers, and the almost certain answers to q are
{(m,n), (n, p), (n, p), (r, s)} and all loops {(m,m), (n, n), . . .}.

We show next that, in some restricted cases, p and/or ac can be expressed
by a datalog program. In general, this is not possible: this follows from our
complexity results below.

Definition 3.15. A boolean conjunctive query V is fully unifiable if there exists
some most general unifier h for V (∗) s.t. for any two subgoals g, g′ in V (∗), if
they can be unified, then h unifies them (i.e. h(g) = h(g′)). We call h the full
unifier, and U = h(V ) the fully unified query.

Call a conjunctive query V strict if any two subgoals g, g′ in V (∗) that unify,
have some common constant in the same position, which is a proper position,
i.e. contributes to the proper arity of that subgoal.

19



Example 3.16 Consider the following three queries:

V1 : − R(a,−,−), R(−, b,−), R(−,−, c)
V2 : − R(a, b,−)R(−, b, c), R(a,−, c)
V3 : − R(a,−,−), R(x, x, x), R(−, b,−)

Assume just cardinality statistics, hence V (∗) = V . V1 is fully unifiable but not
strict; V2 is fully unifiable and strict; V3 is not fully unifiable: we can unify any
pairs of subgoals, but not all three.

Theorem 3.17. Let V be fully unifiable and let U be its fully unified query.
Then,

1. µ[Q | V ] > 0 iff there ∃ homomorphism from Q to U .

2. If V is strict, then µ[Q | V ] > 0 iff µ[Q | V ] = 1

Proof.

1. Let U1 be any query in MGUQ0(V ). Thus, U
(∗)
1 unifies some sub-goals

of V (∗), and by definition, U (∗) can be obtained by further unifying some
sub-goals of U1. By Lemma 3.18, D(U) ≤ D(U1) and hence, U itself must
belong to MGUQ0(V ). Now, if there is a homomorphism from Q to U ,
by Proposition 3.8, µ[Q | V ] > 0.

For the other direction, suppose µ[Q | V ] > 0. Again, by Proposition 3.8,
there must exist a query U2 in MGUQ0(V ) and a homomorphism from Q

to U2. Also, since U (∗) can be obtained by unifying some sub-goals of U
(∗)
2 ,

there is a homomorphism from U2 to U . Thus, there is a homomorphism
from Q to U .

2. If V is strict, then MGUQ0(V ) = {U}. This is because if U1 is any other
query in MGUQ0(V ) then U can be obtained by unifying some sub-goals
of U1. However, since V is strict, D(U) has to be strictly less than D(U1).
This leads to a contradiction as MGUQ0(V ) cannot have queries with
different D.

Hence, for any query Q, MGUQ0(QV ) ⊆MGUQ0(V ) iff MGUQ0(QV ) =
MGUQ0(V ). By Proposition 3.8, µ[Q | V ] > 0 iff µ[Q | V ] = 1.

Lemma 3.18. If Q1 and Q2 are queries such that Q
(∗)
2 is obtained by unifying

two sub-goals of Q
(∗)
1 , then D(Q2) ≤ D(Q1).

Proof. Suppose the two sub-goals to be unified correspond to the relation R(i) in
the extended schema. The unifier equates the variables/constants that occur in
the same position of the two sub-goals. Consider the positions that correspond
to the attributes Āi (recall that these are the attributes that contribute to the
proper arity of R(i)).

20



First, assume that the two sub-goals have the same symbols in all the posi-
tions except Āi. Then, after unification, the decrease in the number of distinct
variables is at most |Āi|. Also, after unification, there is exactly one less sub-goal
of type R(i), which decreases the total arity by |Āi|. Thus,

D(Q2) = A(Q2)− V (Q2) ≤ A(Q1)− |Āi| − (V (Q1)− |Āi|) = D(Q1)

Now consider the other case when the two sub-goals do not have the same
symbols in previous positions. Then, the unification can be carried out as a
sequence of unifications, all of the first kind as follows: unify the corresponding
R(j) (j ≤ i) sub-goals of the two sub-goals starting from the lowest j where
they differ and going up to i. Since D(Q) decreases at each step by the above
argument, the lemma holds.

The following is a necessary and sufficient criterion for V to be fully unifiable.
Construct the following graph G(V ). The nodes are the variables and constants
in V . An edge (u, v) is added whenever there are two subgoals in V (∗) that can
be unified and the unification equates u to v.

Proposition 3.19. V is fully unifiable iff there exists no path in G(V ) between
two different constants.

The proof is straightforward and omitted. For a simple illustration, the
query V3 in Example 3.16 has two edges (a, x) and (x, b) in the graph, since x
is unifiable with both a and b, and this gives us a path from a to b.

Now we can turn our attention to the case when V is derived from a view
instance J . We call v̄ fully unifiable if ∀J , VJ is fully unifiable; we call it strict
if, in addition, ∀J , VJ is strict. We describe a necessary and sufficient condition
for v̄ to be fully unifiable and strict, which can be checked in PTIME on v̄.

Let v̄ = {v1, . . . , vm} and assume that they have disjoint sets of variables
(otherise, rename the variables in each view). We construct the following edge-
labeled, multi-graph G(v̄). The nodes are all the variables and constants oc-
curring in the m views. We describe the edges e and their labels C(e) next.
Consider any two pairs of subgoals g, g′ that are unifiable, where g is in v

(∗)
i and

g′ is in v
(∗)
j . Neither g and g′, nor vi and vj need to be distinct. Let (x1, y1),

. . ., (xk, yk) be the pairs of variables and/or constants equated by the unifica-
tion: for every pair (xi, yi) we construct an edge ei from xi to yi. All k labels
C(e1), . . . , C(ek) will be the same, and are defined next. Call the pair (xi, yi)
a condition if both xi and yi are either a constant or a head variable, and let
D(g, g′) denote the set of all conditions. Then, all k labels are equal to D(g, g′).

The intuition is the following. The nodes in G(VJ) correspond to |J | disjoint
copies of the nodes of G(v̄). In each copy, the head variables are replaced
with constants, hence two subgoals g and g′ that are unifiable in G(v̄) may no
longer be unifiable once the head variables are substituted with constants: the
conditions on the edges in G(v̄) represent the condition that the edge exists
between two such copies.

21



We use G(v̄) as follows. Let Const be the set of constants occurring in all
views, and ∆ = {(a, a)|a ∈ Const}. First, for each path p in the graph we
define a set of conditions C(p). If p is one edge, e, then C(p) is C(e) ∪ ∆. If
p is obtained by expanding q with one edge e, then C(p) is C(q) ◦ (C(e) ∪∆)
(composition of two binary relations). A path p is contradictory if C(p) contains
a pair of two different constants, (a, b) with a 6= b. Next, we can prove:

Proposition 3.20. Let v̄ be a set of views. The following are equivalent:

1. For any view instance J , VJ is fully unifiable.

2. For any non-contradictory path p in G(v̄) between x and y s.t. both x and
y are either head variables or constants, we have (x, y) ∈ C(p).

