Answering Structured Queries on Unstructured Data

Jing Liu and Xin Dong Alon Halevy
University of Washington Google Inc.
Seattle, WA 98195 Mountain View, CA 94022
{liujing, lunadong}@cs.washington.edu halevy@google.com
June 7, 2006
Abstract

There is growing number of applications that require access to both structured and unstruc-
tured data. Such collections of data have been referred to as dataspaces, and Dataspace Support
Platforms (DSSPs) were proposed to offer several services over dataspaces, including search and
query, source discovery and categorization, indexing and some forms of recovery. One of the key
services of a DSSP is to provide seamless querying on the structured and unstructured data.
Querying each kind of data in isolation has been the main subject of study for the fields of
databases and information retrieval. Recently the database community has studied the problem
of answering keyword queries on structured data such as relational data or XML data. The only
combination that has not been fully explored is answering structured queries on unstructured
data.

This paper explores an approach in which we carefully construct a keyword query from
a given structured query, and submit the query to the underlying engine (e.g., a web-search
engine) for querying unstructured data. We take the first step towards extracting keywords
from structured queries even without domain knowledge and propose several directions we can
explore to improve keyword extraction when domain knowledge exists. The experimental results
show that our algorithm works fairly well for a large number of datasets from various domains.

1 Introduction

Significant interest has arisen recently in combining techniques from data management and infor-
mation retrieval [1, 5]. This is due to the growing number of applications that require access to
both structured and unstructured data. Examples of such applications include data management
in enterprises and government agencies, management of personal information on the desktop, and
management of digital libraries and scientific data. Such collections of data have been referred to
as dataspaces [8], and Dataspace Support Platforms (DSSPs) were proposed to offer several services
over dataspaces, including search and query, source discovery and categorization, indexing and
some forms of recovery.

One of the key services of a DSSP is to provide seamless querying on the structured and
unstructured data. Querying each kind of data in isolation has been the main subject of study for
the fields of databases and information retrieval. Recently the database community has studied
the problem of answering keyword queries on structured data such as relational data or XML
data [10, 2, 4, 21, 11].

The only combination that has not been fully explored is answering structured queries on un-
structured data. Informat-ion-extraction techniques attempt to extract structure from unstructured

data such that structured queries can be applied. However, such techniques rely on the existence
of some underlying structure, so are limited especially in heterogeneous environments.

This paper explores an approach in which we carefully construct a keyword query from a given
structured query, and submit the query to the underlying engine (e.g., a web-search engine) for
querying unstructured data. We begin by describing the many ways our strategy can contribute in
supporting query answering in a dataspace.

1.1 Motivation

Broadly, our techniques apply in any context in which a user is querying a structured data source,
whereas there are also unstructured sources that may be related. The user may want the structured
query to be expanded to include the unstructured sources that have relevant information.

Our work is done in the context of the Semex Personal Information Management (PIM) Sys-
tem [6]. The goal of SEMEX is to offer easy access to all information on one’s desktop, with possible
extension to mobile devices, imported databases, and the Web. The various types of data on one’s
desktop, such as emails and contacts, Latex and Bibtex files, PDF files, Word documents and
Powerpoint presentations, and cached webpages, form the major data sources managed by SEMEX.
On one hand, SEMEX extracts instances and associations from these files by analyzing the data
formats, and creates a database. For example, from LATEX and BIBTEX files, it extracts Paper,
Person, Conference, Journal instances and authoredBy, publishedIn associations. On the other hand,
these files contain rich text and SEMEX considers them also as unstructured data.

SEMEX supports keyword search by returning the instances whose attributes contain the given
keywords and the documents that contain the keywords. In addition, SEMEX allows sophisticated
users to compose structured queries to describe more complex information needs. In particular,
SEMEX provides a graphical user interface to help users compose triple queries, which in spirit are
the same as SPARQL queries [19] and describe the desired instances using a set of triples. Below
is an example triple query asking for the papers that cite Halevy’s SEMEX papers (note that users
enter the queries through the user interface and never see the syntax below):

SELECT $t
FROM $pal as paper, $pa2 as paper, $pe as person
WHERE $pal cite $pa2, $pa2 title °‘Semex’’

