
Moirae: History-Enhanced Monitoring

Magdalena Balazinska1, YongChul Kwon1, Nathan Kuchta1, and Dennis Lee2

1Department of Computer Science and Engineering 2Website Platform
University of Washington, Seattle, WA Amazon.com

{magda,yongchul,nkuchta}@cs.washington.edu {dennisl}@amazon.com

ABSTRACT
In this paper, we present the benefits and challenges of integrat-
ing history into a near-real-time monitoring system. In particular,
we address the specific problem of enhancing current events with
historical information, by efficiently retrieving for each newly de-
tected event similar past events (e.g., car accidents, network intru-
sions, server failures). We focus on applications where querying a
historical log in its entirety would be too slow to meet application
needs, and could potentially yield an overwhelming number of re-
sults. We propose a general purpose continuous monitoring system,
called Moirae, that efficiently produces with each new event an ap-
proximate set of most similar recent events. We present the design
of Moirae, show how our proposed architecture achieves the above
goals, and discuss the applicability of the architecture to other types
of integration between historical data and continuous monitoring.

1. INTRODUCTION
Monitoring applications enable users to continuously observe the

current state of a system, and receive alerts when interesting com-
binations of events occur. Monitoring applications exist in vari-
ous domains, such as sensor-based environment monitoring (e.g.,
air quality monitoring, car-traffic monitoring), military applications
(e.g., target detection, platoon tracking), and network monitoring
(e.g., intrusion detection). Although the current state of the sys-
tem is the focus of monitoring applications, when events of interest
occur, historical information is usually necessary to explain these
events, and determine appropriate responses. As an example, con-
sider a computer-system monitoring application, where an adminis-
trator receives alerts when servers fail. To determine the cause of a
failure, it may help the administrator to see, with each alert, similar
alerts that occurred in the past as well as the context of these alerts.
Similar alerts could be those where the type of failure was the same
and the state of the system was similar (e.g., the list of logged users
and running processes overlapped, even though the failure occurred
on a different server). By comparing the contexts of the current and
past alerts, the administrator may quickly determine which process
and user are causing the problems.

There are many scenarios where historical information is a criti-
cal component of continuous monitoring. Today’s continuous mon-
itoring engines provide efficient near-real time processing of infor-
mation streaming-in from the monitored environment [1, 2, 8, 18].
Our goal is to enhance the output produced by these engines with
relevant historical information. In particular, we start with the fol-
lowing concrete problem: for each newly detected event, quickly
retrieve a set of k most similar events that occurred in the past along
with the context of these events. For example, when a server fails,
quickly retrieve a set of k earlier failures with an overlapping set of
logged users and running processes.

The challenge in exploiting historical information comes from
the sheer volume of historical data. Monitoring systems can eas-
ily produce Gigabytes and even Terabytes of data every day. Some
systems use the history to build a model of the monitored environ-
ment [14] and, at runtime, compare the current state of the sys-
tem to the model. We explore a different approach. Our goal is to
query history for specific past events, similar to the current event.
TelegraphCQ [7] is a continuous monitoring engine with support
for integrated queries over both archived data and live data. Tele-
graphCQ returns all results matching a query over the archive (or a
uniform sample). Instead, our goal is to efficiently return a set of k
most relevant past events, where relevance is defined by the context
of the current event.

The problem that we address raises many important issues re-
lated to using historical information in monitoring systems. In par-
ticular, we identify the following three challenges in this paper:

Context definition and similarity. When a new event occurs
in a monitored system, a large fraction of relevant historical in-
formation corresponds to those times in the past when the state of
the system was the same or similar to the state at the time of the
event. The first challenge is thus in efficiently comparing the state
of a monitored system at different points in time. Of course, we
want to compare only those parts of the state which are relevant
to the current event (e.g., the list of logged users and the list of
running processes). We call this part of the state the context of
the event. Moirae supports complex context definitions, involving
multiple relations, by allowing users to specify a set of queries that
together produce the set of tuples forming the context of an event.
In Moirae, we are exploring techniques for comparing event con-
texts based on techniques from information retrieval (IR).

