
A Theory of Implementation-Dependent Low-Level Software

Marius Nita Dan Grossman Craig Chambers
{marius,djg,chambers}@cs.washington.edu

Department of Computer Science and Engineering
University of Washington

UW-CSE Technical Report 2006-10-01

Abstract

This technical report is an extended version of the recent paper A Theory of Implementation-
Dependent Low-Level Software by Nita, Grossman, and Chambers. The report contains additional dis-
cussion of the work and full proofs of the theorems described in the paper. The differences between the
report and the paper are more preciesly outlined in Appendix B. If the reader is interested only in the
safety proof, please skip to Appendix A.

We present a theory for describing implementation-dependent assumptions that a program in a C-like
language might make, such as the size and alignment of data. We define a static analysis to encode such
assumptions in a constraint that describes language implementations (i.e., compilers and architectures) on
which a program is memory-safe. More specifically, the constraint produced by the analysis is a formula
in first-order logic and implementations are models for the logic. By defining an abstract machine in
such a way that it takes an implementation as a parameter, we can prove the analysis is sound. We use
this foundation to explain some common but non-portable coding practices and the poorly understood
assumptions they are implicitly making.

1 Introduction

In recent years, research has demonstrated many ways to improve the quality of low-level software (typically
written in C) by using programming-language and program-analysis technology. Such work has detected
safety violations (array-bounds errors, dangling-pointer dereferences, uninitialized memory, etc.), enforced
temporal protocols, and provided new languages and compilers that support reliable systems programming.
The results are an important and practical success for programming-language theory. However, there remains
a crucial and complementary set of complications that this paper begins to address:

The memory-safety of a C program often depends on assumptions that hold for some but not all compilers
and machines.

Examples of assumptions include how struct values are layed out in memory (including padding), the
size of values, and alignment restrictions on memory accesses. To our knowledge, existing work on safe
low-level code (see Section 5) either (1) checks or simply assumes full portability (e.g., that the input
program is unaffected by structure padding) or (2) checks the input program assuming a particular language
implementation (making no guarantee for a different compiler or architecture).

Requiring full portability for all code (e.g., by enforcing poorly understood and informally specified [22]
restrictions on C programs) is too strict because low-level code often has inherently non-portable parts.
An impractical solution is to rewrite large legacy applications in fully portable languages or to use perfect
libraries that abstract all implementation dependencies. Such high-level approaches ignore legacy issues, can
be a poor match for low-level code, and assume that language or library implementations are available for
an ever-increasing number of computing platforms.

1

Conversely, implicitly relying on some language-implementation assumptions can lead to pernicious de-
fects that lie dormant until one uses an implementation violating the assumptions. Whereas defects like
dangling-pointer dereferences are largely independent of the language implementation (so testing or verifi-
cation on the “old machine” can find many of them), defects like assuming two struct types have similar
data layouts are not. The results can be severe. Conceptually simple tasks like porting an application
from a 32-bit to a 64-bit machine become expensive and error-prone. Software tested on widely available
platforms can break when run on novel hardware such as embedded systems. Widely used compilers cannot
change data-representation strategies without breaking legacy code that implicitly relied on “undocumented
behavior”. Section 2.2 discusses some specific real-world examples.

Common practice confronts this “somewhat but not completely portable” dilemma by manually isolating
and minimizing implementation-dependent assumptions. For example, the Linux source code has an arch
subdirectory; avoiding assumptions in the rest of the kernel is left to programmer discipline. As another
example, a garbage collector for a high-level language might assume pointers are four bytes and aim to be
correct for any implementation satisfying this assumption. Similarly, run-time system code for accessing
object headers may make assumptions about the layout of struct values. In all cases, the code is semi-
portable, meaning it is—by design—correct for many but not all compilers and machines.

To help support semi-portable programming, we have begun building a semantics-based porting tool for
C. When finished, it will input a C program and output a description of a set of implementations on which
the program “makes sense” (and the source-code locations that influence the description). Defining the
implementation-description language has forced us to give precise meaning to poorly understood platform-
specific issues. The result is a foundation not only for a porting tool, but for any analysis seeking to account
for implementation dependencies. While our focus is C, where incorrect assumptions can violate memory
safety, many safe languages also have implementation-dependent behavior for which our approach of isolating
the implementation-definition should apply.

1.1 Key Questions

Many compilers and low-level language tools have had to wrestle with defining semi-portability and imple-
mentation dependencies, but the issues have not been isolated and considered rigorously. In hindsight, the
key questions are:

• How can we define the notion of an implementation to expose issues relevant to semi-portable software
without exposing a full translation to assembly language?

• Can we analyze a C program statically to determine (conservatively) what implementation-dependent
assumptions must hold for it to be memory-safe?

• What soundness guarantee can we provide? Why does memory-safety (unfortunately) not imply that
a program behaves equivalently on different implementations?

• How can we prove a soundness theorem for a source-code analysis given that the code runs on an
implementation-dependent low-level machine?

To answer these questions, we have built a novel model for a small-but-relevant C-level expression lan-
guage.

1.2 Approach

The key to our formal model is isolating the notion of an implementation. An implementation has two roles:
(1) as a parameter to the operational semantics, and (2) as something we can describe with a portability
constraint. The actual definition of an implementation includes things like how to determine the offset of a
struct field and what alignment restrictions a memory access must obey. The details are fully described in
this work, but they are less important than the general insight: by parameterizing the operational semantics

2

by an implementation, we can take a program P and state that a property (such as safety) holds for P on
implementations satisfying a constraint S. That is, P is semi-portable as described by S.

To see how implementations work as parameters to the operational semantics, suppose we have a pointer
dereference *e. The number of bytes accessed depends on the size of the type of e, and this size is determined
by the implementation. Therefore, our operational semantics has the form impl ` P → P ′ where impl is an
implementation and P is a program state. That way, the dereference rule can use impl to guide the memory
access (and become stuck if impl deems the access misaligned).

As for portability constraints, they are formulas in a theory of first-order logic that we interpret by having
implementations serve as models. For example, the constraint “access(4, 8) ∧ size(long) = 8” is modeled by
any implementation in which values of type long occupy 8 bytes and 8-byte loads of 4-byte aligned data are
allowed.1

Now given a program P we can try to find a constraint S such that if impl |= S, then the abstract machine
does not get stuck when running P given impl . For our operational semantics, that means it will not treat
an integer as a pointer, read beyond the end of a struct value, perform an improperly aligned memory
access, etc. Finding an S that describes exactly the set of “safe” implementations is trivially undecidable,
so a sound approximation (all models are safe, but not all safe implementations are models) is warranted.
In this work, we take a very conservative approach: A type system for source programs produces S (which
one can view as an effect), using no flow-sensitivity or alias information. In practice, a code-analysis tool
will use a more sophisticated analysis, but the set-up (given P , produce an S) will remain the same.

The key metatheoretic result is showing that the S our system produces is indeed sound. To do so, we
define a second type system for program states. This second type system, which exists only to prove safety,
is parameterized by an impl just like the dynamic semantics. Our type-safety argument then has two parts:

1. The second type system and operational semantics enjoy the conventional preservation and progress
properties (not including orthogonal issues like array-bounds violations and uninitialized memory,
which we could prevent at the cost of losing our focus on semi-portability).

2. If the first type system produces S given P , then P type-checks in the second type system for any impl
such that impl |= S.

Together, these lemmas ensure the program cannot get stuck when run on any model of S.

1.3 Contributions and Caveats

To our knowledge, this work is the first to consider describing a set of implementations on which a low-level
program can run safely. At a more detailed level, our development clarifies several points:

• Most semi-portability questions can be reduced to pointer-cast questions, namely, “when can a pointer
to a τ1 be treated as a pointer to a τ2?” This question, clearly akin to subtyping, often depends on
the implementation.

• A theory in first-order logic can describe implementation constraints.

• There should be a notion of “sensible” implementation, meaning implementations on which every
program without casts cannot get stuck. The constraint language lets us write a formula for which the
models are the “sensible” implementations.

• A program’s safety might depend on a pointer not being treated as an array or a pointer not being
written through.

For tractability, the model we present considers only a small expression language inspired by C. It has
many relevant features, including structs (and assignment of struct values), heap allocation, and taking the
address of fields, but we omit some relevant features (e.g., bit-fields), and many irrelevant ones (e.g., functions

1This example constraint is slightly simplified; see Section 3.4.

3

and goto). We see no fundamental problems extending our model in such directions. We also present a
definition of implementation that is slightly simpler than one may encounter in practice. In particular, we
assume all pointers have the same size and that alignment restrictions do not depend on the destination of
a memory access (e.g., we do not distinguish floating-point operations). Again, extending our definition of
implementation is straightforward.

1.4 Outline

Section 2 presents examples of semi-portable code and the constraints describing their assumptions. Section 3
presents our core formal model, including the definition of implementations, our first-order theory, the
dynamic and static semantics of our language, and our soundness theorem. Section 4 describes how to
extend the model in several directions, most importantly to support arrays. The last two sections discuss
related work and conclude.

2 Examples

Section 2.1 presents several tiny examples of C code to explain issues of semi-portability and relevant imple-
mentation constraints. Section 2.2 complements this “tutorial” with actual platforms, systems, and coping
strategies related to these concepts.

2.1 Small Code Fragments

Example 0: Accessing Memory

(*e).f

A memory access such as (*e).f reads or writes n bytes at some alignment m. If e has type struct T*
and the f field has type τ , then n is the size of τ and m is the greatest common divisor of the alignment of
struct T* and the offset of f.

Implementations choose sizes, alignments, and offsets such that cast-free programs do not fail. For
example, if a machine prohibits 8-byte accesses on 4-byte alignments, a compiler might put pad bytes before
f fields or break 8-byte accesses into two 4-byte accesses. In the latter case, the implementation (which
comprises compiler and machine) “supports” 8-byte accesses on 4-byte alignments. In this paper, we assume
implementations include an access function of type Int → Int → Bool, as well as size and alignment functions
that map types to integers.2

Our example (*e).f therefore induces the constraint access(n, m) where m and n are defined above.
However, this constraint assumes e actually evaluates to a pointer with alignment m and a τ at the right
offset. The constraints for cast expressions must ensure this.