$pa2 author $pe, $pe name °‘Halevy’’

$pal title $t

Ideally, the query engine should answer this type of queries not only on the database, but also
on the unstructured data repository. For example, it should be able to retrieve the PDF or Word
documents that cite Halevy’s SEMEX papers, and retrieve the emails that mention such citations.
More broadly, it should be able to search the Web and find such papers that do not reside in
the personal data. The results can be given as file descriptions of the documents or links of the
webpages, so the user can explore them further. This is the first place keyword extraction is useful:
we can extract a keyword set from the triple query, and perform keyword search on the unstructured
data repository and on the web.

Continuing with this example, suppose the user has imported several databases from exter-
nal data sources, including the XML data from the Citeseer repository, and the technical-report
data from the department relational database. When the user poses this triple query, she also
expects results to be retrieved from the imported data. Note that although the imported data are
structured, they do not share the same schema with the database created by SEMEX. In addition,

SQL Queries XML Queries Triple Queries

Query-graph
Construction
Query Graph
Keyword
Extraction
Keyword Set

Figure 1: Our approach to keyword extraction. In the first step we construct a query graph for the
structured input query, and in the second step we choose the node labels and edge labels from the graph
that best summarize the query.

the mappings between the schemas are not given and typically cannot be easily established. One
possible solution is to transform the query into keyword search by keyword extraction. Then, by
applying existing techniques on answering keyword queries on structured data, SEMEX can retrieve
relevant information even without schema mapping.

1.2 Owur Contributions

In this paper, we study how to extract keywords from a structured query, such that searching the
keywords on an unstructured data repository obtains the most relevant answers. The goal is to
obtain reasonably precise answers even without domain knowledge, and improve the precision if
knowledge of the schema and the structured data is available.

As depicted in Figure 1, the key element in our solution is to construct a query graph that
captures the essence of the structured query, such as the object instances mentioned in the query,
the attributes of these instances, and the associations between these instances. With this query
graph, we can ignore syntactic aspects of the query, and distinguish the query elements that convey
different concepts. The keyword set is selected from the node and edge labels of the graph.

Our algorithm selects attribute values and schema elements that appear in the query (they also
appear as node labels and edge labels in the query graph so are referred to as labels), and uses them
as keywords to the search engine. When selecting the labels, we wish to include only necessary
ones, so keyword search returns exactly the query results and excludes irrelevant documents. We
base our selection on the informativeness and representativeness of a label: the former measures the
amount of information provided by the label, and the latter is the complement of the distraction
that can be introduced by the label. Given a query, we use its query graph to model the effect of a
selected label on the informativeness of the rest of the labels. By applying a greedy algorithm, we
select the labels with the highest informativeness and representativeness.

In particular, our contributions are the following:

1. We propose a novel strategy to answering structured queries on unstructured data. We
extract keywords from structured queries and then perform keyword search using information
retrieval.

2. We take a first step towards extracting keywords from structured queries even without domain
knowledge, and propose several directions we can explore to improve keyword extraction when

domain knowledge exists. The experimental results show that our algorithm works fairly well
for a large number of datasets from various domains.

This paper is organized as follows. Section 2 discusses related work. Section 3 defines the
problem. Section 4 describes our algorithm in selecting keywords from a given query. Finally,
Section 5 presents experimental results and Section 6 concludes.

2 Related Work

The Database community has recently considered how to answer keyword queries on RDB data [10,
2, 4] and on XML data [21, 11]. In this paper, we consider the reverse direction, answering
structured queries on unstructured data.

There are two bodies of research related to our work: the information-extraction approach and
the query-transformation approach. Most information-extraction work [9, 16, 17, 18, 13, 7, 3] uses
supervised learning, which is hard to scale to data in a large number of domains and apply to the
case where the query schema is unknown beforehand.

To the best of our knowledge, there is only one work, SCORE [15], considering transforming
structured queries into keyword search. SCORE extracts keywords from query results on structured
data and uses them to submit keyword queries that retrieve supplementary information. Our
approach extracts keywords from the query itself. It is generic in that we aim to provide reasonable
results even without the presence of structured data and domain knowledge; however, the technique
used in SCORE can serve as a supplement to our approach.

