
Strong Atomicity for Java Without Virtual-Machine Support

Benjamin Hindman Dan Grossman
b@cs.washington.edu djg@cs.washington.edu

Department of Computer Science & Engineering
University of Washington

Seattle, WA 98195

ABSTRACT
We present an implementation and evaluation of atomic-
ity (also known as software transactions) for a dialect of
Java. Our implementation is fundamentally different from
prior work in three respects: (1) It is entirely a source-to-
source transformation, producing Java source code that can
be compiled by any Java compiler and run on any Java Vir-
tual Machine. (2) It can enforce “strong” atomicity without
assuming special hardware or a uniprocessor. (3) The im-
plementation uses locks rather than software-transactional-
memory, but it cannot deadlock and requires inter-thread
communication only when there is data contention.

We evaluate our approach by qualitatively considering its
overhead, quantitatively measuring the performance impact
on benchmarks, and considering several difficult interactions
with other language features. We conclude that it is possible
to support “strong” atomicity and separate compilation, but
simple whole-program optimizations improve performance
significantly. In particular, a simple and effective analy-
sis can identify fields that are never accessed in an atomic
block.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Concurrent
programming structures

General Terms
Languages

Keywords
Atomicity, Transactions, Concurrent Programming, Java

1. INTRODUCTION
Multithreaded programs using shared memory, mutual-

exclusion locks, and condition variables are notoriously dif-
ficult to write correctly. Avoiding races and deadlocks re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

quires cumbersome and error-prone idioms. Yet for an in-
creasing number of applications on an increasing number of
platforms, parallelism is important for performance (to ex-
ploit multiple processors) and isolation (by running separate
tasks with separate threads).

To make shared-memory multithreaded programming eas-
ier, many researchers have argued for atomicity, also known
as software transactions. Atomicity can complement or re-
place existing synchronization mechanisms with the state-
ment form atomic { s } where s is a statement. Seman-
tically, it means s must execute as though there is no in-
terleaved computation, i.e., no other threads are running.
(The implementation, of course, need not actually stop other
threads provided it preserves the semantics.) Furthermore,
a language should also ensure fair scheduling: Long trans-
actions must not starve other threads.

The software-engineering advantages of atomicity are nu-
merous and not the focus of this paper. We note simply that
atomic lets programmers achieve mutual-exclusion while ac-
cessing any number of objects, without risking deadlock or
relying on other threads to obey a locking protocol.

The obvious rub is that language implementations must
assume the considerable burden of implementing atomic

well. We believe this burden is well worth the benefit,
much as the benefits of automatic memory management
outweigh the burden of language implementations providing
good garbage collectors [15]. Implementation techniques for
transactions in general-purpose programming languages is a
relatively new but extremely active area [18, 19, 16, 28, 22,
27, 5, 21, 2, 10] to which this paper contributes.

1.1 Strong vs. Weak Semantics
The definition of atomicity given above is “strong” atom-

icity: Transactions must behave as though no other threads
have interleaved computation. Under “weak” atomicity, the
language implementation is allowed to interleave computa-
tion that is not itself in transactions. As Section 7 discusses,
most prior work provides only weak atomicity, and work
providing strong atomicity has assumed new hardware or a
uniprocessor.

Our prototype supports both semantics, and our experi-
ments mostly confirm the conventional wisdom that the per-
formance overhead of strong atomicity implemented in soft-
ware on a multiprocessor is large. However, we develop a
novel compile-time optimization to recover much of the over-
head. Moreover, with our implementation approach, strong
atomicity is not as expensive as treating every memory ac-
cess as “its own little transaction.”

1.2 Our Approach
Prior atomicity implementations have used some combi-

nation of optimistic concurrency protocols [29, 18], hardware
support for aborting transactions [16, 27, 5], or a uniproces-
sor execution model [28, 22]. In this work, we evaluate an ex-
treme, novel, and complementary implementation approach
in the context of Java: We use automatically-managed locks
to manage contention and have transactions rollback mem-
ory if they hold the lock for data needed by another thread.

A basic atomicity implementation using locks in this way
is surprisingly simple:

1. Let every object “lock itself” in the sense that every
object has a field holding the Thread object that cur-
rently “owns” (i.e., may access) its fields. Let null

indicate the “lock is available.” Assume access to
these “current-holder” fields is synchronized via primi-
tive means (e.g., compare-and-swap operations). Note
these “locks” are not Java’s built-in locks.

2. Require all code to acquire an object’s lock (i.e., set the
lock-field to the current thread) before reading or writ-
ing any other fields of the object. (For weak-atomicity,
require the lock only in a transaction.)

3. If a necessary lock is unavailable, “inform” the current
holder it must be “released soon.”

4. Require atomic-block execution to log all writes by
storing the object-field written to and the overwritten
value in a thread-local data structure.

5. Require all threads to “poll” for locks they must re-
lease. If in an atomic block, “rollback” (abort) the
transaction before releasing a lock.

Essentially, parts (1), (2), and (5) ensure no uncompleted
atomic block reads inconsistent values or reveals inconsistent
writes. Parts (3), (4), and (5) prevent deadlock because no
thread holds onto a requested lock forever. Conventional
back-off techniques can avoid livelock. Note that we could
change “lock granularity” (making it finer by locking fields
separately or coarser by locking multiple objects together)
without sacrificing correctness. Similarly, it is correct to
release a lock provided a thread is not in an atomic block
and it reacquires the lock as necessary.

This basic description is the core of our approach, but
we will describe many complications arising from modern
language features. We will also consider implementation
issues including compile-time optimization and tunable per-
formance parameters.

1.3 Source-To-Source Translation To Java
Our prototype is also novel in that we have not modified

a (Java) compiler nor a (Java) virtual machine. Rather, we
perform a source-to-source transformation: We take a pro-
gram written with atomic and translate it to a Java source
program. Together with a few classes we wrote in Java (our
“runtime system” for atomicity), we could compile this Java
code with any compiler and run it on any virtual machine.
As such, we have demonstrated that implementing atomicity
can be kept quite separate from other concerns.

One can view the source language for this translation as
“Java with atomic” or as a dialect of Java. Our source lan-
guage provides support (with some limitations as discussed

later) for many difficult language features such as static ini-
tializers, exceptions, arrays subsumed to Object, and ad-
herence to the Java Memory Model. Our focus has been
on supporting atomicity in a full-featured language, but not
necessarily integrating it with Java’s semantics as carefully
as an official language extension would require.

Conversely, although our translation occasionally uses par-
ticular Java features, our approach should apply to any
object-oriented language. That is, we do not “pull any Java
tricks” that restrict the applicability of lock-based atomicity
or source-to-source translation.

1.4 Contributions
The focus of this work is a lock-based source-level imple-

mentation of atomicity. As such, we make little contribution
to language-design issues beyond investigating the cost of
strong versus weak atomicity. Our most novel contributions
are:

• A proof-of-concept that implementing atomicity does
not require virtual-machine or hardware support. This
indicates that even with such support (which could im-
prove performance and simplify the implementation)
transactions can be largely decoupled from other com-
ponents of the run-time system.

• A correct design for transactions that uses a lock-
based approach and requires inter-thread communica-
tion only when there is data contention (Sections 2–4).
This design enables future work (Section 8), such as
adjusting locking granularity dynamically.

• A simple whole-program optimization that can recover
much of the overhead of supporting strong atomicity
by identifying data that is never accessed within trans-
actions (Section 5).

We also conduct a preliminary performance evaluation for
small interesting benchmarks (Section 6) and discuss related
work (Section 7).

2. BASIC APPROACH
This section describes our implementation assuming the

entire program consists of user-defined classes containing
only constructors, instance methods, and field accesses. We
defer language features such as arrays, native code, the stan-
dard library, static fields, methods, and initializers, excep-
tions, etc. In terms of Figure 2, we assume for now all types
are (after translation) in the left two branches of the fig-
ure, i.e., they are not arrays, exceptions, or certain classes
defined in the Java library.

We call a Java program that contains atomic an Atom-
Java program. Our implementation, built with the Polyglot
extensible compiler [26], takes an AtomJava program and
produces a Java program, which can then be compiled and
run with any Java implementation. The basic approach in
this section obeys separate compilation: we can compile each
class as independently as a Java compiler can.

Figure 1 contains an example demonstrating the features
in this section and how they fit together.