Moreover, the second condition can be checked in PTIME by a dynamic
programming algorithm.

Proposition 3.21. The following are equivalent:

1. For any J , VJ is strict.

2. Any two unifiable subgoals g, g′ of v
(∗)
i and v

(∗)
j respectively have a common

position where both have a head variable or a constant.

Thus, the condition still prohibits two distinct constants to be connected by
a path (except for contradictory paths, which don’t correspond to real paths in
G(VJ)). In addition, it also prohibits two head variables, or a head variable and
a constant to be connected by a path, unless the condition on the path implies
that they must be indeed equal.

We explain this construction on the view v in Example 3.14 and the views
v1, v2 for the running example. Figure 2 (a) shows the graph G(v) for the view
v in Example 3.14 and (b) for the views v1, v2 in the example in Sec. 1.1. For
example, the edge from D1 to D2 in (b) represents the fact that R(N1, D1, Z)
can be unified with R(X, D2, B2), but only if the head variable D1 = D2, since,
in VJ these variables are constants. The edge from D1 to D1 represents the fact
that two different copies of R(N1, D1, Z) can also be unified, but only if their
head variables N1 and D1 are the same; the second edge is for R(1)(D1).

The graph in Fig. 2 (a) is fully unifiable. For example the edge (X, X) is
labeled X = X and is OK. The edge (X, Y ) is labeled X = Y , again OK.
For a longer path, consider (X, X), (X, Y ), (Y,X). The edges are labeled X =
X, X = Y, Y = X and we can infer that the first X is equal to the last X.
The graph in Fig. 2 (b) fails the criterion: the path (B2, Z), (Z,B2) is labeled
D1 = D2, D2 = D1 and does not imply that B2 = B2 (these two B2 refer to
the head variables in different copies). Also note that in both the examples, the
views are strict.

3.3.1 Recursive Datalog Program

Proposition 3.22. Given v̄ and q there exists a datalog program p, over an
instance J , such that:

22



X Y Z
X=X Y=Y

X=Y
X=Y

Y=Y

X=X

(a)

(b)

Figure 2: G(v̄) for (a) Example 3.14 and (b) Sec 1.1

1. If v̄ are fully unifiable, then p computes the set of all probable answers to
q on J .

2. If, in addition, v̄ are strict, then p computes the set of all almost certain
answers to q on J .

We describe now the boolean datalog program P , given a set of views v̄
and a boolean query Q. We call it the probabilistic rewriting of Q using v̄.
The program computes the full unification U of VJ , then checks if there is a
mapping from Q to U . The correctness follows from Theorem 3.17. We explain
the datalog program in details next.

Consider the view vi, and let y1, y2, . . . be all variables and constants in vi.
For each tuple t in the view instance vJ

i , the datalog program represents the
copy of yk in vi[t/x̄i] as (i, k, t, pads). Here pads consists of a repeated dummy
constant whose sole purpose is to make all tuples of the same width. The pro-
gram P operates in three logical steps. First it computes a relation C(x, c) with
the association between a variable representations x and the constant c it rep-
resents, if any; and it computes the set of all edges in the graph, E(n, n′). This
part of P is straightforward: in fact, each datalog rule computing C corresponds
to a constant or a head variable in some vi, and each datalog rule computing E
corresponds to one edge e in G(v̄). Next, P computes the transitive closure of
E. This represents the full unifier U : two nodes in VJ are unified in U iff they
are in the transitive closure. Finally, P checks if Q can be mapped to U . For
that it needs to try all possible ways of unifying subgoals in Q with subgoals in
v̄ (|v̄||Q| many ways) and for each it will have one rule, checking the following

23



conditions: any two occurrences of the same variable in Q are in the transitive
closure in E, and any constant in Q is in C.

When q is a non-boolean query and we seek to compute all probable (or
almost certain) answers, then the datalog program, denoted p is obtained simi-
larly.

Example 3.23 We illustrate the datalog program p on Example 3.14. There
is a single view v and three variables: x, y and z. These are represented as
(1, j, a, b) where j = 1, 2, 3(for x,y,z) and a,b are values in v. The leading 1 is
the index for the view v. Since there is only a single view v, we drop the 1 for
simplicity and use (j, a, b) representation. The C table has the following two
entries, corresponding to head variables x and y:

C(1, x, y, x) : − v(x, y)
C(2, x, y, y) : − v(x, y)

The E table has 6 rules corresponding to the 6 edges in the G(v̄) graph shown
in Fig 2(a). We illustrate two of these:

E(1, x, y, 1, x′, y′) : − v(x, y), v(x′, y′), x = x′

E(1, x, y, 2, x′, y′) : − v(x, y), v(x′, y′), x = y′

Next, the transitive closure:

E(i, x, y, i′, x′, y′) : − E(i, x, y, i′′, x′′, y′′), E(i′′, x′′, y′′, i′, x′, y′)

Finally, the part matching the query q() : −R(a, z), R(b, z). Both q and v have
two sub-goals and they can be paired up in two ways. This corresponds to the
following two rules:

q() : − C(1, x, y, a), C(2, x′, y′, b), E(3, x, y, 3, x′, y′)
q() : − C(2, x, y, a), C(1, x′, y′, b), E(3, x, y, 3, x′, y′)

3.3.2 Non-recursive Datalog Program

Call a view V transitive if for any two variables x, y if there exists an MGUQ
that unifies x and y, then there exists two subgoals g, g′ that unify and their
MGU equates x and y. The view VJ in Eq (16) is not transitive: U unifies z1

and z3, but no two subgoals unify them directly. A set of views v̄ is transitive
if for every J , VJ is transitive. Checking for transitivity is easy. A view V is
transitive if in G(V ), every two connected nodes have an edge between them.
Similarly, a set of views v̄ is transitive if in G(v̄), for every path p between two
nodes, there is also an edge e between the two nodes with C(e) ⊆ C(p).

The views v1, v2 in our running example are transitive. If v̄ is transitive,
then there exists a rewriting P in non-recursive datalog of (a boolean query) Q
s.t. P (J) is true iff ∃U ∈ MGUQ(VJ), ∃ homomorphism h : Q→ U . To apply

24



Prop 3.8 we also need U to be of minimal degree. Call a view V confluent if
any most-general-unifying query U ∈ MGUQ(V ) either has minimum degree,
or can further be unified to a minimum-degree unifier U0 ∈ MGUQ0(V ). The
query V :- R(−, b, d, e), R(a, b,−, e), R(−, b, c,−) is not confluent: the minimum
degree is D = 6, given by the MGUQ R(a, b, d, e), R(−, b, c,−), but unifying the
last two goals gives R(−, b, d, e), R(a, b, c, e) with D = 7, and there is no way
we can further unify it to get D = 6. An example of a confluent query is V
= R(a, b,−), R(−, b, c),R(−, b, d). We say that v̄ is confluent if for all J , VJ is
confluent. In the full paper we give a sufficient condition for v̄ to be confluent:
in particular, v1, v2 in our running example are confluent.