Example 1: Prefix

struct S1 { struct D1 {
int* f1; int* g1;
int* f2; int* g2;
int* f3; };

};
A cast from struct S1* to struct D1* requires that struct D1 has a less stringent alignment than struct
S1, and for each field in struct D1 there is a field of compatible type in struct S1 at the same offset. In
this case, the C standard requires every implementation to meet these constraints (and for g1 and f1 to have
offset 0 and g2 to have the same offset as f2), but our purpose is to capture these and less portable notions
precisely.

2We actually generalize the notion of alignment to include an offset, e.g., [8,0] would describe an 8-byte aligned address and
[8,2] would describe a 2-byte offset from an 8-byte aligned address.

4

Example 2: Flattening and Alignment

struct S2 { struct D2 {
int* f1; int* g1;
struct {int* f2; double f3;} f4; int* g2;

}; };

A cast from struct S2* to struct D2* has similar constraints as in Example 1, but this time the C
standard provides no guarantee. In fact, some implementations put pad bytes before f4 because of alignment
constraints and an assumption that all struct types are defined at top-level. Our system will generate
constraints preventing such a representation mismatch if the program has this cast.

Example 3: Suffix

struct S3 { struct D3 {
int* f1; int* g1;
int* f2; double g2;
double f3; };

};
struct S3* x = ...;
struct D3* y = (struct D3 *)(&(x->f2));

The cast in the initializer for y above is a situation where the source and destination types both point to
an int* followed by a double. However, an implementation with 4-byte pointers, 8-byte doubles, and 8-
byte alignment of doubles cannot support this cast because struct D3 has more padding. Implementations
without padding can allow this cast, even though &x->f2 has type int** in C.

Example 4: Arrays and Prefixes

struct S1 * x = ...;
struct D1 y = ((struct D1 *)x)[7];

Example 1 (and 2–3) implicitly assumed the destination pointer was not used as an array (i.e., it was used
as a pointer to one and not more than one struct D1). This issue is orthogonal to array-bounds violations;
we must reject the cast in Example 4 even if x points to more than 7 elements. Section 4.1 therefore extends
our model to make the necessary distinction between pointers to single-objects and pointers to arrays.

Example 5: Deep Subtyping

struct S4 {
struct {int* f1; int* f2;} *f3;

};
struct D4 {
const struct {int* g1;} *g2;

};

A cast from struct S4* to struct D4* is safe only because const qualifies the type of g2. As expected,
read-only access permits more casts (i.e., fewer implementation constraints) for the same reasons covariant
subtyping is sound on read-only fields. Section 4.2 adds this orthogonal feature to our model.

Example 6: Skipping Pad Bytes

5

struct S6 { struct D6 {
int* f1; int* g1;
int* f2; double g2;
double f3; };

};

A cast from struct S6* to struct D6* might appear safe if pointers are 4 bytes, struct S6 has no padding,
and struct D6 has 4 bytes of padding before g2. However, an assignment such as *p=*q where p and q have
type struct D6* may overwrite the pad bytes (which thanks to casting actually need to hold a pointer).
Section 4.3 extends our model to let implementations indicate on a per-pad basis how they implement
assignment to struct values.

Example 7: Safe-But-Inequivalent Implementations

struct S7 { struct D7 {
long f1; short g1;

}; short g2;
};

Assuming there is no padding, that long is twice the size of short, and that there are no misaligned accesses,
a cast from struct S7* to struct D7* is safe. No misaligned memory access or treating an integer as pointer
can result. However, endianness can cause different implementations to behave differently. We leave such
notions of equivalence to future work, focusing here only on safety, which we believe will still prove incredibly
useful in writing semi-portable code and debugging ported applications. In particular, by preventing reading
beyond the end of a struct, we detect many no-padding assumptions.

Interestingly, once one focuses on safety, certain constraints are actually unnecessary even though correct
C implementations must support them. For example, type-compatible fields of a struct could have the
same offsets (like a union). So omitting constraints like “fields have disjoint offsets” does not ruin our safety
result.

2.2 Practical Scenarios

The scope of the portability problem is not precisely known because defects lie dormant until one changes
hardware or compiler (or at least compiler flags). Therefore, like date bugs (such as the famous Y2K problem
of last decade), offending code can be difficult to locate and fix.3

The LinuxARM project, a port of Linux to the ARM embedded processor, provides compelling evidence
that defects are subtle and widespread. The ARM compiler gives all structs at least 4-byte alignment whereas
the original Linux implementation (gcc and x86) uses less alignment for structs containing only short and
char fields. To quote [2]:

At this point, several years of fixing alignment defects in Linux packages have reduced the prob-
lems in the most common packages. Packages known to have had alignment defects are: Linux
kernel; binutils; cpio; RPM; Orbit (part of Gnome); X Windows. This list is very incomplete.4

They also note that defects sometimes lead to alignment traps, but sometimes lead to silent data corruption.
Kernel developers are basically told to, “be careful” [25].

Ports to 64-bit platforms provide another evidence source. Some vendors do little more than suggest using
lint-like technology, such as gcc’s -Wpadded flag for reporting when a struct type has padding [21]. However,
others find that aggressive warning levels produce so much information for legacy code that they recommend
using multiple independent compilers and looking only at lines for which they all produce warnings [26].

3Furthermore, semantics-based Y2K solutions [13] serve as inspiration for us, though portability bugs fortunately do not
share a worldwide deadline.

4Emphasis in original.

6

τ ::= short | long | τ∗ | N
t ::= N{τ f}
e ::= s | l | x | e = e | e.f | (τ∗)e | ∗(τ∗)(e) | (τ∗)&τ∗→ef

| new τ | e; e | if e e e | while e e | τ x; e

Figure 1: Source-Language Syntax: A program has the form t; e

A third example comes from the common practice of writing garbage collectors for high-level languages
in C. If objects are allocated in-line by generated assembly code but the garbage collector accesses them
via a C struct, there are unchecked and often undocumented assumptions that the code generator and C
code make about each other. In principle, our constraint language could enable documenting the relevant
assumptions, and a tool could automatically test a C implementation against the documentation.

3 Core Language

This section develops a formal model that can explain examples 0–3 from Section 2. We define an appropriate
core language, a definition of implementation, a dynamic semantics, a first-order theory that constrains
implementations, a type-and-effect system to produce constraints, and a type-soundness result (acquired via
a second, lower-level type system). Figure 8 on page 15 summarizes the judgments defined for the model.

3.1 Idealized Syntax

For source programs, we consider a small subset of C with some convenient syntactic changes, as defined in
Figure 1. Most significantly, we omit functions and make all terms expressions. A program is a sequence
of struct definitions (t) and an expression (e) to be evaluated. (We consistently write x for a sequence of
elements from syntactic category x and · for the empty sequence. We also write xi for a length i sequence.)
Type definitions have global scope, allowing (mutually) recursive types.

Types τ include short and long (for two sizes of data), pointers (τ∗), and struct types (N rather than
the more verbose struct N). As in C, all pointers (levels of indirection) are explicit. A struct definition (t)
names the type and gives a sequence of fields. For simplicity, we assume all field names in a program are
disjoint. Several expression forms are identical to C, including short and long constants (s and l; we leave
their exact form unspecified), variables (x), assignments (e = e), field access (e.f), and pointer casts ((τ∗)e).

For pointer dereference (∗(τ∗)(e)) and pointing to a field ((τ∗)&τ∗→ ef), it is a technical convenience
to require a type annotation in the syntax. (Our particular choice happens to correspond to C’s syntax.)
Dereference in C is type-directed (if e has type τ∗, then ∗e reads sizeof(τ) bytes); our type decoration
makes this explicit. The cast in address-of-field expressions lets us support “suffix casts” as in Example 3 of
Section 2.

The remaining expression forms are for memory allocation or control flow. new τ heap-allocates uninitial-
ized space to hold a τ ; it is less verbose than malloc(sizeof(τ)). e; e is sequence. if e e e is a conditional
(branching on whether the first subexpression is 0). To avoid distinguishing statements from expressions, a
while-loop evaluates to a number if it terminates. Finally, τ x; e creates a local variable x of type τ bound
in e. Because memory management is not our concern, the dynamic semantics uses heap allocation even for
local variables.

As defined in Section 3.3, program evaluation depends on an implementation impl and modifies a heap
H. Because t does not change during evaluation, we write impl ; t ` H; e → H ′; e′ for one evaluation step.
Rather than define a translation (i.e., a compiler) from e down to a lower-level implementation-dependent
language, we extend e with new lower-level forms. This equivalent approach of consulting the implementation
“lazily” (i.e., at run-time) simplifies the metatheory while fully exposing the intricacies of implementation
dependencies.

7

i, a, o ∈ N
b ::= 0 | 1 | . . . | 255
w ::= b | uninit | `+i
e ::= . . . | w
v ::= w
α ::= [a, o]
H ::= · | H, ` 7→ v, α

Figure 2: Syntax extensions for run-time behavior

σ ::= byte | pad[i] | ptrα(σ) | ptrα(N)

impl .xtype(t, τ) = σ
impl .align(t, τ) = α
impl .offset(t, f) = i
impl .access(α, i) = {true, false}
impl .ptrsize = i

impl .xliteral(s) = b

impl .xliteral(l) = b

Figure 3: Implementations and low-level types

Figure 2 defines the syntactic extensions for run-time expressions and heaps. A value v is a sequence of
“small values” w, which can be initialized bytes b, unininitialized bytes uninit, or pointers `+i. A pointer is a
label ` and an offset i because we roughly model the heap as a mapping from labels to values (which recall
are sequences). So a pointer into the middle of a value has a non-zero offset. This heap model is higher
level than assembly language but low enough for middle pointers, suffix casts, etc. In other words, it is “just
right” for modeling semi-portable C.

