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Abstract

We present the results of exploratory data analysis for a data set that
consists of crossposting information for 89,687 newsgroups over a period
of 3.4 years. The data set we use is a part of Microsoft Netscan data.
Our goal is to investigate the community structure of the newsgroup data
set with a specific focus on spectral hierarchical clustering. We present a
spectral hierarchical clustering algorithm and discuss existing and novel
ways to measure the quality of a hierarchical clustering. We construct
spectral hierarchical clusterings for ten subsets of the data set and evalu-
ate the stability of the results.

keywords: Netscan project, Usenet, newsgroup, social network, spectral
clustering, hierarchical clustering, natural community

1 Introduction

In this report, we present the results of exploratory data analysis on a part of
the Microsoft Netscan data set. The Microsoft Netscan data contains informa-
tion on the Usenet newsgroups from September 1999 to the present day. Usenet
is a world-wide distributed discussion system. It consists of a set of "news-
groups” with names that are classified hierarchically by subject. ”Messages”
are "posted” to these newsgroups by people on computers with the appropriate
software — these articles are then broadcast to other interconnected computer
systems. [2]

Created in 1979 at the University of North Carolina, the Usenet initially
connected only two computers, had 15 newsgroups, and handled a few messages
per day [13]. In 1999, the Usenet was the third most widely used form of
interaction media on the Internet in terms of users — the two leading ones
were e-mail and the Web. At that time, the Usenet contained more than 14,000
newsgroups carrying 6 gigabytes of messages per day. On an average day, 20,000
people posted 300,000 messages [13]. The current number of Usenet newsgroups
is more than 100,000. It is impossible to give a precise figure, since new groups
are being born and old groups are dying every day, and further, not all groups
are available everywhere in the world.

The form of social organization in the Usenet is unique. The newsgroups and
the postings are stored in so-called news servers, which are located in all corners
of the world. Anybody can turn her computer into a new news server, and it
is totally up to the administrator which newsgroups are stored in the server.
There is no single server that contains all newsgroups and all posts. Anybody
can start a new newsgroup, but not all administrators of the news servers are
willing to store the new group. Anybody can post a message to any newsgroup
unless the group is moderated, in which case the newsgroup moderator has to
accept the message before it is published. However, most newsgroups are not
moderated, and it is possible to post any kinds of messages. The Usenet has no
central authority, and no one owns most newsgroups; they are fully anarchic.
Despite this, many newsgroups are well organized and productive. [13]



A community is a set of similar newsgroups. In this report, we investigate
the community structure of the Usenet. Our focus is on spectral clustering of the
Usenet newsgroups. A clustering is a grouping of data points into clusters such
that the data points within a cluster are close to each other but far from the data
points in the other clusters. A clustering algorithm is an algorithm whose output
is a clustering, and spectral clustering is a class of clustering algorithms. Spectral
clustering algorithms take as an input the pairwise similarities of the data points
(in this case newsgroups), and employ the eigenvectors and eigenvalues of the
similarity matrix or related matrix in clustering the data. Spectral clustering
algorithms have been successfully used for instance in image segmentation. [10,
12, 18, 19, 17, 9]

Previously, spectral clustering has been applied to newsgroup data in [3].
We are not aware of any other articles that study clustering of newsgroups.
However, the community structure of the World Wide Web has received more
attention [7, 6, 4, 16]. Since both Usenet and the Web are essentially social
networks, relatively similar methods can be applied to both.

The report is organized as follows. We present a brief review of spectral
clustering and related concepts in Chapter 2. We give an overview of our news-
group data set in Chapter 3. In Chapter 4, we introduce a method that we
use to compute spectral hierarchical clusterings for newsgroup data. Chapter 5
is devoted to discussing how we can measure the quality of a hierarchical clus-
tering. In Chapter 6, we discuss a method for identifying natural communities
in the Usenet data. To demonstrate these methods and algorithms, we present
a detailed case study of a subset of our data set, the so-called talk data, in
Chapter 7. In Chapter 8, we present similar results for nine additional subsets
of the newsgroup data. Finally, we conclude in Chapter 9.

2 Overview of Spectral Clustering

Let us consider a set V' of N data points, or vertices. Let us write S;; for the
similarity between the ith and the jth data point, and S = (S;;) for the N x N
similarity matriz. In the following, we will only consider symmetric similarity
matrices. Let us define the volume D; of vertex i € V by

JEV

Without loss of generality, we assume that all vertices have non-zero volumes.
Next, let us write D = (D;;) for the N x N diagonal matrix with D;; = D;.
Finally, we define the volume of a set A of vertices as

Vol A = Z D;.
€A

A useful way to analyze spectral clustering is to consider it in terms of
a random walk on the set of vertices. To this end, we form the stochastic



transition matriz P = (P;;) by normalizing the row sums of S to 1. Formally,
P=D7's, (1)

or equivalently, P;; = S;;/D;. We can interpret P;; as the transition probability
P(i — j|i) of moving from vertex i to vertex j, given that the random walk
starts from vertex ¢. The eigenvalues of P are 1 = A\ > Ao > ... > )\, > —1
and the corresponding eigenvectors are v',v2,...,v". The eigenvalues of P are
real and the eigenvectors linearly independent. If the eigengap A = A\ — Agt1
is large, the subspace spanned by the eigenvectors v!,v?,...,v* is stable to
perturbations.

A stationary distribution m = (m;);cv of a Markov chain is a probability
distribution over the vertices in V such that PTm = 7. In our setting, the

stationary distribution values are given by

TNV

If we have a subset A C V, let us write m4 = Vol A/Vol V for the probability
of A under the stationary distribution.

A clustering C = {C4,Cs, . ..,Ck} is a partition of V into disjoint non-empty
sets C1,Cy, ...,Ck. The quality of the clustering depends on the similarities of
the vertices within each cluster, on the dissimilarities of the vertices in different
clusters, and on the sizes of the clusters. There are number of ways to formalize
the quality of a clustering. One of the most widely used clustering criteria is
multiway normalized cut, given as

K
NG = 37 3 GG,

k=1 k' £k VOl Ok
where
Cut(A4,B) =>_ Y Sij.
€A jEB

Small values of the criterion are desirable.

In the special case of two clusters, the multiway normalized cut reduces into
Cut(Cl, Cg) T Cut(Cl, CQ)

Vol Cl Vol Cg '

MNCut({C’l, 02})

By inspecting this expression, it is easy to see that a small value is achieved
when the clusters have balanced volumes and when Cut(C1, C2) is small, or in
other words, the vertices in the two clusters are very dissimilar. If we have a
bipartite graph which we partition into two sets C'; and C5 such that all edges
are included in the cut, we obtain the maximum normalized cut value 2, since
Cut(Cy,Cs) = Vol C; = Vol Cy. The minimum normalized cut value 0 is
achieved when Cy are Cy are disconnected, or in other words, Cut(Cy,Cs) = 0.

The multiway normalized cut criterion has an intuitive interpretation in
terms of the Markov random walk view. Given two vertex sets A C V and



B C V, we define Py = P(A — B|A) as the probability of the random walk
going from the set A to the set B in one step given that the current state is in
A and the random walk is in its stationary distribution 7. We can write out
this expression as

P _ ZiGA,jGB ﬂ-i‘Pij . ZieA,jeB Sij _ CU-t(A7B) (2)

AB N Vol A Vol A

We now see that the multiway normalized cut is in fact a sum of “out-of-cluster”
transition probabilities:

K

K
MNCut(C) = > > Poyo, = K=Y Poyc,
k=1 k#k’ k=1

It is now clear why small values of the MNCut criterion are desirable. This kinds
of values are achieved for partitions in which the probability of the random walk
leaving a cluster is small.

It has been shown in [9] that

K
MNCut(C) > K = > A(P).
k=1

The difference between the MNCut value and its lower bound is referred to as
the gap, given as

K
gapp(C) = MNCut(C) — K + Z Ak (P).
k=1
The matrix P has piecewise constant eigenvectors v',v?, ..., v¥ w.r.t. a clus-

tering C if vF = v;-“ for all £ < K whenever the vertices ¢ and j are in the same
cluster. It has been shown that gapp(C) = 0 if and only if P has piecewise
constant eigenvectors w.r.t. C. [9]

A spectral clustering algorithm is an algorithm that clusters the set of vertices
V in a way that utilizes the eigenvalues and the eigenvectors of a matrix derived
from the similarity matrix S. There are several different spectral clustering
algorithms [10, 12, 18, 19, 17, 9]. Let us introduce an example of a spectral
clustering algorithm as Algorithm 1 [9].

It can be shown that Algorithm 1, as well as many other spectral cluster-
ing algorithms, produce clusterings that minimize the multiway normalized cut
criterion in certain special cases, as the following theorem indicates. [9]

Theorem 1 (Multicut lemma) Let S be an N x N symmetric matriz with
nonnegative elements, and let P be the corresponding transition probability ma-
triz. Assume that P has K piecewise constant eigenvectors vl 0B wrt a
clustering C, |C| = K. Denote the corresponding eigenvalues by A1, Az, ..., Ak
and assume that these are the K largest eigenvalues P, are all non-zero, and
Ax > Axq1. The the minimum K-way normalized cut for S is given by the

partition C.



Algorithm 1. Spectral Clustering Algorithm.
Input: N x N Similarity matrix S, desired number of clusters K.
Output: Clustering C = {C1,Cs,...,Ck}.

1. Compute the transition probability matrix P.

2. Compute v',v2,...,v%, the eigenvectors corresponding to the K largest
eigenvalues of P. Form a matrix V = (v! v? ... v&) whose columns are
these eigenvectors.

3. Cluster the rows of V as points in R¥ into K clusters for instance with

the K-means algorithm.

3 Overview of the Data

Our data set is a subset of the Microsoft Netscan Usenet data. The Netscan
group at Microsoft Research has collected information on Usenet newsgroups
from September 1999 to present day. A part of this data has been aggregated
and made available to the researchers of the University of Washington.

The Usenet consists of newsgroups with names such as

comp.os.linux.development.system,
soc.religion.christian.bible-study,
atl.sports.baseball.atlanta-braves,
alt.amazon-women.admirers,
rec.crafts.textiles.sewing, or
sci.geo.earthquake.

The names are composed of hierarchical parts of increasing specificity. For
instance, in comp.os.linux.development.system, comp stands for computing-
related topics, os stands for operating systems, linux is a specific operating
system, and so on. We refer to sets of newsgroups whose names begin with
comp, soc, etc. as first-level hierarchies. Sets of newsgroups whose names begin
with comp.os, soc.religion, etc. are referred to as second-level hierarchies. A
monthly updated master list of first-level hierarchies and their descriptions can
be found at http://www.magma.ca/%7Eleisen/mlnh/mlnhtables.html.