Proposition 3.24. If v̄ is confluent and transitive, then for every q there exists
a probable rewriting p of q, in non-recursive datalog.

The non-recursive datalog is the same program described in Sec 3.3.1 without
the transitive closure.

Example 3.25 For our running example in Sec. 1.1 the probable rewriting is:

p(N) : − S1(N,D), S2(D, EE1)

3.3.3 Complexity of the Query Answering Problem

We now describe the complexity results.

Theorem 3.26. (i) The query complexity of deciding whether µ[Q|V ] > 0 is
NP-hard. (ii) The query complexity of deciding whether µ[Q|V ] = 0 is NP-hard.
(iii) There exists a view v(x̄) and a query Q such that the data complexity of
deciding µ[Q|VJ ] > 0 is NP-hard.

Before we give a proof, we need the following result.

Theorem 3.27. Given a view v(x̄) and an integer e, the data complexity of
deciding exp(V [J/x]) ≤ e is NP-complete.

Proof. Deciding exp(V [J/x]) ≤ e is clearly in NP since one just has to guess a
substitution Q′ with exp(Q′) ≤ e.

To show that the problem is NP-complete, we give a reduction from 3-COLOR,
i.e. deciding if a graph can be colored with three colors. The database schema
has two tables, E and V . The view V is defined as follows:

V (k,N1, N2) : − E(k,R, G), E(k,R, B), E(k,G,R),
E(k,G,B), E(k,B, R), E(k,B, G), (17)
E(k, x, y), V (N1, x), V (N2, y)

Let G be a graph and we want to test if it can be colored with 3 colors. We
construct a certain instance J as follows: for each edge e = (vi, vj) we create a
tuple V (e, vi, vj) in J .

25



Now we show that G ∈ 3-COLOR iff exp(V [J/x]) ≤ 18m + 2n, where m and
n are the number of edges and vertices in G respectively.

To calculate exp(V [J/x]), we consider the ideal unifier, and contribution
from V sub-goals and E sub-goals. For each vertex vi, at best, all the sub-goals
V (vi, x) can be unified. In this case, a single V sub-goals will remain for each
vertex contributing 2 to the total arity. Thus, the total contribution of V sub-
goals is ≥ 2m and equality holds if x and y values are consistent among each
tuple of V . Now we look at E sub-goals. For each tuple V (e, vi, vj), the sug-goal
E(e, x, y) can at best be unified with one of the other six E sub-goals and sum
of arities of E sub-goals for each edge is at least 18. Thus, the total contribution
of E sub-goals is ≥ 18m and the inequality holds iff for each V (e, vi, vj), both
x and y are assigned differnent values from the set {R,G,B}.

Putting together the two results, we have exp(V [J/x]) ≥ 18m + 2n and the
inequality holds iff each vertex can be assigned a color from {R,G,B} such
that vertices of same edge have different colors. In other words, exp(V [J/x]) ≤
18m + 2n iff G ∈ 3-COLOR. This completes the reduction.

Theorem 3.28. There exists a view v(x̄) and a query Q such that the data
complexity of deciding µ[Q|VJ ] > 0 is NP-hard.

Proof. Again, we will show a reduction from 3-COLOR.
Let G be a graph and we want to test if it can be colored with 3 colors.

Consider a sequence of graphs G0, G1, · · ·Gm such that Gm = G and Gi is
obtained from Gi+1 by deleting an edge. Thus, G0 is the empty graph.

Clearly, G0 is 3-colorable. Suppose we have established that Gi is 3-colorable
for some i. To test Gi+1, consider the view definition of Eq 17. Create an
instance J for the view using the construction of Theorem 3.27 on graph Gi.
Let e = (vi, vj) be the edge that is deleted from Gi+1 to obtain Gi. Define query
Q to be Q() : V (vi, R), V (vj , G).

We claim that µ[Q|VJ ] > 0 iff Gi+1 is 3-colorable.
Recall we have already established that Gi is 3-colorable. As the proof of

Theorem 3.27 shows, each of the unifier that attains the exp corresponds to a
3-coloring of G. Also, if Gi+1 is 3-colorable, there must be a 3-coloring with
vi = R and vj = G (since we can always rotate colors). If we take this coloring,
it is also a 3-coloring of Gi and there is a homomorphism from QVJ to VJ . Thus,
µ[Q|VJ ] > 0 iff Gi+1 is 3-colorable.

We can thus test the 3-colorability of G by starting from G0 and a sequence
of above calls. This shows that the data complexity of deciding if µ[Q|VJ ] > 0
is NP-hard.

4 Probabilistic Views

Now we consider the PQAP in its full generality. We are given Γ,Σ, F and a
query q, and want to compute the set of pairs (t, µΓ,Σ,F [t ∈ q]). Notice that this
is a probabilistic set of answers, i.e. a set of tuples with associated probabilities.
When F is derived from views v̄ and a probabilistic instance J , we are interested

26



in fining a rewriting of q that computes this set from J . As before, we will study
the boolean case, Q, and derive the non-boolean case. The set of probabilistic
facts F can be represented by a set of m boolean views V1, . . . , Vm and m
probabilities p1, . . . , pm ∈ [0, 1]: F is the collection of statements P[Vj ] = pj ,
j = 1,m.

To compute PΓ,Σ,F [Q] we will express this probability in terms of a binomial
distribution PΣ̂[− | Γ], for a slightly perturbed set of statistics Σ̂. However,
this step is more involved than Lemma 3.10, because the m probabilistic facts
cannot be consolidated into one single view: instead we need to consider 2m

“views”, representing all possible overlaps. For that we introduce the following
notations: given m boolean views V1, . . . , Vm, and m constants p1, . . . , pm, for
any set ∆ ⊆ {1, . . . ,m}, denote:

p∆ =
∏
j∈∆

pj

p̄∆ =
∏
j∈∆

pj

∏
j 6∈∆

(1− pj)

V∆ =
∧
j∈∆

Vj

V̄∆ =
∧
j∈∆

Vj ∧
∧
j 6∈∆

¬Vj

For each instance I there exists a unique ∆ s.t. V∆(I) is true. The following
generalizes Lemma 3.10.

Theorem 4.1. There exists a new set of statistics Σ̂ and m + 1 parameters f ,
and C1, . . . , Cm, such that the following holds. For every I s.t. I |= Γ:

PΣ,Γ,F [I] = fC∆PΣ̂[I]

where ∆ is s.t. V∆(I) is true. For a query Q, it follows:

PΣ,Γ,F [Q] =
∑
∆

fC∆PΣ̂[QV̄∆ | Γ] (18)

Proof. (Sketch) To give an essence of the proof, we only illustrate on the case
when there is a single relation R(A1, . . . , Am), and Σ contains only a cardinality
statistics, cardR(A1, . . . , Am) = σ.