3 Problem Definition

We define the keyword extraction problem as follows. Given a structured query (in SQL, XQuery,
etc.), we extract a set of keywords from the query. These keywords are used to construct a keyword
query that returns information potentially relevant to the structured query. A keyword search on a
large volume of unstructured data often returns many results; thus, we measure the quality of the
answers using top-k precision — the percentage of relevant results in the top-k results. We consider
queries that do not contain disjunctions, comparison predicates (e.g., #, <) or aggregation. Such
queries are common in applications such as PIM and digital libraries.

The following example shows some of the challenges we face.

Example 1. Consider a simple SQL query that asks for Dataspaces papers published in 2005.

SELECT title
FROM paper
WHERE title LIKE ‘JDataspaces’,” AND year = ‘2005’

We have many options in keyword extraction and the following list gives a few:

1. Use the whole query: “select title from paper where title LIKE ‘dataspaces’ and year = ‘2005’
2

2. Use the terms in the query excluding syntactic sugar (e.g., select, from, where): “paper title
+dataspaces year +2005”. (Most search engines adopt the keyword-search syntax that requires
the keyword following a “+7 sign to occur in the returned documents or webpages.)

3. Use only the text values: “+dataspaces +2005”.
4. Use a subset of terms in the query: “+dataspaces +2005 paper title”.
5. Use another subset of terms in the query: “+dataspaces +2005 paper”.

A human would most probably choose the last keyword set, which best summarizes the objects
we are looking for. Indeed, at the time of the experiment, Google, Yahoo, and MSN all obtained
the best results on the last keyword set (Google obtained 0.6 top-10 precision), and the first hits
all mentioned the dataspaces paper authored by Franklin et al. in 2005 (two of the search engines
returned exactly the paper as the top hit). In contrast, for the first two keyword sets, none of the
three search engines returned relevant results. For the third and fourth keyword sets, although some
of the top-10 results were relevant, the top-10 precisions were quite low (Google obtained 0.2 top-10
precisions on both keyword sets). O

To explain the above results, we consider the possible effects of a keyword. On the one hand, it
may narrow down the search space by requiring the returned documents to contain the keyword.
On the other hand, it may distract the search engine by bringing in irrelevant documents that
by chance contain the keyword. Ideally, we should choose keywords that are informative and
representative: the keywords should significantly narrow down the search space without distracting
the search engine. We describe our keyword-extraction approach in the next two sections.

4 Constructing keyword queries

To create a keyword query from a structured query @), we first construct)’s query graph, and
then extract keywords from it. Intuitively, the query graph captures the essence of the query and
already removes irrelevant syntactic symbols. In this section, we first define the query graph and
then describe keyword extraction.

4.1 Query Graph

In constructing the graph, we model the data as a set of object instances and associations between
the instances. Each instance belongs to a particular class and corresponds to a real-world object.
An instance is described by a set of attributes, the values of which are ground values. An association
is a relationship between two instances. We can view a query as a subgraph pattern describing the
queried instances with their attributes and directly or indirectly associated instances.

Definition 4.1. (Query Graph) A query graph Gg = (V,E) for query Q is an undirected graph
describing the instances and associations mentioned in (.

e For each instance mentioned in QQ, there is an instance node in V', labelled with the name of
the instance class.

e For each association mentioned in @, there is an association edge in F labelled with the
association name. The association edge connects the two instance nodes involved in the as-
sociation.

e For each ground value in @, there is a value node in V' labelled with the value, and an attribute
edge in E labelled with the attribute name. The attribute edge connects the value node and
the node of the owner instance.

Figure 2: The query graph for the query in Example 1. The graph contains one instance node — paper,
two value nodes — “Dataspaces” and “2005”, and one question node. The nodes are connected by three
attribute edges.

o For each queried attribute in @, there is a question node in V labelled with “?”, and an
attribute edge in E labelled with the attribute name. The attribute edge connects the question
node and the node of the queried instance. ([

As an example, Figure 2 shows the query graph for Example 1.