Approximate k-NN queries. Because the historical log is large,
the complete set of past events related to a current event can be
large. To avoid overwhelming the user, the goal of Moirae is to
extract only a small set of k most similar events and their own con-
texts . These types of queries are often called k-NN queries as they
retrieve the k nearest neighbors of an object. Here the object is the
current event and its context. The k nearest neighbors are the k past
events with the most similar contexts. For example, Moirae could
inform a user of previous server failures where the list of logged
users and running processes were similar to those appearing in the
current event.

Supporting these k-NN queries is challenging. In contrast to pre-
vious work [23], the similarity metric is not defined directly on
individual objects, but rather on the set of tuples that compose the
context of an event. Additionally, because the historical log is large,
the straightforward solution of materializing all past events with
their contexts and scanning the materialized view when an event
occurs is unsuitable: it would impose a large space overhead (espe-

cially if events are frequent, event contexts are large and the work-
load is changing) and scanning and sorting all past events could
take a long time. On the other hand, we argue that accurate results
are not necessary. For many applications, rapid access to k results
among the most similar and most recent events is more important
than an exact set of k most similar results returned with low latency.
Therefore, Moirae relies on a partitioned materialization, and hier-
archical query execution to efficiently support approximate k-NN
queries, which return results among the most recent similar ones.
If necessary, Moirae can further improve results incrementally.

Performance in face of concurrency. The third and final goal
of Moirae is to achieve efficient extraction of similar past events not
only for a single new event, but also in the presence of concurrent
events. Because continuous queries can produce events at different
and possibly varying rates, Moirae must properly allocate resources
among variable numbers of ongoing events. Moirae includes an
adaptive scheduler to ensure the extraction of at least some histori-
cal information for each new event.

In this paper, we discuss why history-enhanced monitoring and
the above issues are important and challenging. We present the
principled design of Moirae; outline the techniques used in Moirae
to address the above challenges; and argue the more general appli-
cability of our approach. Moirae is currently being developed at
the University of Washington. It is a general-purpose engine that
does not rely on any domain specific knowledge or models. Moirae
uses the Borealis [2] stream processing engine (SPE) for continu-
ous monitoring and PostgreSQL [22] for the historical log. Moirae
modifies and tightly integrates both engines.

2. MOTIVATION AND GOALS
Providing a historical background to new events in a timely fash-

ion is useful in many types of monitoring applications. Consider
the following scenarios from different application domains. In each
scenario, a set of data sources produces continuous streams of in-
formation about a monitored environment. These data streams are
processed by an SPE as they arrive and are archived on disk.

Computer-system monitoring scenario: In a computer-system
monitoring application, an administrator receives alerts when a
server behaves abnormally: e.g., the server crashes, the server re-
fuses new connections for a period longer than 2 minutes, or the
5-minute average network bandwidth used by the server exceeds
a predefined threshold. When a failure occurs, the administrator
wants to reuse knowledge about previous similar events to diag-
nose the new problem. The administrator defines the context of the
events as the set of users logged on the server, the location where
they are connected from, and the set of processes they are running.
Every time an event occurs on one of the servers, the administra-
tor wants to see the list of logged users and running processes. At
the same time, the administrator wants to see previous events of
the same type that had a similar list of users and processes. By
intersecting these lists, the administrator narrows down the set of
users causing the problem. The administrator may also better dis-
tinguish malicious attacks from honest errors. Seeing past events
at the same time as the alert helps the administrator respond to new
events in a timely fashion. If multiple servers experience problems
at the same time, the administrator needs to see the historical back-
grounds for all ongoing problems.

Car-traffic monitoring: A car-traffic monitoring application
produces an alert if an accident occurs on a user’s normal route
home. With the alert, the application computes a set of possible
alternate routes based on traffic conditions that followed similar
events in the past. To compute the route, the application needs to
see a set of past incidents that occurred in a similar location and

under similar weather and traffic conditions, along with the traffic
load that followed each incident. A few examples suffice to deter-
mine an alternate route, but the application needs to see them as
soon as possible, in order to quickly re-route the user. In case mul-
tiple incidents occur around the same time, the application must
keep-up with the changing traffic conditions to send the user on an
appropriate route.