Actually, heaps also map labels to alignments [a, o] which means the address ` is o mod a. (Typically o
is zero.) As the next section shows, an implementation specifies an alignment for each type; allocating an
object of type τ produces a fresh heap location with this alignment. Note that if ` has alignment [a, o], then
`+i has alignment gcd(a, a + i + o) where gcd computes the greatest-common-divisor.

3.2 Implementations

An implementation (impl) has several components, summarized in Figure 3. Together these components
suffice to guide an abstract machine parameterized by an implementation.

• A translation of types into a lower-level representation (σ), described below. We write impl .xtype(t, τ)
for the σ corresponding to the translation of a type τ (assuming type definitions t).

• An alignment function (impl .align) returns the alignment α used to allocate space for a τ .

• An offset function (impl .offset) takes a field f and returns the number of bytes from the beginning of
the nearest enclosing struct to the field f .

• An access function takes an alignment and a size and returns true if accessing size-bytes of memory at
the alignment is not an error. We write impl .access(α, i) if this function returns true.

• The size of pointers (impl .ptrsize) is a constant i. This is a slight simplification since a C implemen-
tation could use different sizes for different pointers.

• A literal function (impl .xliteral) translates integer literals into byte sequences.

8

The access function is typically associated with hardware and the other components with compilers, but
an implementation comprises all components. It is clear a “sensible” implementation cannot define its
components in isolation (e.g., the type translation must mind the access function); our constraint language
will let us define these restrictions precisely.

Low-level types (the target of impl .xtype) are σ, a sequence of σ. For example, if long is four bytes, the
translation is byte byte byte byte, i.e., byte4. The type pad[i] represents i bytes of padding (data of unknown
type but known size). The type ptrα(σ) describes pointers to data described by σ at alignment α (i.e., α
is the alignment of the pointed-to data). As a technical point, we disallow the type N for low-level types
except for the form ptrα(N). This restriction simplifies type equalities without restricting implementations
or disallowing recursive types.

3.3 Dynamic Semantics

The dynamic semantics is a small-step rewrite system for expressions, parameterized by an implementation
and a sequence of type definitions. Figure 4 holds the full definition for impl ; t ` H; e → H ′; e′. It is
defined via evaluation contexts for conciseness. As in C, the left side of assignments (called left-expressions)
are evaluated differently from other expressions (called right-expressions). Therefore, we have two sorts of
contexts (L and R) defined by mutual induction and a different sort of primitive reduction (l→ and r→) for
each sort of context [16]. In particular, R[e]r is a right-context R containing a right-hole filled by e and R[e]l
is a right-context R containing a left-hole filled by e. Each context contains exactly one right-hole or exactly
one left-hole, but not both.

Most primitive reductions depend on impl , but let us first dispense with those that do not. D-Cast
shows that casts have no run-time effect. D-Seq is typical. D-IfF and D-IfT are typical except we treat
0 as false (as in C) and other byte-sequences as true. We do not restrict the length of the byte-sequences.5

D-While is a typical small-step unrolling; we make the arbitrary choice that a terminating loop produces
some s literal nondeterministically.

D-New extends the heap with a new label holding uninitialized data. The implementation determines
the alignment and size of the new space, with the latter computed by applying the auxiliary size function
to the translation of the allocated type. The resulting value `+0 is a pointer to the beginning of the space.
The type system does not prevent getting stuck due to uninitialized data; this issue is orthogonal. D-Let is
much like D-New (its has identical hypotheses) because we model local variables by heap allocating them.
The resulting expression is the substitution of ∗(τ∗)(`+0) for x.

D-Deref reads data from the heap and the resulting expression is the data. In particular, it extracts a
sequence “from the middle” of H(`). This sequence is from offset j (where the expression before the step is
∗(τ∗)(` + j)) to j + k (where k is the size of the translation of τ). If it is not possible to “carve up” H(`)
in this way, then the rule does not apply and the machine is stuck. As expected, we also use impl .access to
model alignment constraints on the memory access.

D-Assign has the exact same hypotheses as D-Deref plus the requirement that the right-hand side be
a value equal in size to the value being replaced in the heap. The resulting heap differs only from offset j to
offset j + k of H(`).

D-Faddr takes a pointer value and increases its offset by the offset of the field f , which is defined by
impl . D-FetchL, the one primitive reduction in left contexts, is similar, but we also have to change a type
to reflect that e.f refers to less memory than e. A “left-value” (i.e., a terminal left-expression) looks like
∗(τ∗)(`+j).

D-Fetch uses the offset and size information from impl to project a subsequence of a value. We do not
use the access function here because we are not accessing the heap.6

Finally, D-Short and D-Long use the implementation directly to translate literals to byte-sequences.
5We also disallow pointer values in the sequence, but allowing them would cause no problems.
6On actual machines, large values do not fit in registers so alignment remains a concern. We could model this by treating

field access as an address-of-field computation followed by a dereference. However, the computation that produced the v in v.f
must have done a properly aligned memory access, so if v has the right type, then the more complicated treatment of field-access
also would not have failed for any sensible implementation.

9

R ::= [·]r | L = e | ∗(τ∗)(`+i) = R | R.f | ∗(τ∗)(R) | (τ∗)R | R; e | (τ∗)&τ∗→Rf | if R e e
L ::= [·]l | L.f | ∗(τ∗)(R)

D ::= impl ; t

D ` H; e r→ H ′; e′

D ` H;R[e]r → H ′;R[e′]r

D ` H; e l→ H ′; e′

D ` H;R[e]l → H ′;R[e′]l

D-Cast

D ` H; (τ∗)w r→ H;w

D-Seq

D ` H; (v; e) r→ H; e

D-While

D ` H;while e1 e2
r→ H; if e1 (e2;while e1 e2) s

D-IfF

D ` H; if 0i e1 e2
r→ H; e2

D-IfT
b1 . . . bi 6= 0i

D ` H; if (b1 . . . bi) e1 e2
r→ H; e1

D-New
` 6∈ Dom(H) impl .align(t, τ) = α
impl .xtype(t, τ) = σ size(impl , σ) = i

impl ; t ` H; new τ
r→ (H, ` 7→ uniniti, α); `+0

D-Let
` 6∈ Dom(H) impl .align(t, τ) = α
impl .xtype(t, τ) = σ size(impl , σ) = i

impl ; t ` H; τ x; e
r→ (H, ` 7→ uniniti, α); e{∗(τ∗)(`+0)/x}

D-Deref
H(`) = w1w2w3, [a, o] size(impl , w1) = j
impl .xtype(t, τ) = σ size(impl , w2) = size(impl , σ) = k
impl .access([a, o + j], k)

impl ; t ` H; ∗(τ∗)(`+j) r→ H;w2

D-Assign
H(`) = w1w2w3, [a, o] size(impl , w1) = j
impl .xtype(t, τ) = σ size(impl , w2) = size(impl , σ) = k
impl .access([a, o + j], k) size(impl , w) = k

impl ; t ` H; (∗(τ∗)(`+j)) = w
r→ (H, ` 7→ w1w w3, [a, o]);w

D-Faddr
impl .offset(f) = j′

impl ; t ` H; (τ∗)&τ→`+jf
r→ H; `+(j + j′)

D-FetchL
impl .offset(f) = j′ N{. . . τ2 f . . .} ∈ t

impl ; t ` H; (∗(τ1∗)(`+j)).f
l→ H; ∗(τ2∗)(`+(j + j′))

D-Fetch
N{. . . τ f . . .} ∈ t impl .offset(t, f) = size(impl , w1)
impl .xtype(t, τ) = σ size(impl , σ) = size(impl , w2)

impl ; t ` H;w1w2w3.f
r→ H;w2

D-Short
impl .xliteral(s) = b

impl ; t ` H; s r→ H; b

D-Long
impl .xliteral(l) = b

impl ; t ` H; l r→ H; b

size(impl , σ) =


1 if σ ∈ {byte, skip}
i if σ = pad[i]
impl .ptrsize if σ ∈ {ptrα(N),ptrα(σ)}

size(impl , w) =

{
1 if w ∈ {b, uninit}
impl .ptrsize if w = `+i

size(impl , σ1 . . . σn) =
n∑

i=1

size(impl , σi) size(impl , w1 . . . wn) =
n∑

i=1

size(impl , wi)

Figure 4: Dynamic Semantics

10

Several of the rules require computing the size of a value w or a type σ. Figure 4 includes these straight-
forward implementation-dependent functions.

3.4 First-Order Formulas

To define a sound type system for our language, we need to limit what implementations we consider. That
is, “P does not get stuck” makes no sense, but “P run on implementation impl does not get stuck” does.
We choose to use first-order logic to give a syntactic representation to a set of implementations; a formula
S represents the implementations that model it, i.e., the set {impl | impl |= S}.

The syntax for formulas S is first-order logic with (1) sorts for aspects of our language (including fields
f , types τ , low-level types σ, alignments α, etc.), (2) arithmetic, and (3) function symbols relevant to
implementation-dependencies. Figure 5 defines these function symbols and their interpretation. These
interpretations induce the full definition of impl |= S as usual (e.g., impl |= S1 ∧ S2 if and only if impl |= S1

and impl |= S2).
Consider two example constraints, which are just formulas:

• ∀τ, t. access(align(t, τ), size(xtype(t, τ)))

• Let t0 abbreviate:
N1{short f1 short f2 short f3}
N2{short g1 short g2}
in the formula:
subtype(t0, xtype(t0, N1∗), xtype(t0, N2∗)).

The first formula says that every type must have a size and alignment that allows memory to be ac-
cessed. Without this constraint, a program like τx;x = e could get stuck because D-Let uses the alignment
impl .align(t, τ) for the space allocated for x. The second formula requires a low-level subtyping relationship
between two pointer types (see Section 3.5). This is the constraint our static semantics generates for a cast
like in Example 1 from Section 2.