4.1.1 Query-graph Construction

It is straightforward to construct query graphs for triple queries. The process is more tricky for
SQL queries; for example, a table in a relational database can either record a set of object instances
or a set of associations. We now describe in details how we construct a query graph for SQL queries.

Intuitively, attributes in a SELECT-clause correspond to question nodes. In the WHERE-
clause, select predicates (in form of attr = value or attr LIKE wvalue) correspond to value nodes,
and join predicates correspond to association edges. Tables in a FROM-clause can correspond to
either instance nodes or association edges.

We construct a query graph for a SQL query in two steps. In the first step, we construct a
preliminary graph by considering all tables in the query as object instances. In the second step, we
compact the graph by updating certain instances to association edges.

Specifically, the first step proceeds as follows:

e For each table in the FROM-clause, there is an instance node labeled with the table name.

e For each attribute in the SELECT-clause, there is a question node connected with the cor-
responding instance node. The edge between the question node and the instance node is an
attribute edge labeled with the attribute name.

e For each select predicate in the WHERE-clause, there is a value node labeled with the given
value, connected with the corresponding instance node. The edge between the value node
and the instance node is an attribute edge labeled with the attribute name.

e For each join predicate in the WHERE-clause, there is an association edge connecting the
two corresponding instance nodes, labeled with the two attribute names. We omit common
terms such as “ID” and “key”.

In the second step, we compact the graph by removing unnecessary instance nodes. Suppose
a sequence of instance nodes Ny, ..., N; forms a chain, and each of N;,i € [1,¢ — 1] has only two
neighbors N;_1 and N;; ;. We remove Ni,...,N;_1 and connect Ny and Ny with an association
edge, labeled with all labels of the nodes and edges on the path from Ny to N;. Note that if there
are multiple nodes with the same label, we either remove all of them or leave all as instance nodes
to keep consistency.

Figure 3: Constructing the query graph for the SQL query in Example 2. (a) In the first step, we construct
a preliminary graph. (b) In the second step, we remove the cite node and the two author nodes.

) /08

“Dataspaces” “Dataspaces”
(1.0.8) (1.0.8)

(@ (b)

)

(©

Figure 4: The query graph with i-scores and r-scores for the query in Example 1. (a) The initial (i-score, -
score) pairs. (b) The information flow representing the effect of the “Dataspaces” label. (b) The information
flow representing the effect of the “Paper” label.

The above graph-construction algorithm assumes no knowledge of the query schema. However,
in presence of such knowledge, we can refine the compacting step. For example, if we know that
all attributes of a table T are foreign keys to other tables, we consider T" as describing associations
and shortcut T’s neighbors with an association edge. To construct a query graph from an XML
query is similar.

Example 2. Consider the following SQL query:

SELECT pl.name
FROM Paper AS al, Paper AS a2, Cite,
Person AS pl, Person AS p2,
AuthoredBy AS bl, AuthoredBy AS b2
WHERE bl.pid = pl.id AND bl.aid = al.id
AND Db2.pid = p2.id AND b2.aid = a2.id
AND Cite.pid = al.id AND Cite.cid = a2.id
AND p2.name LIKE ‘%Halevy¥’
AND a2.title LIKE ‘Y%Semex}’

In the first step, we construct a graph shown in Figure 3(a). Note that the association edges do
not have labels because all the involved attributes are various forms of “id”. In the second step, we
remove the cite node and the two author nodes, obtaining the graph shown in Figure 3(b). We do
not remove the paper nodes because there exists a paper node with value-node neighbors. O

4.2 Extracting Keywords

We wish to include only necessary keywords rather than adding all relevant ones. This principle is
based on two observations. First, a keyword often introduces distraction, so unnecessary keywords
often lower the search quality by returning irrelevant documents. Second, real-world documents

are often crisp in describing instances. For example, rather than saying “a paper authored by a
person with name Halevy”, we often say “Halevy’s paper”’. Involving “authored by”, “person” and
“name” in the keyword set does not add much more information. We base our label selection on
judging the informativeness and representativeness of labels. We first introduce measures for these
two characteristics, and then describe our algorithm.