Sensor-based environment monitoring: An operator is mon-
itoring a plant and receives alerts when a particular combination
of sensor values (temperature, pressure, etc.) starts to drift. With
each alert, the system produces a set of past alerts that occurred
under similar circumstances, along with the list of actions taken by
previous operators. The operator uses the historical information to
adjust or at least confirm his own response to each alert.

The above scenarios do not cover all possible uses of a historical
log, but they illustrate the general benefits of integrating streaming
data with historical data. Each scenario also raises the three main
challenges that we identified:

1. The need to specify a complex context for events and mea-
sure context similarity. In each scenario, the application is
interested in past events similar to the current event. The
notion of what constitutes similar events changes between
scenarios.

2. The need to quickly see an approximate set of similar past
events with their contexts. The user needs to see a small
set of highly relevant events, rather than a long list of possi-
bly similar events. Each event must also be accompanied by
its full context. In each scenario, the historical information
must be produced in a timely fashion to allow applications
or users to respond quickly to each alert. Timeliness also en-
sures that the system keeps-up with the continuous stream of
new events, producing the historical information for an event
and moving on to the next event.

3. The need to handle concurrent events effectively. In all sce-
narios, multiple alerts can occur quickly one after the other
and applications need to see timely historical information for
each one of them. Different types of alerts can also occur
at the same time, each one requiring its own historical back-
ground.

More importantly, extracting the required past information from
the historical log requires that the SPE processes the archived data-
streams because the desired past events are of the same form as
the current events. Performing such processing after an event oc-
curs would yield poor response time. Preprocessing the entire
log for each new continuous query and materializing all resulting
events would cause a tremendous overhead in space and process-
ing time, especially if the workload is changing (continuous queries
are added and removed), events are frequent, and event contexts are
large. If the log is not preprocessed, each query would have to ex-
ecute for a long time before accumulating any interesting history.

In the following section, we present, Moirae, a general purpose
data management system that enables the above scenarios without
the space and time overhead of preprocessing the entire log, and
without the need for queries to execute for a long time in order to
accumulate their own historical information.

3. HISTORY-ENHANCED MONITORING
We first describe how applications specify continuous monitor-

ing queries, which we call event-queries, and how applications
specify the context of an event by specifying what we call context-
queries. We then present our technique for computing the similarity
between two event contexts.

Figure 1: Example of continuous query (event-query).

Figure 2: Example of query extracting the context of an event
(context-query).

3.1 Specifying Events
For the continuous stream processing part of the system, Moirae

uses Borealis [2]. In Borealis applications express continuous
queries with a boxes-and-arrows data flow, where boxes represent
operators and arrows stand for streams. Figure 1 shows an exam-
ple of such an event-query. This query produces an alert when the
5-minute average network traffic generated by a server exceeds a
pre-defined threshold, X . In this example, time is a timestamp,
sid denotes the server identifier, and bw is the bandwidth utilization
of the server. For simplicity, we assume that each output event is
assigned a unique identifier, eid.

3.2 Specifying the Context
To specify the context of an event, applications submit one or

more queries that join the output of the event-query with other
streams or static relations. We call these additional queries context-
queries, as they produce the context of each event.

Using terminology from temporal databases [21], we expect the
context of an event to typically include a subset of all valid tuples at
the time when the event happens (e.g., the users that are logged on,
the system load at the time of the event). We thus expect the join
predicate to typically include references to the time of the event,
and further restrict the set of tuples with additional predicates and
projections. Context-queries can also include arbitrary SQL queries
over static relations. For example, a context query can lookup the
specifications (CPU, memory, etc.) of the server experiencing the
failure. A subset of attributes of the event itself, such as the name
of the failed server, can also be part of the event context.

The union of all tuples that satisfy these queries forms the con-
text of the event. The context of an event can be the empty set.
Figure 2 shows an example of context defined as the set of logged
users and running processes.