2.1 Acquiring and Releasing Locks
We use an extra field in every object and several new

fields for each thread. As a source-to-source transformation,

class A { class B extends C {

int x; A a;

A() { x=10; } void f() { a = new A(); }

} int g() { return a.x; }

B(int i) {

super(); f();

atomic { ++i; f(); a.x = a.x+i; }

}

class A extends AObject { class B extends C {

int x; A a;

static int get_x(A o) { static A get_a(B o) {

o.acq_mylk(); return o.x; o.acq_mylk(); return o.a;

} }

static int set_x(A o, int v) { static A set_a(B o, A v) {

o.acq_mylk(); return o.x = v; o.acq_mylk(); return o.a = v;

} }

static int set_atomic_x(A o, int v) { static A set_atomic_a(B o, A v) {

o.acq_mylk(); o.acq_mylk();

((AThread)Thread.currentThread()) ((AThread)Thread.currentThread())

.log(o,undo_x,o.x); .log(o,undo_a,o.a);

return o.x = v; return o.a = v;

} }

static UndoInteger undo_x = new UndoInteger() { static UndoObject undo_a = new UndoObject() {

void undo(Object o,long v){((A)o).x = (int)v;} void undo(Object o,Object v){((B)o).a = (A)v;}

}; };

A() { void f() {

super(); ((AThread)Thread.currentThread()).check_release();

set_x(this,10); set_a(this, new A());

} }

A(DummyArg x) { void __aj_f(){

super(x); ((AThread)Thread.currentThread()).check_release();

set_atomic_x(this, 10); set_atomic_a(this,new A(DummyArg.single));

} }

} int g() { return A.get_x(get_a(this)); }

int __aj_g() { return A.get_x(get_a(this)); }

B(int i) {

super(); f();

AThread me = (AThread)Thread.currentThread();

int __i = i;

boolean done = false;

me.start_atomic();

while(!done) {

done = true;

try {

++i; __aj_f();

A.set_atomic_x(get_a(this),A.get_x(get_a(this))+i);

} catch (RollBack e) {

done = false;

i = __i;

me.sleep_after_rollback();

} finally { if(done) me.end_atomic(); }

}

}

B(DummyArg x, int i) {

super(x);

++i; __aj_f();

A.set_atomic_x(get_a(this),A.get_x(get_a(this))+i);

}

}

Figure 1: Class definitions before (above) and after (below) source-to-source translation (eliding access mod-
ifiers and package names). Later we slightly modify the translation of atomic{s} and introduce optimizations.

we cannot change the definition of Object or Thread, but
we can create subclasses AObject and AThread respectively.
Any AtomJava class that extends Object or Thread has its
extends clause changed or added appropriately. In this way,
we can add fields to (almost) every user-defined class.
AObject has one field, currentHolder, of type AThread.

This field indicates which thread may currently access the
object’s fields; null means no thread may. This field is the
conceptual lock for the object, but it clearly is not a Java
lock. The constructors for AObject initialize currentHolder
to the current-thread; this policy choice does not affect cor-
rectness.

Every field access is preceded by checking that the field’s
object’s currentHolder field is the current-thread. If not,
we must first “acquire the lock.” If currentHolder is null

we write the current-thread in it and proceed (synchroniza-
tion of currentHolder is discussed below). Else we add
the object to the current-holder’s “locks to release” set (the
AThread instance field lks_to_release holds this set) and
we later retry acquiring the lock. In summary, ignoring
synchronization, the algorithm to acquire the lock for x is
roughly this method of AObject:

0. void acq_mylk() {

1. AThread me = (AThread)Thread.currentThread();

2. if(x.currentHolder != me)

3. while(true) {

4. if(x.currentHolder == null) {

5. x.currentHolder = me;

6. break;

7. }

8. x.currentHolder.lks_to_release.add(x);

9. AThread.check_release();

10. Thread.yield();

11. }

12. }

A field access e.f where f is defined in class C is rewritten as
C.get_f(e) where get_f1 is a static method the translation
of C generates. It acquires the lock then returns the field’s
contents. Similarly, x.f=v becomes C.set_f(x,v).

Every thread polls its lks_to_release field. To ensure
polling, we add a call to AThread.check_release to the
start of each method body and loop.2 The thread releases a
lock by setting currentHolder to null. When in an atomic
block, we roll back (Section 2.3) before releasing any locks.

2.2 Synchronization of Locks
The above scheme ensures all field accesses require locks

and locks always become available eventually. Rolling back a
transaction before releasing a lock ensures strong atomicity.
However, the actual implementation is more complicated:
The currentHolder and lks_to_release fields are thread-
shared so we must synchronize access to them.

For lks_to_release, each AThread has its own monitor
(i.e., an object) that every thread acquires before access-
ing lks_to_release. Deadlock is impossible because no
thread acquires another lock while holding one of these locks.
This synchronization would be a bottleneck if we actually

1Throughout this paper, we ignore name-mangling issues.
For example, we actually call the method __aj_get_f in
case there is a user-defined get_f method.
2We omit checks where it is obviously sound. For example,
a method body containing no calls needs no check on entry.

incurred it on every loop iteration and method call. In-
stead, AThread.check_release just decrements a thread-
local counter and checks lks_to_release only when the
counter reaches zero. We then reset the counter to a con-
stant POLL_FREQUENCY. This constant trades off responsive-
ness for communication. Section 6 measures the effect of
varying it.

For currentHolder, every object has a Java monitor that
is held for lines 4–8 of the lock-acquire code above and when
releasing the lock. We could use the object itself (i.e., syn-
chronize on x in the code above), but if user code also syn-
chronizes on the object, we could introduce deadlock. So
currently we conservatively use a separate array of moni-
tors for controlling access to currentHolder fields. We use
System.identityHashcode on an object to index into this
array.

Most importantly, the common case of a thread accessing
a field of an object for which it already holds the lock does
not require synchronization, so we neither hash nor acquire
a monitor. In particular, thread-local data will never incur
Java synchronization and this does not require any static
analysis. Rather, we incur only the overhead of checking
that x.currentHolder==me always holds.

This algorithm is correct under Java’s Memory Model [23],
i.e., we are not assuming sequential consistency: Although
the read on line 2 above is not synchronized, the condition
can be true only if the same thread has already performed
a synchronized write to the currentHolder field. That is,
we exploit that threads only ever write their own thread-id
into currentHolder fields.

2.3 Logging and Rollback
Correctness demands an atomic block not release locks

for any objects it has accessed, but this could lead to dead-
lock. To avoid deadlock, it suffices to release locks when re-
quested, but to first undo all assignments to memory. This
section discusses how we undo field assignments; Section 2.4
discusses local variables.

While executing a transaction, assignment to field f of
object x of type C calls C.set_atomic_f(x,v) instead of
C.set_f(x,v). The former does everything the latter does
plus calls the current thread’s log method. Conceptually, it
passes x (the “container” object), f (the “field name”), and
x.f before the assignment (the “old value”). A thread-local
data structure holds log entries in a conceptual stack. To
rollback, one simply pops elements off the stack, assigning
each old value back to the field of the container object.

The logging implementation realizes this concept via some
cleverness to minimize per-assignment-in-transaction cost
and obey Java’s type system. (The latter would be no con-
cern were the log implemented in the virtual machine.) In
particular, we must address these issues:

• Field names are not first-class; we cannot pass them.
(We could use reflection but have chosen not to.)

• Container objects could be any subtype of AObject.

• Previous values could be any type.

• We do not want a field-assignment to cause memory
allocation (for the log data structure).

To begin, each AThread has four fields that together en-
code the log for fields whose types are subtypes of Object:

int obj_log_index;

Object[] obj_log_containers;

UndoObject[] obj_log_undoers;

Object[] obj_log_oldvalues;

The ith log-entry is in the ith index of the three arrays and
obj_log_index holds the current log size. If the arrays fill,
we double their size (see Section 2.5 for avoiding this). Hence
we typically do no memory allocation, but never do more
than O(log n) allocations for a transaction that does n field
assignments.

The obj_log_containers and obj_log_oldvalues arrays
hold the container-objects and previous-values. More inter-
estingly, obj_log_undoers holds call-back objects that the
roll-back code uses. The UndoObject class is just:

abstract public class UndoObject {

abstract public void undo(Object container,

Object old);

}

and the roll-back code is just:

int i = obj_log_index;

for(;i >= 0; i--)

obj_log_undoers[i].undo(obj_log_containers[i],

obj_log_oldvalues[i]);

It just remains for the caller to log to pass an appropriate
instance of UndoObject. For example, if assigning to field f

of type D of an instance of class C, we want an UndoObject

with this method:

public void undo(Object container, Object old) {

((C)container).f = (D)old;

}

Note these downcasts execute only if we rollback a transac-
tion; the call to log upcasts the container and previous-value
to Object.

For every field declaration, we have one (anonymous) sub-
class for its undoer held in a static field of the field’s class.
Continuing our example, class C would have this declaration:

private static undo_f = new UndoObject () {

public void undo(Object container, Object old) {

((C)container).f = (D)old;

}

Hence we have one new class for every field, but no per-
instance or per-assignment space consumption. Moreover,
two log entries are for the same field of the same object if
and only if the container and undoer are the same object
(i.e., pointer-equal).

For fields with primitive types, the log described so far
would incur the overhead of boxing the old-values. Instead,
we simply use two other logs, one for integral types (the
old-values array has type long[]) and one for float and
double (the old-values array has type double[]). We use
different abstract “undo” classes, which have undo methods
with bodies that may perform narrowing conversions.

When a transaction commits, it is not necessary to empty
the logs (the next transaction can just reset the indices to
0). However, leaving objects in the container and old-value
arrays can cause space leaks. Section 6 reports the cost of
“nulling-out” these array entries to avoid potential leaks.
(Another option would be to reallocate the arrays for every

transaction.) Note we cannot use weak-arrays because dur-
ing a transaction a log could hold the last reference to an
object that will be live if we rollback.

2.4 Translation of atomic
We create two versions of each method m in a source pro-

gram: We call m while not executing a transaction (so a write
to field x in m uses set_x) and __aj_m while executing a
transaction (so a write uses set_atomic_x). Similarly, calls
in m are to other “non-atomic” methods and calls in __aj_m

are to “atomic methods.” In this way, we know at each pro-
gram point whether we are in a transaction or not, so there
is no run-time overhead for deciding if we need to log. (Prior
work [22] and our experiments indicate that whole-program
analysis can remove most of this code duplication because
most methods are never used within a transaction.)