Each newsgroup contains posts, messages which are related to the topic of
the newsgroup. Any post can be replied to: a chain of posts formed this way is
referred to as a thread. A post can be replied to a number of times, so a post
and all replies associated to it form a tree structure. A start is a post that has
been replied to but is not a reply itself; a barren is a post that has not been
replied to and is not a reply itself. A crosspost is a message that has been sent
to multiple newsgroups.

Our data set contains information on crosspostings in the Usenet during the
period January 2000 — May 2003. During this time, 711,857,644 crosspostings
were recorded in 89,687 newsgroups. Any pair of newsgroups in our set had



Number of cross- | Hierarchy name | Topic

posted messages

475246642 alt Alternative

26327267 soc Social issues

13517913 tw Taiwan

13316980 rec Recreation

11719741 talk Talk

10012143 comp Computing

9944991 uk UK

9556241 clari Clarinet News Service
(commercial)

9112071 microsoft Microsoft

8275892 relcom Commonwealth of Ind.
States (Cyrillic)

7017797 misc Miscellaneous

4773233 sci Science

4501469 aus Australia

4253506 ukr Ukraine

4235915 news Usenet news

4177477 es Spain

3301752 it Italy

3211799 us US

3179200 yu Yugoslavia

3178924 hk Hong Kong

Table 1: Twenty largest first-level newsgroup hierarchies based on the number
of crosspostings.

thus an average of 0.18 shared messages. Note, however, that we do not have
any information on the newsgroups with no crosspostings in them. Out of the
711,857,644 crosspostings, 447,860,777 were replies, 240,502,969 were starts, and
23,493,898 were barrens.

In our data set, there are 3,157 level 1 hierarchies, 23,319 level 2 hierarchies,
and 59,642 level 3 hierarchies. Table 3 contains the 20 largest level 1 hierarchies
ranked by the number of crosspostings (starts, barrens, and replies) in them.
Table 3 contains the 20 largest level 2 hierarchies ranked by the same criterion.
In Table 3, we have listed the 20 largest level 1 hierarchies with respect to the
number of newsgroups in them. Note that a large number of crosspostings does
not necessarily imply a large number of newsgroups, or vice versa.



Number of crossposted messages | Hierarchy name
253592506 alt.binaries
45827774 alt.sex
29757783 alt.politics
23531713 soc.culture
12937062 tw.bbs

11990596 alt.religion
11918677 alt.fan

9001759 microsoft.public
8892829 talk.politics
7721995 relcom.commerce
5825242 alt.bainaries
4337069 alt.christnet
3996712 ukr.commerce
3863846 alt.society
3511458 alt.music
3357161 clari.web
3258662 misc. jobs
3027809 alt.bestjobsusa
2868852 alt.games
2857253 alt.atheism

Table 2: Twenty largest second-level newsgroup hierarchies based on the number
of crosspostings



Number of | Hierarchy name | Topic

newsgroups

29287 alt Alternative

3768 free Entirely unregulated newsgroups
3245 microsoft Microsoft

1596 comp Computing

1285 rec Recreation

1192 fido7 Russian-language Fidonet

1181 clari Clarinet news service (commercial)
1040 news Usenet news

960 de Germany

835 aol America Online (ISP)

804 fido Fidonet

624 it Italy

615 uw University of Waterloo, Ontario, Canada
596 fj Japan

575 japan Japan

542 uk UK

523 z-netz Z-Netz (German newsgroups)

523 tw Taiwan

522 soc Social issues

467 ucb University of California at Berkeley, USA

Table 3: Twenty largest first-level newsgroup hierarchies based on the number
of newsgroups in the hierarchy
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Component size | Number of components
88999 1
19 2
11 2
10 1

9 2

8 1

7 1

6 10
5 29
4 26
3 193
2 131

Table 4: Sizes and numbers of connected components in the newsgroup data
based on all crosspostings.

3.1 Usenet as a Graph

A graph is defined as a pair (V, E), where V is a collection of nodes or vertices,
and F is a collection of edges (vertex pairs). Let us consider the newsgroups
as vertices of a graph. If a pair of newsgroups shares a crossposting or several
crosspostings, there is an edge between the corresponding vertices, and the
weight of the edge is the number of shared crosspostings. The newsgroup graph
can be represented by a newsgroup similarity matriz S = (5;;), which is formed
by setting the similarity S;; to equal the number of crosspostings between the
1th and the jth newsgroup. Unless otherwise mentioned, we S;; = 0 for all i.

A degree of a vertex is the sum of the weights of the edges incident to it. A
degree of a newsgroup in a newsgroup graph is therefore the total number of
crossposted messages in the group. Note that the degree of the ith newsgroup
is equal to the volume D; as defined in Section 2, and the diagonal matrix D
has all newsgroup degrees on its diagonal.

A path is a sequence of consecutive edges in a graph. A graph is connected is
there is a path connecting every pair of vertices. A graph that is not connected
can be divided into connected components (disjoint connected subgraphs). Our
newsgroup graph is not connected — Table 3.1 shows how many connected
components it has and what are the sizes of those components. The size of
the largest connected component is 88,999 newsgroups (vertices). The next
largest component has only 19 newsgroups. Note that we do not have any
components of size 1, since we have only included newsgroups which have at
least one crossposting with another group.

A part of newsgroup postings are spam messages (unsolicited bulk postings
that usually advertise a product). Spam messages are likely to be barrens, since
they do not often get replied, nor are they replies themselves. It is possible that
a given spam message gets sent to a large number of unrelated newsgroups,

11



Component size | Number of components
63115 1
12 1
11 2
10 1
9 2
8 4
7 4
6 8
5 8
4 28
3 71
2 90

Table 5: Sizes and numbers of connected components in the newsgroup data
based on starts and replies only.

thereby reducing the number of connected components in the newsgroup graph.
To alleviate the effect of spam, we eliminated all barrens and recomputed the
connected components in the graph. The results are presented in Table 3.1.
They look reasonably similar: we have one large connected component of size
63,115, and the second largest connected component has only 12 newsgroups.
Note that the total number of newsgroups in Table 3.1 is less than the total
number of newsgroups in Table 3.1, since we have only included groups with a
non-zero number of start or reply crosspostings in the former.

4 Spectral Hierarchical Clustering of Newsgroups

We can compute a spectral clustering for Usenet newsgroups based on the cross-
posting matrix S for instance with Algorithm 1. However, it is not clear what
value we should choose for the number of clusters K. Further, it is likely that
a flat clustering cannot fully capture the complicated structure of the data set.
For these reasons, we will attempt to construct a hierarchical clustering for the
Usenet newsgroups with the help of spectral clustering algorithms.

Our approach consists of repeatedly splitting the set of vertices into two
parts, until only singleton clusters remain. We would like to choose splits corre-
sponding to small values of the 2-way normalized cut criterion (from now on, we
refer to the normalized cut criterion simply as a ‘cut’). To this end, the split-
ting is done with the help of the second eigenvector of the transition probability
matrix P.

Let us now describe our approach in more detail. Consider a set V of NV
vertices and the N x N similarity matrix S. We would like to split the set of
N vertices into two parts such that the cut is minimized. It is computationally
intractable to try out all possible splits, so we use spectral clustering to choose

12



a split with a small cut value. Let us compute the transition probability matrix
P and the eigenvector v? corresponding to the second largest eigenvalue of P.
Let us sort the N vertices according to the values in the N x 1 vector v2. Let
us then try splitting the N vertices into two sets in N — 1 ways according to
the order imposed by v?. We compute the cut corresponding to each of the
N — 1 splits and choose the split with the smallest cut. We now have two sets
of vertices V7 and V5 with respective sizes N7 and No, where N1 4+ Ny = N. We
proceed to split each of these vertex sets further, until only singleton clusters
remain.

The result of a hierarchical clustering algorithm can be visualized as a den-
drogram, a tree-like structure. From now on, we use the words hierarchical
clustering and dendrogram interchangeably.

We would like to prune our hierarchy such that all ‘bad’ splits are undone.
However, evaluating the goodness of a split is not trivial. We could choose a
cut threshold ¢ and remove all splits whose cut values exceed the threshold.
We could do pruning also based on the gap value, or the combination of the
cut and the gap value. Yet another alternative would be to prune based on
cut/ < cut >, where < cut > is the mean value of all possible cuts for the
graph at hand. This choice might eliminate the possible effect of the graph
size on the cut value. Similar normalization could be done for the gap value.
Based on theoretical considerations and experimental results (see the discussion
in Section 7.2), we have decided upon pruning based on the cut value alone. The
appropriate cut threshold will be decided for each data set separately based on
the cut-gap graph (again, see Section 7.2 for pruning examples).

Even after pruning the dendrogram according to the cut value, we do not
have a fully reliable picture of the clustering structure of the data. Consider
a subset V; of the vertices which we have decided not to split further because
of too big cut value. It is possible that the newsgroups in Vi form a strongly
connected graph, in which case it is justified not to split the cluster further. On
the other hand, the newsgroups in Vs might be very weakly connected but in
a way that there is no obvious way to split the data into two parts, so the cut
value will be large. In this case, the newsgroups in V; should not be considered
as a cluster — one possibility would be to split V; into multiple small clusters,
maybe even into singleton clusters. Deciding upon a good way to process a
given cluster is highly nontrivial task and is left for future work.

As mentioned earlier, hierarchical clusterings are commonly visualized by
means of a dendrogram. In the special case of spectral hierarchical clusterings,
we can use a dendromatriz as an alternative, more expressive way to visualize
the result. If we have a clustering on N vertices, the dendromatrix is a black-
and-white matrix of size N x N. The division of the vertices into clusters
is represented by horizontal and vertical lines in appropriate locations. The
colors in the matrix represent the transition probabilities between the clusters
or between individual vertices.

There are two kinds of dendromatrices: unit dendromatrices and block den-
dromatrices. A unit dendromatrix is colored simply according to the N x N
transition probability matrix P. The color of each unit dendromatrix element

13



depends on the corresponding transition probability P;;. In a block dendroma-
trix, the color of a block (Cj, C;) represents the probability Pc,c; of the random
walk going for the set of vertices C; to the set of vertices C; — the expression
is given in Eq. 2. We will show examples of dendromatrices in Section 7.2.1.

5 Stability of Hierarchical Clustering

After computing a hierarchical clustering, it is important to evaluate the sta-
bility of the result. Would a small modification in the newsgroup graph cause
a big change in the hierarchical structure, or is the structure robust to minor
alterations?

Consider a hierarchical clustering H formed by applying spectral hierarchi-
cal clustering on a similarity matrix S. Let us modify S slightly, produce a new
similarity matrix S’, and compute a new hierarchical clustering H’. Calculating
the distance d(H,H’) between the two dendrograms will now give us informa-
tion on the stability of the original clustering H. If we repeat the experiment
several times and get consistently small values for the distance d(H,H’), we
may conclude that the clustering H is stable.