In most cases, applications will also need to specify additional
queries for information surrounding events other than context-
queries. Typically, users will request the sequence of events pre-
ceding or following each alert. Such additional information can be

Figure 3: Example of similarity computation for three event contexts.

treated in the same manner as the context, with the only exception
that the resulting tuples are not used in the similarity comparison.

3.3 Computing Context Similarity
As described above, the context of an event is a set of tuples

coming from one or more streams and relations. Therefore, com-
puting a similarity score for two contexts corresponds to computing
a similarity score for two sets of tuples.

Different techniques for computing context similarity are pos-
sible. We propose to use a technique from information retrieval.
We consider each context as a document, where the tuple attribute-
values correspond to terms. For continuous-domain attributes (such
as a temperature reading), we discretize the values by rounding
them to the nearest integer value. Two contexts are similar to each
other if they contain a larger number of the same “terms” (attribute-
values in our case).

If two contexts contain the same rare attribute-value, we weight
that value more heavily. Intuitively, in our computer-system mon-
itoring scenario, if a rare process is executing when a given type
of failure occurs, then event instances with this same rare process
should be considered as more relevant. We compute the weight
of each attribute value as its TF-IDF product [4]. TF denotes the
term frequency, or, in our case, the number of times an attribute-
value appears in the context of an event. IDF denotes the inverse
document frequency, or, in our case, the ratio of event contexts con-
taining that attribute. We use the following two standard formulas:

IDFk = log
(

E
Ck

)
and wkc = TFkc · IDFk

where E is the total number of events in the log, Ck is the num-
ber of event-contexts containing attribute-value k, and TFkc is the
frequency with which attribute-value k occurs in a context c. The
similarity score between two contexts is then given by a metric
called cosine similarity: i.e., the cosine angle between the vectors
of weights of the two contexts, where each attribute-value corre-
sponds to one dimension. Figure 3 shows an example of similarity
computation. In this example, the contexts of events e2 and e3 are
most similar as they share a common logged user and running pro-
cess, and all contexts are roughly of the same magnitude.

The TFk for each attribute-value k in a context can be computed
once and stored with the context. The IDFk score for each ele-
ment of the domain is computed incrementally. As new events are
detected, the total number of events, E, and the total number of
contexts, Ck containing attribute-value k are updated.

Using an IR engine [4] could improve performance for the above
type of processing. We currently store our historical log, events,
and contexts in a regular database because we envision performing
a broader class of processing on the historical data in the future.

Raw Stream
Archive

Materialized
Events & Context

R

W

Workspace pool

R

RDBMSSPE

MOIRAE

Continuous
Monitoring

Initial
Materialization

Old
Data access

�����������	

Q1:
Event

& context

W

Stream data

�����������	

Data to be
materialized

Raw
Stream

�
�
���
���
�

Q1:
Event

& context

Q1:
Event

& context

Event & context
Query specification

Approximate
k-NN results

Request
to improve quality

��������
�������

����	
��������

������� ���

Q1Q1 Q2Q2 … …����	
�����	��������

Figure 4: Moirae System architecture.

4. Moirae DESIGN
In this section, we discuss the design of Moirae and present its

system architecture shown in Figure 4.
At a high level, Moirae is a middleware layer between the appli-

cation and the underlying SPE and RDBMS. Moirae uses the SPE
for continuous monitoring and the RDBMS for storing the raw his-
torical data streams and the preprocessed events. However, Moirae
modifies and integrates the two engines as we describe below.

An application or user communicates two pieces of information
to Moirae: (1) the continuous query that defines the event of interest
(i.e., the event-query) and (2) the specification of what constitutes
the context of the event (i.e., the context-queries). Both pieces of
information take the form of queries in the language of the under-
lying SPE. Moirae forwards these queries to the SPE, which ex-
ecutes them in its Continuous Monitoring component. At
the same time, a Write operator asynchronously stores the incom-
ing raw data streams directly in the Raw Stream Archive. Ev-
ery time an event occurs, the SPE produces the event along with its
context. Moirae forwards the information to the application, and
queries the historical log for matching past events.