One obvious exception to the above description is that the
non-atomic version of a method containing atomic{s} uses
atomic methods in s. (In the atomic version we omit the
atomic to implement the common “flattened semantics” of
nested atomic-blocks.) Translating atomic{s} also involves
logging local variables, catching an exception indicating a
rollback occurred, and looping until the transaction suc-
ceeds. For example, atomic{ m(); ++i; } would become:

AThread me = (AThread)Thread.currentThread();

int __i = i; // log original value

boolean done = false; // loop guard

me.start_atomic(); // initialize logs

while(!done) {

done = true;

try { __aj_m(); ++i; }

catch (RollBack e) {

// locks were released and field-writes undone

done = false;

i = __i; // rollback local

me.sleep_after_rollback(); // back-off

} finally { if(done) me.end_atomic(); }

}

Note that methods like __aj_m do not log their local vari-
ables; they are simply popped off the stack when a rollback
occurs. Similarly, writes to fields of this in the atomic ver-
sion of constructors need not be logged since the constructed
object will be unreachable (garbage) after rollback.

However, to create atomic and non-atomic versions of each
constructor we cannot follow our instance-method approach
of giving the atomic version a different name. Therefore,
we have atomic constructors take a dummy argument of an
otherwise unused type and callers pass a (globally-shared)
object of this type.

2.5 Details
We now present some less interesting details relevant to

the translation described earlier in this section.

In-place update.Translating f().x += 3 to
C_set_x(f(),C_get_x(f())+3) is incorrect because the lat-
ter calls f twice. For such expressions (including (f().x)++)
we generate a helper method to do the update and pass f()
to it. Generating new local variables is an alternate solution.

Log-duplicates.If the same field of the same object is set
multiple times in the same atomic block, we need to log only

the first one. As in previous work [28], we exploit that most
atomic blocks have few writes, so it is faster not to detect du-
plicates. However, to avoid pathological situations (such as
atomic{for(i=0;i<10000;++i) o.x=f(o.x);}), we detect
and remove duplicates once the log arrays fill. We currently
use a simple O(n2) approach: Two entries are duplicates
if the containers and undoers are the same object. If af-
ter duplicate removal the log arrays are still over half full,
we create new arrays twice as long. Therefore, for atomic
blocks that do many writes to distinct fields, we do allocate
memory for the larger logs.

UsingAThread. We need threads to be a subclass of Thread,
so Java’s single inheritance means threads cannot be a sub-
class of AObject (see Figure 2). Therefore, we also have a
currentHolder field and acq_mylk method in AThread.

We also seem to assume every Thread is an AThread lest an
expression like (AThread)Thread.currentThread() fail. We
can almost ensure this by rewriting new Thread(...) to new

AThread(...), but the first thread and any other threads
the virtual machine creates remain problems. For the for-
mer, we rewrite every main method to start an AThread and
run in that thread. For the latter, we can catch the cast ex-
ception and use a look-aside table that has an AThread for
any Thread that is not an AThread. In practice, the static
method AThread.currentThread does this and all uses of
(AThread)Thread.currentThread() in our earlier examples
are actually AThread.currentThread().

Final fields. We can read final fields directly; there is no
need to generate getters, setters, and undoers. Similarly,
for final local variables accessed within an atomic-block,
we need not and must not try to do roll-back. What re-
mains is initialization of a final field in a constructor (or
instance initializer). In the atomic-constructor (the one tak-
ing a DummyArg) we can just do the initialization; if the trans-
action aborts the new object will be garbage anyway. In the
non-atomic constructor, we statically disallow a final-field
initialization to be lexically within an atomic block since
rollback would not be possible. (Indeed, after translation
the assignment appears within a loop and therefore will not
compile.) In practice, this corner case has never been a
problem.

Field and instance initializers.Given a field initializa-
tion like T x=f(); we cannot just generate atomic and non-
atomic versions like we do for methods and constructors.
So here and only here we suffer a run-time test to deter-
mine if the running thread is in a transaction. We can use
an instance initializer to share this test across many field
initializations provided we do not change the order of ini-
tialization code.

Static getter/setter methods.Why have we made the get-
ter and setter methods static, with calls like get_x(e),
rather than calls like e.get_x()? Because fields and static
methods have the same lookup rules, but instance methods
use dynamic dispatch, which would be incorrect if a subclass
reuses a field name.3

3Inner classes cannot have static members, so we put the
methods (and undoer) in a containing non-inner class.

2.6 Summary
To review our source-to-source transformation so far:

• For every field, there are 3 new methods (getters and
setters) and one new field holding an anonymous inner
class (the undoer).

• For every method and constructor, there are two ver-
sions (atomic and non-atomic).

• For every object, there is a currentHolder field. A
global array of monitors synchronizes access to such
fields.

• For every loop and method, there is a check to see if the
running thread must release ownership of an object.

• Every Thread is an AThread holding thread-local data
such as the logs for rollback.

3. OTHER LANGUAGE FEATURES
In this section we “scale up” our basic approach to support

interaction with other Java language features (variants of
which exist in most object-oriented languages). Readers can
safely skip obscure features they find less interesting.

Some features we can support fully (arrays, static fields,
other concurrency primitives, and exceptions). For other
features we have had to limit their use (reflection, native
code, finalizers) or relax Java’s semantics (class loading). In
general, we can identify three causes of such limitations:

1. Source-to-source translation: We add fields, methods,
calls, etc. to programs. If these additions are visible
(e.g., via reflection), then translation could change a
program’s meaning. In principle one could enrich the
translation to hide the changes (e.g., by rewriting all
uses of reflection), but we have not done so.

2. Irreversible virtual-machine actions: We must be able
to abort a transaction and rollback to an equivalent
pre-transaction state. But certain actions in Java are
both visible and not undoable (e.g., loading a class
with static initializers or creating an object with a fi-
nalizer). Virtual-machine support would avoid these
limitations, but the practical impact is probably small.

3. Unavailable code: We need all code to obey the invari-
ants of our translation, but our translator is unable to
change native code or classes whose definition is as-
sumed by the virtual machine (i.e., certain standard-
library classes). The latter issue is the subject of Sec-
tion 4.

We have chosen to make these limitations lead to run-time
exceptions (e.g., if a native call occurs in a transaction)
rather than to relax our atomicity guarantees, but this is
an easily changed matter of policy.

3.1 Arrays
Because we do not modify the virtual machine and cannot

make array types subtypes of AObject (see the right side of
Figure 2), we cannot add a currentHolder field to arrays.
Therefore, we use a look-aside table: A separate fixed-size
array of AThread references is indexed into with the array’s
hashcode to find the currentHolder. This basic approach
has several shortcomings:

Figure 2: The type hierarchy after translation. Shaded areas contain types that the translation changes
(and arrays of such types). Moving left-to-right: Subtypes of AObject and AThread are described in Section 2.
Nonshaded classes and subtypes of Throwable are described in Section 4. Arrays are discussed in Section 3.

• It disallows parallel transactional access to disjoint
portions of the array. This restriction is easily relaxed
by indexing into the look-aside table with some combi-
nation of the hashcode and the index, i.e., this is just a
question of locking granularity and any answer is easy
to implement.

• Every array access (modulo optimization) requires call-
ing the array’s hashCode method.

• There is false sharing among arrays that hash to the
same index in the table. Resizing the table dynami-
cally requires additional synchronization.

We define getters and setters for arrays in a library and
rewrite all subscripts to use the getters and setters. This
library uses a generic method for all arrays with elements
that are subtypes of Object, but we could also rely on co-
variant array subtyping and have callers downcast the result
from Object.

A tempting alternative, creating a wrapper class for every
array type and having the wrapper provide a currentHolder

and getter/setter methods, does not interact well with sepa-
rate compilation: Throughout the program, we would need
every use of type T[] to use the same wrapper class. But we
cannot create all wrappers when compiling a class C because
we may need wrappers for C[], C[][], C[][][], etc.

3.2 Static Fields and Methods
Static fields are easy to support in a manner analogous

to instance fields and methods. For fields, we create get-
ters, setters, and undoers and use a new static field for the
currentHolder (since the fields are not part of an AObject

instance). For a static field f in class C, the getters, and set-
ters take a C as their first argument but do not use it. That
way, C.f can be translated to C.get_f(null) and c.f can
be translated to C.get_f(c) where c has type C. Similarly,
the atomic-setter always uses null for the container-object
in the log, and the undo method of the undoer ignores its
first argument (which will be null).

We duplicate static methods just like instance methods.

3.3 Dead Threads

So far, we assume a thread holding access to an object
will eventually release access when another thread requests
it. However, threads that have terminated will never do
so. We did not pursue having threads release all objects
they hold on termination because we do not want the space
and time overheads of maintaining the set of objects held.
(At the very least we would need to use weak pointers or
no object would become garbage unless the owning thread
did.)

Instead, the thread requesting an object checks if the hold-
ing thread is no longer alive. If it is not, then it is safe to
set the object’s currentHolder to null “on behalf” of the
dead thread, using appropriate synchronization. This “lock
stealing” is a simpler case of the stealing discussed next for
interaction with legacy synchronization. It is simpler be-
cause terminated threads never run again.

3.4 Other Synchronization
In addition to termination, a thread cannot release objects

if the thread is sleeping or blocked indefinitely since polling
occurs only if the thread is running. Using synchronized,
wait, or join could cause blocking. By allowing these fea-
tures, we support “legacy code” and libraries without re-
quiring changes, but we need to revoke access to objects
held by blocked threads.

To do so, our source-to-source translation “surrounds”
any potentially blocking operation with calls that indicate
the thread may be blocked. For example, the statement
synchronized(e){s} becomes something like:

T tmp = e;

((AThread)currentThread()).maybeBlocked();

synchronized(tmp) {

((AThread)currentThread()).unblocked();

s;

}

(To enable this translation, we desugar synchronized meth-
ods to method bodies that synchronize on this and perform
a similar transformation for static synchronized methods.)