There are several important details of this process to consider, and each
of them has a significant effect on the final stability result. Calculating the
distance d(H,H’) is highly nontrivial — we will discuss different alternatives
in Section 5.2. There are several ways to modify the similarity matrix S; the
most intuitive ones are perhaps adding noise to it, and sampling data points
(newsgroups) from it. Since it is not clear what would be a good way to add
noise to a sparse similarity matrix, and since the noise level should be a function
of the number of data points, we will not consider adding noise as an option at
all. Instead, we will discuss various ways of sampling the set of data points in
Section 5.1.

When we have computed hierarchical clustering H for a similarity matrix S,
we have pruned the dendrogram according to the cut threshold c. After we form
S’ and compute H’, we will have to have pruned the dendrogram accordingly.
However, this is not straightforward, since the new cut threshold ¢’ should
depend on the sample percentage / noise level. We have simply set ¢/ = ¢, but
in the future research, the choice of ¢’ should be given careful consideration.

5.1 Sampling the Data

Let us consider a similarity matrix .S of size N x N. We wish to sample the set
of N data points (newsgroups) according to a sample percentage p. There are
several different ways to sample the data: we introduce three possibilities here.

e In uniform sampling, we remove p percent of the data points at random.
However, recall that many newsgroup dendrograms contain one big leaf
cluster and several leaf clusters with only few newsgroups each. Removing
a single point from a very small cluster is likely to cause significant change
in that cluster, so we want to consider alternative ways of sampling.

14



e In substructure sampling, we choose one of the leaf clusters at random,
with probability proportional to its size. We then remove all data points
in this cluster. The biggest cluster is an exception: we never remove it.
We repeat this procedure until we have less than (1 — p)N data points
left. Since we are removing several data points at a time, the percentage
of data points removed is rarely equal to p — it is often larger than that.

e In so-called big cluster sampling, we remove points at random only from
the biggest leaf cluster, and leave all other leaf clusters untouched. If the
size of the biggest cluster is less than p/N, we simply remove all points in
the biggest cluster and nothing else. The percentage of the points removed
is therefore sometimes less than p.

5.2 Comparing Hierarchical Clusterings

There are several reasons for why we would like to compare hierarchical clus-
terings for newsgroup data; we list some examples below.

e We could evaluate the stability of a clustering by sampling the data, re-
clustering, and comparing the resulting clustering to the original one.

e To see how the clustering changes over time, we could cluster a few months’
worth of data at a time, and compare the clusterings for different time
slots. Alternatively, we could utilize sliding window over time.

e We could compare the hierarchical spectral clustering results with the
newsgroup name hierarchy.

Unfortunately, not much research has been done on developing methods for
comparing hierarchical clusterings. Maybe the simplest approach is to com-
pare the leaf clusterings by calculating the value of the Clustering Error (CE),
Variation of Information (VI), Rand index, or some other distance measure
for ordinary clusterings (partitions of a set of data points) [8]. However, this
approach does not take in account the cluster hierarchy in any way:.

The only existing hierarchical clustering comparison methods that we are
aware of are simple layer-by-layer comparison [5], utilizing so-called cophenetic
matrices [15], or employing the subspace clustering CE measure [11]. These
have several shortcomings: the layer-by-layer and the subspace clustering CE
method are not able to take into account the cut values; and the layer-by-
layer and the cophenetic matrix methods are not able to handle clusterings on
different number of data points.

Let us now describe the cophenetic matrix comparison method in more de-
tail. To this end, we define the unweighted cophenetic distance df(D) between
the ith and the jth newsgroup as the number of splits that separate them in
the dendrogram D.! The weighted cophenetic distance dijj°(D) between the ith
and the jth newsgroup is the sum of the weights associated with the splits that

INote the close similarity to the so-called tree distance.
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separate the two newsgroups in the dendrogram. There are numerous ways to
define the weights: for instance, we might choose exp(—Cut), since small cut
values should correspond to large weight values (large distances between the
clusters) and vice versa.

An unweighted cophenetic matriz H"® = (d}f(D)) consists of unweighted
cophenetic distances, and a weighted cophenetic matriz H"¢ = (d}f (D)) consists
of weighted cophenetic distances. Both types of matrices are always symmetric.
A hierarchical clustering algorithm can be viewed as a mapping of the similarity
matrix into a cophenetic matrix.?

Two hierarchical clusterings can be compared by comparing the correspond-
ing cophenetic matrices. However, there are multiple ways to compare cophe-
netic matrices i/ = (H;;) and H' = (H};). Among other possibilities, we could
compute the correlation of the matrix elements, the L1 distance between the
matrix elements, or the L2 distance between the matrix elements. We are not
aware of any research on the properties of different methods. We will therefore
use several methods in our comparison experiments.

If we want to compare a cophenetic matrix of hierarchical clustering with
a cophenetic matrix of a clustering on a sample of the data points, we have to
scale the matrices appropriately with a function of the number of data points.
Also, to make the stability measures comparable across different data sets, we
would like the measure to be independent of the number of data points in the
sample. Consider having a cophenetic matrix H for a hierarchical clustering H
of N data points and a cophenetic matrix H' for a hierarchical clustering H’ on
a sample of (1 — p)N data points. That is, H is of size N x N and H' is of size
(1—=p)N x (1 -p)N.

In order to compare these matrices using correlation or L1/L2 distance, we
have to extract the submatrix of size (1 — p)N x (1 — p)N from H; let us refer
to this submatrix as Hg,,. But Hgyp is likely to have larger values in it on
average than H', since H is a clustering on a bigger set of data points, and the
corresponding dendrogram is often deeper. Unfortunately, it is not clear what
is a good way to scale the cophenetic matrices. We could scale H and Hy,, by
log,(N), the minimum depth of an unpruned tree, by N, the maximum depth
of an unpruned tree, or something else. Alternatively, we might normalize the
sum of the elements in the cophenetic matrix to 1 (L1 normalization), or the
square root of the sum of the squared elements of the cophenetic matrix to 1
(L2 normalization). In the absence of theoretical and experimental results on
different scaling factors, we will run experiments with cophenetic matrices that
are scaled and normalized in various ways.

6 Natural Communities in Usenet

Let us refer to a cluster of similar newsgroups as a community. Running a
clustering algorithm on the set of newsgroups can give us information on the

2Note that we have slightly modified the definitions of cophenetic distance and cophenetic
matrix; the original definitions can be found in [15].
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community structure of the Usenet. However, different clustering algorithms
give different results, choices of parameter values might have a large effect too,
and some clustering algorithms are nondeterministic. Since we cannot neces-
sarily trust a single clustering result, we are interested in comparing and com-
bining multiple clusterings. If a set of newsgroups is clustered together in a
large number of clustering, we refer to this set as a natural community. Natural
communities of World Wide Web pages have been studied in [6, 7], but we are
not aware of any article on natural communities in newsgroup data.

Consensus clustering, also known as cluster ensemble or aggregate clustering,
is a way to combine several clustering results into a single clustering [14]. We
do not provide a literature survey here but discuss a specific application of
consensus clustering, namely combining several K-means clusterings into a so-
called mean connectivity matrix. The result of the K-means clustering algorithm
depends on its initialization. We can combine the results of R runs of K-means
into a mean connectivity matric M = (M;;) [14]. If we have N newsgroups, the
mean connectivity matrix is of size N x N. The entry M;; represents the fraction
of the R runs in which the ith and the jth newsgroup have been clustered
together. Naturally, 0 < M;; <1 for all ¢, j. If the value of M;; is close to one,
we have a good reason to believe that the corresponding two newsgroups are
very closely related. Identifying blocks of large values in the mean connectivity
matrix can help us reveal stable clusters, or natural communities, in the data.

An interesting avenue to explore in the future would be to extract the set of
natural communities in various points of time, find correspondences between the
communities across the time points, and investigate the temporal development
of the community structure of the Usenet. In fact, this type of study has been
conducted in [16] for Japanese Web pages. In this study, the researchers look
in detail how Web communities emerge, dissolve, grow, shrink, are split into
several communities, and are merged with another community.

7 Case Study: Talk Data

In this section, we will look at the talk newsgroup hierarchy in detail and apply
all the methods presented in Sections 4, 5, and 6.

7.1 Overview of Talk Data

The first-level newsgroup hierarchy talk has 138 newsgroups and 920,858 cross-
postings, out of which 832,942 are replies, 34,880 are starts, and 53,036 are bar-
rens. We have 1 connected component of size 131 and 1 connected component
of size 7. The groups in the smaller connected component are

talk.hh.ii.pp,
talk.hh.ii.pp.cc.rr.ii.mm.ee.congressagent,
talk.hh.ii.pp.cc.rr.ii.mm.ee.activeagent,
talk.hh.ii.pp.cc.rr.ii.mm.ee,
talk.hh.ii.pp.cc.rr.ii

)
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Figure 1: Number of crosspostings in the talk hierarchy.

talk.hh, and

1:a1k.hh.ii.pp.cc.rr.ii.mm.3

To reduce the effect of spam messages, we leave all barrens out of consider-
ations. After this, we have 113 newsgroups with a non-zero number of cross-
postings. These newsgroups form a single connected component. The largest
number of crosspostings in a newsgroup is 213,121 and the smallest number is 1.
Fig. 7.1 shows the histogram for the numbers of crosspostings. Table 6 contains
a list of all level 2 name hierarchies in the talk data.

3The alias HipCrime has written software to allow abusing Usenet in various ways, for
instance flooding.
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Number of newsgroups | Hierarchy name
53 talk.religion
talk.politics
talk.superphone
talk.hh
talk.philosophy
talk.hipcrime
talk.hipclone
talk.crimehip
talk.h
talk.emircpih
talk.bizarre
talk.h2pcr2me
talk.hlpcrime

—_

NN WHE Ot otoy 93 Ww

Table 6: Level 2 hierarchies in the talk data. In addition to the hierarchies
listed above, there are 33 level 2 hierarchies with only one newsgroup.
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Figure 2: The eigenvalues of P for the talk hierarchy.

7.2 Spectral Hierarchical Clustering for Talk Data

We form the 113 x 113 similarity matrix S for the talk data by setting S;;
equal to the number of crosspostings (starts and replies) shared by the ith
and the jth newsgroup. The diagonal entries of S are zero. We compute the
stochastic transition matrix P by normalizing the rows of S according to Eq. 1.
The eigenvalues of P are displayed in Fig. 2. As expected, the eigenvalues
fall between —1 and 1. There are large gaps after the 3rd, the 5th, and the
9th largest eigenvalue. The eigenvector corresponding to the second largest
eigenvector is shown in Fig. 3. The spikes correspond to newsgroups in the
talk.religion.christian hierarchy. In fact, quite a few of the eigenvectors are
spiky. Fig. 4 shows a plot of the second and the third eigenvector; most of the
newsgroups remain at origin.

Let us construct a hierarchical clustering of the talk newsgroups by following
the procedure described in Section 4. We repeatedly split the data matrix into
two parts based on the value of the normalized cut. We continue splitting until
no cluster contains more than one newsgroup.