To extract the historical information, the naive approach would
be for Moirae to run the event-query and context-queries on the
whole historical log, materializing all past events with their context
offline. At runtime, Moirae could then scan the materialized view,
order past events on the similarity of their context, and output only
the k most similar events. There are two problems with this naive
approach. First, if events occur frequently, the materialized view
will take a large amount of space. Also, because the workload
changes with time, new continuous queries are introduced in the
system, and old queries are removed, materializing all events for
all continuous queries for the entire log would be expensive and
likely not necessary. Second, scanning and sorting all past events
will take a long time, especially if the number of events is large and
the similarity function takes a long time to compute.

Instead, we propose an approach that somewhat sacrifices the
accuracy of the results for significant gains in response time and
overhead. Instead of examining the full log and outputting the most
similar k events ever seen, we propose to output the most similar
events among the N most recent ones (where N is a parameter de-
fined by the administrator), based on the assumption that for most
monitoring application recent events are more relevant than older
events.

After producing an initial set of best k out of N results, if the user
requests more results or if the system has spare cycles, Moirae can
also incrementally examine older parts of the log and improve the
quality of the responses returned so far.

This approximate k-NN approach is based on two key tech-
niques: a hierarchical partitioning of the historical log and a hi-
erarchical query execution. We describe these techniques in the
following sections.

4.1 Hierarchical Partitioning
The key idea behind the hierarchical partitioning of the histor-

ical log is to partition the log into chunks and prioritize recent
chunks over older chunks instead of considering the historical log
as a monolithic sequence of events. In particular, we propose to
distinguish between three types of chunks:

1. Present chunk: The most recent chunk of the historical log,
typically incomplete.

2. Recent chunks: A small set of relatively recent chunks fre-
quently searched when looking for relevant historical data.

3. Old chunks: Rarely accessed older parts of the log. These
chunks are only processed in the presence of rare events that
do not have many similar events in earlier parts of the log.

The size of chunks is defined by the administrator. For example,
each chunk could correspond to a few hundred megabytes of data.

This chunked partitioning leads us to separate the architecture of
Moirae into three layers. At the top layer, the present chunk always
resides in memory and is searched first. At the second layer, the
frequently accessed recent chunks reside on disk, but they are fully
preprocessed and the materialized events and contexts are stored on
disk. These materialized views are also indexed to speed-up event
searches. Finally, at the bottom layer, older chunks reside on disk.
They are not preprocessed and not indexed.

To illustrate the goals of this hierarchical partitioning, Figure 5,
shows the results of a simple benchmark retrieving k tuples from a
1GB log partitioned into 5MB chunks. When k is small, indexing
only half of all the chunks yields the same query response times
(and even a little faster) than indexing the complete log. When
k becomes large, some older unindexed chunks must be processed,
and the query response time for the extra tuples decreases. Our goal
is similar, although our queries are significantly more complex and
the runtime for the raw stream data chunks is much slower. By ma-
terializing views and indexing only the most recent chunks, the cost
of the views can remain constant as the log grows. The engine can
efficiently retrieve a small set of recent events. Additional events
can be retrieved if necessary, but at a greater cost.

4.2 Hierarchical Query Execution
We now present the detailed architecture for supporting the hier-

archical partitioning described above and the steps that occur dur-
ing query execution.

For the present chunk, Moirae receives the output of the
Continuous Monitoring module of the SPE and accumu-
lates the data in the Workspace Pool. Once the present chunk
fills-up, Moirae stores it on disk in the Materialized Events
and Context tables, and starts accumulating a new present
chunk.