These examples also demonstrate the two flavors of formulas that arise in practice. First, there are con-
straints that every “sensible” implementation would satisfy. We are not interested in other implementations,
but stating these requirements syntactically is much simpler than revisiting our definition of implementa-
tions. Second, there are constraints that describe semi-portable assumptions, i.e., we do not expect every
implementation to satisfy them. Our static semantics produces a formula describing the assumptions of this
form that a particular program makes.

The “sensible” constraints we assume for type safety are straightforward to enumerate and eminently
justifiable:

1. Size and alignment allows access of all types:
∀τ, t. access(align(t, τ), size(xtype(t, τ)))

2. Translation of literals respects the translation of their types:
∀s, l, t. size(xliteral(s)) = size(xtype(t, short))
∧ size(xliteral(l)) = size(xtype(t, long))

3. Greater alignment does not restrict access:
∀α1, α2, i. (access(α1, i) ∧ subalign(α2, α1)) ⇒ access(α2, i)

4. Translation of τ∗ respects the alignment and translation of τ :
∀τ, t.subtype(t, ptralign(t,τ)(xtype(t, τ)), xtype(t, τ∗))

5. Struct translation respects the offset and alignment of each field:
∀t, τ, f, σ. (N{. . . τ f . . . } ∈ t ∧ (xtype(t, τ) = σ) ⇒
(∃σ1, σ2, a, o, o′.

xtype(t, N) = σ1σσ2 ∧ size(σ1) = offset(t, f)) = o′

∧ align(t, N) = [a, o] ∧ subalign([a, o + o′], align(t, τ))

11

syntax interpretation under impl defined in
xtype(t, τ) impl .xtype(t, τ) Figure 3
align(t, τ) impl .align(t, τ)
offset(t, f) impl .offset(t, f)
access(α, i) impl .access(α, i)
xliteral(s) impl .xliteral(s)
xliteral(l) impl .xliteral(l)
size(σ) size(impl , σ) Figure 4
size(w) size(impl , w)
subtype(t, σ1, σ2) impl ; t ` σ1 ≤ σ2 Figure 6
subalign(α1, α2) ` α1 ≤ α2

Figure 5: Function Symbols for the First-Order Theory

ptr
` α1 ≤ α2

D ` ptrα1
(σ1σ2) ≤ ptrα2

(σ1)

unroll
impl .xtype(t, N) = σ

impl ; t ` ptrα(N) ≤ ptrα(σ)

roll
impl .xtype(t, N) = σ

impl ; t ` ptrα(σ) ≤ ptrα(N)

pad
size(impl , σ) = i

impl ; t ` σ ≤ pad[i]

add

impl ; t ` pad[i]pad[j] ≤ pad[i + j]

seq

D ` σ1 ≤ σ2 D ` σ3 ≤ σ4

D ` σ1σ3 ≤ σ2σ4

refl

D ` σ ≤ σ

trans
D ` σ1 ≤ σ2 D ` σ2 ≤ σ3

D ` σ1 ≤ σ3

align-base
a1 = a2 × i

` [a1, o] ≤ [a2, o]

align-offset
o1 ≡ o2 mod a

` [a, o1] ≤ [a, o2]

align-trans
` α1 ≤ α2 ` α2 ≤ α3

` α1 ≤ α3

Figure 6: Physical Subtyping (and Subtyping on Alignments)

These constraints are necessary for portable code in the sense that without them certain cast-free pro-
grams could get stuck. The C standard also allows other assumptions that we can write in our logic but
that our safety theorem need not assume. Here are just three examples:

• long is at least as big as short:
∀t. xtype(t, long) ≥ xtype(t, short)

• The first field always has offset 0:
∀f, t, τ. (N{τf . . . } ∈ t) ⇒ offset(t, f) = 0

• Fields are in order and do not overlap:
∀τ1, f1, τ2, f2. N{. . . τ1 f1 . . . τ2 f2 . . . } ∈ t} ⇒
(offset(t, f1) + size(xtype(t, τ1)) < offset(t, f2))

3.5 Physical Subtyping

As in prior work [6, 35, 31], we use a subtyping relation on low-level types to formalize that data described
by σ can also be treated as a σ′. This notion has been called physical subtyping because it relies on actual
memory layouts. The rules for our judgment impl ; t ` σ1 ≤ σ2 appear in Figure 6 (recall we abbreviate
impl ; t as D when their form is unimportant).

As expected in a language with mutation, pointer types have invariant subtyping (rule ptr). However,
we do allow forgetting fields under a pointer type as this corresponds to restricting access to a prefix of the
data previously accessible. This encodes the core concept behind casts like Example 1 in Section 2. We also

12

allow assuming a less restrictive alignment (see the rules for ` α1 ≤ α2), which also can only restrict how a
pointer can be used.

Although we allow sequence-shortening under pointer types, it is not correct to allow shortening as a
subtyping rule because a supertype should have the same size as a subtype (we can prove our rules have this
property by induction on a subtyping derivation). This fact may seem odd to readers not used to subtyping
in a language with explicit pointers. It is why C correctly disallows casts between struct types (as opposed
to pointers to structs).

Rules unroll and roll witness the equivalence between a struct name and its definition. Recall we restrict
a type N to occur under pointers. We allow such use of N in order to support recursive types.

Rules pad and add let us forget about the form of data (not under a pointer) without forgetting its size.7

Rule seq lifts subtyping to sequences. As usual, subtyping is reflexive and transitive.
As usual, subsumption (explicit or implicit) is sound for right-expressions but unsound for left-expressions.

(For example, in Java, given e1=e2, one may use subsumption on e2 but not on e1.) The static semantics
enforces this restriction by disallowing casts as left-expressions.

3.6 Static Semantics and Constraint Generation

The preceding definitions of constraints and subtyping provide what we need to define a static semantics
for source programs (Figure 7). The judgments t; Γ r̀ e : τ ;S and t; Γ l̀ e : τ ;S (for right- and left-
expressions respectively) produce types as usual, but also formulas S. This formula is just a conjunction of
the semi-portable assumptions the program may be making.

The only interesting rules are S-Cast and S-Faddr because the “sensible” constraints in Section 3.4 suffice
to ensure other expression forms (such as dereferences and assignments) cannot fail due to an implementation
dependency. The constraints directly describe the implicit assumptions made in Examples 1, 2, and 3 in
Section 2. The S-Faddr constraint is much more complicated because it is not required in general that every
subsequence of fields have an alignment appropriate for treating it as a type.

By using separate but mutually recursive typing rules for left-expressions and right-expressions we ensure
left-expressions conform to a restricted grammar (as in C), namely expressions of the form x, ∗(τ∗)(e1), and
e2.f where e2 is itself a left-expression. Because subsumption is explicit (via casts) and casts are not left-
expressions, there is no subsumption for left-expressions. Note the “cast” in dereference expressions is not
really a cast (S-Deref requires a type equality); the explicit type indicates a run-time size used by D-Deref.

Absent from this formal type system is support for downcasts, which are obviously important in practice.
To support safe downcasts, we would just need to invert the direction of the subtyping constraint generated
by the cast and employ existing techniques to ensure that the casted value actually has the result of the cast.
Techniques used in existing safe-C approaches [31, 23] include implicit run-time type information, explicit
discriminated unions, (bounded) parametric polymorphism, etc.

3.7 Metatheory and Low-Level Static Semantics

Safety:

Ideally, our type-safety result would claim that running a well-typed program on a “sensible” implemen-
tation that models the program’s constraint would never lead to a stuck state. That is, given t; · r̀ e : τ ;S,
impl |= S and the “sensible” constraints, and impl ; t ` ·; e →∗ H; e′ (where →∗ is the reflexive, transitive
closure of →), either e′ is a value or there exists H ′, e′′ such that impl ; t ` H; e′ →∗ H ′; e′′.

However, this claim is not quite true because our type system does not prevent trying to use uninitialized
data. Therefore, we must relax our safety guarantee to admit that e′ might also be “legally stuck,” which

7For technical reasons we cannot allow impl ; t ` pad[i + j] ≤ pad[i]pad[j]; it could allow a program to access “part of a
pointer”. On one level this is sound (it could not do anything with the result because of type pad[i]), but our abstract machine
would get stuck when trying to extract part of a pointer.

13

S-Short

t; Γ r̀ s : short; true

S-Long

t; Γ r̀ l : long; true

S-New

t; Γ r̀ new τ : τ∗; true

S-Var
Γ(x) = τ

t; Γ r̀ x : τ ; true

S-Assn
t; Γ l̀ e1 : τ ;S1 t; Γ r̀ e2 : τ ;S2

t; Γ r̀ e1 = e2 : τ ;S1 ∧ S2

S-Fetch
t; Γ r̀ e : N ;S N{. . . τ f . . .} ∈ t

t; Γ r̀ e.f : τ ;S

S-Seq

t; Γ r̀ e1 : τ ′;S1 t; Γ r̀ e2 : τ ;S2

t; Γ r̀ e1; e2 : τ ;S1 ∧ S2

S-Deref
t; Γ r̀ e : τ∗;S

t; Γ r̀ ∗(τ∗)(e) : τ ;S

S-Cast
t; Γ r̀ e : τ1∗;S1

t; Γ r̀ (τ∗)e : τ∗;S1 ∧ subtype(t, xtype(t, τ1∗), xtype(t, τ∗))

S-Faddr
t; Γ r̀ e : N∗;S1 N{. . . τ1 f . . .} ∈ t

t; Γ r̀ (τ∗)(&e → f) : τ∗;S1 ∧ ∃σ1, σ2, a, o. xtype(t, N∗) = ptr[a,o](σ1σ2)
∧ offset(f) = size(σ1)
∧ subtype(ptr[a,o+offset(f)](σ2), xtype(t, τ∗))