The calls maybeBlocked and unblocked maintain a thread-
shared boolean. If set, another thread “steals” access to an
object immediately. A monitor guards this boolean to pre-

vent race conditions. When “stealing” a lock, the stealer
also sets thread-shared (and properly synchronized) state
that unblocked checks. In the case a thread “was robbed”
while in an atomic block, it aborts the transaction.

Note that using synchronized in a transaction causes no
problems; if the transaction aborts, we throw an exception
which will transfer control such that the monitor is released.

3.5 Exceptions
Throwing and catching exceptions is largely unchanged.

Atomic code that throws an exception caught outside the
transaction causes the transaction to commit; a finally

clause in the translation of atomic ensures the transaction
commits properly. Within atomic code, our translation uses
a Rollback exception to abort a transaction. Therefore, we
must ensure user-provided catch and finally clauses do
not “see” this exception. For catch clauses, we add a first
clause that catches and rethrows a Rollback exception (if
there is a clause that catches a supertype of Rollback). For
finally clauses, we add a statement at the beginning that
consults thread-local data to see if a rollback is “in progress”
and if so rethrows the exception.

User-defined exceptions are subclasses of Throwable, so
they cannot be subclasses of AObject. This complication
is the subject of Section 4 because it is a general problem
with classes in the standard library that we cannot change
without virtual-machine support.

3.6 Native Code (Including I/O)
We currently provide limited support for native code:

1. Calling a native method from within a transaction
throws an exception. Implementing this semantics is
elegant: The atomic version of a native method is a
non-native method that contains the throw statement.
So native methods can override non-native methods
and vice-versa.

2. We do not let native code directly access fields of Java
objects. (We do not actually check this.) Native code
can call (non-atomic) methods or constructors.

3. We assume native code terminates and does not block
indefinitely.

We could relax the first restriction as in our previous work
on AtomCaml [28] by requiring native-code libraries to pro-
vide atomic (and non-atomic) method versions and support-
ing library-registered commit- and abort-actions.

With virtual-machine support or a separate tool, we could
remove the second restriction by interpreting field accesses
to be the appropriate method calls.

We could remove the third restriction if we allowed lock-
stealing (see above) while native-code executes. Doing so
is difficult because we do not always know at compile-time
that a call-target is native-code.

3.7 Reflection
We currently disallow reflection. Clearly our translation

can change the behavior of reflective programs (since we
add fields and methods) and reflective programs can violate
atomicity (since we cannot control the fields and methods
they access). It is possible that in practice many uses of re-
flection are unproblematic; the applications and benchmarks
we have considered do not use reflection.

Note our translation does not itself use reflection.

3.8 Finalizers
Finalizers are difficult without virtual-machine support

because an object created by an aborted transaction should
not have its finalizer run. Therefore, if an object has a user-
defined finalizer, we disallow creating such an object within a
transaction by changing the atomic versions of constructors
to raise a run-time exception.

Note we need not worry about a transaction making an
object unreachable (causing the object’s finalizer to run) and
then a rollback making the object reachable again: Logging
ensures all objects reachable at the start of the transaction
remain reachable until the transaction completes.

3.9 Class Loading and Static Initializers
We allow classes with static initializers, but our lack of

virtual-machine support prevents us from extending Java’s
precise rules for when classes are loaded. To see the main
problem, suppose a transaction causes a class to be loaded
but the transaction later aborts. We cannot “unload” the
class or cause the static initializers to run later. As a second
problem, suppose we must abort a transaction while running
a static initializer. We cannot throw the Rollback excep-
tion because Java forbids uncaught exceptions within static
initializers. As a third problem, if one thread needs a class
another thread is currently loading, the first thread implic-
itly blocks and our transformation cannot call maybeBlocked
as described above.

To solve the first two problems, if a transaction causes
a class with static initializers to load, we first rollback the
transaction, then load the class, then restart the transaction.
While unproblematic in practice (and with the advantage
that static initializers do not see mid-transaction state), this
semantics violates the spirit of Java’s precise timing of class
loading. First, we conceptually load the class early. Second,
we may never actually use the class since other threads may
change the program state before we rerun the transaction.

Even so, implementing this semantics is tricky since we do
not want to check explicitly at every program point where
a class might be loaded. Instead, if a class has static initial-
ization, we add an initial static initializer that checks if the
running thread is in a transaction. But this static initializer
cannot throw an exception. Instead, we rollback the data in
the thread-local logs and set a thread-local “doomed” flag
before executing the other static initializers (which will now
see the pre-transaction state). Later, the code that sees
if locks must be released (and the code that completes a
transaction) checks the “doomed” flag and if set aborts the
transaction (doing a second rollback).4 Most oddly, the first
rollback may cause the transaction to follow otherwise im-
possible control-flow paths, but we still know the “doomed”
flag will eventually be checked and the transaction correctly
aborted.

The third problem (threads blocked on class loading by
other threads) could in theory lead to deadlock. Though
we have not yet implemented a fix to this, we believe we
can create a thread that detects a thread needing an ob-
ject owned by a thread blocked in this way and have this
“third-party” thread release the object (and set the blocked
thread’s “doomed” flag if it is in a transaction).

4Thus the translation of atomic in Section 2 requires the
modification that the finally clause check the “doomed”
flag.

4. BUILT-IN CLASSES
Our translation so far assumes we can add to almost every

object a currentHolder field, two versions of each method,
etc. We can do this for instances of almost any class where
the source code is available (the left two branches of Fig-
ure 2). Section 3 extended the translation for array types
(the right two branches of Figure 2). This section considers
the remaining objects.

The essence of the problem is our lack of virtual-machine
support: Any class for which the virtual-machine (1) as-
sumes the class definition (e.g., java.lang.System) or (2)
may create instances (e.g., java.lang.IOException) must
be handled differently. We call such a class unchangeable,
and we assume our translation knows what the unchange-
able classes are. (We currently treat classes in java.lang

and java.io as unchangeable, but this categorization may
not be exactly accurate.)

We address the following issues:

• Is it sound to call a method (or access a field) of an
unchangeable class (either outside or inside a transac-
tion)?

• Can we subclass an unchangeable class?

• How can we call a method if the static type is Object

since the run-time type could be an unchangeable, an
array, or neither.

In providing (partial) answers, we err toward disabling use
rather than potentially violating atomicity, though this is
only a policy choice. Nonetheless, we have architected our
translator to make it easy to extend support for unchange-
able classes.

Calls and Accesses.For simplicity, we disallow accessing
non-final fields of unchangeable classes directly. There are
very few such fields because the standard library is well-
designed. The translation of any such field access throws an
exception.

For calls, we also by default translate the call to throw
an exception, just as if the target were a native method.
However, we have implemented a library of wrappers and
if the proper wrapper is present, it is called instead. For
example, our wrapper-library contains this class definition
in package wrapper.java.io:

public class PrintStream{

public static void

print(java.io.PrintStream p, java.lang.String s){

p.print(s);

}

public static void

flush(java.io.PrintStream p){

p.flush();

}

public static void

__aj_flush(java.io.PrintStream p){

p.flush();

}

// ... additional methods omitted ...

}

These wrappers, written by hand (and in practice on a
demand-driven basis as our benchmarks have required it),

support calling print from outside transactions and flush

from outside and inside transactions. Given a call, e.g.,
e.print("hi"), the translator simply looks for a wrapper
of the correct type. If present, it calls the wrapper, e.g.
wrapper.java.io.PrintStream.print(e,"hi") else it pro-
duces an exception throw.

This design lets us add support for methods incremen-
tally simply by writing new wrapper classes and methods.
It does not even require recompiling our translator, but it
does require recompiling code that uses a newly supported
method.

While the wrappers above are straightforward, we have
also implemented more sophisticated wrappers, such as for
the StringBuffer class where we avoid deadlock by carefully
acquiring the right locks before forwarding the call. We
also allow the atomic version of wrappers to register actions
that should be performed if the transaction aborts. (The
implementation is just another log with wrapper-provided
Undo objects.) Our StringBuffer wrappers use this feature
to allow append operations inside transactions.

Subclassing.We have not yet needed to let programs pro-
vide subclasses of unchangeable classes, nor have we fully
worked out the details of how to do so. We believe this is
an acceptable limitation except for the unchangeable class
Throwable and unchangeable subclasses of it. Fortunately,
these unchangeable exception classes are easy to support
because they have no mutable state. That is, we can al-
low method calls on them even inside transactions, though
the translator must be aware that atomic versions of the
methods do not exist.

It remains that a subclass of an unchangeable exception
is not an instance of AObject, so the translator may need to
add a currentHolder (unless a superclass already has one).
In practice, we have not yet experimented with a program
that extends a subclass of Throwable with fields.

Object calls. Consider this method prior to translation:

boolean m(Object o) {

return o.toString().equals("hi");

}

Our wrappers can inform our translator that equals is al-
lowable inside and outside transactions for the (final) class
String. But the toString call is much more problematic:
The run-time type of o could be anywhere in Figure 2.
Therefore, the atomic and non-atomic wrappers for calls
whose receiver has static type Object use downcasts to ap-
proximate the correct behavior. For example, a toString

call inside a transaction calls this wrapper:

static public java.lang.String

__aj_toString(java.lang.Object o) {

if(o instanceof AObject)

return ((AObject)o).__aj_toString();

if(o instanceof AThread)

return ((AThread)o).__aj_toString();

if(o.getClass().isArray())

return o.toString();

throw new NoSuchMethodError(".__aj_toString");

}

That is, user-defined classes have __aj_toString methods
(either defined in AObject or overridden in a subclass). Ar-

ray types do not, but for arrays the toString method is
safe to call. In other cases, we conservatively fail, though
in the future we intend to use interfaces to indicate when
other classes (unchangeable classes and subclasses of them)
support certain methods defined in Object.