In Moirae, as in other SPEs, queries can be submitted at any time.
When a query is submitted, Moirae needs to process the chunks at
the second layer, materializing all relevant events and their con-
texts. Moirae does this by setting-up a lower-priority continuous
query in the SPE, in the Initial Materialization mod-
ule. This query reads chunks from the Raw Stream Archive,
it executes the event-query and context-queries on it, and writes the

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Number of Requested Tuples

Ti
m

e
(s

)

Fully Indexed Partitions

Half Indexed Partitions

Traditionally Indexed

Non-Indexed

Figure 5: Illustration of performance of partitioned indexing. The
“traditionally indexed” and “fully indexed partitions” curves overlap.

output to the Materialized Events and Context tables.
A simple aggregate Controller operator, tracks the size of the
materialized results, comparing the total size to the maximum al-
lowed size (given as parameter). After each chunk, if the threshold
is not yet reached, the Controller triggers the next, older chunk
to be read and processed. The number of processed chunks is thus
determined by the total amount of space allocated for this materi-
alized view, the frequency of events, and the size of their contexts.
We assume, however, that at least N events are materialized.

After materializing the older events and their contexts, Moirae
can optionally index the materialized views for an even faster re-
sponse time. We are currently investigating context-indexing tech-
niques, but we do not present them here due to space constraints.

At runtime, when an event occurs, Moirae receives the event and
its context from the SPE. To retrieve the relevant historical informa-
tion, Moirae first queries the present chunk stored in the workspace
pool. If more results are necessary, Moirae submits a series of
queries to the RDBMS. Each query retrieves similar events from in-
creasingly older chunks stored in the Materialized Events
and Context tables. If all preprocessed chunks have been ex-
amined, but more results are necessary, Moirae needs to process
older raw data streams to extract additional events. For this pur-
pose, Moirae sets-up a copy of the event-query and context-queries
as low-priority queries in the SPE (in the Old Data Access
module). These queries read increasingly older chunks of raw
stream information, process these streams, and output the results
directly to the Workspace Pool. Moirae can then query these
results in the same way it queries the present chunk. These results
are discarded as soon as they are processed. We expect that few
events will require this third level of processing.

With this approach, the returned results are not only approximate
because Moirae examines only a subset of chunks, but also because
events that fall on chunk boundaries may go undetected.

For all three types of chunks, the same query plan is executed.
The only difference is in the location of the input data to the plan.
For the present chunk and the old chunks, the data comes from
the workspace pool. For recent chunks, the data comes from the
Materialized Events and Context tables.

The query plan necessary for extracting similar events is rela-
tively straightforward. The tables with the event contexts are al-
ready sorted by increasing event identifiers, as this order follows
from the sequential processing of the streams. These tables can
thus easily be joined. For each resulting group of tuples, a new
score operator computes the similarity between each old event and
the new event, using the technique from Section 3.3. The resulting
events can then be sorted on their scores, and the top-k events for
each chunk are produced.

Moirae must then perform some additional work. When older
events are processed, Moirae filters out events less relevant than
the ones already produced, by keeping track of the top k events
produced for each alert. Moirae also keeps track of the total number
of results produced for each alert. It uses this number to decide
when more results are necessary.

Although designed for efficiently retrieving similar past events,
the proposed hierarchical architecture and runtime execution are
more generally applicable to various types of queries over a histor-
ical log, where fast queries over most recent fragments are more
important than a complete query over the full log. We plan to ex-
plore these different types of queries in future work.

4.3 Query Scheduling
At runtime, multiple events can occur at the same time or quickly

one after the other. These events can come from the same query, or
from different queries executing in the system. Since Moirae tries
to behave like an SPE, while providing a better quality of infor-
mation than an SPE alone, Moirae tries to ensure that each alert is
given quickly at least some historical information.

We call the set of queries that retrieve the historical information
for an alert the history-query of the alert. Each query in the set
extracts past events from one historical chunk. To ensure history-
queries for all alerts quickly produce some results, we propose to
use the stride scheduling algorithm [24]. This technique is a vari-
ant of lottery scheduling. Each query receives tickets. The number
of tickets can be dynamically changed. History-queries with more
tickets are scheduled more frequently. Every time a history-query
set is scheduled, it executes only one of the queries in its set. After
the query completes, the scheduler removes from the history-query
a number of tickets proportional to the number of results produced
(thus increasing the stride of the query). Because history-queries
are scheduled based on their number of tickets, this approach en-
sures that history-queries with few results are scheduled more fre-
quently.