4.2.1 Informativeness and representativeness

Intuitively, informativeness measures the amount of information provided by a label term. For
example, attribute values are more informative than structure terms. Representativeness roughly
corresponds to the probability that searching the given term returns documents or webpages in
the queried domain. For example, the term “paper” is more representative than the term “title”
for the publication domain. We use i-score to measure informativeness and r-score to measure
representativeness. Given a node label or edge label I, we denote its i-score as i;, and r-score as r;.
Both 4; and r; range from 0 to 1. Note that the representativeness of label [is the complement of
I’s distractiveness, denoted as dj, so d; = 1 — r;. Figure 4(a) shows the initial (i-score,r-score) pair
for each label (we will discuss shortly how we initialize the scores).

We observe that the informativeness of a label also depends on the already selected keywords.
For example, consider searching a paper instance. The term “paper” is informative if we know
nothing else about the paper, but its informativeness decreases if we know the paper is about
“dataspaces”, and further decreases if we also know the paper is by “Halevy”. In other words, in
a query graph, once we select a label into the keyword set, the informativeness of other labels is
reduced.

We model the effect of a selected label s on the i-scores of other labels as an information flow,
which has the following three characteristics:

e At the source node (or edge), the flow has volume r,. The reason is that the effect of s is
limited to the search results that are related to the queried domain, and this percentage is r
(by definition).

e The information flow first goes to the neighbor edges or nodes (not including the one from
which the flow comes). If s is a label of an instance node, the flow value is divided among the
neighbor edges. Specifically, let n be the number of different labels of the neighbor edges, the
flow volume on each edge is 7s/n. The division observes the intuition that the more distinct
edges, the more information each edge label provides even in presence of the s label, and thus
the less effect s has on these labels.

e After a flow reaches a label, its volume decreases by half. It then continues flowing to the
nodes (or edges) at the next hop and is divided again, until reaching value nodes or question
nodes. In other words, s’s effect dwindles exponentially in the number of hops. Note that
the flow is only affected by the r-score of the source node, but not the r-scores of other nodes
that it reaches.

When we add a new label to the keyword set, we compute the effect of the label on the rest of
the labels and update their i-scores. Once a keyword set is fixed, the i-scores of the rest of the labels
are fixed, independent of the order we select the keywords. Figure 5 gives the formal algorithm for
i-score update.

Example 3. Consider the query graph in Figure 4(a). Figure 4(b) shows the effect of the value
label “Dataspaces” on the i-scores of the rest of the nodes, and Figure 4(c) shows the effect of the

procedure UPDATEISCORE(G, S, rg,I)
//G is the input query graph;
//S is the label just added to the keyword set
//rs is the r-score for the S label
//I is the array of i-scores for labels in G;
queue = {S};
1(5] = rs, P[S] = {5};
while queue # ()
T = pop(queue)
if T is an edge label
f=1
else
f = #(T’s neighbor edges not including P(S)
and with different labels
for each label L in T’s neighbors in G
if Le P(S)||lrr, <0
continue;
ip— =1I[T]/2f;
Add L to P[S];
if L & queue
push(queue, L);

Figure 5: Algorithm for i-score update.

Figure 6: Extracting keywords from query graph in Figure 4(a). (a) The i-scores of the labels after selecting
the labels “Dataspaces” and “2005”. (b) The i-scores of the labels after selecting the label “Paper”.

instance label “Paper”. Note that we divide 0.6 by 2 rather than by 3, because the three edges are
labelled by only two distinct labels. O

4.2.2 Selecting labels

When we select node or edge labels, we wish to choose those whose provided information is larger
than the possible distraction; that is, ¢ > d =1 —17,s0 i+ 7 > 1. We select labels in a greedy
fashion: in each step we choose the label with the highest ¢ 4+ r, and terminate when there are no
more labels with ¢ +r > 1. Specifically, we proceed in three steps.

1. We choose all labels of value nodes. After adding each label to the keyword set, we update
the i-scores of the rest of the nodes.

2. If there are labels satisfying ¢ +r > 1, we choose the one with the largest i + r. We add the
label to the keyword set and update the i-scores of the rest of the nodes.

3. We iterate step 2 until no more labels can be added.

Figure 7 gives the algorithm for label selection.