As for the other methods of Object:

• hashCode and equals are similar to toString.

• getClass and wait are easy to support because they
are final. (The wrapper for the latter allows lock-
stealing.)

• notify and notifyAll are allowed only outside trans-
actions.

• clone requires first acquiring ownership of the receiver
since it reads all the receiver’s fields.

• Explicit calls to finalize are strange but not a prob-
lem.

5. OPTIMIZATIONS
The atomicity implementation described in the preceding

three sections allows separate compilation: We can trans-
late each class to Java-without-atomicity assuming only all
other classes are translated similarly. Furthermore, what the
type-checker must know about other classes is no more than
what the regular type-checker must know. However, sepa-
rate compilation and source-to-source translation comes at
a cost: As the next section shows, the unoptimized transla-
tion can run many times slower than a corresponding Java
program. This section describes simple optimizations that
reclaim some of this slowdown on our benchmarks. The
most interesting and novel is a whole-program type-based
analysis that determines most fields are never accessed from
within a transaction.

We can identify several obvious reasons our translation
makes programs run slower, the last of which turns out to
be the most significant:

1. Space: Every object has a currentHolder field, which
could increase cache pressure or lead to more frequent
garbage collection. We have not investigated the ac-
tual effects; at this point we can only acknowledge the
issue.

2. Current-thread downcasts: Our translation puts its
per-thread data in instances of AThread, a subclass
of Thread, so we perform many dynamic downcasts
from Thread to AThread.

3. Polling: Every loop and (non-leaf) method call in-
cludes an extra method call to decrement a thread-
local counter.

4. Logging and rollback: Transactions must record their
effects and if they rollback, all the work they did is
wasted.

5. Read and write barriers: Every field and array access
includes at least a check that the current thread owns
the object. If not, synchronization with another thread
is necessary.

The next section also considers some other minor aspects
of our translation but establishes that their effect on perfor-
mance is small.

weak atomicity strong atomicity
non-atomic read none own
non-atomic write none own

atomic read own own
atomic write own+log own+log

Figure 3: What reads and writes do under different
semantics: “own” means get exclusive access; “log”
means log the old value.

5.1 Source-Level Artifacts
Issues (2) and (3) are largely artifacts of not changing the

virtual-machine: For (2), we could access per-thread data
more efficiently if we did not limit ourselves to Java source
code and calls to Thread.currentThread(). For (3), we ex-
pect a virtual-machine can already stop a thread in a timely
manner at a safe control point (to pre-empt the thread, per-
form a garbage collection, deliver an asynchronous excep-
tion, etc.) so we could add the “locks-to-release check” with
little additional cost. (There are tricks for this, such as mak-
ing it appear to the thread that it is being pre-empted and
then letting it continue after releasing locks.)

To reduce current-thread downcasts, we can perform com-
mon subexpression elimination to retrieve the current-thread
once and pass it around. How much to do so introduces
the usual space versus recomputation-time trade-offs. The
next section shows empirically that simple notions of sharing
(roughly retrieving the current-thread once on method-entry
and passing it to extra versions of getter and setter methods
that take it as an argument) are easy and helpful.

For polling, we have not yet investigated more sophisti-
cated interprocedural algorithms or loop-termination anal-
yses to remove calls. (As previously mentioned, we do omit
calls on entry to methods that do not make calls.) As the
next section shows, we measured the effect of varying the
“polling frequency,” i.e., is, how often the polling call actu-
ally performs the (synchronized) operation of seeing if locks
should be released. As expected, performance suffers from
checking too frequently (due to too much synchronization)
or too infrequently (due to other threads waiting too long).

5.2 Logging and Rollback
Code within transactions runs slower than code outside

transactions because we log effects. As described in Sec-
tion 2, we ensure logging requires only a method call and
few array assignments (unless we must resize the array).
Because rollback is rare, its cost is less important. More-
over, if most code does not execute within a transaction,
the logging cost is also not crucial.

5.3 Read and Write Barriers

5.3.1 The Problem
Adding overhead to every field and array access is the pri-

mary reason translated programs may run so much slower.
Therefore, eliminating these read barriers and write barriers
(i.e., the extra work for reads and writes to memory) where
possible is the goal of our optimizations.

Figure 3 summarizes the barrier overheads without op-
timization: Under strong atomicity, every access requires
“owning” (i.e., having the currentHolder be the running

Figure 4: Relation of three sufficient conditions
for removing barriers when accessing data in non-
transactional code.

thread) the object. Under weak atomicity (transactions ap-
pear not to be interleaved with other transactions), only ac-
cesses within transactions require “owning” the object. As
discussed in Section 7, much prior work provides only weak
atomicity. Doing so produces faster multithreaded code, and
in the limit case that a program does not use transactions,
weak atomicity suffers no read or write barriers.

Our ultimate goal is to approach the performance of weak
atomicity with the semantics of strong atomicity by using
compile-time analysis to show that most memory accesses
outside of transactions do not need barriers.

5.3.2 Our Approach
Figure 4 summarizes three reasons a memory access would

not need a barrier:

1. The memory is accessed by only one thread. (Trans-
actional writes still need logging in this case, but no
ownership barriers are necessary.)

2. The memory is read-only (so races are impossible).

3. The memory is not accessed (or perhaps just read but
not written) from within a transaction.

Any one of the three is sufficient for barrier removal. They
overlap in two senses: First, a given field may actually satisfy
any combination of the conditions. Second, conservative
compile-time analyses might determine any subset of the
conditions a given field actually has. Also note that as usual
with static analysis, establishing any of the properties at
compile-time could require alias information.

To our knowledge, recognizing the importance of condi-
tion (3) is novel. (There is considerable prior work on show-
ing data is thread-local [3, 12, 6, 8] or read-only [?].) It
attacks directly the performance difference between strong
and weak atomicity (or conversely, it is irrelevant if one al-
lows a weak-atomicity semantics). Therefore, our prototype
optimization focuses on this aspect of barrier-removal: we
conservatively assume all data is thread-shared and all (non-
final) data is mutable.

Figure 5 describes when the lack of access within a trans-
action lets us remove a barrier in non-transactional code:
If memory is neither read nor written within a transaction,
then no barriers are necessary. If memory is never written
within a transaction, then no read barriers are necessary.

remove barrier outside atomic
atomic-access read write

none yes yes
read-only yes no
write-only no no
read-write no no

Figure 5: The barrier removal allowed by an analysis
that determines how data is used in transactions.

If memory is written within a transaction, then in general
both read and write barriers must remain.

Qualitatively, an analysis establishing that memory is ac-
cessed only outside transactions has two advantages over
complementary analyses for thread-local or immutable data:

• It is effective even with very little alias information.
As we describe below, we do not compute any non-
trivial alias information yet we can eliminate most bar-
riers. Essentially, we exploit the common case that a
class is either used for data requiring synchronization
(therefore accessed transactionally) or data not requir-
ing synchronization, but not both. That is, assuming
that all objects of compatible types may be aliased has
in practice not destroyed our accuracy.

• It optimizes code that is written using the common
producer/consumer pattern. Suppose one thread puts
objects in a thread-shared queue and another thread
removes them. While the queue data structure is pre-
sumably accessed within transactions, the fields of the
objects put in the queue presumably are not. These
fields are not thread-local and may not be immutable,
so only an analysis with our goal would remove bar-
riers on them. (Thread-local data analyses enriched
with unique-pointer information [9] can capture this
case, but they are typically very sophisticated or re-
quire programmer annotations.)

5.3.3 Basic Analysis and Transformation
Having outlined the goal of our analysis, computing the

results is “textbook” whole-program optimization. We first
describe the basic algorithm and then enrich it with some
easy-to-compute unique-pointer information that can im-
prove its results.

The basic optimization proceeds in three steps:

1. Approximate what code may be called from within a
transaction, which is basically which atomic blocks,
atomic methods, and atomic constructors may exe-
cute. We simply assume each main method (and static
initializer) is reachable and every statement of every
reachable method is reachable (i.e., we are flow- and
context-insensitive). A reachable call makes every pos-
sible target reachable. We do not refine the possi-
ble targets beyond the static type information: Given
e.m(...) where e has class type C (or interface type
I) we assume any method overriding m in a subclass
of C (or any method implementing m in a class imple-
menting I) may be the target.5

5Sound reachability requires all code, so standard-library
classes again complicate matters. We conservatively as-

With care, this code-reachability analysis can take time
and space proportional to the program size.

2. Determine transactional access. In a single pass over
the reachable transactional code, process each field ac-
cess (e.f) and array access e[i]. Use the static type
of the receiver (e) and whether the access is a read
or write to compute what is accessed transactionally.
Here is where we use only type-based alias informa-
tion: If e has class type C, then a read (or write) of
e.f means every instance of C may have its f field read
(or written) in a transaction.6 Similarly, if e has type
T[], then a read (or write) of e[i] means every index
of every instance of T[] may be read (or written) with
within a transaction. Note Java’s covariant subtyping
for arrays can hurt accuracy.

3. Remove barriers. Using the information from the pre-
vious step and the table in Figure 5, a single pass over
the non-transactional removes read and write barriers.