In future work, it would be interesting to explore more sophisti-
cated scheduling algorithms, taking into account the quality of re-
sults returned so far, the total execution time of queries, or schedul-
ing together queries that need to process the same historical chunks.

5. RELATED WORK
SPEs (e.g., [1, 2, 8, 18]) typically focus on efficient processing of

continuously arriving data. Some systems do allow joins between
streams and stored relations [18], or SQL operations on stored re-
lations [5], but they assume these relations are sufficiently small
that the system can keep-up with input data rates. In Aurora [1]
and Borealis [2], connection points can store a little history, but it
can only be replayed to satisfy ad-hoc queries [1] or process tu-
ple revisions [2]. The work most similar to the one we propose,
is Chandrasekaran’s work [7] on supporting hybrid queries over
live and archived streams. The main difference with our proposal
lies in the query model. Chandrasekaran’s goal is to support three
types of queries: queries that start in the past and continue in the
present, queries that access a specific part of a historical log (e.g.,
compare today’s average with yesterday’s average), or queries over
the entire log. For the latter type of queries, Chandrasekaran as-
sumes the entire log is properly indexed and the query over the log
will typically execute quickly and return a small set of results. We
focus on the latter types of queries, but we assume the log is too
large to be queried in its entirety, and most queries return a large
number of results. Hence, our goal is to produce an approximate
set of k-NN results, where the most relevant results depend on the
context of the current event. In terms of handling overload, Chan-

drasekaran’s work is complementary to ours, and Moirae could
leverage some of the proposed sampling techniques for storing and
retrieving streams.

There has recently been a significant amount of work on adding
support for top-K queries to databases [6, 9, 10, 15, 11]. In par-
ticular, the RanqSQL project [15] supports ranking at the database
core, enabling rank-aware iterator-fashion query plans that do not
necessitate materializing nor sorting entire relations. Chang and
Hwang [9] propose an approach for retrieving top-k results with
minimal probing. Although both techniques could be useful in our
setting, we are fundamentally interested in ranking sets of tuples
from multiple relations, or contexts as we name them, instead of
individual tuples.

Comparing event contexts is related to the similarity search prob-
lem [12, 23]. However, existing techniques focus on comparing
individual, multidimensional objects [23] or sequences [12] rather
than sets of tuples. Techniques enabling keyword searches over re-
lational databases [13, 16] are more closely related to our problem,
but our goal is not to retrieve the closest tuples matching a set of
keywords, it is to compare two groups of tuples.

Adaptive query processing [3, 20] enables a user to quickly see
out-of-order results or approximate results that are incrementally
improved with time. Our query scheduler builds on these ideas,
but reorders results at a coarser granularity. Its goal is to ensure
that all new events are quickly complemented with some historical
information that is improved with time up-to a threshold.

There exists extensive work in the area of data mining. For ex-
ample, Horvitz et al. built a model of car traffic, JamBayes, over
data collected by sensors deployed on highways in Washington
state [14]. The work is similar to Moirae in the sense of consid-
ering other contextual information such as weather, events, time,
and holidays to predict traffic conditions. Data-mining-based solu-
tions build domain specific models of an environment that they use
to answer queries. In contrast, Moirae’s goal is to enable users to
see specific past events.

Finally, temporal databases [17, 19, 21] support sophisticated
queries over persistently stored temporal data. In Moirae, the raw
stream data must initially be processed in the same manner as the
live data by the SPE, to ensure the same events are detected in
the same circumstances. We could, however, leverage temporal
databases for storing the materialized events and contexts.

6. CONCLUSION
In this paper, we explored some of the benefits and challenges

of enhancing a continuous monitoring system with support for
context-aware historical queries. These queries automatically re-
trieve for each newly detected event past events with a similar con-
text. The goal of these queries is to help users understand current
events by rapidly showing them similar past events with their con-
texts.

We presented the design of Moirae, a new type of system that
integrates continuous monitoring with the querying of a historical
log to enable this new type of history-enhanced monitoring. The
main insight behind the design of Moirae is that users will be more
interested in receiving a few relevant results soon after each new
event (especially if these events are recent), rather than a complete
set of results or the best results with higher latency. We thus pro-
posed a system architecture based on hierarchical log partitioning
and hierarchical query execution, where the recent past is stored at
a higher cost, but can be queried faster than older data.