To get a flavor of the magnitude of the cut and the gap values, we have
plotted all these for the talk data in Fig. 5 (a). As can be seen, a small cut
value implies a small gap value, but a small gap value can go together with any
kind of a cut value. Fig. 6 contains the same points as 5 (a), but the marker
sizes reflect the number of vertices in the graphs that are being split. Splits in
big graphs tend to result in the smallest cut values.

In Fig. 5 (b), we have the same cut-gap pairs as in Fig. 5 (a). Each cut-gap
pair plotted as a blue star corresponds to a good split of some graph — this
time, we have also computed the cut and the gap values for a random split of the
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same graph, and plotted the resulting cut-gap pair as a red circle. To produce
the random split, we have chosen the sizes of the two clusters at random, and
assigned the data points into the two clusters at random.

Figs. 5 (d), (e), and (f) show some evidence on that the cut value is indeed
a good choice for pruning the dendrogram. For instance, one might initially
think min cut/ < cut > would be a better choice, since the cut values have
some dependence on the size of the graph being split, and scaling might be
necessary. In this expression, < cut > is the average cut value over all possible
splits of the graph. However, Fig. 5 (d) shows that pruning based on min cut
and min cut/ < cut > would lead to a very similar result.

Since the hierarchical clustering dendrogram is too big to visualize, we dis-
play only the top five split levels in Fig. 7. For each split, we have displayed the
cut, the gap, and the eigengap, together with the sizes of the resulting clusters.
The leftmost cluster is always the larger one. For instance, we start by splitting
the set of 113 newsgroups into clusters of sizes 105 and 8; this split is associated
with cut value of 0.04, gap value of 0.01, and eigengap value of 0.00. The small
eigengap implies that the split is highly unstable — in this case, there are more
than two clear clusters in the data, and there are several possible places for the
first split. The small gap implies that the second eigenvector is almost piecewise
constant, which can be confirmed by looking at Fig. 3. Finally, the small cut
implies that the two clusters are well separated in the normalized cut sense.

The leaves of the dendrogram are annotated with cluster number, cluster
size, and an example of a newsgroup in the cluster. Let us now look at the
dendrogram in more detail. On the right-hand side on level 4, we have a split
our data into a cluster of size 6 and another cluster of size 2 with reasonably high
cut and gap values (0.92 and 0.19, respectively). Interestingly, all consecutive
splits have a cut value of 0. The cluster of size 2 (containing the result clusters 4
and 8) consists of two connected points, and splitting this kind of a cluster into
two individual points results in a maximum value for a cut (2) and a minimum
value for the gap (0). The eigengap cannot be determined because we only
have two eigenvalues, but for convenience, we have plotted ’0’ for the eigengap
value in this case. The newsgroups in the cluster of size 6 (containing the
result clusters 2, 10, 6, and 13) happen to form a complete graph. Splitting a
complete graph results in high cut values and zero gap values, as can be seen in
the dendrogram.

Fig. 8 shows the dendrogram for the talk hierarchy computed with the con-
straint that we only perform a split if the cut value is less than 0.4. We have
displayed the entire dendrogram, since it is not very wide or deep this time.
The contents of the smallest leaf clusters are listed in Table 7.
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Figure 5: Cuts and gaps in the talk data.
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Cluster ID | Cluster contents

2 talk.hipcrime.activeagent, talk.forgery, talk.gibberish.bill-palmer,
talk.hipcrime, talk.bizarre.funny, talk.hipcrime.congressagent,

talk.hipcrime.listagent, talk.bizarre.nice.

7 talk.religion.christian.protestant.baptist,
talk.religion.christian.protestant.evangelical,

talk.religion.christian.protestant.

3 talk.religion.christian.protestant.charismatic,
talk.religion.christian.orthodox.russian,
talk.religion.christian.protestant.episcopal,

talk.religion.christian.protestant.adventist.

5 talk.religion.christian. jehovah-witness, talk.religion.christian.anglican,
talk.religion.christian.apostolic, talk.religion.christian.arian,
talk.religion.christian.coptic, talk.religion.christian.orthodox.greek,
talk.religion.christian.mormon, talk.religion.christian.orthodox,

talk.religion.christian.orthodox.misc, talk.religion.christian.nestorian.

21 talk.politics.china, talk.politics.tibet.

15 talk.religion.christian.protestant.pentacostal,
talk.religion.christian.protestant.presbyterian,
talk.religion.christian.quaker,
talk.religion.christian.protestant.mennonite,
talk.religion.christian.protestant.moravian,

talk.religion.christian.protestant.unitarian.

23 talk.religion.christian.science, talk.religion.confucianism,
talk.religion. jewish.conservative, talk.religion. jewish.messianic,
talk.religion.satanism, talk.religion.scientology, talk.rumor,
talk.religion.shinto, talk.underwear.veg,

talk.religion. jewish.reconstructionist, talk.religion. jewish.reform,
talk.religion.rosicrucian, talk.religion.tao, talk.religion.zoroastrian,
talk.religion. jewish.orthodox, talk.religion. jewish.orthodox.chassidic,

talk.religion. jewish.

Table 7: Selected clusters in the pruned talk dendrogram (from right to left).
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Node labels: cut value — gap — eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 8: Dendrogram for the talk data with cut < 0.4. There are 11 splits
that satisfy this condition; all of them are included in the dendrogram.
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Figure 9: Block dendromatrix for the hierarchical clustering of the talk news-
groups.

7.2.1 Dendromatrices

Let us now try out an alternative way for visualizing our spectral hierarchical
clustering results. We have constructed dendromatrices showing the 5 topmost
split levels of the original hierarchical clustering (for the similarity matrix with
zero diagonal) for the 113 talk newsgroups; see Fig. 9 and Fig. 10. The size of
a dendromatrix is (number of newsgroups N) x (number of newsgroups N), in
this case 113 x 113. The red horizontal and vertical lines represent the division
of the data points into clusters. The values on the x- and y-axis are just the
newsgroup indices. The newsgroup names are visible on the right. The top part
of the image shows the cut, the gap, and the eigengap values for each split.

We have plotted the block dendromatrix for the talk data in Fig. 9. Many
of the diagonal blocks in the block dendromatrix are light gray, indicating that
a random walk starting in a cluster is likely to remain there. On the other
hand, most non-diagonal blocks are dark in color, showing the low probability
of moving from a cluster to another.

Alternatively, we can form a unit dendromatriz, an example of which is
shown in Fig. 10. The unit dendromatrix reveals that, while most of the light
gray dots are located in the diagonal blocks, a large part of the diagonal block
entries are black. This implies that there is an intricate and complicated inner
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Figure 10: Unit dendromatrix for the hierarchical clustering of the talk news-
groups.
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structure within each cluster.
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7.2.2 Non-Zero Diagonal in the Similarity Matrix

In the previous experiments, the diagonal of the similarity matrix has been set
to zero. Let us now investigate what happens if we insert the total number of
postings in each newsgroup in the diagonal. Note that we have the total number
of postings in the period between January 2000 and December 2003, but the
crossposting data is only between January 2000 and May 2003. We do not have
the total number of postings available for the following groups:

talk.religion.christian.protestant.baptist,
talk.religion.christian.protestant.charismatic,
talk.religion.christian.protestant.pentacostal,
talk.religion.christian.protestant.presbyterian,
talk.religion.christian.protestant.evangelical,
talk.religion.christian.protestant.mennonite,
talk.religion.christian.orthodox.russian,
talk.religion.christian.protestant.moravian,
talk.religion.christian.protestant.unitarian,
talk.religion.christian.protestant.episcopal,
talk.religion.christian.protestant.adventist,
talk.general.

We remove these 12 groups from the matrix; 101 newsgroups remain. It is
worth noting that the difference between the total number of postings and the
total number of crosspostings is negative for 19 newsgroups; that is, in some
cases there are more crosspostings than original postings. The range of the
differences falls between —3500 and 971,899.

Note also that our similarity matrix is formed of start and reply crosspostings
only; we have left barrens out of considerations. However, the total number of
postings we have inserted on the diagonal of the similarity matrix contains
starts, replies, and barrens. Therefore the clustering results on this similarity
matrix should be taken only as a preliminary example of what kind of results
are expected when the diagonal contains non-zero values.

We re-run spectral hierarchical clustering for the 101 newsgroups. Due to
the large values on the diagonal, the cut values have decreased significantly. If
we prune the dendrogram with the cut threshold of 0.4 as before, we end up
with 95 splits instead of 8 splits. See Fig. 11 for the distribution of the cut and
the gap values. We decide to prune dendrogram with the cut threshold of 0.03.
The resulting dendrogram is shown in Fig. 12 and a listing of the contents of
the selected leaf clusters can be found in Table 8.
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Figure 11: Cut vs. gap in the talk data (similarity matrix with a non-zero

diagonal).

Node labels: cut value — gap - eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Cluster ID | Cluster contents

2 "talk.hipcrime.activeagent", "talk.forgery", "talk.gibberish.bill-palmer",
"talk.hipcrime", "talk.bizarre.funny", "talk.hipcrime.congressagent",

"talk.hipcrime.listagent", "talk.bizarre.nice".

3 "talk.animals.politics".

5 "talk.politics. jordan".

11 "talk.religion.buddhism".

7 "talk.religion.christian. jehovah-witness",

"talk.religion.christian.anglican", "talk.religion.christian.apostolic",
"talk.religion.christian.arian", "talk.religion.christian.coptic",
"talk.religion.christian.orthodox.greek",
"talk.religion.christian.mormon", "talk.religion.christian.orthodox",
"talk.religion.christian.orthodox.misc",

"talk.religion.christian.nestorian".

15 "talk.religion.christian.quaker".

19 "talk.religion. jewish.messianic".

9 "talk.religion.course-miracle", "talk.religion.wiccan".
20 "talk.religion.christian.roman-catholic".

16 "talk.bizzare".

22 "talk.politics.animals".

Table 8: Selected clusters in the talk dendrogram, formed with a similarity
matrix with a non-zero diagonal (from right to left).
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7.3 Stability of Talk Dendrograms

We will evaluate the stability of the dendrogram in Fig. 8 by sampling the set of
113 talk newsgroups. The choose to use sample percentages 0.025, 0.05, 0.10,
and 0.20 (the portion of data points we remove). We sample the data with each
percentage 20 times. We run spectral hierarchical clustering on each sample and
obtain 4 x 20 new dendrograms. The original dendrogram has been formed by
pruning with cut threshold 0.4. We use the same cut threshold for pruning the
dendrograms on the samples. We then compare each sample dendrogram with
the original dendrogram to find out how stable the original dendrogram is. We
repeat this process for each of the three types of sampling introduced in Section
5.1: uniform sampling, big cluster sampling, and substructure sampling.