S-If
t; Γ r̀ e1 : long;S1 t; Γ r̀ e2 : τ ;S2 t; Γ r̀ e3 : τ ;S3

t; Γ r̀ if e1 e2 e3 : τ ;S1 ∧ S2 ∧ S3

S-While
t; Γ r̀ e1 : long;S1 t; Γ r̀ e2 : τ ;S2

t; Γ r̀ while e1 e2 : short; S1 ∧ S2

S-Decl
t; Γ, x : τ1 r̀ e : τ2;S
t; Γ r̀ τ1 x; e : τ2;S

S-VarL
Γ(x) = τ

t; Γ l̀ x : τ ; true

S-DerefL
t; Γ r̀ e : τ∗;S

t; Γ l̀ ∗(τ∗)(e) : τ ;S

S-FetchL
N{. . . τ f . . .} ∈ t t; Γ l̀ e : N ;S

t; Γ l̀ e.f : τ ;S

Figure 7: Static Semantics (letting Γ ::= · | Γ, x:τ)

14

impl ; t ` H; e → H ′; e′ small step in dynamic semantics
impl ; t ` H; e r→ H ′; e′ primitive right-step reduction in dynamic semantics
impl ; t ` H; e l→ H ′; e′ primitive left-step reduction in dynamic semantics
impl |= S implementation impl models formula S
` α1 ≤ α2 subtyping on alignments
impl ; t ` σ1 ≤ σ2 low-level implementation-dependent subtyping
t; Γ r̀ e : τ ;S static semantics for right-expressions
t; Γ l̀ e : τ ;S static semantics for left-expressions
impl ; t; Ψ; Γ r̀ e : σ low-level typing for right-expressions
impl ; t; Ψ; Γ l̀ e : σ, αα low-level typing for left-expressions

Figure 8: Summary of Judgments

we define as expressions of the form R[stuck]r or R[stuck]l where:

stuck ::= if (w1 uninit w2) e e | ∗(τ∗)(uniniti) | (τ∗)&τ∗→uninitif

The proof, available in the appendix, employs a “low-level, run-time type system” that captures the rele-
vant invariants that evaluation preserves. The main judgment of this type system has the form impl ; t; Ψ; Γ r̀

e : σ where Ψ gives a type to the heap.8 This system has implicit subsumption, which is necessary for a step
via D-Cast to preserve typing:

impl ; t; Ψ; Γ r̀ e : σ1 impl ; t ` σ1 ≤ σ2

impl ; t; Ψ; Γ r̀ e : σ2

Like in the source-level type system, we also have a judgment for left-expressions (impl ; t; Ψ; Γ l̀ e : σ, αα).
This judgment does not have a subsumption rule, but does produce an alignment describing the alignment
of the location that e will evaluate to.

Many of the low-level typing rules have hypotheses that refer directly to the implementation. For example,
the rule for type-checking dereferences is:

impl ; t; Ψ; Γ r̀ e : ptrα(σ1σ2) impl .xtype(t, τ) = σ1 impl .access(α, size(impl , σ1))
impl ; t; Ψ; Γ r̀ ∗(τ∗)(e) : σ1

See the appendix for the complete system, which includes rules for run-time forms (such as w) and heaps.
The connection between the static semantics and the low-level type system is concisely stated by this

lemma:

If t; Γ r̀ e : τ ;S, impl |= S and impl is sensible, and impl .xtype(t, τ) = σ, then impl ; t; ·; Γ r̀ e : σ.

The proof, by induction on the derivation of t; · r̀ e : τ ;S, uses the definition of |= in many cases. For
example, a source derivation ending in S-Deref can produce a low-level derivation ending in the dereference
rule above because sensible implementations model access(align(t, τ), size(xtype(t, τ))).

Given the lemma above, showing preservation and progress [36] (modulo legally stuck states) for the
dynamic semantics relative to the low-level type system suffices to establish type safety.

Cast-Free Portability:

Having safety rely on a portability constraint (the S in t; · r̀ e : τ ;S) can be viewed as weak, since S could
be difficult to establish, even unsatisfiable. However, we can formalize the intuitive notion that only casts

8Ψ ::= · | Ψ, ` 7→ σ, α

15

Syntax: τ ::= . . . | τ∗ω

e ::= . . . | new τ [e] | &((τ∗ω)(e))[e]
R ::= . . . | new τ [R] | &((τ∗ω)(R))[e] | &((τ∗ω)(`+i))[R]
σ ::= . . . | ptrω

α(σ) | ptrω
α(N)

Implementations:
impl .val(b) = i

Dynamic semantics:

D-NewArr
` 6∈ Dom(H) impl .align(t, τ) = α
impl .xtype(t, τ) = σ size(impl , σ) = i

impl .val(b) = j ≥ 0

impl ; t ` H; new τ [b] r→ H, ` 7→ uniniti×j , α; `+0

D-ArrElt
impl .xtype(t, τ) = σ H(`) = w,α
size(impl , σ) = j 0 ≤ (i + j × k) < size(impl , w)
impl .val(b) = k

impl ; ts ` H; &((τ∗ω)(`+i))[b] r→ H; `+(i + j × k)

Sensibility constraint: size is a multiple of alignment

∀τ, t.∃i, a, o. size(t, xtype(t, τ)) = i× a ∧ align(t, τ) = [a, o]

Subtyping and static semantics:

Arr
σ1 = σ i

2 ` α1 ≤ α2

impl ; t ` ptrω
α1

(σ1) ≤ ptrω
α2

(σ2)

S-NewArr
t; Γ r̀ e : long;S

t; Γ r̀ new τ [e] : τ∗ω;S

S-ArrElt
t; Γ r̀ e1 : τ∗ω;S1 t; Γ r̀ e2 : long;S2

t; Γ r̀ &((τ∗ω)(e1))[e2] : τ∗;S1 ∧ S2

Figure 9: Extensions for Arrays

can threaten portability. That is, for the right definition of “cast-free,” if e is cast-free and t; Γ r̀ e : τ ;S,
then every sensible impl models S. It then follows from safety that e is portable (i.e., it will not get stuck
on any sensible implementation).

To be precise, a program t; e is cast-free if:

• The only occurrences of (τ∗)e′ in e are in expressions of the form ∗((τ∗)e′) and (τ∗)&τ∗→e′f .

• For every expression of the form (τ∗)&τ∗→e′f in e, the type τ is the type of f . That is, N{. . . τ f . . . } ∈
t.

The second point allows taking the address of a field but requires the resulting type to be the type of the
field (rather than allowing an implementation-dependent suffix cast).

4 Extensions

This section sketches how the core model we have developed is flexible enough to be extended with other
relevant features of C and its implementations. We focus primarily on arrays because they are ubiquitous
and require restricting our subtyping definition. Other extensions we consider merely permit additional
subtyping.

4.1 Arrays

As Example 4 demonstrates, a subtyping rule for pointers that drops a suffix of pointed-to fields (rule Ptr in
Figure 6) is unsound if the pointer may be used as a pointer to an array. Therefore, extending our model with

16

arrays is important and requires some otherwise unnecessary restrictions. Figure 9 defines this extension
formally.

Rather than conservatively assume all pointers may point to arrays, the types distinguish pointers to
one object (τ∗ as already defined) from pointers to arrays (τ∗ω; the ω just distinguishes it from τ∗). This
dichotomy is common in safe C-like languages [31, 23], can be approximated via static analysis over C code,
and is necessary to identify what implementation assumptions are due only to arrays. The low-level types
(σ) make the same distinction.

We add two right-expression forms. First, new τ [e] creates a pointer to a heap-allocated array of “length”
e. (Because e will evaluate to a byte-sequence b, an implementation must interpret b as an integer; we use
impl .val for this conversion.) The dynamic rule D-NewArr is exactly like D-New except it creates enough
space at H(`) for the array. Our type system does not prevent new τ [e] from being stuck if e has uninitialized
bytes or e is negative.9

Second, &((τ∗ω)(e1))[e2] is more easily read as &e1[e2]; the size of τ guides the dynamic semantics like
it does with pointer dereferences. This form produces a pointer to one array element, which can then be
dereferenced or assigned through. (Adding a form that produces a τ∗ω type instead of a τ∗ would work fine,
but we omit it here.) The dynamic rule D-ArrElt produces the pointer `+(i + j × k) where the array begins
at `+i, elements have size j, and e2 evaluates to k. However, the two hypotheses on the right perform a
run-time bounds check ; our type system does not prevent this check from failing and therefore the machine
being stuck.10 By performing the bounds-check on &((τ∗ω)(e1))[e2], we ensure an ensuing dereference can
never fail.

With this economical addition of arrays to the abstract machine, we can design constraints and subtyping
such that the only failures are bounds-checks (not unaligned memory accesses or treating bytes as pointers).
A key issue is alignment: Given the alignment of e1, how can we know the alignment of &((τ∗ω)(e1))[e2]
without statically constraining the value of e2? (This issue does not arise with (τ∗)&τ∗→ef precisely because
the offset of f is known statically.) The solution taken by every sensible C implementation is to ensure the
size of τ is a multiple of its alignment; see Figure 9 for the formal constraint. That way, &((τ∗ω)(e1))[e2]
is at least as aligned as e1. Assuming this constraint, the typing rules for the new expression forms add
nothing notable. Interestingly, this sensibility constraint is not needed without arrays.

Finally but most importantly, we consider subtyping for pointer-to-array types. Analogues of Unroll

and Roll are sound for types of the form ptrω
α(σ), but Ptr must be replaced with a more restrictive rule.

Therefore, Arr requires the element type of the subtype to be the element type of the supertype repeated i
times (for some i). This is more lenient than strict invariance. For example, it supports the semi-portable
practice of treating an array of: struct { short i1; short i2; short i3; short i4;}; as an array of
short. We have proven safety given this subtyping rule. (See Appendix A).

The Arr rule does not support subtyping such as:
D ` ptrω

α(byte byte byte) ≤ ptrω
α(byte byte). A cast requiring this subtyping makes sense if the pointed-to-

array has an element count divisible by 6, else it is memory-safe but probably a bug since the target type
will “forget” the last byte in the array. We have not extended our formal model with arrays of known size,
but we see no problems doing so. Such arrays are common in C, particularly with multidimensional arrays
(all but one dimension must have known size), which is why CCured [31] allows casts like this.

An alternate approach could allow such subtyping for pointers to arrays of unknown size, but change
the run-time behavior of casts to check that the array length is an appropriate multiple. In any case, our
model provides an excellent starting point for considering subtle variations of subtyping and how it relies on
implementation dependencies, which is exactly the goal of our work.