5.3.4 A Unique-Pointer Extension
This optimization does very well in practice, but we can

remove some additional barriers by exploiting some trivial
alias information. To motivate the extension with an ex-
ample from our benchmarks, suppose a program has several
integer arrays (type int[]). Some are used within transac-
tions, so our optimization so far would have barriers for all
e[i] where e has type int[]. But suppose all the following
hold:

• Field f of class C has type int[].

• For every write of the form e1.f=e2, e2 has the form
new int[e3], i.e., all assignments use fresh (so una-
liased) references.

• There are no reads of the form e.f except to index
into the array (i.e., e1.f[e2]). So we never create an
alias of any e.f by assigning e.f elsewhere, passing it
to a method, etc.7

Then there can be no aliases of an f field of C, so we can
treat this field’s contents “as its own type,” distinct from
other int[] instances. Therefore, if e1.f[e2] is not written
(or read) within a transaction, we can remove read barriers
(or all barriers) on array accesses of this form. Note the
barrier we are discussing here is the one for the array access
(accessing an index of the array); whether we need barriers
for the field access is not affected by this extension.

To generalize, this extension is not particular to fields
holding arrays: The point is that if we can determine that
a field f ’s contents refer to an unaliased object o, then we
know accesses to objects with the same type as o do not
access o unless through a field f . The rules above are just
a cheap syntactic approximation of this unaliased property.

sume all methods overriding a method in Object and similar
classes are reachable. We assume calls into the standard li-
brary cannot cause (non-overriding) methods in user-defined
packages to be called.
6We assume an unavailable class cannot access fields of an
available class unless the latter is clonable, in which case we
conservatively leave in all barriers.
7As a minor point, C should not be clonable since a clone
call would also make an alias of an e.f.

Note we do not require that containers of the f field are
unaliased.

We could also generalize this extension to support unique
paths starting at some field f (such as e.f[i].g.h), but
we have not done so and suspect it would not prove very
profitable.

6. EXPERIMENTS
We view our current prototype as a proof-of-concept that

one can implement atomicity for a modern object-oriented
programming language without hardware or virtual-machine
support. Some performance parameters and large parts of
the design space remain unexplored (see Section 8). Nonethe-
less, we have run our translator on small benchmarks to eval-
uate the overall performance and the effectiveness of our
optimizations. We conclude that the overall performance
of our approach is sometimes but not always competitive
with lock-based Java code, but it is a good starting point
for ongoing research. Moreover, even when our translation
makes code run much slower, we have a level of portability
and ease-of-implementation that is desirable when proto-
typing, teaching concurrency, or perhaps comparing virtual
machines.

Section 6.1 describes our benchmarks and evaluation plat-
form. Section 6.2 describes the overall performance for our
benchmarks and the overall effectiveness of optimization.
Section 6.3 presents additional results from modifying pa-
rameters such as threads’ polling frequency. Section 6.4
briefly summarizes our results.

6.1 Benchmarks and Platforms
We have investigated four small programs. For each, we

changed uses of synchronized to uses of atomic after man-
ually verifying that doing so would preserve meaning.

• tsp solves a traveling salesperson problem using a user-
specified number of threads. It has been used in pre-
vious concurrency studies [14, 31]. The threads share
partially completed work and the best-answer-so-far
via shared memory, but there is parallelism as they
search independently. All data is pre-allocated (after
the threads are spawned there are no uses of new).
In the original Java program, the locking is coarse:
just two separate locks protect all thread-shared data
(some of which is immutable) and nontrivial work is
done while holding them. The original program also
has benign data races: Code reads the “shortest tour
found so far” without synchronization; this is correct
because the value only decreases, so seeing stale values
leads only to useless work.

• crypt is an embarrassingly parallel encryption pro-
gram in the JavaGrande suite8 that does not need syn-
chronization (if multiple threads are used, they operate
over disjoint data). Therefore it is a useful benchmark
for measuring the slowdown of our translation for se-
quential code and the cost of unnecessary barriers in
our unoptimized translation.

• synchBench is a small benchmark in the JavaGrande
suite originally designed to measure the cost of Java’s
synchronized construct. We can similarly measure

8http://www.epcc.ed.ac.uk/javagrande/

the cost of heavily contended atomic blocks where the
body of the atomic does very little work (essentially
increment a thread-shared counter).

• hashtable is our implementation of a benchmark de-
scribed in previous work [18] in which parallel threads
access a shared hashtable with a mix of insert and
lookup operations.9 We keep the table sparsely popu-
lated enough that it is never resized. All threads share
a hashtable-object which has an array for which each
operation accesses an index of the array. The Java
version uses one lock for the whole table; we have not
had time to experiment with a lock-based hashtable
supporting parallelism, but we expect to soon.

We ran all experiments using the Java HotSpot VM and
Runtime Environment (build 1.5.0 06-b06) with the -server
option. This option favors long-running programs, so we
“warmed up the virtual machine” by first running each pro-
gram until we saw consistent timing data and then tak-
ing the average of twenty runs. This methodology has two
caveats:

• Without “warm up” all data had much larger vari-
ance, the lock-based code had larger variance than the
atomic code, and the slowdown from our translation
was on average much lower. That is, the “warmed
up” results are worse for our translation. We have not
had time to investigate “cold start” times without the
-server option.

• While most runs have times near the average, occa-
sionally runs take twice as long or longer. We attribute
this to unfortunate thread pre-emptions. These out-
liers exist for the lock-based code and the atomic code
but are more common in the atomic code.

We ran experiments on three machines, all running Linux
2.6.12.10 Our uniprocessor is a 2.8GHz Intel Pentium 4 with
a 512Kb cache and 1GB RAM. Our two-processor machine
has 2 Intel Xeon 3.22GHz processors with 2MB caches and
3GB RAM. Our eight-processor machine (which we use for
most of our results) is a Dell Poweredge Server with 8 Intel
Xeon 3.16GHz processors with 1 MB caches and 8GB RAM.

6.2 Overall Performance
We can measure the slowdown of the atomic versions of

our benchmarks relative to the performance of the original
Java programs. The latter are compiled directly by javac,
i.e., they are not translated by us. For the atomic versions,
we consider three settings: (1) Strong atomicity without
optimization, (2) Strong atomicity with optimization, and
(3) Weak atomicity. (We manually verified that the bench-
marks are correct with weak atomicity.) With optimization,
our translator is given the whole program and produces spe-
cialized Java files that we then pass to javac. Though we
believe weak-atomicity is an inferior semantics, it is an ap-
propriate “limit study” for how well our optimization could
do. (In fact, for tsp it is beyond the limit because the appli-
cation has benign data races.) Figure 6 shows the results for
our benchmark programs for each semantics, various num-
bers of threads, and various machines.

916% of the operations are inserts.
10The 8-processor machine has Red Hat 4.1.1-5. The others
have Red Had 4.0.0-8.

The tsp program shows a significant slowdown compared
to lock-based code, even with weak atomicity. This appli-
cation has larger atomic blocks than the other benchmarks,
and we did instrument the run-time system to observe that
rollbacks are not uncommon (on the order of tens of roll-
backs per second on the eight-processor machine). We also
believe the slowdown results from threads not releasing own-
ership of objects until another thread requests them, which
is a bad match for the work-sharing style of the application.

Nonetheless, tsp shows our optimization has some value:
We recover about half the significant performance gap be-
tween strong and weak atomicity even though the optimiza-
tion still cannot allow the benign data races. Unfortunately,
the performance of strong atomicity (with or without opti-
mization) does not scale with the number of processors for
this benchmark. The weak-atomicity version shows some
speed-up with the number of processors, though the Java
version shows more (and neither is close to linear). We con-
clude that while removing barriers significantly speeds up
sequential execution, we do not remove enough to achieve
much parallelism for tsp, a fairly complicated benchmark
with large atomic sections.

The crypt program has no synchronization (locks in the
Java version or atomic in our version). Hence this is the
ideal case for our optimization: It can and does remove
all barriers (so optimized and weak atomicity are identi-
cal) whereas the unoptimized version is essentially sequen-
tial because all threads contend for the same arrays. (See
the discussion below for hashtable for how to avoid this.)
Moreover, the remaining overhead after removing barriers
(polling for locks to release, space increases, etc.) is minimal;
we run only 10% slower than the Java version. The Java,
weak, and optimized versions show super-linear speedup on
2 processors and almost 5x speedup on 8 processors.

The original synchBench is designed to measure the cost
of acquiring and releasing locks. Because all threads contend
for the same data, the Java program and our program have
no parallelism. In fact, adding parallel threads slows down
the program proportionally. The Java program synchro-
nizes on every iteration of every thread’s inner-loop whereas
our program synchronizes less often due to the polling fre-
quency. Therefore, we run several times faster (slowdown
of 0.2x is speedup of 5x). However, while the data when the
number of threads does not exceed the number of proces-
sors is reliable, with 16 threads and 8 processors, run times
for any semantics vary by several factors. We conclude that
short, highly contended atomic blocks have unpredictable
performance when there are more threads than processors;
the 16-thread data for synchBench in Figure 6 may not be
useful.
hashtable also exhibits no parallelism for any version,

but the work done in critical sections is a larger than for
synchBench. There are two reasons the atomic version can-
not exploit parallelism using our implementation. First, all
hashtable operations use the same hashtable object. Second,
all hashtable operations use the same array contained in the
hashtable object. The hashtable object is immutable, so a
read-only analysis or reader-writer locks for currentHolder
(i.e., allowing concurrent reads) would fix the first problem.
For the array, our locking is too coarse; it is important to
allow concurrent access to disjoint indices. Once we add
support for doing so, perhaps along the lines of the work
in [2], we can revisit this benchmark and attempt to estab-

Figure 6: Benchmark performance: The bar graphs show results for our 8-processor machine as we vary
semantics, optimization, and thread count. We present slowdown relative to the lock-based Java version.
The line graphs show the results for 2 threads on a 2-processor machine and 8 threads on an 8-processor
machine, relative to 1 thread on a 1-processor machine (so all results for 1-processor are normalized to 1).