Example 4. Consider the query graph in Figure 4(a). We select labels in two steps. In the first
step, we select the labels of all value nodes, “Dataspaces” and “2005”. The updated i-scores are

procedure LABELSELECTION(G, I, R) return K
//G is the input query graph;
//I is the array of i-scores for labels in G;
//R is the array of r-scores for labels in G;
//K is the selected keyword set;
K =
for each attribute-value label V' in G;
Add V to K
UpdatelScore(G, V, ry, I);
while (true)
Select the label L with the max I(L) + R(L);
if I(L) + R(L) <=1 break;
Add L to K;
UPDATEISCORE(G, L, rp, I);
return K;

Figure 7: Algorithm for label selection.

shown in Figure 6(a). We then select label Paper, and the updated i-scores are shown in Figure 6(b).
After this step no more labels satisfy the condition i+1r > 1 so the algorithm terminates. The result
keyword set is thus “Dataspaces 2005 paper”. O

4.2.3 Initializing i-scores and r-scores

We now discuss how to initialize the i-scores and r-scores. When we have no domain knowledge, we
assign default values for different types of labels. We observe the web data for the representativeness
of different types of nodes, and assign r-scores accordingly. For i-scores, we consider values and the
class name of the queried instance as more informative and set the i-scores to 1, and consider other
labels less informative. We will discuss the default score setting in our experiments in Section 5.

There are several ways to obtain more meaningful r-scores in presence of domain knowledge,
and here we suggest a few. The first method is to do keyword search on the labels. Specifically, for
a label [, we search [using the unstructured dataset on which we will perform keyword search. We
manually examine the top-k (e.g., & = 10) results and count how many are related to the queried
domain. The percentage A is considered as the r-score for the [label.

Another approach is to do Naive-Bayes learning on a corpus of schemas and structured data in
the spirit of [12]. As an example, we discuss how to compute the r-scores of instance names. We
divide the schemas into a set of domains, each containing a set of schemas. Suppose the corpus
contains domains Dy, ..., D;, schemas Si,...,S),, and class names C1,...,C,. We say S; € D; if
the schema S; belongs to the domain D;, and we say Cj, € S; if the class name C}, occurs in the
schema S;. We now apply Naive Bayes learning to calculate the probability that the label C' of an

10

[Top-2 precision @ Top-10 precision

Precision

Movie Geography Company Bibliography = DBLP Car Profile

Figure 8: Top-2 and top-10 precision in different domains without applying domain knowledge. With our
default settings of i-scores and r-scores, our algorithm performed well in all domains.

instance node represents a class in the queried domain D:

P(C|D)-P(D
roie) — 29D D)
I{5;18,€D,CeS8;} . [{S;|S;€D}|
_ 1{5;15;€D}| m
! [{S;|S;€D;,0€S;} |{S;1S;€D:}|
S (B oengrt - e

{Sj|5; € D,C € S;}|
Yie1 [{Sj1S; € Di, C € Sy}
{5|5; € D,C € S;}|

s {S;51C € S;}

The value of P(D|C) can be considered as the r-score of the C label. Similarly, we can compute
the r-scores for attribute names and association names. Finally, given an attribute a, to decide
the r-score of its value labels, we randomly sample a number of values of the a attribute from the
structured data and calculate the probability that the value belongs to the queried domain D. We
use the average probability as the r-score.

The second approach learns the scores from the corpus, and so performs well only if the corpus
and the unstructured data observe the same pattern. However, it is an alternative when the
unstructured data source is unknown. Note that although this training phase is expensive, it is a
one-time process and can significantly improve search performance.

5 Experimental Results
This section describes a set of experiments that begin to validate our keyword-extraction algorithm.

Our goal is to show that our algorithm performs well even without domain knowledge, and that
search quality improves when domain knowledge exists.