Let χi denote the characteristic function of the view vi, i.e. χi(I) is 1 iff
I |= Vi and 0 otherwise. Represent any distribution P as a vector x̄ of 2nm

27



variables xI ∈ [0, 1], s.t. P[I] = xI . PΣ is defined by:

f1(x̄) =
∑

I

xI − 1 = 0

f2(x̄) =
∑

I

|I|xI − σ = 0

vi(x̄) =
∑

I

xIχi(I) = pi

H(x̄) =
∑

(xI log 1/xI) = is maximized

By the Lagrange multipliers method, there exists a set of constants λ1 (for
f1), λ2 (for f2), c1, · · · cm (for the views) such that:

∀I.
∂H

∂xI
+ λ1

∂f1

∂xI
+ λ2

∂f2

∂xI
+

∑
i

ci
∂vi

∂xI
= 0

Substituting H, f1, f2 and simplifying, we get:

log 1/xI − 1 + λ1 + λ2|I|+
∑

i

ciχi(I) = 0

Thus, xI is of the form
xI = Ae

P
i ciχi(I)B|I|

Let Ci = eci . Also, let ∆ be such that V∆(I) is true. Then,

xI = AC∆B|I|

Here, the function AB|I| is just a constant times a binomial distribution (al-
though not necessarily the originial binomial distribution). Hence, xI can be
written as fC∆PΣ′(I) for some constant f and some statistics Σ′. Thus we have
shown that PΣ,Γ,F (I) = fC∆PΣ′(I). This distribution looks like several scaled
versions of the same binomial distribution patched together.

In the sequel we will abbreviate PΣ̂[− | Γ] simply with P[−]. First we
assume that no view is probable given the others (Definition 3.7). That is,
for any j, denoting W the conjunction of all views other than Vj , we assume
µ[Vj | W ] = 0. This implies that P[QV̄∆] in Eq.(18) is asymptotically equal to
P[QV∆]. Substituting Q ≡ true gives us an expression for f (since P[true] = 1),
and Eq.(18) becomes Eq.(19) below:

PΣ,Γ,F [Q] =
∑

∆ C∆P[V∆]P[Q | V∆]∑
∆ P[V∆]

(19)

Assume for the moment that all probabilistic facts are mutually independent:
we prove later that this holds. That is PΣ,Γ,F [V∆] =

∏
j∈∆ PΣ,Γ,F [Vj ] = p∆.

Substitute Q = V∆0 in (19), and note that P[V∆0 | V∆] is 1 when ∆0 ⊆ ∆ and

28



≈ 0 otherwise (since j 6∈ ∆ implies µ[Vj | V∆] = 0): this leads to (20) below,
which, in turn, leads to (21) using an inclusion-exclusion argument:

∀∆0. p∆0 =

∑
∆0⊆∆ C∆P[V∆]∑

∆ P[V∆]
(20)

C∆P[V∆]∑
∆ P[V∆]

=
∑
∆⊆Γ

(−1)|Γ−∆|pΓ = p̄∆ (21)

Substituting back in (19) and taking the limit n→∞:

Theorem 4.2. Assuming no view is probable given the others, the solution to
the PQAP problem is:

µΓ,Σ,F [Q] ≈
∑
∆

p̄∆µΣ̂[Q | V∆,Γ] (22)

Here µΣ̂ corresponds to the binomial distribution for Σ̂. Moreover the perturba-
tion from Σ̂ to Σ is bounded by the size of F .

We can now verify the independence assumption, asymptotically: computing
µΣ,Γ,F [V∆] with formula (22) gives us indeed p∆, since no view is probable given
the others. Details are included in the full version.

Example 4.3 Consider our example in Sec. 1.1. Since J has five tuples there
are five boolean views, V1, V

′
1 , V2, V

′
2 , V ′′

2 , with the probabilities listed next to the
tuples (0.45, 0.60, etc). Consider the probability that Larry Big is an answer
to the query: this is the probability of the query Q : −R(LarryBig,−, EE1). We
will illustrate the query evaluation assuming only the views V1 and V2

6. Thus,
we have four subsets, ∆0 = φ, ∆1 = {V1}, ∆2 = {V2} and ∆3 = {V1, V2}. The
probability of Q is thus:

µΓ,Σ,F [Q] = p̄∆0µΣ̂[Q | V∆0 ,Γ]) + p̄∆1µΣ̂[Q | V∆1 ,Γ])
+ p̄∆2µΣ̂[Q | V∆2 ,Γ]) + p̄∆3µΣ̂[Q | V∆3 ,Γ])

We have µΣ̂[Q | V∆i
,Γ]) = 0 for i = 0, 1, 2 and equal to 1/σ2 for i = 3. Thus,

µΓ,Σ,F [Q] = p̄∆0

1
σ2

= P[V1]∗P[V2]/σ2

Hence, the probability of Larry Big is 0.45∗0.25/5.

Finally, we show that the PQAP problem has a connection to the problem of
query evaluation on probabilistic database [8]. A probabilistic database D is a
database where each tuple has a probability associated with it. All the tuples are
assumed to be independent and this defines a probability distribution over all
possible databases. Any query p has a probabilistic semantics on D: it returns

6It can be shown that others do not matter here.

29



a set of pairs (t,P[t ∈ p]), i.e. a tuple plus the probability that it is an answer
to p(D). Some efficient evaluation techniques for SQL queries on probabilistic
databases are discussed in [8]. We now show how these techniques can be used
to solve the PQAP problem.

In the PQAP problem, we have a query Q and a probabilistic view instance
J for a set of views v̄ = v1, v2, . . .. Recall that J consists of a set of tuples, plus
a probability for each tuple. Thus, J can be seen as a probabilitic database. In
Sec 3.3, we saw that the query Q often has a rewriting over the views. The next
result shows when is it possible to run the rewriting directly on the probabilitic
J and retrieve the answers to the PQAP.

Theorem 4.4. Let v̄ be fully unifiable and strict and let as be an almost-certain
rewriting of Q using the views v̄ (which exists by Proposition 3.22. Then the
answer of as on the probabilistic data instance J is precisely the set (t, µΓ,Σ,F [t ∈
Q]).

Proof. Consider any tuple t in the answer to the rewriting as. We will show
that it has the same probability under both semantics.

First consider the probabilistic databases semantics[8]. We have a set of
possible worlds, each corresponding to a subset of J . Let W∆ denote the world
where J consists of exactly V∆. Then, probability of W∆ is p∆. Probability of
t is the sum of probabilities of the worlds where it is an answer, which is

∑
∆:t∈as(V∆)

p̄∆ (23)

Now we consider the PQAP semantics. Let Qt be the boolean query obtained
by substituting the head variables of Q with t. By Theorem 4.2, the probability
of Qt is

µΓ,Σ,F [t ∈ Q] =
∑
∆

p̄∆µΣ′ [Qt|V∆,Γ] (24)

Now, since v̄ is fully unifiable and strict, µΣ′ [Qt|V∆,Γ] is either 0 or 1. Also,
since as is an almost-certain rewriting, µΣ′ [Qt|V∆,Γ] = 1 iff t ∈ as(V∆). Thus,
the quantities in Eq 23 and 24 are equal.