We introduced preliminary ideas for addressing the specific chal-
lenges of computing the similarity between events (which we mod-
eled as an instance of an information retrieval problem), retrieving

an approximate set of k most similar past events, incrementally im-
proving results, and scheduling the exploration of the historical log
between multiple concurrent events.

We are currently building a prototype of Moirae, and plan to run
experiments with our prototype on real-time streams and historical
logs of car traffic data collected in the Seattle area since 19981, and
computer-system monitoring data currently being collected in our
department2.

7. REFERENCES
[1] Abadi et. al. Aurora: A new model and architecture for data stream

management. VLDB Journal, 12(2), Sept. 2003.
[2] Abadi et. al. The design of the Borealis stream processing engine. In

Proc. of the CIDR Conf., Jan. 2005.
[3] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query

processing. In Proc. of the 2000 SIGMOD Conf., May 2000.
[4] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[5] Balakrishnan et. al. Retrospective on Aurora. VLDB Journal, 13(4),
Dec. 2004.

[6] M. J. Carey and D. Kossmann. On saying "enough already!" in SQL.
In Proc. of the 1997 SIGMOD Conf., May 1997.

[7] S. Chandrasekaran. Query Processing over Live and Archived Data
Streams. PhD thesis, University of California, Berkeley, 2005.

[8] Chandrasekaran et al. TelegraphCQ: Continuous dataflow processing
for an uncertain world. In Proc. of the CIDR Conf., Jan. 2003.

[9] K. Chang and S. Hwang. Minimal probing: supporting expensive
predicates for top-k queries. In Proc. of the 2002 SIGMOD Conf.,
June 2002.

[10] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In
Proc. of the 25th VLDB Conf., Sept. 1999.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66(4), 2003.

[12] C. Faloustos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In Proc. of the 1994
SIGMOD Conf., May 1994.

[13] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity search in databases. In Proc. of the 24th
VLDB Conf., Aug. 1998.

[14] E. Horvitz, J. Apacible, R. Sarin, and L. Liao. Prediction,
expectation, and surprise: Methods, designs, and study of a deployed
traffic forecasting service. In Proc. of the 21st UAI Conf, July 2005.

[15] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql: query
algebra and optimization for relational top-k queries. In Proc. of the
2005 SIGMOD Conf., June 2005.

[16] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword
search in relational databases. In Proc. of the 2006 SIGMOD Conf.,
June 2006.

[17] D. B. Lomet, R. S. Barga, M. F. Mokbel, and G. Shegalov.
Transaction time support inside a database engine. In Proc. of the
22nd ICDE Conf., 2006.

[18] Motwani et. al. Query processing, approximation, and resource
management in a data stream management system. In Proc. of the
CIDR Conf., Jan. 2003.

[19] G. Ozsoyoglu and R. T. Snodgrass. Temporal and real-time
databases: A survey. IEEE Trans. Knowl. Data Eng., 7(4), 1995.

[20] V. Raman and J. M. Hellerstein. Partial results for online query
processing. In Proc. of the 2002 SIGMOD Conf., June 2002.

[21] R. Snodgrass and I. Ahn. A taxonomy of time in databases. In Proc.
of the 1985 SIGMOD Conf., May 1985.

[22] The PostgreSQL Global Development Group. Postgresql database
management system. http://www.postgresql.org, 2006.

[23] K. Vu, K. A. Hua, H. Cheng, and S.-D. Lang. A non-linear
dimensionality-reduction technique for fast similarity search in large
databases. In Proc. of the 2006 SIGMOD Conf., June 2006.

[24] C. A. Waldspurger and W. E. Weihl. Stride scheduling: Deterministic
proportional- share resource management. Technical report,
Cambridge, MA, USA, 1995.

1We thank Daniel Dailey for providing us the car traffic data.
2We thank Jan Sanislo for helping us get access to this data.