As described in Section 5.2, there are several different ways to compare hier-
archical clusterings. In absence of sufficient research on the various methods, we
try out several alternatives. We will compare leaf clusterings with Clustering Er-
ror (CE) [8]. We will compare the dendrograms with Subspace Clustering Error
(SCE) [11]. We will form both unweighted and weighted cophenetic matrices.
The weighted cophenetic matrices are computed using dendrogram edge weights
exp(—1.5xcut). We will compare both types of matrices with correlation coeffi-
cient, L1 distance between matrix elements, and L2 distance between matrix ele-
ments. The correlation coefficient does not depend on the scaling /normalization
of the cophenetic matrices. However, the scaling/normalization affects the L1
and the L2 distances. We will run experiments with no scaling, scaling with N,
scaling with log2(IN), L1 normalization, and L2 normalization (see Section 5.2
for details; additional results are presented in [1]).

Taking into account the 3 sampling methods, 5 scaling/normalization op-
tions, 5 ways to compare clusterings, and the possibility of weighting the cophe-
netic matrix, we have a total of 72 different ways to evaluate the stability of a
hierarchical clustering. We cannot present all these results here. Instead, we
present the most interesting subset of the results and comment on the rest of
the results briefly.

Fig. 13 (a) presents the Clustering Error results. Uniform sampling and big
cluster sampling behave in a very similar way — error and the variance of the
error increase as more data points are removed. The CE values in the two graphs
are strikingly close to each other. Note that in the substructure sampling graph,
we gave removed up to 35% of the data points, as the substructure sampling
amounts are rarely exactly those desired. Also in the substructure sampling
graph, the clustering error increases with the percentage of points removed.

See Fig. 13 (b) for the correlation between weighted cophenetic matrices.
The results for correlation between unweighted cophenetic matrices are almost
the same, so we have chosen not to plot those. The correlation does not depend
on the scaling or the normalization of the cophenetic matrices. In uniform
sampling and big cluster sampling, the correlation shows a decreasing trend, but
much weaker than in the case of CE. The substructure sampling graph reveals
that removing about 19% of data points or more in form of substructures has
potentially a significant effect on the structure of the dendrogram.
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Figure 13: Stability of the dendrograms for talk data. The sample percentages
are 0.025, 0.05, 0.10, and 0.20. We have sampled 20 times with each percentage.
That is, the points 1-20 represent the samples with sample percentage 0.025,
the points 21-40 represent the samples with sample percentage 0.05, and so on.
In each subfigure, the topmost plot is for uniform sampling, the middle plot
is for big cluster sampling, and the bottom plot is for substructure sampling.
In the uniform and big cluster sampling plots, we have the sample number on
the x-axis. In the substructure sampling plot, the x-axis represents the sample
percentage.
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Figure 14: Stability of the dendrograms for talk data. L2 distance between
weighted cophenetic matrices. The sample percentages are 0.025, 0.05, 0.10,
and 0.20. We have sampled 20 times with each percentage. That is, the points
1-20 represent the samples with sample percentage 0.025, the points 21-40
represent the samples with sample percentage 0.05, and so on. Top row: Uni-
form sampling. Middle row: Big cluster sampling. Bottom row: Substructure
sampling. Left column: No scaling of cophenetic matrices. Second column:
Cophenetic matrices scaled by N. Third column: Cophenetic matrices with
L1 normalization. Right column: Cophenetic matrices with L2 normalization.
In the uniform and big cluster sampling plots, we have the sample number on
the x-axis. In the substructure sampling plots, the x-axis represents the sample
percentage.
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Let us now consider the L1 and the L2 distances between the cophenetic
matrices. All results for unweighted and weighted cophenetic matrices are very
similar, so we choose to plot only those for weighted matrices. The L1 and the
L2 results do not differ much either. Since the L2 results display slightly clearer
trends with respect to the sample sizes, we choose to plot only L2 results. Let
us now turn to consider the scaling/normalization of the cophenetic matrices.
In Fig. 13, we have plotted the results for unscaled matrices as a baseline. We
have observed that scaling by log(N) does not have much effect, so we will not
display those results. Instead, scaling by N and L1 and L2 type normalizations
result in some beautiful trends in the graphs, so we will display those results in
Fig. 13.

When we look at Fig. 13 we notice that the L1 normalization results in
the clearest upward trend with the sample percentage in all three sampling
schemes. Also L1 normalization and scaling by N result in an upward trend,
but the variance of the error is larger. Judging by the strength of the upward
trend and the size of the variance, not scaling the cohpenetic matrices produces
worst results.

Comparing all of the above results, we can conclude that sampling seems to
have larger effect on the tree structure (cophenetic matrix based comparisons)
than on the leaf clusters (CE based comparisons). In other words, if we sample
several times using a fixed sample percentage p, we are likely to end up with rea-
sonably similar leaf clusters, but these leaf clusters might be located in varying
places in the tree. If we wish to compare leaf clusterings, CE distance with any
type of sampling seems like a good choice. But if we wish to compare the tree
structures, the most reliable methods seem to be correlation between weighted
cophenetic matrices and L2 distance between weighted cophenetic matrices with
L1 normalization, using either uniform or big cluster sampling.
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7.4 Natural Communities in Talk Data

Let us explore the natural communities in the talk by means of the mean
connectivity matrix, described in Section 6. To construct the mean connectivity
matrix, we need to decide upon the number of clusters K and the number of
K-means runs. We would hope that running the K-means algorithm thousands
of times for a wide range of values of K would result in a 'true picture’ of the
data. Unfortunately, our experiments have demonstrated that the structure
of the mean connectivity matrix depends greatly on the parameters we have
chosen.

To illustrate this, we have plotted four mean connectivity matrices in Fig. 7.4.
Fig. 7.4(c) is the result of 100,000 K-means runs for K € {10, 15, 20, 25, 30, 35,40}.
The maximum number of K-means iterations per run was set to 500. Re-running
the experiment with these parameter values results in almost exactly same mean
connectivity matrix; in general, we have observed that thousands or even tens of
thousands of K-means runs are required for a stable result. Even then, varying
the values of K has a some effect on the results, as Fig. 7.4 (d) demonstrates.
If we have only 1000 K-means runs, the effect of K values is very large, as can
be seen in Figs. 7.4 (a) and 7.4 (b).

Let us now look at the mean connectivity matrix of Fig. 7.4 (c¢) in more
detail. The matrix clearly contains several stable clusters (white blocks on
the diagonal). The contents of seven of these white blocks in the middle of
the matrix are listed in Table 7.4. Interestingly, only some of these groups form
clusters in our spectral hierarchical dendrogram (see Fig. 8 and Table 7). In four
of the seven groups below only two or three newsgroups are clustered together
in the dendrogram.

An interesting avenue to explore in the future is to see if the mean connectiv-
ity matrices are able to reveal information on the hierarchical clustering of the
newsgroups; including both small and large values of K in the experiments could
result in hierarchical structure in the mean connectivity matrix. These results
could then be compared to the dendrograms produced by divisive hierarchical
clusterings.
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9 100 110

(a) 1000 K-means runs for K = (b) 1000 K-means runs for K €
30. {10, 50}.

80 9 100 110 100 110

(c) 100,000 K-means runs for K € (d) 100,000 K-means runs for K €
{10, 15, 20, 25, 30, 35,40} {6,13,19, 26, 33,48,55}

Figure 15: Mean connectivity matrices for the talk newsgroups. The matrices
show the average result of several K-means clusterings. The entry (i, j) repre-
sents the fraction of the clusterings in which the ith and the jth newsgroup are
in the same cluster. White depicts 1’ and black depicts ’0’. The ordering of
the rows and the columns is the same in all four matrices.
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talk.politics.usa, talk.abortion, talk.environment, talk.euthanasia

talk.philosophy, talk.religion.christian, talk.philosophy.misc, talk.religion,

talk.meow

talk.politics.marxism, talk.politics.natl-socialism, talk.politics.reform,

talk.politics.rent-control

talk.religion.christian.nestorian, talk.religion.christian. jehovah-witness,

talk.religion.christian.coptic, talk.religion.christian.orthodox.greek

talk.politics.clinton, talk.politics.internet, talk.politics.peace,

talk.politics.extremism

talk.religion.christian.science, talk.religion.confucianism,
talk.religion. jewish.conservative, talk.religion. jewish.messianic,

talk.religion. jewish.orthodox

talk.hipcrime.activeagent, talk.hipcrime.congressagent, talk.forgery,

talk.gibberish.bill-palmer, talk.hipcrime, talk.hipcrime.listagent

Table 9: Some natural communities in the talk data. Newsgroup clusters
corresponding to the seven middle blocks of the mean connectivity matrix in
Fig. 7.4 (a).
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8 Spectral Hierarchical Clustering for Other Data
Sets

Table 8 contains a summary of the data sets for which we have computed hi-
erarchical clusterings. The similarity matrices are formed of starts and replies
(no barrens) with zeros on the diagonal. For each data set, we have clustered
only the biggest connected component. We have computed the spectral hierar-
chical clustering and decided upon the pruning threshold based on the cut-gap
graph. We have displayed the cut-gap graph and the dendrogram, and listed
the contents of the small and medium-sized leaf clusters. We have evaluated the
stability of the dendrograms in several different ways with the exception of the
three biggest data sets. We have not presented all of our stability results here;
for the rest of the results, refer to [1].

Hierarchies Sizes of con- | Cut- Dendrogram | Clusters | Stability
nected com- | gap
ponents graph
95, 24 Fig. 16 | Fig. 17 Table 11 | Fig. 18,
Fig. 19
talk 113 Fig. 5 Fig. 8 Table 7 Fig. 13,
Fig. 14
alt.religion, | 320 Fig. 20 | Fig. 21 Table 12 | Fig. 22,
soc.religion, Fig. 23
talk.religion
uk 522 Fig. 24 | Fig. 25 Table 13 | Fig. 26,
Fig. 27
aus, es 536 Fig. 28 | Fig. 29 Table 14 | Fig. 30,
Fig. 31
soc, talk 540, 2° Fig. 32 | Fig. 33 Table 15 | Fig. 34,
Fig. 35
uk, us 620 Fig. 36 | Fig. 37 Table 16 | Fig. 38,
Fig. 39
rec 1138 Fig. 40 | Fig. 41 Table 17 | —
soc, comp, 2114, 2,2, 26 Fig. 42 | Fig. 43 Table 18 | —
sfnet
microsoft 3010, 57 Fig. 44 | Fig. 45 Table 19 | —

Table 10: Data sets with hierarchical clusterings.

4

5soc.frogbutt, talk.frogbutt

6

us.sport.football.pro, us.sport.football.misc

comp.patents, soc.history.property and sfnet.lists.lpf, sfnet.lists.nysersnmp

and comp.frogbutt, soc.frogbutt
7microsoft.public.br.asp, microsoft.public.br.dotnet,
microsoft.public.br.dotnet.framework, microsoft.public.br.dotnet.framework.adonet,
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All cut-gap graphs reveal an interesting phenomenon: some of the poins
seem to lie on a line. In fact, there are two lines, 'gap = cut-1’ and 'gap =
2(cut-1.5)". A close inspection of the points on the lines reveals that the points
on the line 'gap = 2(cut-1.5)’ correspond to random splits of graphs with three
nodes. At (cut = 1.5, gap = 0), we have a complete graph of size three (triangle)
with equal edge weights. At (cut = 2, gap = 1), one of the edges of the triangle
has weight 0. And in between those points along the line, we have triangles of
various edge weights.