5 Proofs

5.1 Proof of Theorem 3.2

The proof follows from Theorem 5.3 and Corollary 5.11. First, we need some
notations.

An event is a set of tuples, e ⊆ Tup, and we denote µn[e] the probability
that all tuples are in a randomly chosen database instance. If e1, . . . , em are

30



events then e1 ∨ . . . ∨ em denotes the event that at least one of them happens,
i.e. a randomly chosen database instance contains all tuples in ei, for some
i = 1, . . . ,m. The proof of theorem 3.2 relies on the following inequalities,
representing a lower bound and an upper bound for µn[e1∨ . . .∨em], and which
are standard in probability theory:∑

i=1,m

µn[ei]−
∑

1≤i<j≤m

µn[eiej ] ≤ µn[e1 ∨ . . . ∨ em] (25)

∑
i=1,m

µn[ei] ≥ µn[e1 ∨ . . . ∨ em] (26)

The event eiej represents the fact that all tuples in ei and ej are chosen; it is
equivalent to the event ei ∪ ej .

Given a conjunctive query Q0, denote Q6=0 the query obtained by adding all
possible 6= predicates, between any two distinct variables in Q0, and between
any variable and constant in Q. For example, if Q0 ← R(a, x), R(x, y) then
Q6=0 ← R(a, x), R(x, y), x 6= y, x 6= a, y 6= a. Let MUQ(Q) denote the set of all
minimal unifying queries of Q, i.e. queries which are minimal and of the form
h(Q) where h is a substitution on query Q. Note that we do not include two
queries in MUQ(Q) that are identical up to variable renaming. Thus, any two
distinct queries in MUQ(Q) are non-isomorphic.

The proof of the main result relies on the two inequalities in the following
Lemma, and applying Eq.(25) and (26) to each of them.

Lemma 5.1. For any conjunctive query Q,

Q ≡
∨
{Q6=0 | Q0 ∈MUQ(Q)} (27)

Proof. The containment in one direction is easy: Q0 ⊆ Q for Q0 ∈ MUQ(Q)
follows from the standard homomorphism theorem (since Q0 = η(Q)), and
Q6=0 ⊆ Q0 is also immediate. For the other direction, consider one database
instance I where Q is true, and let θ be the substitution that makes Q true.
We will find some Q0 ∈ MUQ(Q), s.t. Q6=0 is also true in I. Let const(Q)
be all constants in Q, and C = {c1, . . . , cm} be all constants in θ(Q) that are
not in const(Q). Let z1, . . . , zm be m fresh variables, one for each constant in
C. Define the following substitution η on Q’s variables. If θ(x) ∈ const(Q),
then η(x) = θ(x); otherwise, if θ(x) = ci, i = 1, . . . ,m, then η(x) = zi. Let
Q′0 = η(Q). Let Q0 be a query formed by a subset of sub-goals of Q′0 such that
Q0 is minimal. Q0 can be expressed as τ(Q′0) where τ is the substitution that
maps the redundant sub-goals of Q′0 to the minimal part. Thus Q0 must belong
to MUQ(Q) since Q0 = τ(η(Q)) and it is minimal. The valuation θ0 defined
by θ0(zi) = ci, i = 1,m is defined on Q6=0 , and θ0(Q0) = θ(Q), proving that Q6=0
is true on the instance I.

Upper bound Here we establish the upper bound of Theorem 3.2. First we
need the following lemma. Recall the definition of a free variable from Sec 3.1.2.

31



Lemma 5.2. Let Q be any conjunctive query where every variable is a free
variable. Then,

µn(Q6=) = C(Q)/nD(Q)

Proof. Denote Q(i) the query consisting of all the subgoals in Q(∗) that refer to
relation R(i). Let T (i) denote the set of trivial sub-goals in Q(i). We have

µn(Q) = Q(1)
∏

2≤i≤n

µn[Q(i)|Q(i−1)]

Now, given that Q(i) is true, each of the non-trivial sub-goals g in Q(i+1) as
well as T (∗) are independent. Now we just need to plug in the definitions of
C(Q) and D(Q). For a non-trivial goal g, µn(g) = C(g)nD(g). Similarly, the
probability that T (∗) is true is given by Eq (9). Putting together everything,
we get the desired result.

Now we prove the upper bound.

Theorem 5.3. For any conjunctive query Q,

µn[Q] ≤ coeff(Q)
nexp(Q)

+ O(
1

nexp(Q)+1
)

Proof. Let Θ denote the set of all partial substitutions θ defined on a query Q6=0
that only maps the non-free variables of Q0 to constants from the domain. Let
f be the number of free variables in Q6=0 . For any θ ∈ Θ, θ(Q6=0 ) results in a
query where all variables are free variables. We have A(θ(Q6=0 )) = A(Q0) and
V (θ(Q6=0 )) = f . Thus, D(θ(Q6=0 )) = A(Q0)− f . Also, by the standard semantics
of the conjunctive queries, we have

Q6=0 ≡
∨
θ∈Θ

{θ(Q6=0 )} (28)

We apply the upper bound in (26) twice: first to Eq.(27), then, for each unifying
query Q0 ∈MUQ(Q), to Eq.(28). We obtain:

µn[Q] ≤
∑

Q0∈MUQ(Q)

∑
θ∈Θ

µn[θ(Q6=0 )]

For each θ that is defined on Q6=0 , we have µn[θ(Q6=0 )] = C(Q0)/nA(Q0)−f by
Lemma 5.2 and the facts that D(θ(Q6=0 )) = A(Q0)− f and C(θ(Q6=0 )) = C(Q0).
Moreover, since there are V (Q0) − f variables that are not free, there are
nV (Q0)−f − O(nV (Q0)−f−1) substitutions θ that are defined on Q6=0 . Hence,
for each unifier Q0, the inner sum above is C(Q0)/nD(Q0) − O(1/nD(Q0)+1).
When summing up over all unifiers, the dominant terms are those with the
lowest D(Q0), hence we have:

µn[Q] ≤ coeff(Q)
nexp(Q)

+ O(
1

nexp(Q)+1
)

This establishes the upper bound.

32



Lower bound This is harder, because we have to prove that the second
order terms in the lower bound of Eq.(25) are negligible: more precisely we
show that the total contribution of these terms is O(1/nexp(Q)+1). We first
apply the lower bound to Eq.(27). The second order terms are here expressions
of the form µn[Q6=0 Q6=1 ], where Q0, Q1 ∈ MUQ(Q). Here Q6=0 Q6=1 represents the
conjunction of the two boolean queries, and is obtained by first renaming all
variables in Q0 and Q1 to make them disjoint, and then taking the union of all
predicates in the two queries, both subgoals and 6= predicates. The number of
such expressions depends only on Q, not on n, so it suffices to show that each
such expression is O(1/nexp(Q)+1). This follows from Corollary 5.8. We need
the following lemmas.