4.2 Read-Only Pointers

We do not allow subtyping under pointer types because a pointer can be dereferenced on the left side of an
assignment. In C, const τ∗ describes pointers that cannot be used to write to the pointed-to data (though

9In C, e is unsigned, but large allocations due to conversion from negative numbers are a well-known defect source.
10This check disallows pointing just past the end of the array, unlike C.

17

the lack of qualifier polymorphism [15] causes const to be used rarely and often removed via unsafe casts).
Adding this new flavor of pointer type to our model (for both high-level and low-level types) is straight-

forward:

• There are no changes to the dynamic semantics.

• S-DerefL must require a non-const pointer; S-Deref can allow a const or non-const pointer; and
S-Faddr must produce a type with the same qualifier as its subexpression.

• For subtyping rules Ptr, Unroll, and Roll, we can add versions where the two types are both const.

• Finally, we add two new subtyping rules to show that const permits deep subtyping and allows less
access than non-const:

D ` σ ≤ σ′

D ` const ptrα(σ) ≤ const ptrα(σ′) D ` ptrα(σ) ≤ const ptrα(σ)

This addition is synergistic with more expressive recursive subtyping, discussed below.

4.3 Byte-Skipping

Our dynamic semantics assumes that an assignment copies all bytes of the right-hand value into the corre-
sponding heap location. Actually, C implementations may choose to skip pad bytes. In practice, skipping
reduces the amount of memory written but can increase the number of store instructions.

Example 6 showed a contrived example where skipping could allow more subtyping. Conversely, although
we did not add equality on structures to our expression language, skipping can lead to equality failing
because some bytes remain uninitialized (in practice, holding unpredictable bits) despite the struct value
being initialized. Though these issues are probably rare, our model is flexible enough to handle them and
shed light on the meaning of skipping. To summarize the changes:

• Add a form skip[i] to σ and let D ` pad[i] ≤ skip[i].

• Change D-Assn to “merge” the new value with the old one by skipping over any “skip bytes” as indicated
by impl .xtype(t, τ). That is, we use the type translation to indicate where skipping does and does not
occur.

• The new skip type allows additional subtyping under pointers:

D ` σ2 ≤ skip[i]
D ` ptrα(σ1σ2σ3) ≤ ptrα(σ1skip[i]σ3)

4.4 Recursive Subtyping

Our definition of named struct types (t) allows recursive types, but for simplicity our definition of physical
subtyping is overly restrictive. For example, given two isomorphic structs defining linked-lists of integers,
N1{long f1; N1 ∗ f2} and N2{long g1; N2 ∗ g2}, we might have impl .xtype(t, N1) = byte4ptrα(N1) and
impl .xtype(t, N2) = byte4ptrα(N2). We would be unable to show impl ; t ` byte4ptrα(N1) ≤ byte4ptrα(N2).

Sound solutions to this sort of limitation are well-known [3]. For this example, one could maintain a
context of valid subtyping assumptions and to derive ptrα(N1) ≤ ptrα(N2) one can show the translation of
N1 is a subtype of the translation of N2 while assuming ptrα(N1) ≤ ptrα(N2).

The issues regarding subtyping recursive types are the usual ones. We have opted for simplicity of
presentation over expressiveness. In an actual tool, one should prefer expressiveness.

18

5 Previous Work

To our knowledge, previous work considering implementation-dependent data-layout assumptions or low-level
type-safety has taken one of a few approaches:

• Consider only one or two implementations (e.g., verify that one compiler to one architecture produces
type-safe code) or one complete “bit-by-bit” data description.

• Check that a C program is portable, giving a compile-time error or fail-stop run-time termination if it
is not.

• Assume that a C program is portable, i.e., extend the C compiler’s view that behavior for unportable
programs is undefined.

• Restrict C, e.g., prohibit dynamic memory allocation.

The first approach is less helpful for writing semi-portable code because we must reverify the code for each
implementation. The second approach is good only for (parts of) applications that should be written in a
higher-level language. The third and fourth approaches essentially relegate some issues to work such as ours,
much as we relegate some issues like array-bounds errors to other work [9, 12].

5.1 Assuming an Implementation

Most closely related is the “physical type-checking” work of Chandra et al. [6, 35], which motivated our work
considerably. Their tool classifies C casts as “upcasts”, “downcasts”, or “neither”, reporting a warning for
the last possibility. They take a byte-for-byte view of memory for a low-level type system, but they neither
parameterize their system by an implementation nor produce descriptions of sets of implementations. Hence
checking code against a new implementation would require reverification and changing their tool. They
present no metatheory validating their approach.

CCured [31], a memory-safe C implementation, includes physical type-checking to reduce the number of
casts that require run-time checks. That is, CCured permits casts that work in practice but are not allowed
by the C standard. The allowed casts are safe under a padding strategy used by common C compilers for the
x86 architecture, which covers some but certainly not all implementations. The formal model establishing
CCured’s soundness shares similarities with our work (particularly the subtyping between arrays and single-
objects), but it lacks a distinct notion of implementation, alignment constraints, local variables with struct
types, memory allocation, const, recursive types, etc.

Work on typed assembly language and proof-carrying code [29, 28, 10, 7, 20] clearly needs a low-level
view of memory. Such projects can establish that certifying compilers produce code that cannot get stuck
due to uninitialized memory, unaligned memory access, segmentation faults, etc. In particular, work on
allocation semantics [33, 1] has taken a lower-level view than our formalism by treating addresses as integers
and exposing that pointer arithmetic can move between adjacent data objects. These approaches provide less
help for writing semi-portable code because verification of type-safety is repeated for each implementation.
In practice, defining a new implementation is an enormous amount of work.

For external data such as network packets [27] or ad hoc data streams [14], one can produce parsers
directly from explicit bit-by-bit type declarations. While this is a robust solution for external data, it is less
appropriate for describing implementation decisions for program data. For semi-portable code, we want to
specify some data-representation constraints, but not fix every bit.

5.2 Safe C

Memory-safe dialects or implementations of C, such as Cyclone [23, 18, 17], CCured [31, 30, 8], and SAFE-
Code [11], do not solve the semi-portability problem. Rather, they may reject (at compile-time) or terminate

19

(at run-time) programs that attempt implementation-dependent operations, or they may support only cer-
tain implementations (e.g., certain C compilers as back-ends). These approaches are fine for fully portable
code or code that is correct assuming particular compilers.

Furthermore, the implementations of all these systems include “run-time systems” (automatic memory
managers, type-tag checkers, etc.) that are themselves semi-portable! For example, the Cyclone run-time
system assumes 32-bit integers and pointers, and making this code more portable is a top request from actual
users.

5.3 Formalizing C

Recent work by Leroy et al. [24, 5] uses Coq to prove a C compiler correct. Their (large-step) operational
semantics for C distinguishes left and right expressions much as we do. However, their source language
omits structs (avoiding many alignment and padding issues), and their metatheory proves correctness only
for correct source programs (presumably saying nothing about implementation-dependent code).

Norrish’s formalization of C [32] uses HOL and includes structs. Like in our work, he uses a global names-
pace mapping struct names to sequences of typed fields. However, he purposely omits padding and alignment
from his formalism. He has no separable notion of an implementation; instead he models implementation
choices as non-determinism.

5.4 Low-Level Code without C

Our work has been somewhat C-centric, whereas other projects have started with languages at higher levels
of abstraction and added bit-level views for low-level programming. (See [4, 19] for just two recent examples.)
We believe this complementary approach would benefit from our constraint-based view rather than choosing
just between completely high-level types and completely low-level ones. That is, our model provides a
foundation for semi-portable types, which are useful for building low-level but retargetable systems in any
language.

C-- [34] makes data representation and alignment explicit, but C-- is not a platform for writing semi-
portable code. Rather, it is a low-level language designed as a target for compiling high-level languages.
It has explicit padding on data (a compiler just inserts bits where desired) and explicit alignment on all
memory accesses.11 Incorrect alignment is an unchecked run-time error. The purpose of C-- is to handle
back-end code-generation issues for a compiler; it is still expected that the front-end compiler will generate
different (but similar) code for each platform and provide a run-time system, probably written in C.

6 Conclusions

This work has developed a formal description of implementation-dependencies in low-level software. The
key insight is a semantic definition of “implementation” that directs a low-level operational semantics and
models a syntactic constraint that we can produce via static analysis on a source program. We have proven
soundness for a small core language and a simple static analysis, and extended the approach to account for
arrays and other language features. Giving implementations a clear identity in our framework clarifies a
number of poorly understood issues.

The technique of implementation-as-parameter can apply broadly since high-level languages also have
implementation-defined behavior. As examples, SML programs may depend on the size of int, Scheme pro-
grams may depend on evaluation order, or Java programs may depend on fair thread-scheduling. A program
property relying on such assumptions would be stronger than memory-safety (which is always assured); the
point is describing implementations via constraints would let us identify a program’s assumptions.

Our next step is to complete a practical tool to determine implementation assumptions of real C code.
We expect the simple static analysis formalized here will prove too imprecise. However, the problem de-
composition in this work still applies; we just replace the “high-level type system” with a more accurate

11Syntactically, an omitted alignment is taken to be n for an n-byte access.

20

producer of an implementation constraint. In fact, for a bug-finding porting tool, we may wish to sacrifice
soundness to reduce false positives.

Another area for future work is a stronger guarantee, namely that a program has similar (ideally equiv-
alent) behavior on a set of implementations. Tackling this problem requires arithmetic reasoning in the
presence of overflow and different endianesses.

7 Acknowledgments

Matthew Fluet, Greg Morrisett, and David Walker provided excellent feedback on the presentation.

References

[1] A. Ahmed and D. Walker. The logical approach to stack typing. In ACM International Workshop on
Types in Language Design and Implementation, pages 74–85, New Orleans, LA, Jan. 2003.

[2] The ARMLinux Book Online, Chapter 10. May 2005.
http://www.aleph1.co.uk/armlinux/book.