The points on the line ’gap = cut-1’ correspond to random splits of complete
graphs with 3, 4, or 5 nodes and various edge weights. There is sometimes also
a second line ’gap = cut-1’ formed of minimum cut splits, instead of random
splits. Those seem to be splits on star-shaped graphs.

microsoft.public.br.dotnet.framework.aspnet
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Figure 16: Cut vs. gap in the us data.

Node labels: cut value — gap - eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 17: Dendrogram for the us data with cut < 0.5. The low cut threshold
have been chosen for the visualization purposes.

42



Cluster ID

Cluster contents

4

us.wanted, us.wanted.misc, us.wanted.d.

14 us.sc.florence.personals, us.sc.lancaster.personals.

38 us.marketplace.computers.hardware, us.marketplace.computers.software.

20 us.forsale, us.forsale.computers, us.forsale.d, us.forsale.misc.

6 us.sc.charleston.forsale, us.sc.chester.forsale, us.sc.columbia.forsale,
us.sc.florence.forsale, us.sc.gsp.forsale, us.sc.lancaster.forsale,
us.sc.rockhill.forsale.

10 us.sc.chester.business, us.sc.charleston.personals,
us.sc.rockhill.personals, us.sc.charleston.dining, us.sc.charleston.talk,
us.sc.chester.talk, us.sc.columbia.talk.

17 us.sc.gsp.personals, us.sport.football.college, us.sc.gsp.politics,
us.sc.gsp.wanted, us.sc.gsp.talk, us.sc.lancaster.dining.

2 us.sc.florence.employment, us.sc.lancaster.employment,
us.sc.rockhill.employment, us.sc.charleston.business,
us.sc.florence.business, us.sc.gsp.business, us.sc.lancaster.business,
us.sc.rockhill.business.

3 us. jobs, us.jobs.contract, us.jobs.misc, us. jobs.offered,
us. jobs.offered.contract, us.jobs.resumes, us.sc.columbia.employment,
us.jobs.resume, us.resumes. jobs.

13 us.politics.abortion, us.sc.charleston.politics, us.issues.abortion.

) us.politics.bob-dole, us.msis.general, us.politics.phil-gramm,
us.rec.scouting, us.sc.charleston.

9 us.sport.baseball.college, us.sport.baseball.

Table 11: Selected clusters in the us dendrogram (from right to left).
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(a) Clustering Error.

Figure 18: Stability of the dendrograms for us data. The sample percentages
are 0.025, 0.05, 0.10, and 0.20. We have sampled 20 times with each percentage.
That is, the points 1-20 represent the samples with sample percentage 0.025,
the points 21-40 represent the samples with sample percentage 0.05, and so on.
In each subfigure, the topmost plot is for uniform sampling, the middle plot
is for big cluster sampling, and the bottom plot is for substructure sampling.
In the uniform and big cluster sampling plots, we have the sample number on
the x-axis. In the substructure sampling plot, the x-axis represents the sample

percentage.
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Figure 19: Stability of the dendrograms for us data. L2 distance between
weighted cophenetic matrices. The sample percentages are 0.025, 0.05, 0.10,
and 0.20. We have sampled 20 times with each percentage. That is, the points
1-20 represent the samples with sample percentage 0.025, the points 21-40
represent the samples with sample percentage 0.05, and so on. Top row: Uni-
form sampling. Middle row: Big cluster sampling. Bottom row: Substructure
sampling. Left column: No scaling of cophenetic matrices. Second column:
Cophenetic matrices scaled by N. Third column: Cophenetic matrices with
L1 normalization. Right column: Cophenetic matrices with L2 normalization.
In the uniform and big cluster sampling plots, we have the sample number on
the x-axis. In the substructure sampling plots, the x-axis represents the sample
percentage.
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Figure 20: Cuts and gaps in the alt.religion, soc.religion,
talk.religion data.

Node labels: cut value - gap — eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 21: Dendrogram for the alt.religion, soc.religion,
talk.religion data with cut < 0.39.
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Cluster ID

Cluster contents

2

alt.religion.buddhism, alt.religion.buddhism.nichiren,

alt.religion.buddhism.theravada, alt.religion.buddhism.tibetan,

talk.religion.buddhism, alt.religion.buddhism.nkt,

alt

alt.
alt.
alt.

.religion.
religion.
religion.

religion.

buddhism.nichiren.shoshu,
buddhism.nichiren.shoshu.news, alt.religion.buddhism.ris-med
nichiren.shoshu.news, alt.religion.nichiren,

nichiren.shoshu.

alt.
alt.

religion.

religion.

pagan.evil, alt.religion.paulo-dimas.deveras,

pagan.nazi, alt.religion.pagan.texas.

14

alt.

religion.

bahai, talk.religion.bahai, soc.religion.bahai.

13

socC.

religion.

shamanism.

32

alt.
alt.

religion.

religion.

orisha, alt.religion.sabaean, alt.religion.voodoo

scott-mcdowell

21

alt.
alt.
alt.
alt.

religion.
religion.
religion.

religion.

paulo-dimas.study, alt.religion.paulo-dimas.temples,
paulo-dimas.worship, alt.religion.paulo-dimas.misc,
paulo-dimas.newcomers, alt.religion.paulo-dimas,

pcboard.

alt.
alt.

alt

religion.
religion.

.religion.

kibology, alt.religion.kibology.orthodox,
kibology.second-coming, alt.religion.louis-nick,

kibology.version-where-you-can-xpost-threads—-about-how--

much-you-hate-jesus, alt.religion.liet.santoy

alt.religion.kibology.is.dead.dead.dead, alt.religion.kibology.the-not--

funny-version-where-lee-can-xpost-not-funny-stupid-threads,

alt.religion.jonism, alt.religion.monica, alt.religion.kibo,

alt.religion. johovahs, soc.religion.kibology.

Table 12:

Selected

clusters in the alt.religion, soc.religion,

talk.religion dendrogram (from right to left).
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Figure 22: Stability of the dendrograms for religion data. The sample per-
centages are 0.025, 0.05, 0.10, and 0.20. We have sampled 20 times with each
percentage. That is, the points 1-20 represent the samples with sample per-
centage 0.025, the points 21-40 represent the samples with sample percentage
0.05, and so on. In each subfigure, the topmost plot is for uniform sampling, the
middle plot is for big cluster sampling, and the bottom plot is for substructure
sampling. In the uniform and big cluster sampling plots, we have the sample
number on the x-axis. In the substructure sampling plot, the x-axis represents
the sample percentage.
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Figure 23: Stability of the dendrograms for religion data. L2 distance be-
tween weighted cophenetic matrices. The sample percentages are 0.025, 0.05,
0.10, and 0.20. We have sampled 20 times with each percentage. That is, the
points 1-20 represent the samples with sample percentage 0.025, the points 21—
40 represent the samples with sample percentage 0.05, and so on. Top row:
Uniform sampling. Middle row: Big cluster sampling. Bottom row: Substruc-
ture sampling. Left column: No scaling of cophenetic matrices. Second column:
Cophenetic matrices scaled by N. Third column: Cophenetic matrices with
L1 normalization. Right column: Cophenetic matrices with L2 normalization.
In the uniform and big cluster sampling plots, we have the sample number on
the x-axis. In the substructure sampling plots, the x-axis represents the sample
percentage.
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(a) All 521 (min cut)-gap pairs.

(b) All 521 (min cut)-gap pairs
(blue stars) with random cut-gap
pairs (red circles).

Figure 24: Cut vs. gap in the uk data.

Node labels: cut value — gap - eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 25: Dendrogram for the uk data with cut < 0.25. The low cut threshold
have been chosen for the visualization purposes.
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Cluster ID

Cluster contents

4

uk.sport.
uk.sport.

football.clubs.rangers, uk.sport.football.clubs.celtic,
football.scottish.

uk

.games.
uk.
uk.
uk.
uk.
uk.
uk.

sport.
sport.
sport.
sport.
.football.clubs.west-ham, uk.sport.football.clubs.bradford-city,
.football.clubs.wimbledon.

sport

sport

fantasy.football, uk.sport.football, uk.sport.football.american,
football.clubs.leeds-united, uk.sport.football.clubs.liverpool,
football.clubs.man-city, uk.sport,

football.clubs.sunderland, uk.sport.football.clubs.southampton,

football.clubs.newcastle-united,

uk
uk
uk

.games.
.games.

.games.

video.dreamcast, uk.games.video.misc, uk.games.video.playstation,
video.playstation.forsale, uk.games.video.gameboy,

video.gamecube, uk.games.video.xbox, uk.games.computer.misc.

uk

.media.

tv.friends, uk.media.tv.us-sitcoms.

20

uk
uk
uk
uk
uk
uk

.games.
.games.
.games.
.games.
.games.

.games.

trading-cards.misc, uk.games.computer.multiplayer,
computer.quake, uk.games.computer.quake2,

computer.quake3, uk.games.misc, uk.games.roleplay,
trading-cards.marketplace, uk.games, uk.games.board,

trading-card, uk.games.video, uk.games.computer, uk.games.fantasy,

computer.counterstrike.

19

uk.

org. bcs.announce.

42

uk
uk
uk

.media.
.media.

.media.

dvd, uk.media.home-cinema, uk.rec.audio, uk.media.films,
films.carry-on, uk.media.mags.net, uk.media.mags.uk,

dvd.cracked.

28

uk
uk
uk

.media.

.media.

tv.cable, uk.tech.digital-tv, uk.tech.broadcast, uk.media.radio,

tv.sky, uk.tech.tv.sky, uk.1lifts, uk.tech.digital-tv.crypt,

.tech.tv.video.pvr.

Table 13: Selected clusters in the uk dendrogram (from right to left).
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Uniform sampling.
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(a) Clustering Error.

Figure 26: Stability of the dendrograms

In the uniform and big cluster sampling
the x-axis. In the substructure sampling
percentage.
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(b) Correlation between weighted
cophenetic matrices.

for uk data. The sample percentages
are 0.025, 0.05, 0.10, and 0.20. We have sampled 20 times with each percentage.
That is, the points 1-20 represent the samples with sample percentage 0.025,
the points 21-40 represent the samples with sample percentage 0.05, and so on.
In each subfigure, the topmost plot is for uniform sampling, the middle plot
is for big cluster sampling, and the bottom plot is for substructure sampling.
plots, we have the sample number on
plot, the x-axis represents the sample
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Figure 27: Stability of the dendrograms for uk data. L2 distance between
weighted cophenetic matrices. The sample percentages are 0.025, 0.05, 0.10,
and 0.20. We have sampled 20 times with each percentage. That is, the points
1-20 represent the samples with sample percentage 0.025, the points 21-40
represent the samples with sample percentage 0.05, and so on. Top row: Uni-
form sampling. Middle row: Big cluster sampling. Bottom row: Substructure
sampling. Left column: No scaling of cophenetic matrices. Second column:
Cophenetic matrices scaled by N. Third column: Cophenetic matrices with
L1 normalization. Right column: Cophenetic matrices with L2 normalization.
In the uniform and big cluster sampling plots, we have the sample number on
the x-axis. In the substructure sampling plots, the x-axis represents the sample
percentage.