Figure 7: Effect of polling frequency with optimized
strong atomicity, 8 processors, and 8 threads. The
x-axis has powers of 2 from 32 to 64K.

lish parallelism.

6.3 Sensitivity to Parameters
The results presented so far incorporate some tuning of

implementation parameters. We now demonstrate that these
parameters do involve trade-offs but that performance does
not require “getting them exactly right.” We consider a sub-
set of benchmarks and thread-counts that have more reliable
and interesting performance characteristics.

Polling Frequency.Recall that on every loop and non-
leaf method call, a thread calls check_release but that this
method usually only decrements a thread-local counter. We
can vary how often it actually checks for locks to release. If
too low, threads will wait too long for other threads. If too
high, we will spend too much time polling (which involves
synchronized access to thread-shared data). Results in the
previous section used a polling frequency of 1024.

As Figure 7 shows, for tsp (which has some parallelism
and some contention), the best polling frequency is neither
too small nor too large. For the other benchmarks, polling
frequency is not important. In particular, for crypt which
has no inter-thread communication, the Java synchroniza-
tion required when checking for locks to release is extremely
fast because the virtual machine special-cases synchronizing
on a monitor that is never held by another thread.

Back-Off Policy.We can also consider different back-off
policies when a thread rolls back a transaction. To reduce
the likelihood of livelock we use exponential backoff, i.e.,
wait time b ∗ cn where n is the number of times a transac-
tion has failed to complete. We can choose b and c, though
unfortunately the virtual machine we used does not support
a result less than one millisecond.11

Results in the previous section used b = 1ms and c =
1.1. For tsp these small values produced the best results;
significantly larger values could lead to additional slowdown
by about a factor of two. The other benchmarks rollback
too rarely for the exact parameters to matter except for very

11The virtual machine implements the
sleep(long millis,long nanos) method of Thread by
rounding to the nearest number of milliseconds.

large values (e.g., b = 100ms a single unfortunate rollback
can produce very bad performance).

We also noticed that while a thread in tsp is sleeping after
having aborted a transaction, it is common for other threads
to “steal” locks it owns (as described in Section 3.4). The
reason is this common sequence of events, when two threads
are executing code that uses many of the same objects:

• Thread 1 needs object 1, currently owned by thread 2
so it waits for it.

• Thread 2 rolls back a transaction, releases object 1,
and sleeps.

• Thread 1 acquires object 1 and then acquires other
objects that thread 2 holds by stealing them.

If objects with this sort of locality shared a currentHolder

(i.e., the ownership had coarser granularity), we expect per-
formance would improve. This idea is our most important
future work.

Current-Holder Synchronization.We investigate the cost
of using an array of monitors for synchronizing access to
currentHolder fields. This array is necessary only to avoid
deadlock if the program still has synchronized statements.
Our benchmarks do not, so we can safely synchronize di-
rectly on the object whose currentHolder field we are ac-
cessing, which saves indirection and computing hashcodes.
The third column in Figure 8 shows the slowdown (i.e.,
speedup when numbers are less than 1) with this change.
The improvement is less than we expected, suggesting that
this level of indirection and hashcode computation is well-
optimized by the underlying virtual-machine.

Current-Thread Sharing.Results presented so far include
a simple optimization in our translation: Methods that use
the current-thread object more than once make one call to
AThread.currentThread and store the result in a local vari-
able. To make this even more useful, we also use versions
of the getter methods that take the current-thread as an ar-
gument. As the fourth column in Figure 8 shows, disabling
this common-subexpression elimination slows down tsp and
synchBench by 11–36%. This suggests we should add even
more sharing to our implementation.

Log Destruction.When an atomic block successfully com-
pletes, we just set the log indices back to 0 in preparation for
the next atomic block. Hence the logs can leak space if they
contain references to otherwise unreachable objects. For all
our benchmarks, the size of atomic blocks and/or the num-
ber of objects is too small for these potential leaks to occur,
but a safer approach is to write null in the log entries when
an atomic block commits. (Doing so does not change the
asymptotic running time of transactions since the number
of log entries is less than or equal to the number of writes
that occurred.) As the fifth column in Figure 8 shows, the
slowdown from taking the time to write these null values is
noticeable only for synchBench, in which we have no com-
putation except very short atomic blocks (so we are adding
a significant amount of work).

6.4 Summary
With weak atomicity, our performance results for small

benchmarks are surprisingly good considering the extra work

Benchmark (thread-count) default synchronize on this no current-thread sharing null-out logs

tsp (4) 0.72s 0.69s (0.96x) 0.98s (1.36x) 0.73s (1.02x)
tsp (8) 0.71s 0.73s (1.02x) 0.95s (1.33x) 0.74s (1.04x)
tsp (16) 0.74s 0.75s (1.01x) 0.96s (1.29x) 0.74s (1.00x)
crypt (4) 2.94s 2.93s (0.99x) 2.89s (0.98x) 2.94s (1.00x)
crypt (8) 2.80s 2.76s (0.98x) 2.75s (0.98x) 2.78s (0.99x)
crypt (16) 2.94s 2.90s (0.99x) 2.94s (1.00x) 3.00s (1.02x)
synchBench (4) 1000K 953K (1.05x) 903K (1.11x) 784K (1.28x)
synchBench (8) 499K 503K (.99x) 419K (1.19 x) 353K (1.41x)

Figure 8: Effect of changing current-holder synchronization, current-thread sharing, and log destruction on
our 8-processor machine. Times for tsp and crypt are absolute running times in seconds (low is good) with
slowdown relative to “default” in parentheses. Times for syncBench are “operations per second” (high is
good), with slowdown relative to “default” in parentheses. “Default” is the configuration used for other
experiments: optimized strong atomicity, separate monitors for current-holder instead of this, with current-
thread sharing, without writing null in log entries when atomic commits. Subsequent columns change one of
these policies at a time.

we add and the lack of virtual-machine support. With strong
atomicity, the results are less impressive. Our optimization
does improve overall performance, but too much unneces-
sary synchronization remains to take advantage of a multi-
processor. Tuning parameters such as polling frequency and
the cost of finding thread-local data can affect results, but
not dramatically. Hopefully simple dynamic adjustment of
such parameters will suffice for most applications.

7. RELATED WORK
Language design and implementation for software trans-

actions is a very active research area in the programming-
language and architecture communities, but we believe our
source-to-source translation approach, lock-based implemen-
tation, and barrier-removal optimization are all novel. This
section briefly describes other language designs, atomicity
implementations, and systems using similar implementation
techniques.

Language Design.We currently provide only the simplest
language construct for software transactions. Prior work
has provided conditional critical regions [18], better support
for external actions [17, 28], alternative composition [19, 2],
open transactions [10], and nested transactions [2]. Most
systems let a transaction abort explicitly; this addition is
trivial for us to support. Some systems let an uncaught
exception abort a transaction [19, 30] though we believe
this semantics is ill-advised [28]. Next-generation language
designs including Fortress [4], Chapel [13], and X10 [11] have
transactions, but implementations are not yet available.

Implementation Approach.To our knowledge, all prior
systems guaranteeing atomicity and fair-scheduling employ
one or more of: special-purpose hardware [16, 27, 5, 10],
optimistic concurrency protocols for software transactional
memory [29, 18, 19, 21, 2], limiting execution to one pro-
cessor [28, 22], or requiring the programmer to use special
library calls for transactional access to shared data. Soft-
ware approaches that require exclusive ownership for writes
to shared memory are perhaps closest to our approach, but
they still use version-number techniques for reads [21, 2].

Pessimistic Atomicity.The “pessimistic atomic sections”
provided by the Autolocker system [24] share the most im-
plementation ideas with our work, but there are substantial
differences. In Autolocker, a C programmer uses atomic

and also annotates data with what lock (if any) guards ac-
cess to it. A whole-program analysis then determines if it
can implement atomic by acquiring locks such that deadlock
is impossible. Salient differences with our system include:

• Autolocker provides weak atomicity.

• Autolocker does not provide even weak atomicity if
the programmer wrongly indicates that data accessed
within a transaction does not need a lock.

• Autolocker does not provide rollback or fairness: A
transaction that does not terminate will hold locks for-
ever, which can starve other threads.

• Autolocker requires whole-program analysis to avoid
deadlock, whereas we use whole-program analysis only
for optimization.

• Autolocker has the programmer choose locking granu-
larity and may reject a choice (if it cannot avoid dead-
lock), whereas we pick a granularity behind-the-scenes
and any granularity is correct.

Strong vs. Weak Atomicity.Although it is well-known
that weak and strong atomicity are semantically incompa-
rable [7], it is also widely believed that strong atomicity is
better for software-engineering but worse for performance.
We believe we are the first to investigate the performance of
strong atomicity without assuming novel hardware [5, 10],
a uniprocessor [28, 22], or a purely functional source lan-
guage [20]. One could provide strong atomicity in a weak
atomicity system in other ways, such as using a sound data-
race detector [1, 9] or treating every memory operation as
“its own little transaction.” Note our implementation is not
equivalent to the latter because outside transactions we re-
quire ownership but not logging.