11

—— QUERYGRAPH —— VALUE --+-VALUEQUERY --=- VALUETABLE = ALL

(a) Top-10 precision (Length=0) (b) Top-10 precision (Length=0)
1 11
0.8 08 |
5 5
B 0.6 @ 0.6
O (&)
D 04 D 04
a a
02 0.2 1
0 0
0 1 0 1 2
#Value #Value
(© Top-10 precision (Length=1) (d) Top-10 precision (Length=1)
1 15
0.8 058 A
5 5
B 0.6 @ 0.6
O (&)
L 04 O 04
a a
02 02 1
0 0
0 1 2 0 1 2
#Value #Value

Figure 9: Top-10 precision for queries with length 0 in (a) the movie domain and (b) the geography domain,
and with length 1 in (c¢) the movie domain, and (d) the geography domain. QUERYGRAPH beat other
solutions in most cases and the top-10 precision increased with the growing number of attribute values. (In
(a) and (b) the VALUETABLE line and the QUERYGRAPH line overlap, as the two methods extract the same
keywords.)

5.1 Experiment Setup

We selected six different domains from the UW XML repository [20] and the Niagara XML reposi-
tory [14], including movie, geography, company profiles, bibliography, DBLP, and car profiles. The
schemas for these domains vary in complexity, such as the number of elements and attributes, and
the number of children of each element.

When we selected queries, we varied two parameters in the selected queries: #wvalues and
length. The former is the number of attribute values in the query, indicating the amount of value
information given by the query. The latter is the longest path from a queried instance (the instance
whose attributes are queried) to other instances in the query graph, corresponding to the complexity
of the structure information presented in the query. Finally, we randomly selected text values from
the XML data for our queries. After generating the keyword set from the input queries, we used
the Google Web API to search the web.

We measured the quality of our extracted keywords by top-k precision, which computes the
percentage of the top k hits that provide information relevant to the query. We analyzed the
results using top-2 and top-10 precision.

Finally, we set the default values for i-scores and r-scores as follows (we used the same setting

12

—— QUERYGRAPH —— VALUE --+-VALUEQUERY --=- VALUETABLE = ALL

(a) Top-10 precision (#Value=1) (b) Top-10 precision (#Value=1)
11 11
0.8 A 08 A
5 &
5 06 5 06 -
(8] [&]
D 04 1 © 04 1
a o
02 1 0.2 A
0 0
1 2 3 1 2 3
Length Length
(© Top-10 precision (#Value=2) (d) Top-10 precision (#Value=2)
11 11
0.8 A 08 A
5 &
5 06 5 06 -
(8] [&]
D 04 - O 04 \’\‘
a o ——
0.2 0.2 A e o
0 0
1 2 3 1 2 3
Length Length

Figure 10: Top-10 precision of queries with one attribute value in (a) the movie domain and (b) the
geography domain, and with two attribute values in (¢) the movie domain and (d) the geography domain.
QUERYGRAPH beat other solutions in most cases and the top-10 precision went down as the query length
increased.

for all domains).

e i-scores: 1 for value labels and labels of queried instances, and 0.8 for other labels.

e r-scores: 0.8 for text-value labels and labels of associations between instances of the same
type, 0.6 for instance labels, 0.4 for association labels, 0.2 for attribute labels, and 0 for
number-value labels.

5.2 Experimental Results

We validated our algorithm on six domains, and the results are shown in Figure 8. We observe that
our algorithm performed well in all domains. With our default settings for i-scores and r-scores,
the top-2 and top-10 precisions in different domains were similar. The average top-2 precision was
0.68 and the average top-10 precision was 0.59.

5.2.1 Contributions of the Query Graph

We now compare QUERYGRAPH with several other approaches that select terms directly from the
query.

13

H QUERYGRAPH B QUERYGRAPH_DK

Precision

Movie Geography Company Bibliography = DBLP Car Profile

Figure 11: Top-10 precision. QUERYGRAPH_DK applies domain knowledge and QUERYGRAPH does not.
It shows that by applying domain knowledge, our algorithm can further improve search quality.

e ALL: Include all terms except syntactic symbols.
e VALUE: Include only ground values.

e VALUEQUERY: Include ground values and all table and attribute names in the SELECT-
clause.

e VALUETABLE: Include ground values and all table names in the FROM-clause.

We report the results on two domains: movie and geography. We observed similar trends on
other domains.

Varying the number of values: We first consider the impact of #values on keyword extraction.
We considered queries with length 0 or 1, and varied #values from 0 to 2 when it applies. Figure 9
shows the top-10 precision.