93



a 535 (min cut)-gap pairs. 535 (min cut)-gap pairs
(a) AIL 535 ( )-8 (b) All ( )-8
(blue stars) with random cut-gap
pairs (red circles).

Figure 28: Cut vs. gap in the aus, es data.

Node labels: cut value - gap - eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 29: Dendrogram for the aus, es data with cut < 0.4. The low cut
threshold have been chosen for the visualization purposes.
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Cluster ID

Cluster contents

29

es.

es

es

es

rec.musica, es.rec.musica.alternativas, es.rec.musica.blues,

.rec.musica.grupos.beatles, es.rec.musica.grupos.misc,
.rec.musica.misc, es.rec.musica.techno, es.rec.musica.clasica,

.rec.musica. jazz, es.rec.musica.partituras.

13

es

es

es

.rec.radio.amateur, es.rec.viajes, es.rec.pasatiempos, es.rec.radio,
.rec.radio.misc, es.rec.radio.ondacorta, es.rec.tv.concursos,

.rec.tv.misc, es.rec.tv.series, es.rec.trenes, es.rec.naturismo.

52

es

es

es

.rec.mascotas.exoticas, es.rec.misc, es.rec.motor.4x4, es.rec.modelismo,
.rec.mascotas, es.rec.mascotas.gatos, es.rec.mascotas.misc,

.rec.mascotas.peces, es.rec.mascotas.perros, es.rec. labores.

21

es

es

es

es

es

es

.rec.juegos, es.rec.juegos.comp.arcade, es.rec. juegos.comp.aventuras,
.rec.juegos.comp.misc, es.rec.juegos.comp.simuladores,
.rec.juegos.estrategia, es.rec.manga, es.rec. juegos.misc,

.rec.juegos.rol, es.rec.juegos.ajedrez,
.rec.juegos.comp.simuladores.misc, es.rec. juegos.comp.simuladores.vuelo,

.rec.juegos.magic, es.rec. juegos.pinball, es.eunet.pdsoft.

Table 14: Selected clusters in the aus,es dendrogram (from right to left).
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(a) Clustering Error. (b) Correlation between weighted
cophenetic matrices.

Figure 30: Stability of the dendrograms for aus, es data. The sample per-
centages are 0.025, 0.05, 0.10, and 0.20. We have sampled 20 times with each
percentage. That is, the points 1-20 represent the samples with sample per-
centage 0.025, the points 21-40 represent the samples with sample percentage
0.05, and so on. In each subfigure, the topmost plot is for uniform sampling,
the middle plot is for big cluster sampling, and the bottom plot is for sub-
structure sampling. In the uniform and big cluster sampling plots, we have the
sample number on the x-axis. In the substructure sampling plot, the x-axis rep-
resents the sample percentage. In substructure sampling, we have exceptionally
excluded two clusters, namely clusters 1 and 2. In big cluster sampling, we
have first removed points from cluster 1 only (10 first samples for each sam-
ple percentage) and then from cluster 2 only (10 last samples for each sample
percentage).
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Figure 31: Stability of the dendrograms for aus, es data. L2 distance between
weighted cophenetic matrices. The sample percentages are 0.025, 0.05, 0.10, and
0.20. We have sampled 20 times with each percentage. That is, the points 1-20
represent the samples with sample percentage 0.025, the points 21-40 represent
the samples with sample percentage 0.05, and so on. Top row: Uniform sam-
pling. Middle row: Big cluster sampling. Bottom row: Substructure sampling.
Left column: No scaling of cophenetic matrices. Second column: Cophenetic
matrices scaled by N. Third column: Cophenetic matrices with L1 normaliza-
tion. Right column: Cophenetic matrices with L2 normalization. In the uniform
and big cluster sampling plots, we have the sample number on the x-axis. In
the substructure sampling plots, the x-axis represents the sample percentage.
In substructure sampling, we have exceptionally excluded two clusters, namely
clusters 1 and 2. In big cluster sampling, we have first removed points from clus-
ter 1 only (10 first samples for each sample percentage) and then from cluster
2 only (10 last samples for each sample percentage).
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a min cut)-gap pairs. 5 min cut)-ga airs

(a) All 539 (min cut)-gap pai (b) All 539 (mi )-gap pai
(blue stars) with random cut-gap
pairs (red circles).

Figure 32: Cut vs. gap in the soc, talk data.

Node labels: cut value — gap - eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 33: Dendrogram for the soc, talk data with cut < 0.33. The low cut
threshold have been chosen for the visualization purposes.
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Cluster ID

Cluster contents

2

talk.hipcrime.activeagent, talk.forgery, talk.gibberish.bill-palmer,
soc.hipcrime, talk.hipcrime, talk.bizarre.funny,

talk.hipcrime.congressagent, talk.hipcrime.listagent, talk.bizarre.nice.

talk.religion.christian.protestant.baptist,
talk.religion.christian.protestant.charismatic,
talk.religion.christian.protestant.evangelical,
talk.religion.christian.protestant,
talk.religion.christian.protestant.episcopal,

talk.religion.christian.protestant.adventist.

soc.genealogy.surnames.britain, soc.genealogy.surnames.canada,
soc.genealogy.surnames.global, soc.genealogy.surnames.misc,
soc.genealogy.surnames.usa, soc.genealogy.surnames.german,

soc.genealogy.surnames.ireland.

soc.support.depression.crisis, soc.support.abuse.sexual,
soc.support.depression.family, soc.support.depression.manic,
soc.support.depression.seasonal, soc.support.depression.treatment,
soc.support.depression.misc, soc.support.depression,

soc.support.depression.crises, soc.support.youth.

34

talk.religion.christian.orthodox.greek, talk.religion.christian.orthodox,
talk.religion.christian. jehovah-witness,
talk.religion.christian.apostolic, talk.religion.christian.arian,
talk.religion.christian.coptic, talk.religion.christian.mormon,

talk.religion.christian.orthodox.misc, talk.religion.christian.nestorian.

41

soc.sexuality.spanking, soc.subculture.bondage-bdsm.femdom,
soc.subculture.bondage-bdsm, soc.sexuality.perversions.sodomy,
soc.sexuality.shrimping, soc.subculture.bondage-bdsmuw,
soc.subculture.homosexual, soc.support.youth.gay-lesbian-bi,

soc.subculture, soc.rights.alien.

76

soc.bi, soc.motss, soc.support.transgendered.

96

soc.answers, soc.culture. jewish.parenting, soc.feminism,
soc.support.loneliness, soc.history.war.us-civil-war, soc.org.freemasonry,
soc.support.pregnancy.loss, soc.culture.jewish.moderated,

soc.culture. jewish.holocaust.

52

soc.college, soc.misc, soc.college.admissions, soc.college.financial-aid,
soc.college.grad, soc.college.gradinfo, soc.college.org.aiesec,
soc.college.teaching-asst, soc.college.graduation, soc.college.org,

soc.cultural.israel.

oY

Table 15: Selected clusters in the soc, talk dendrogram (from right to left).
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(a) Clustering Error.

Figure 34: Stability of the dendrograms for soc, talk data. The sample per-
centages are 0.025, 0.05, 0.10, and 0.20. We have sampled 20 times with each
percentage. That is, the points 1-20 represent the samples with sample per-
centage 0.025, the points 21-40 represent the samples with sample percentage
0.05, and so on. In each subfigure, the topmost plot is for uniform sampling, the
middle plot is for big cluster sampling, and the bottom plot is for substructure
sampling. In the uniform and big cluster sampling plots, we have the sample
number on the x-axis. In the substructure sampling plot, the x-axis represents

the sample percentage.
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Figure 35: Stability of the dendrograms for soc, talk data. L2 distance be-
tween weighted cophenetic matrices. The sample percentages are 0.025, 0.05,
0.10, and 0.20. We have sampled 20 times with each percentage. That is, the
points 1-20 represent the samples with sample percentage 0.025, the points 21—
40 represent the samples with sample percentage 0.05, and so on. Top row:
Uniform sampling. Middle row: Big cluster sampling. Bottom row: Substruc-
ture sampling. Left column: No scaling of cophenetic matrices. Second column:
Cophenetic matrices scaled by N. Third column: Cophenetic matrices with
L1 normalization. Right column: Cophenetic matrices with L2 normalization.
In the uniform and big cluster sampling plots, we have the sample number on
the x-axis. In the substructure sampling plots, the x-axis represents the sample
percentage.
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(a) All 619 (min cut)-gap pairs. (b) All 619 (min cut)-gap pairs
(blue stars) with random cut-gap
pairs (red circles).

Figure 36: Cut vs. gap in the uk, us data.

Node labels: cut value - gap — eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 37: Dendrogram for the uk, us data with cut < 0.25. The low cut
threshold have been chosen for the visualization purposes.
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Cluster ID

Cluster contents

4

uk.
uk.

sport.

sport.

football.clubs.rangers, uk.sport.football.clubs.celtic,
football.scottish.

uk

us.
uk.
uk.
uk.

.games.
uk.
uk.
uk.

sport
sport
sport
sport
sport
sport

sport

fantasy.football, uk.sport.football, uk.sport.football.american,

.football.clubs.leeds-united, uk.sport.football.clubs.liverpool,
.football.clubs.man-city, us.sport.football.misc, uk.sport,
.football.clubs.sunderland, uk.sport.football.clubs.southampton,
.football.pro, us.sport.football,
.football.clubs.newcastle-united,

.football.clubs.west-ham, uk.sport.football.clubs.bradford-city,
.football.clubs.wimbledon.

us

.wanted, us.wanted.misc, us.wanted.d.

uk
uk
uk

.games.
.games.

.games.

video.dreamcast, uk.games.video.misc, uk.games.video.playstation,
video.playstation.forsale, uk.games.video.gameboy,

video.gamecube, uk.games.video.xbox, uk.games.computer.misc.

uk

.media.

tv.friends, uk.media.tv.us-sitcoms.

35

uk
uk
uk
uk
uk
uk

.games.
.games.
.games.
.games.
.games.

.games.

trading-cards.misc, uk.games.computer.multiplayer,
computer.quake, uk.games.computer.quake2,

computer.quake3, uk.games.misc, uk.games.roleplay,
trading-cards.marketplace, uk.games, uk.games.board,

trading-card, uk.games.video, uk.games.computer, uk.games.fantasy,

computer.counterstrike.

34

uk.

org. bcs.announce.

68

uk
uk
uk

.media.
.media.