Lemma 5.4. Let Q0 be any query in MUQ(Q). Then, D(Q0) ≥ exp(Q).

Proof. For Q0 in MGUQ(Q), the lemma follows from the definition of exp(Q).
For any general Q0 in MUQ(Q), let η be the substitution such that Q0 = η(Q).
Consider the partition of sub-goals induced by η on Q(∗) and let η′ be the most
general unifier for the same partition. Thus, there exists a substitution f such
that η(Q(∗)) = f(η′(Q(∗)). Since η(Q(∗)) and η′(Q(∗)) have the same number
of sub-goals, A(η(Q)) = A(η′(Q)). Also, the substitution f cannot increase the
number of distinct variables and hence V (η(Q)) ≤ V (η′(Q)). Thus, D(η(Q)) ≥
D(η′(Q)). Now, since η′ is a most general unifier, η′(Q) ∈ MGUQ(Q) and
hence, D(η′(Q)) ≥ exp(Q). Putting together everything, D(Q0) = D(η(Q)) ≥
D(η′(Q)) ≥ exp(Q).

Recall from Sec 3.1.2 that a sub-goal of Q(∗) is called trivial if all of its
proper attributes have free variables.

Lemma 5.5. Let Q be any conjunctive query without trivial sub-goals. Let Q′

be a query formed by taking a subset of the sub-goals of Q(∗). Then

D(Q) ≥ D(Q′)

The inequality is strict iff Q′ does not contain at least one non-trivial sub-goal
of Q(∗).

Proof. We keep adding sub-goals to Q′ till we reach Q and count the increase
in the arity as well as the number of distinct variables.

Consider the smallest i such that a sub-goal corresponding to relation R(i)

is not in Q′ and add one such sub-goal to Q′. The true arity of this sub-goal
is |Āi|. Also, the number of new variables this sub-goal can introduce is at
most |Āi| because a symbol in every other position also appears in a R(i−1)

sub-goal in Q′. Hence, the increase in the number of distinct variables is at
most the increase in arity. Thus, after adding all the remaining sub-goals, we
get D(Q) ≥ D(Q′). For the equality to hold, all the added sub-goals must have
free variables as proper attributes, i.e. they must all be trivial.

We call a subgoal R(· · · ) of Q completely trivial if each of the R(i)(· · · )
subgoals in Q(∗) corresponding to this sub-goal are trivial. Thus, a completely

33



trivial sub-goal has no constants and all the variables are distinct and do not
occur elsewhere in the query.

Lemma 5.6. Let Q be any minimal conjunctive query without completely trivial
sub-goals. Let Q1 be a query formed by taking a subset of the sub-goals of Q.
Then

D(Q) ≥ D(Q1)

Also, the equality holds iff Q = Q1.

Proof. The inequality follows from Lemma 5.5 by putting Q′ = Q
(∗)
1 .

Clearly, when Q = Q1, the equality holds. We only have to show that the
inequality is strict when Q and Q′ differ. It is sufficient to prove this for the
case when Q and Q′ differ by a single sub-goal.

Suppose Q′ is obtained from Q by deleting the sub-goal g = R(ā1, ā2 · · · āk)
and D(Q) = D(Q1). The sub-goal contributes to the following k sub-goals in
Q(∗): gi = R(i)(ā1, ā2, · · · , āi) for 1 ≤ i ≤ k. Q

(∗)
1 already contains some of

these sub-goals and by Lemma 5.5, all other sub-goals are trivial. Thus, Q
(∗)
1

must contain at least one of these sub-goals, otherwise g would be a completely
trivial sub-goal, contradicting our assumption. Let j be the largest i such that
Q

(∗)
1 contains gi. Then, in fact, Q

(∗)
1 contains sub-goals g1 to gj . Also, sub-goals

gj+1 to gk are all trivial. Thus, positions āj+1, āj+2 · · · , āk must have fresh and
distinct variables. Also, since Q

(∗)
1 contains gj , Q1 must contain a sub-goal of

the form R(ā1, ā2 · · · , āj ,−,− · · · ,−). This makes g a redundant sub-goal in
Q, contradicting the minimality of Q. Hence, Q and Q1 are equivalent.

Lemma 5.7. Let Q0 and Q1 be two minimal conjunctive queries without 6=
predicates such that (1) they do not contain any completely trivial sub-goals and
(2) they are not isomorphic. Then:

exp(Q6=0 Q6=1 ) ≥ min(D(Q0), D(Q1)) + 1

Proof. Assume the contrary, that exp(Q6=0 Q6=1 ) ≤ D(Q0) and exp(Q6=0 Q6=1 ) ≤
D(Q1).

We have the following inequalities:

exp(η(Q6=0 Q6=1 )) ≥ D(η(Q6=0 Q6=1 )) ≥ D(η(Q6=0 )) ≥ D(Q0) (29)

The first inequality holds by definition of exp. The second inequality follows
from Lemma 5.6 and the fact that goals(η(Q6=0 ) ⊆ goals(η(Q6=0 Q6=1 ). The third
inequality follows from the following argument: (η(Q6=0 ))(∗) and Q

(∗)
0 have the

same number of sub-goals (since η cannot unify two sub-goal of Q6=0 because of
the inequalities). Hence, A(η(Q6=0 )) = A(Q0). Also, since η cannot increase the
number of distinct variables, V (η(Q6=0 )) ≤ V (Q0).

Given our first assumption (exp(η(Q6=0 Q6=1 )) ≤ D(Q0)), Eq. 29 must have
equalities in all the three places. For D(η(Q6=0 )) and D(Q0) to be equal, η must

34



map variables in Q6=0 to distinct variables. Thus, η(Q6=0 ) is isomorphic to Q6=0 .
Similarly, by Lemma 5.6, D(η(Q6=0 Q6=1 )) = D(η(Q6=0 )) implies that η(Q6=0 Q6=1 ) is
equal to η(Q6=0 ), and hence, isomorphic to Q6=0 . A similar argument shows that
η(Q6=0 Q6=1 ) is isomorphic to Q6=1 . Thus Q0 and Q1 are isomorphic, contradicting
our assumption.

We get the following corollary.

Corollary 5.8. For Q0, Q1 ∈MUQ(U)

µn(Q6=0 , Q6=1 ) = O(1/nexp(Q)+1)

Proof. Both Q0 and Q1 are minimal by definition of MUQ(Q). Suppose Q0

contains a completely trivial sub-goal g referring to a relation R. Thus, g
contains all distinct variables disjoint from Q0. Since Q0 is minimal, the relation
R does not occur in any other sub-goal of Q0, otherwise g would be a redundant
sub-goal. We next show that every query in MUQ(Q) contains g. Consider all
the sub-goals in Q that refer to relation R. Since all of them get unified to g in
Q0, which is completely trivial, each one of them must be an isomorphic copy of
g and any subset of them also unify to g. Thus, all query in MUQ(Q) contain
g, and by their minimality, contain g as a completely trivial sub-goal.