We observed the following. First, in most cases QUERYGRAPH obtained higher precision than
the other approaches. It shows that including appropriate structure terms obtained much better
results than searching only the text values. Second, when the number of attribute values increases,
most approaches obtained better search results, but ALL performed even worse because it includes
distractive keywords.

Varying query length: We now examine the effect of the structure complexity on search per-
formance. We considered queries with 1 or 2 attribute values, and varied the length from 1 to 3.
Figure 10 shows the results. We observed that our algorithm again beat other methods in most
cases. As the length of the query grew, the top-10 precision dropped. This is not a surprise as
complex query structure complicates the meaning of the query.

5.2.2 Applying Domain Knowledge

We finally examine how the domain knowledge helps in keyword extraction. When we applied
domain knowledge, the average top-2 precision was 0.92 and the average top-10 precision was 0.81.
Figure 11 shows a comparison of top-10 precisions with and without domain knowledge on various
domains. The top-10 precisions increased 39% on average. It shows that our algorithm can further
improve the search quality by applying domain knowledge.

14

6 Conclusions and Future Work

We described an approach for extracting keyword queries from structured queries. The extracted
keyword queries can be posed over a collection of unstructured data in order to obtain additional
data that may be relevant to the structured query. The ability to widen queries in this way is an
important capability in querying dataspaces, that include heterogeneous collections of structured
and unstructured data.

Although our experimental results already show that our algorithm obtains good results in
various domains, there are multiple directions for future work. First, we can refine our extracted
keyword set by considering the schema or maybe even a corpus of schemas. For example, we can
replace an extracted keyword with a more domain-specific keyword in the schema; we can also
add keywords selected from the corpus to further narrow down the search space. Second, we can
use existing structured data, as proposed in SCORE [15], to supplement the selected keyword set.
Third, we can perform some linguistic analysis of the words in the structured query to determine
whether they are likely to be useful in keyword queries. Finally, we would like to develop methods
for ranking answers that are obtained from structured and unstructured data sources.

References

[1] S. Abiteboul and et al. The Lowell database research self assessment. CACM, 48(5), 2005.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based search over relational
databases. In ICDE, 2002.

[3] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction with lixto. In VLDB,
2001.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching and browsing
in databases using BANKS. In ICDE, 2002.

[5] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and IR technologies: What is the
sound of one hand clapping? In CIDR, 2005.

[6] X. Dong and A. Halevy. A platform for personal information management and integration. In CIDR,
2005.

[7] O. Etzioni, M. Cafarella, and D. Downey. Web-scale information extraction in KnowlItAll (preliminary
results). In Proc. of the Int. WWW Conf., 2004.

[8] M. Franklin, A. Halevy, and D. Maier. From databases to dataspaces: A new abstraction for information
management. Sigmod Record, 34(4):27-33, 2005.

[9] D. Freitag and A. McCallum. Information extraction with HMMs and shrinkage. In AAAI-99 Workshop
on Machine Learning for Information Extraction, 1999.

[10] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational databases. In VLDB,

2002.

[11] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on XML graphs. In
ICDE, 2003.

[12] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy. Corpus-based schema matching. In ICDE,
2005.

[13] A. McCallum. Efficiently inducing features or conditional random fields. In UAI, 2003.
[14] Niagara XML repository. http://www.cs.wisc.edu/ niagara/data.html, 2004.

15

[15] P. Roy, M. Mohania, B. Bamba, and S. Raman. Towards automatic association of relevant unstructured
content with structured query results. In CIKM, 2005.

[16] M. Skounakis, M. Craven, and S. Ray. Hierarchical hidden markov models for information extraction.
In IJCAI 2003.

[17] S. Soderland. Learning information extraction rules for semi-structured and free text. Machine Learning,
34(1-3):233-272, 1999.

[18] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. Crystal: Inducing a conceptual dictionary. In
1JCAI 1995.

[19] SPARQL. http://www.w3.org/ TR /rdf-sparqgl-query/, 2003.
[20] UW XML data repository. http://www.cs.washington.edu/ research/xmldatasets/, 2002.

[21] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML databases. In
Sigmod, 2005.

16