.media.

dvd, uk.media.home-cinema, uk.rec.audio, uk.media.films,
films.carry-on, uk.media.mags.net, uk.media.mags.uk,

dvd.cracked.

46

uk
uk
uk

.media.

.media.

tv.cable, uk.tech.digital-tv, uk.tech.broadcast, uk.media.radio,
tv.sky, uk.tech.tv.sky, uk.lifts, uk.tech.digital-tv.crypt,

.tech.tv.video.pvr.

Table 16: Selected clusters in the uk, us dendrogram (from right to left).
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Uniform sampling.

Uniform sampling.

1
20 40
Big cluster sampling.
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Figure 38: Stability of the dendrograms for uk, us data.
centages are 0.025, 0.05, 0.10, and 0.20. We have sampled 20 times with each
percentage. That is, the points 1-20 represent the samples with sample per-
centage 0.025, the points 21-40 represent the samples with sample percentage
0.05, and so on. In each subfigure, the topmost plot is for uniform sampling, the
middle plot is for big cluster sampling, and the bottom plot is for substructure
sampling. In the uniform and big cluster sampling plots, we have the sample
number on the x-axis. In the substructure sampling plot, the x-axis represents

the sample percentage.
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Figure 39: Stability of the dendrograms for uk, us data. L2 distance between
weighted cophenetic matrices. The sample percentages are 0.025, 0.05, 0.10, and
0.20. We have sampled 20 times with each percentage. That is, the points 1-20
represent the samples with sample percentage 0.025, the points 21-40 represent
the samples with sample percentage 0.05, and so on. Top row: Uniform sam-
pling. Middle row: Big cluster sampling. Bottom row: Substructure sampling.
Left column: No scaling of cophenetic matrices. Second column: Cophenetic
matrices scaled by N. Third column: Cophenetic matrices with L1 normaliza-
tion. Right column: Cophenetic matrices with L2 normalization. In the uniform
and big cluster sampling plots, we have the sample number on the x-axis. In
the substructure sampling plots, the x-axis represents the sample percentage.
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(a) Sample of (min cut)-gap pairs.

12

10

-4

Figure 41: Dendrogram for the rec data with cut < 0.08.
have been chosen for the visualization purposes.

(b) Sample of (min cut)-gap pairs
(blue stars) with random cut-gap
pairs (red circles).

Figure 40: Cut vs. gap in the rec data.

Node labels: cut value — gap - eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Cluster ID

Cluster

contents

3

rec.

rec.

rec.

rec.

rec.

games

games .
games .
games .

games.

.computer
computer
computer
computer

computer

.ultima-dragons, rec.games.computer.ultima.dragons,
.ultima.series, rec.games.computer.stars,
.ultima.online, rec.games.computer.xpilot,

.ultima, rec.games.computer.ultima-online,

.ultima.misc, rec.games.cyber.

rec.

rec.

rec.

rec.

rec

aquaria.freshwater.cichlids, rec.aquaria.freshwater.goldfish,

aquaria.freshwater.misc, rec.aquaria.freshwater.plants,

aquaria.marine.misc, rec.aquaria.marine.reefs, rec.aquaria.marketplace,

aquaria.misc, rec.aquaria.tech, rec.aquaria, rec.aquaria.freshwater,

.aquaria.marine, rec.aquaria.freshwater.fish.

17

rec.

rec.

rec.

games

games.

games.

.chess.analysis, rec.games.chess.computer, rec.games.chess.misc,

chess.play-by-email, rec.games.chess, rec.games.chess.politics,

chinese-chess, rec.games.go, rec.games.chess.computers.

55

rec.

rec.

games.

games.

video.arcade, rec.games.video, rec.games.video.arcade.collecting,

video.arcade.marketplace, rec.games.computer, rec.games.pinball.

30

rec.

rec.

rec.

rec.

rec.

rec.

rec.

rec.

games.
games.
games.
games.
games.
games.
games.

games .

video.cd-

video.classic, rec.games.video.misc, rec.games.video.sony,
video.marketplace, rec.games.video.nintendo,

video.sega, rec.arts.sf.starwars.vs.startrek,
video.advocacy, rec.games.computer.everquest,
video.nintendo.n64, rec.games.video.sony-playstation,

video.atari, rec.games.video.3do, rec.games.vectrex,

i, rec.games.video.cd32, rec.games.video.colecovision,

video.intellivision, rec.games.xtank.play.

7

rec

rec.

rec.

rec.

rec

rec.

.gambling.
gambling.
gambling.
gambling.
.gambling.

small-

blackjack, rec.gambling.craps, rec.gambling.lottery,
misc, rec.gambling.other-games, rec.gambling.poker,
racing, rec.gambling.sports, rec.gambling,

blackjack.moderated, rec.gambling.games, rec.gambling.lotto,

stakes, rec.sport.cricket-racing, rec.travel.australia,

forsale.computers.pc-clone.

Table 17: Selected clusters in the rec dendrogram (from right to left).
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Figure 42: Cut vs. gap in the comp, sfnet, soc data.

Node labels: cut value — gap - eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 43: Dendrogram for the comp, sfnet, soc data with cut < 0.1. The
low cut threshold have been chosen for the visualization purposes.
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Cluster ID | Cluster contents

7 soc.support.depression.crisis, soc.support.abuse.sexual,
soc.support.depression.family, soc.support.depression.manic,
soc.support.depression.seasonal, soc.support.depression.treatment,
soc.support.depression.misc, soc.support.depression,

soc.support.depression.crises, soc.support.youth.

12 soc.genealogy.surnames.britain, soc.genealogy.surnames.canada,
soc.genealogy.surnames.global, soc.genealogy.surnames.misc,
soc.genealogy.surnames.usa, soc.genealogy.surnames.german,

soc.genealogy.surnames.ireland.

5 comp.groupware.lotus-notes.apps, comp.groupware.lotus-notes.programmer,
comp.groupware.groupwise, comp.groupware.lotus-notes,
comp.groupware.lotus-notes.admin, comp.groupware.lotus-notes.misc,

comp.groupware.lotus-notes.programm, comp.home.

49 comp.SysS.acorn.games, Comp.sSysS.acorn.announce, comp.sys.acorn.extra-cpu,
comp.sys.acorn.advocacy, comp.sys.acorn.hardware,
comp.sys.acorn.networking, comp.sys.acorn.programmer, comp.sys.acorn.apps,

comp.sys.acorn.misc, comp.sys.acorn.tech, comp.sys.alliant, comp.sys.acorn.

Table 18: Selected clusters in the comp, sfnet, soc dendrogram (from right
to left).

(a) Sample of (min cut)-gap pairs. (b) Sample of (min cut)-gap pairs
(blue stars) with random cut-gap
pairs (red circles).

Figure 44: Cut vs. gap in the microsoft data.
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Node labels: cut value — gap - eigengap (cluster 1 size, cluster 2 size).
Leaf labels: cluster number (cluster size). example of a cluster data point.
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Figure 45: Dendrogram for the microsoft data with cut < 0.15. The low cut

threshold have been chosen for the visualization purposes.
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Cluster ID

Cluster

contents

3

microsoft
microsoft
microsoft
microsoft
microsoft
microsoft
microsoft

microsoft

.public.
.public.
.public.
.public.
.public.
.public.
.public.
.public.

inetexplorer.ie4.outlookexpress.stationery,
windows.inetexplorer.ieb.outlookexpress.stationery,
windows.inetexplorer.ieb5.outlookexpress.stationery,
se.design.gallery, microsoft.public.br.design.gallery
espanol.design.gallery,

it.design.gallery, microsoft.public.it.dotnet.beta.uddi,
windows.inetexplorer.ie6_outlookexpress.stationery,
it.dotnet.uddi.

42

microsoft
microsoft
microsoft
microsoft
microsoft

microsoft

.public
.public
.public
.public
.public
.public

.net.csharp.general, microsoft.public.net.general,
.net.framework.aspplus.general,
.net.framework.sdk.setup,
.net.framework.classes.general,
.net.framework.runtime.general,

.net.framework.sdk.general

135

microsoft
microsoft
microsoft
microsoft
microsoft
microsoft

microsoft

.public.
.public.
.public.
.public.
.public.
.public.
.public.

sms.admin, microsoft.public.sms.installer,
sms.inventory, microsoft.public.sms.misc,
sms.netmon, microsoft.public.sms.rcdiags,
sms.setup, microsoft.public.sms.sharedapps,
sms.swdist, microsoft.public.sms.sitecomm,
sms.tools, microsoft.public.sms,

sms.swmeter

180

microsoft

.public.

smartphone.developer, microsoft.public.smartphone

235

microsoft

.public.

it.pocketpc.marketplace

288

microsoft
microsoft
microsoft
microsoft
microsoft
microsoft
microsoft

microsoft

.public.
.public.
.public.
.public.
.public.
.public.
.public.
.public.

isa.beta, microsoft.public.isa

isa.enterprise, microsoft.public.isaserver,
de.german.isaserver, microsoft.public. jp.isa,
isa.edu, microsoft.public.isa.sdk-dev
isa.configuration, microsoft.public.cn.isaserver,
isa.publishing, microsoft.public.isa.clients,
isa.vpn, microsoft.public.isa.wishlist,

de.german.windows.terminaldienste.

Table 19: Selected clusters in the microsoft dendrogram (from right to left).
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9 Conclusion

We have explored the community structure of Usenet newsgroups using a part
of the Microsoft Netscan data. Our data set consists of crossposting informa-
tion for 89,687 newsgroups over a period of 3.4 years, with a total number of
crosspostings exceeding 700 million. Because of the large size of the data set, we
have not been able to analyze the whole data at once. Instead, we have taken a
closer look at ten subsets of the data, namely the us; talk; religion; uk; aus,
es; soc, talk; uk, us; rec; soc, comp, sfnet; and microsoft hierarchies.

We have presented different approaches to explore the community structure
of the newsgroup data: spectral clustering, spectral hierarchical clustering, and
consensus clustering with mean connectivity matrices. Further, we have dis-
cussed in detail various ways to evaluate the quality of spectral clustering and
identified 72 different approaches. We have applied all these data processing
methods to the talk data and analyzed the results comprehensively. Since the
topic of spectral hierarchical clusterings is most novel and most promising in
our setting, we have focused solely on spectral hierarchical clusterings with the
remaining 9 data sets.

Spectral hierarchical clustering has been presented implicitly in [12] and
addressed explicitly but briefly in [3]. Flat spectral clustering and consensus
clustering are well known data analysis methods [14, 10, 12, 18, 19, 17, 9].
Evaluating the quality of a hierarchical clustering is a new topic; a related topic
of comparing hierarchical clusterings has been addressed in [5].

Thus, the main contributions of this report are a) studying the topic of spec-
tral hierarchical clustering in detail, including novel aspects such as pruning the
dendrogram; b) presenting the first study on evaluating the quality of spectral
hierarchical clusterings; ¢) investigating the community structure of the Usenet
with the help of various data analysis methods.
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