[3] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on Programming Lan-
guages and Systems, 15(4):575–631, Sept. 1993.

[4] D. F. Bacon. Kava: a Java dialect with a uniform object model for lightweight classes. Concurrency
and Computation: Practice and Experience, 15(3–5):185–206, 2003.

[5] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C compiler front-end. In 14th International
Symposium on Formal Methods, Aug. 2006.

[6] S. Chandra and T. Reps. Physical type checking for C. In ACM Workshop on Program Analysis for
Software Tools and Engineering, pages 66–75, Toulouse, France, Sept. 1999.

[7] J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL for back-end optimization. In
ACM Conference on Programming Language Design and Implementation, pages 208–219, San Diego,
CA, June 2003.

[8] J. Condit, M. Harren, S. McPeak, G. Necula, and W. Weimer. CCured in the real world. In ACM
Conference on Programming Language Design and Implementation, pages 232–244, June 2003.

[9] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE
Analyser. In European Symposium on Programming, volume 3444 of Lecture Notes in Computer Science,
pages 21–30. Springer-Verlag, Apr. 2005.

[10] K. Crary. Toward a foundational typed assembly language. In 30th ACM Symposium on Principles of
Programming Languages, pages 198–212, New Orleans, LA, Jan. 2003.

[11] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforcing alias analysis for weakly typed languages.
In ACM Conference on Programming Language Design and Implementation, Ottawa, Canada, June
2006.

[12] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically detecting all buffer
overflows in C. In ACM Conference on Programming Language Design and Implementation, pages
155–167, San Diego, CA, June 2003.

[13] P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H. Sørensen, and M. Tofte. AnnoDomini: from type
theory to year 2000 conversion tool. In 26th ACM Symposium on Principles of Programming Languages,
pages 1–14, San Antonio, TX, Jan. 1999.

21

[14] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data description languages. In 33rd ACM
Symposium on Principles of Programming Languages, pages 2–15, Charleston, SC, Jan. 2006.

[15] J. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In ACM Conference on Programming
Language Design and Implementation, pages 192–203, Atlanta, GA, May 1999.

[16] D. Grossman. Type-safe multithreading in Cyclone. In ACM International Workshop on Types in
Language Design and Implementation, pages 13–25, New Orleans, LA, Jan. 2003.

[17] D. Grossman. Quantified types in imperative languages. ACM Transactions on Programming Languages
and Systems, 28(3):429–475, May 2006.

[18] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory manage-
ment in Cyclone. In ACM Conference on Programming Language Design and Implementation, pages
282–293, Berlin, Germany, June 2002.

[19] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach. A principled approach to operating system
construction in Haskell. In 10th ACM International Conference on Functional Programming, pages
116–128, Tallinn, Estonia, Sept. 2005.

[20] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to foundational
proof-carrying code. Journal of Automated Reasoning, 31(3–4):191–229, Sept. 2003.

[21] IBM. Developing embedded software for the IBM PowerPC 970FX processor. Application Note 970,
IBM, July 2004. http://www.ibm.com/chips/techlib/.

[22] ISO/IEC 9899:1999, International Standard—Programming Languages—C. International Standards
Organization, 1999.

[23] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In USENIX Annual Technical Conference, pages 275–288, Monterey, CA, June 2002.

[24] X. Leroy. Formal certification of a compiler back-end or: Programming a compiler with a proof assistant.
In 33rd ACM Symposium on Principles of Programming Languages, pages 42–54, Jan. 2006.

[25] R. Love. Linux Kernel Development, Second Edition. Novell Press, 2005. Page 328.

[26] B. Martin, A. Rettinger, and J. Singh. Multiplatform porting to 64 bits. Dr. Dobb’s Journal, Dec. 2005.
http://www.ddj.com/184406427.

[27] P. J. McCann and S. Chandra. Packet types: abstract specification of network protocol messages.
In SIGCOMM ’00: Proceedings of the conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 321–333, 2000.

[28] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly language. ACM
Transactions on Programming Languages and Systems, 21(3):528–569, May 1999.

[29] G. Necula. Proof-carrying code. In 24th ACM Symposium on Principles of Programming Languages,
pages 106–119, Paris, France, Jan. 1997.

[30] G. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of legacy code. In 29th ACM
Symposium on Principles of Programming Languages, pages 128–139, Portland, OR, Jan. 2002.

[31] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of
legacy software. ACM Transactions on Programming Languages and Systems, 27(3):477–526, May 2005.

[32] M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.

22

[33] L. Petersen, R. Harper, K. Crary, and F. Pfenning. A type theory for memory allocation and data layout.
In 30th ACM Symposium on Principles of Programming Languages, pages 172–184, New Orleans, LA,
Jan. 2003.

[34] N. Ramsey, S. P. Jones, and C. Lindig. The C-- language specification version 2.0, Feb. 2005.
http://www.cminusminus.org/extern/man2.pdf.

[35] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping with type casts in C. In 7th
European Software Engineering Conference and 7th ACM Symposium on the Foundations of Software
Engineering, pages 180–198, Toulouse, France, Sept. 1999.

[36] A. Wright and M. Felleisen. A syntactic approach to type soundness. Information and Computation,
115(1):38–94, 1994.

A Safety Proof

We use the notation x to denote a sequence of objects drawn from the syntactic class x, the notation xi to
denote a sequence of length i, and let · denote the empty sequence. Figure 10 gives the syntax for a C-like
source language. Figure 12 gives an extended, “low-level” version of this language, where the types are
replaced by types at the byte-sequence level, runtime values are added, and syntax for heaps, heap typings,
and evaluation contexts is also shown. Figure 13 gives the dynamic semantics for the low-level language and
Figure 14 defines a set of value and type size functions used throughout the low-level semantics. Figures 15
and 16 give the static semantics for the low-level language. Figure 17 gives the static semantics for the
high-level language.

A.1 Implementations

Our dynamic and low-level static semantics are parameterized by implementations. An implementation is
an oracle that guides the semantics in various ways. Each implementation is a record of six functions, as
follows:

• xtype : t× τ → σ: Translates a high-level type into a low-level type.

• align : t× τ → α: Gives the alignment of type τ .

• offset : t× f → N: Gives the offset of field f . Without loss of generality, we assume that all fields in t
are uniquely named.

• access : α × N → {true, false}: impl .access(α, k) determines whether it is okay to access a memory
chunk of size k at alignment α on implementation impl .

• xlit : {s, l} → w: Translates a literal expression into a sequence of bytes.

• ptr size : N: Gives the size of pointers. We limit our focus to implementations on which all pointers
have the same size.

A.2 Constraint Language

The high-level semantics (Figure 17) is a type and effect system that, in addition to a type, outputs a
constraint S. The language used to express S is a multi-sort first-order logic in which each of the t, τ, σ, f, α, N
syntactic classes is assigned a corresponding sort. Moreover, the logic is enriched with function symbols
corresponding to each implementation component plus a couple of others. Implementations are models in
this theory; we write impl |= S when impl satisfies formula S. The (|=) judgment is entirely ordinary,
defined inductively over the structure of S. For example, impl |= S1 ∧ S2 exactly when impl |= S1 and

23

(types) τ ::= short | long | τ∗ | N
(declarations) t ::= N{τ f}
(expressions) e ::= s | l | x | e = e | e.f | ∗(τ∗)(e) | new τ | (τ∗)e | (τ∗)&e→f

| e; e | if e e e | while e e | τ x; e
(contexts) Γ ::= x:τ

Figure 10: Syntax for the Source Language

symbol interpretation under impl
xtype(t, τ) impl .xtype(t, τ)
align(t, τ) impl .align(t, τ)
offset(t, f) impl .offset(t, f)
access(α, i) impl .access(α, i)
xlit(s) impl .xlit(s)
xlit(l) impl .xlit(l)
ptr size impl .ptr size
size(σ) size(impl , σ)
size(w) size(impl , w)
subtype(t, σ1, σ2) impl ; t ` σ1 ≤ σ2 is derivable
subalign(α1, α2) ` α1 ≤ α2 is derivable

Figure 11: Constraint Language Function Symbols

impl |= S2; and impl |= ∀x : s.S exactly when for all objects t of sort s, S[t/x] is true, where S[t/x] denotes
the capture-avoiding substitution of t for x into S. We generally omit explicit sorts on quantified variables;
it is clear what is meant from the context.

Figure 11 summarizes the function symbols and their interpretation under impl . As a final example,
involving function symbols, suppose we have a constraint S = (align(t, N) = [a, o] ∧ align(t, τ) = [a, o +
offset(t, f)]) and want to know whether an implementation impl satisfies S (alternatively, impl models S).
impl satisfies S iff impl |= align(t, N) = [a, o] and impl |= align(t, τ) = [a, o + offset(t, f)]. To satisfy the
former conjunct, impl .align(t, N) = [a, o] must be true. To satisfy the latter, impl .align(t, τ) = [a, o +
impl .offset(t, f)] must be true.

A.3 Metatheory

Definition 1 (Sensible Implementations)
An implementation impl is said to be sensible if

1. ∀τ . impl .access(impl .align(t, τ), size(impl , impl .xtype(t, τ))).

2. ∃i. impl .xtype(t, short) = bytei and ∀s∃b. impl .xlit(s) = b and size(impl , b) = i.
∃i. impl .xtype(t, long) = bytei and ∀s∃b. impl .xlit(l) = b and size(impl , b) = i.

3. ∀t. if N{. . . τ f . . .} ∈ t and impl .xtype(t, τ) = σ2 then ∃σ1, σ3, a, o, α such that impl .xtype(t, N) =
σ1σ2σ3 where impl .offset(t, f) = size(impl , σ1), impl .align(t, N) = [a, o], impl .align(t, τ) = α, and
` [a, o + impl .offset(t, f)] ≤ α.