Optimization.While the performance of the key primitives
for atomicity has been considered carefully by the work de-

scribed above, there has been considerably less work on in-
tegrating traditional compiler optimizations, i.e., consider-
ing program-specific optimizations. The work we are aware
of considers only weak atomicity [2] or transactional moni-
tors [32] (which have an even weaker semantics). The former
considers a tight integration of transactions into the compile-
time optimizer and the run-time system, leading to perfor-
mance often within 20% of non-transactional code. The lat-
ter inserts read and write barriers into a fairly high-level in-
termediate representation so that the compiler (in this case,
the Jikes RVM) can hopefully perform local optimizations.

8. CONCLUSIONS AND FUTURE WORK
We view our work as the first prototype of atomicity im-

plemented in terms of locks. We have shown the approach
scales reasonably well to a full object-oriented language and
that (at least for small benchmarks) whole-program opti-
mization can ameliorate some of the costs of strong atomic-
ity. As a source-to-source transformation written with an ex-
tensible compiler, our implementation will serve as an easy-
to-use starting point for us and others in ongoing research.

However, there remain performance limitations to over-
come and design parameters that remain completely unin-
vestigated. Here we sketch the areas of future work we find
particularly interesting.

• Ownership granularity: Our current implementation
groups ownership of all an object’s fields or array’s in-
dices but uses separate currentHolder fields for sepa-
rate objects. Other granularities, both finer (e.g., each
array index) and coarser (e.g., entire data structures),
would improve performance in some situations. We
are most interested in dynamically adjusting granular-
ity by changing how objects’ ownership is determined
by exploiting locality, namely the heuristic that ob-
jects accessed in the same transaction are likely to be
accessed in the same transaction again. The current
owner of an object can change how future ownership
is acquired based on dynamic information.

• Advantage of virtual-machine support: While our cur-
rent prototype gives us an unprecedented degree of
portability and let us build our prototype rapidly, we
are not opposed to virtual-machine support. More
specifically, we would like to determine which aspects
of the translation benefit most performance-wise when
we implement them beneath the Java layer and the ex-
tent to which we can keep atomicity decoupled from
other run-time support.

• More barrier removal: We have focused on our novel
optimization. It remains to complement it with alias
analysis, escape analysis, and immutability analysis.

• Early lock releasing: Our current implementation does
not release ownership of an object until another thread
requests it, but any release-point outside a transac-
tion is sound. For contended objects that the owning
thread is unlikely to use again soon, an “early release”
would improve performance. We believe dynamic in-
formation measuring contention will help. Moreover,
a thread that knows it holds no locks does not need to
poll to see if it must release any.

• Less conservative rollback: Our current implementa-
tion rolls back a transaction if a thread releases own-
ership of an object. Doing so is correct, but unnec-
essary if the transaction did not actually access the
object (i.e., the thread owned the object only due to
an earlier access).

• Reader-writer locks: Our current implementation dis-
allows concurrent reads of thread-shared data. Ex-
tending the notion of currentHolder to allow multiple
readers is straightforward in principle, but it remains
to investigate if the extra complexity helps or hurts
performance. For rarely mutated, highly-contended
data it probably helps.

• Other atomicity features: We would like to incorporate
“fancy” atomicity features such as the orelse combina-
tor [19] and parallelism within transactions [25, 2].

Availability: Our translator is publicly available. See
http://wasp.cs.washington.edu/wasp_atomjava.html or
contact the authors.

9. ACKNOWLEDGMENTS
Eric Choi and Tim Prouty provided implementation help

on log-duplicate detection and standard-library wrappers,
respectively. The Polyglot developers provided an excellent
tool, and in particular Nathaniel Nystrom provided prompt
and thorough assistance. Shaz Qadeer initially suggested
implementing atomicity with locks. This work benefited
from conversations with Manuel Fähndrich, Jim Larus, Vi-
jay Menon, Leaf Peterson, members of the WASP group at
the University of Washington, and many others.

10. REFERENCES
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for

safe locking: Static race detection for Java. ACM
Transactions on Programming Languages and
Systems, 28(2):207–255, 2006.

[2] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R.
Murphy, B. Saha, and T. Shpeisman. Compiler and
runtime support for efficient software transactional
memory. In ACM Conference on Programming
Language Design and Implementation, 2006. To
appear.

[3] J. Aldrich, E. G. Sirer, C. Chambers, and S. Eggers.
Comprehensive synchronization elimination for Java.
Science of Computer Programming, 47(2–3):91–120,
May–June 2003.

[4] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. Steele Jr., and S. Tobin-Hochstadt. The
Fortress language specification, version 0.707.
http://research.sun.com/projects/plrg/fortress0707.pdf.

[5] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.
Leiserson, and S. Lie. Unbounded transactional
memory. In 11th International Symposium on
High-Performance Computer Architecture, pages
316–327, Feb. 2005.

[6] B. Blanchet. Escape analysis for object-oriented
languages: Application to Java. In ACM Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, pages 20–34, Denver,
CO, Nov. 1999.

[7] C. Blundell, E. C. Lewis, and M. M. K. Martin.
Deconstructing transactions: The subtleties of
atomicity. In 4th Workshop on Duplicating,
Deconstructing, and Debunking, June 2005.

[8] J. Bogda and U. Hölzle. Removing unnecessary
synchronization in Java. In ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 35–46, Denver, CO, Nov.
1999.

[9] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: Preventing data races and
deadlocks. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 211–230, Seattle, WA, Nov. 2002.

[10] B. D. Carlstrom, J. Chung, A. McDonald, H. Chafi,
C. Kozyrakis, and K. Olukotun. The Atomos
transactional programming language. In ACM
Conference on Programming Language Design and
Implementation, 2006. To appear.

[11] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. In ACM Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, pages 519–538, 2005.

[12] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 1–19,
Denver, CO, Nov. 1999.

[13] Cray Inc. Chapel specification 0.4.
http://chapel.cs.washington.edu/specification.pdf.

[14] C. Flanagan, S. N. Freund, and M. Lifshin. Type
inference for atomicity. In 2005 ACM International
Workshop on Types in Language Design and
Implementation, pages 47–58, 2005.

[15] D. Grossman. Software transactions are to
concurrency as garbage collection is to memory
management, Feb. 2006. Submitted to an informal
workshop. Available at
http://www.cs.washington.edu/homes/djg/papers.

[16] L. Hammond, B. D. Carlstrom, V. Wong,
B. Hertzberg, M. Chen, C. Kozyrakis, and
K. Olukotun. Programming with transactional
coherence and consistency (tcc). In International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1–13, 2004.

[17] T. Harris. Exceptions and side-effects in atomic
blocks. In PODC Workshop on Concurrency and
Synchronization in Java Programs, July 2004.

[18] T. Harris and K. Fraser. Language support for
lightweight transactions. In ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 388–402, Oct. 2003.

[19] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy.
Composable memory transactions. In ACM
Symposium on Principles and Practice of Parallel
Programming, 2005.

[20] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on
a shared-memory multiprocessor. In Proceedings of the
2005 ACM SIGPLAN Workshop on Haskell, pages
49–61, Sept. 2005.

[21] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi.
Optimizing memory transactions. In ACM Conference
on Programming Language Design and
Implementation, 2006. To appear.

[22] J. Manson, J. Baker, A. Cunei, S. Jagannathan,
M. Prochazka, B. Xin, and J. Vitek. Preemptible
atomic regions for real-time Java. In 26th IEEE
Real-Time Systems Symposium, Dec. 2005.

[23] J. Manson, W. Pugh, and S. V. Adve. The Java
memory model. In 32nd ACM Symposium on
Principles of Programming Languages, pages 378–391,
Long Beach, CA, Jan. 2005.

[24] B. McCloskey, F. Zhou, D. Gay, and E. Brewer.
Autolocker: synchronization inference for atomic
sections. In 33rd ACM Symposium on Principles of
Programming Languages, pages 346–358, 2006.

[25] J. E. B. Moss and A. L. Hosking. Nested transactional
memory: Model and preliminary architecture sketches.
In OOPSLA 2005 Workshop on Synchronization and
Concurrency in Object-Oriented Languages, Oct. 2005.
https://urresearch.rochester.edu/handle/1802/2099.

[26] N. Nystrom, M. R. Clarkson, and A. C. Myers.
Polyglot: An extensible compiler framework for Java.
In 12th International Conference on Compiler
Construction, volume 2622 of Lecture Notes in
Computer Science, pages 138–152, Warsaw, Poland,
Apr. 2003.

[27] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
transactional memory. In 32nd International
Symposium on Computer Architecture, pages 494–505,
June 2005.

[28] M. F. Ringenburg and D. Grossman. AtomCaml:
First-class atomicity via rollback. In 10th ACM
International Conference on Functional Programming,
pages 92–104, Tallinn, Estonia, Sept. 2005.

[29] N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, Special
Issue(10):99–116, 1997.

[30] A. Shinnar, D. Tarditi, M. Plesko, and
B. Steensgaard. Integrating support for undo with
exception handling. Technical Report
MSR-TR-2004-140, Microsoft Research, Dec. 2004.

[31] C. von Praun and T. R. Gross. Static conflict analysis
for multi-threaded object-oriented programs. In ACM
Conference on Programming Language Design and
Implementation, pages 115–128, 2003.

[32] A. Welc, S. Jagannathan, and A. L. Hosking.
Transactional monitors for concurrent objects. In
European Conference on Object-Oriented
Programming, 2004.