It follows that the set of completely trivial sub-goals is the same for all
queries in MUQ(Q). Let q0 and q1 denote the queries obtained from Q0 and Q1

by stripping off the completely trivial sub-goals. Since Q0 and Q1 are non-
isomorphic, q0 and q1 are also non-isomorphic. Also, D(Q0) = D(q0) and
D(Q1) = d(q1).

From lemmas 5.4 and 5.7, Thus, we have

exp(q 6=0 , q 6=1 ) ≥ min(D(q0), D(q0)) + 1 (30)
= min(D(Q0), D(Q1)) + 1 (31)
≥ exp(Q) + 1 (32)

Eq (30) follows from Lemma 5.7 and Eq (32) follows from Lemma 5.4.
Thus, µn(Q6=0 , Q6=1 ) ≤ µn(q 6=0 , q 6=1 ) ≤ O(1/nexp(q 6=0 ,q 6=1 )+1) = O(1/nexp(Q)+1).
The second inequality above follows from our already proven upper bound

in Theorem 5.3.

Corollary 5.9. For a conjunctive query Q,

µn[Q] ≥
∑

Q0∈MUQ(Q)

µn[Q6=0 ]−O(1/nexpQ+1) (33)

Given the upper bound, it suffices to consider in the sum only those unifiers
Q0 in MUQ(Q) for which D(Q0) = exp(Q): the others result in lower order
terms. We apply now Eq.(28) to Q6=0 , and then the lower bound in (25). The
higher order terms are now of the form µn[θ(Q6=0 )θ′(Q6=0 )], and we will show
that their combined effect is O(1/nexp(Q)+1). The number of such terms is now
dependent on n so it is not enough to show that each one of them is separately
negligible.

35



Theorem 5.10. For a conjunctive query Q and Q0 ∈MUQ(Q),∑
θ,θ′∈Θ

µn[θ(Q6=0 )θ′(Q6=0 )] = O(1/nexp(Q)+1)

Proof. Recall that θ and θ′ are partial substitutions that only map the non-free
variables of Q6=0 to constants from the domain. Let f denote the number of free
variables in Q6=0 .

Denote e = θ(Q6=0 ) and e′ = θ′(Q6=0 ). Both e and e′ have both the same
number of sub-goals, namely equal to the number of subgoals in Q0, because
both θ and θ′ are injective (due to the 6= predicates). We examine their overlap.
Consider all subgoals in Q

(∗)
0 that are mapped to the same sub-goal by θ and

θ′. Define a new boolean query Q1 consisting of precisely these subgoals; hence
goals(Q1) ⊂ goals(Q(∗)

0 ) (we cannot have equality because θ 6= θ′). In fact, that
must be a non-trivial sub-goal in goals(Q(∗)

0 ) \ goals(Q1) (since θ and θ′ must
map at least one non-free variable differently). Hence, by Lemma 5.5, D(Q1)
must be strictly less than D(Q0).

Now, the intuition is that, when Q1 has few subgoals (or, e.g., is empty), then
µn[ee′] is very small, since e and e′ are largely independent; when Q1 has many
subgoals, then we use the fact that there cannot be too many pairs of valuations
θ, θ′ that agree on all subgoals in Q1. For these we need the following inequali-
ties, which are easily checked. (1) µn[θ(Q6=0 )θ′(Q6=0 )] = O(1/n2A(Q0)−A∗(Q1)−2f ),
and (2) the number of pairs of substitutions θ, θ′ which agree precisely on the
subgoals in Q1 is O(n2(V (Q0)−V ∗(Q1))−2f ). Now we can add the second order
terms and obtain:∑

θ,θ′∈Θ

µn[θ(Q6=0 )θ′(Q6=0 )] =
∑

Q1:goals(Q1)⊂goals(Q0)

O(
n2(V (Q0)−V ∗(Q1))−2f

1/n2A(Q0)−A∗(Q1)−2f
)

=
∑

Q1:goals(Q1)⊂goals(Q0)

O(
1

n2D(Q0)−D∗(Q1)
)

= O(1/nD(Q0)+1) (34)
= O(1/nexp(Q)+1) (35)

Eq (34) follows from Lemma 5.5 and Eq (35) follows from Lemma 5.4.

Corollary 5.11. For any conjunctive query Q,

µn[Q] ≥ coeff(Q)
nexp(Q)

−O(
1

nexp(Q)+1
)

The above corollary, along with Theorem 5.3 proves Theorem 3.2.
Next, we prove Prop 3.11. We first state a generalization of Theorem 3.2.

Let X be any function from the set of all possible data instances to real num-
bers. The expected value of X under the distribution µn is given by En(X) =

36



∑
I X(I)µn(I). Similarly, the expected conditional value of X given a boolean

query Q is given by En(X|Q) =
∑

I X(I)µn(I|Q). Define E(X) as limn→∞En(X)
and E(X|Q) = limn→∞En(X|Q), if the limit exists.

Theorem 5.12. If En(X|Q) converges for all conjunctive queries Q, then

E(X|Q) =
1

µn(Q)

∑
Q0∈MGUQ

E(X|Q6=0 )µn(Q6=0 )

Proof. We use the following standard results from the probability theory. If
q = q1 ∨ · · · ∨ qm,

En(X|q) ≤ 1
µn(q)

∑
i

E(Xn|qi)µn(qi) (36)

En(X|q) ≥ 1
µn(q)

(
∑

i

E(Xn|qi)−
∑

1≤i≤j≤m

E(Xn|qi, qj)µn(qi, qk)) (37)

We apply the above inequalities to Eq (27). Since En(X|q) converges for all
q, let C = maxQ0∈MUQ(Q)E(X|q). Hence, for all sufficiently large n and Q0 ∈
MUQ(Q), we have En(X|Q0) ≤ 2C, i.e. less than a constant. Also, for Q0, Q1 ∈
MUQ(Q), we have shown that µn(Q6=0 , Q6=1 ) = O(1/nexp(Q)). Thus, the second
order terms in Eq (37) are negligible. Hence, we have

En(X|Q) =
1

µn(Q)

∑
Q0∈MUQ

En(X|Q6=0 )µn(Q6=0 ) + O(1/n)

Further, only those Q0 that belong to MGUQ0(Q) have non-negligible con-
tribution in the above sum. Taking the limit, we get the required result.

From now on, we assume a single relation R and a single cardinality con-
straint that the expected size of R is σ. Thus µn is the binomial distribution
with parameter σ. Also, the following holds for this case: every minimal query
is either the trivial query R(x1, x2, · · · ) (that asks if R is non-empty) or does
not contain any trivial sub-goals.

We analyze a particular function, Size. Given a data instance I, Size(I) is
simply the number of tuples in I. Recall that given a query Q, G(Q) denotes
the number of sub-goals in Q.

Theorem 5.13. For any minimal query Q that does not contain trivial sub-
goals,

E[Size|Q6=] = σ + G(Q)

Proof. We apply the inequalities in Eq (36) and (37) to Eq (28). Note that since
Q does not contain any free variables, θ consists of full substitutions. Thus, for

37



each θ, θ(Q6=) represents a set of G(Q) distinct tuples. One can easily show
that E[Size|θ(Q6=)] = σ + G(Q). From Eq (36),

En[Size|Q] ≤ 1
µn(Q)

∑
θ

E[Size|θ(Q6=)]µn(Q6=)

=
σ + G(Q)

µn(Q)

∑
θ

µn(Q6=)

≤ σ + G(Q)

Similarly, from Eq (36),

En[Size|Q] ≥ σ + G(Q)− (σ + G(Q))2

µn(Q)

∑
θ,θ′

µn(θ(Q6=), θ′(Q6=))

= σ + G(Q)−O(1/n)

The last equality follows from Theorem 5.10. By taking the limit, we get
E[Size|Q6=] = σ + C(G).

Theorem 5.14. If Q is any query other than the trivial query,

E[Size|Q] = σ +

∑
Q0∈MGUQ0(Q) C(Q)G(Q)∑

Q0∈MGUQ0(Q) C(Q)

Proof. If Q0 is any query in MGUQ0(Q), it is minimal. Since Q is not the
trivial query, Q0 cannot contain trivial sub-goals. The theorem now follows
directly from Theorems 5.12 and 5.13.

6 Related Work

Several models of probabilistic databases [6, 4, 15, 12, 11] have been proposed
in the past that represent uncertainties at tuple level. In our recent work [8],
we give efficient algorithms for evaluation of SQL queries on such databases.

There is a lot of work on using statistics and subjective information in knowl-
edge bases. Our semantics of a probabilistic database as a probability distribu-
tion over a set of deterministic databases is based on the possible worlds seman-
tics [13] where subjective information, also called degrees of belief, is interpreted
as a constraint over the probability distribution; we add the critical constraint
on the expected cardinalities. Bacchus et al. [3] use the principle of entropy
maximization to generate probability distributions from statistical knowledge.
In their latter work [2], they consider the problem of generating probability
distributions from subjective information using the principle of cross-entropy
minimization. Again, this corresponds to our method of entropy maximization
when a uniform prior distribution is assumed. Our Theorem 4.1 is an instance
of Jeffrey’s rule, described in [2].

38



There are various pieces of works that generate statistical/subjective infor-
mation on databases. Many of the schema matching algorithms [18, 9, 20] return
some score for the matched attributes, or even a probability [19]. A survey is
in [10]. The recent CORDS system [14] detects correlations are soft functional
dependencies between attributes.

7 Conclusions

We have developed a framework for representing complex probabilistic databases,
to be used in data integration scenarios. In a LAV approach, the probability
distribution on the global instance is given indirectly, through probabilities on
the view instances. This allows us to express rich correlations between tuples.
Our model also takes as input statistics over the data. Despite its richness,
we have shown that the query answering problem is decidable, and sometimes
tractable. At an extreme, the query’s probabilistic answers can be computed by
evaluating a single rewritten query on probabilistic instance: efficient techniques
for this are discussed in [8]. Future research is needed in two directions. One
is to address some restrictions we impose on statistics: we currently require the
statistics on a relation to form a chain, while more general statistics are likely
to occur in practice. The second is to study other cases under which PQAP is
tractable.

References
[1] Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using materi-

alized views. In PODS, pages 254–263, 1998.

[2] Fahiem Bacchus, Adam Grove, Joseph Halpern, and Daphne Koller. Generating new
beliefs from old. In Proceedings of the Tenth Conference on Uncertainty in Artificial
Intelligence, pages 37–45, 1994.

[3] Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern, and Daphne Koller. From statistical
knowledge bases to degrees of belief. Artificial Intelligence, 87(1-2):75–143, 1996.

[4] Daniel Barbará, Hector Garcia-Molina, and Daryl Porter. The management of proba-
bilistic data. IEEE Trans. Knowl. Data Eng., 4(5):487–502, 1992.

[5] Jihad Boulas, Nilesh Dalvi, Bhushan Mandhani, Shobhit Mathur, Chris Re, and Dan
Suciu. Mystiq: A system for returning probabilistic answers to hard queries. In University
of Washington Technical Report, 2004.

[6] Roger Cavallo and Michael Pittarelli. The theory of probabilistic databases. In VLDB’87,
Proceedings of 13th Int. Conf. on Very Large Data Bases, September 1-4, 1987, Brighton,
England, pages 71–81, 1987.

[7] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic conditional probabilities for conjunctive
queries. In ICDT, 2005. to appear.

[8] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In
VLDB, 2004.

[9] AnHai Doan, Pedro Domingos, and Alon Y. Levy. Learning source description for data
integration. In WebDB (Informal Proceedings), pages 81–86, 2000.

[10] Philip A. Bernstein Erhard Rahm. A survey of approaches to automatic schema matching.
VLDBJ, 10(4):334–350, 2001.

39



[11] Norbert Fuhr. Probabilistic datalog - a logic for powerful retrieval methods. In Ed-
ward A. Fox, Peter Ingwersen, and Raya Fidel, editors, SIGIR’95, Proceedings of the
18th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. Seattle, Washington, USA, July 9-13, 1995 (Special Issue of the
SIGIR Forum), pages 282–290. ACM Press, 1995.

[12] Norbert Fuhr and Thomas Rolleke. A probabilistic relational algebra for the integration
of information retrieval and database systems. ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[13] Joseph Y. Halpern. An analysis of first-order logics of probability. In IJCAI, pages
1375–1381, Detroit, US, 1989.

[14] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. Cords:
automatic discovery of correlations and soft functional dependencies. In SIGMOD, pages
647–658, 2004.

[15] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and V. S. Subrahmanian. Probview:
a flexible probabilistic database system. ACM Trans. Database Syst., 22(3):419–469,
1997.

[16] M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,
2002.

[17] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous infor-
mation sources using source descriptions. In Proceedings of the 22nd VLDB Conference,
Bombay, India., 1996.

[18] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching
with cupid. In The VLDB Journal, pages 49–58, 2001.

[19] H. Nottelmann and N. Fuhr. The MIND architecture for heterogeneous multimedia fed-
erated digital libraries. In Proceedings of Distributed Multimedia Information Retrieval,
pages 112–125, 2003.

[20] D. S. Luigi Palopoli and D. Ursino. Semi-automatic semantic discovery of properties
from database schemas. In IDEAS, pages 244–253, 1998.

[21] Jennifer Widom. Trio: A system for integrated management of data, accuracy, and
lineage. In CIDR, 2005.

40