The reason we have the “subalignment” requirement here, rather than equality, is to admit more
implementations without sacrificing soundness; otherwise we would be unnecessarily restrictive. For
example, suppose impl .align(t, N) = [8, 0], impl .offset(t, f) = 8, and impl .align(t, τ) = [4, 0]. Then,
clause (3) would require τ to be 8-byte aligned (alignment [8, 0 + impl .offset(t, f)] ≡ [8, 8] ≡ [8, 0]),
which is unreasonable. It is okay for τ to be 4-byte, 2-byte, or 1-byte aligned.

24

(types) σ ::= byte | pad[i] | ptrα(σ) | ptrα(N)
(alignments) α ::= [a, o]

(atomic values) w ::= b | `+i | uninit
(bytes) b ::= 0 | 1 | . . . | 255

(expressions) e ::= . . . | w
(values) v ::= w

(heaps) H ::= ` 7→ v, α

(heap typings) Ψ ::= `:σ, α
D ::= impl ; t
C ::= Ψ; Γ

i, j, k, a, o ∈ N

(left contexts) L ::= [·]L | L.f | ∗(τ∗)(R)
(right contexts) R ::= [·]R | L = e | ∗(τ∗)(`+i) = R | R.f | ∗(τ∗)(R) | (τ∗)R

| R; e | (τ∗)&R→f | if R e e

Figure 12: Syntax for the Full Language (Extends Source Language) and Eval Contexts

4. ∀τ∃α, σ. impl .xtype(t, τ∗) = ptrα(σ) and impl .xtype(t, τ) = σ and impl .align(t, τ) = α.

5. If impl .access(α, i) and ` α′ ≤ α then impl .access(α′, i).

Definition 2 (Substitution)

s{e/x} = s
l{e/x} = l
x{e/x} = e
y{e/x} = y
w{e/x} = w

(e1 = e2){e/x} = e1{e/x} = e2{e/x}
(e1.f){e/x} = (e1{e/x}).f

(∗(τ∗)(e1)){e/x} = ∗(τ∗)((e1{e/x}))
(new τ){e/x} = new τ
((τ∗)e1){e/x} = (τ∗)(e1{e/x})

((τ∗)&e1→f){e/x} = (τ∗)&(e1{e/x})→f
(e1; e2){e/x} = e1{e/x}; e2{e/x}

(if e1 e2 e3){e/x} = if (e1{e/x}) (e2{e/x}) (e3{e/x})
(while e1 e2){e/x} = while (e1{e/x}) (e2{e/x})

(τ y; e1){e/x} = τ z; (e1{z/y}){e/x} (z fresh)

Definition 3 (Legal Stuck State) Let

rstuck ::= if w1 uninit w2 e e | ∗(τ∗)(uniniti) | (τ∗)&uniniti→f

lstuck ::= ∗(τ∗)(uniniti)

A state H; e is legally stuck if one of the following is true:

• e = R[lstuck]l

• e = R[rstuck]r

• e = L[lstuck]l

• e = L[rstuck]r

25

(D-Cast) D ` H; (τ∗)w r→ H;w
(D-Short) D ` H; s r→ H; b

if impl .xlit(s) = b

(D-Long) D ` H; l r→ H; b
if impl .xlit(l) = b

(D-Seq) D ` H; (v; e) r→ H; e
(D-IfF) D ` H; if 0i e1 e2

r→ H; e2

(D-IfT) D ` H; if b1 . . . bi e1 e2
r→ H; e1

if b1 . . . bi 6= 0i

(D-While) D ` H;while e1 e2
r→ H; if e1 (e2;while e1 e2) s

(D-New) impl ; t ` H; new τ
r→ H, ` 7→ uniniti, α; `+0

if ` 6∈ Dom(H)
impl .xtype(t, τ) = σ
size(impl , σ) = i
impl .align(t, τ) = α

(D-Decl) impl ; t ` H; τ x; e
r→ H, ` 7→ uniniti, α; e{∗(τ∗)(`+0)/x}

if . . . same as above . . .
(D-Fetch) impl ; t ` H;w1w2w3.f

r→ H;w2

if impl .offset(t, f) = size(impl , w1)
N{. . . τ f . . .} ∈ t
impl .xtype(t, τ) = σ
size(impl , σ) = size(impl , w2)

(D-FAddr) impl ; t ` H; (τ∗)&`+j→f
r→ H; `+(j + impl .offset(t, f))

(D-Deref) impl ; t ` H; ∗(τ∗)(`+j) r→ H;w2

if H(`) = w1w2w3, [a, o]
size(impl , w1) = j
impl .xtype(t, τ) = σ
size(impl , w2) = size(impl , σ) = k
impl .access([a, o + j], k)

(D-Assn) impl ; t ` H; ∗(τ∗)(`+j) = w
r→ H, ` 7→ w1w w3, [a, o];w

if . . . same as above . . .
size(impl , w) = size(impl , w2)

(D-FetchL) impl ; t ` H; (∗(τ1∗)(`+j)).f
l→ H; ∗(τ2∗)(`+(j + j′))

if impl .offset(f) = j′

N{. . . τ2 f . . .} ∈ t

D-StepL

D ` H; e l→ H ′; e′

D ` H;R[e]l → H ′;R[e′]l

D-StepR
D ` H; e r→ H ′; e′

D ` H;R[e]r → H ′;R[e′]r

Figure 13: Dynamic Semantics

26

size : (impl × σ) → N

size(impl , σ) =


1 if σ = byte
i if σ = pad[i]
impl .ptr size if σ ∈ {ptrα(N),ptrα(σ)}

size : (impl × σ) → N
size(impl , σ1 . . . σn) =

∑n
i=1 size(impl , σi)

size : (impl × w) → N

size(impl , w) =

{
1 if w ∈ {b, uninit}
impl .ptr size if w = `+i

size : (impl × w) → N
size(impl , w1 . . . wn) =

∑n
i=1 size(impl , wi)

Figure 14: Size Functions

Definition 4 (Illegal Stuck State)
A state H; e is illegally stuck on an implementation impl and declarations t if H; e is not legally stuck, e is
not a value, and there exist no H ′ and e′ such that impl ; t ` H; e → H ′; e′.

Definition 5 (Heap Typing Extension)
A heap typing Ψ extends a heap typing Ψ′ iff there exists Ψ′′ such that Ψ = Ψ′Ψ′′.

A.3.1 Type Soundness

Lemma 6 (Weakening)

1. (a) If D; Ψ; Γ r̀ e : σ then D; ΨΨ′; ΓΓ′ r̀ e : σ.

(b) If D; Ψ; Γ l̀ e : σ, α then D; ΨΨ′; ΓΓ′ l̀ e : σ, α.

2. If D; Ψ ` H : Ψ′ then D; ΨΨ′′ ` H : Ψ′.

Proof:

1. By simultaneous induction on the assumed typing derivations, using the facts that if ` ∈ Dom(Ψ) then
(ΨΨ′)(`) = Ψ(`), and if x ∈ Dom(Γ) then (ΓΓ′)(x) = Γ(x).

2. By straightforward induction on the assumed heap typing derivation, using the result of part (1).

Lemma 7 (Heap Canonical Forms)
If D; Ψ ` H : Ψ and Ψ(`) = σ, α, then ∃w such that H(`) = w,α and D; Ψ; · r̀ w : σ.

Proof: By straightforward induction on the assumed heap typing derivation.

Lemma 8 (Uninit Type)
If size(impl , σ) = i then impl ; t; Ψ; · r̀ uniniti : σ.

Proof: By induction on the length of σ. In the base case, σ = · and the claim follows immediately. In the
inductive case, σ = σσ′ where by induction we have size(impl , σ′) = j and

1 impl ; t; Ψ; · r̀ uninitj : σ′

27

L-Short
impl .xtype(t, short) = bytei

impl ; t;C r̀ s : bytei

L-Long
impl .xtype(t, long) = bytei

impl ; t;C r̀ l : bytei

L-VarR
Γ(x) = τ impl .xtype(t, τ) = σ

impl ; t; Ψ; Γ r̀ x : σ

L-VarL
Γ(x) = τ impl .xtype(t, τ) = σ impl .align(t, τ) = α

impl ; t; Ψ; Γ l̀ x : σ, α

L-Assn
D;C l̀ e1 : σ, α D;C r̀ e2 : σ

D;C r̀ e1 = e2 : σ

L-FetchR
impl ; t;C r̀ e : σ1σ2σ3 impl .offset(f) = size(impl , σ1) N{. . . τ f . . .} ∈ t impl .xtype(t, τ) = σ2

impl ; t;C r̀ e.f : σ2

L-FetchL
impl ; t;C l̀ e : σ1σ2σ3, [a, o] impl .offset(t, f) = size(impl , σ1) = o′

N{. . . τ f . . .} ∈ t impl .align(t, N) = α ` [a, o] ≤ α impl .xtype(t, τ) = σ2

impl ; t;C l̀ e.f : σ2, [a, o + o′]

L-Deref{R,L}
impl ; t;C r̀ e : ptrα(σ1σ2) impl .xtype(t, τ) = σ1 impl .access(α, size(impl , σ1))

impl ; t;C r̀ ∗(τ∗)(e) : σ1

impl ; t;C l̀ ∗(τ∗)(e) : σ1, α

L-New
impl .xtype(t, τ) = σ impl .align(t, τ) = α

impl ; t;C r̀ new τ : ptrα(σ)

L-Cast
impl ; t;C r̀ e : ptrα(σ)

impl ; t;C r̀ (τ∗)e : ptrα(σ)

L-FAddr
impl ; t;C r̀ e : ptr[a,o1](σ1σ2) impl .offset(f) = size(impl , σ1)

impl ; t;C r̀ (τ∗)&e→f : ptr[a,o2](σ2)

L-Seq

D;C r̀ e1 : σ′ D;C r̀ e2 : σ

D;C r̀ e1; e2 : σ

L-Decl
D; Ψ; Γ, x : τ r̀ e : σ

D; Ψ; Γ r̀ τ x; e : σ

L-If
impl ; t;C r̀ e1 : bytei impl ; t;C r̀ e2 : σ impl ; t;C r̀ e3 : σ

impl ; t;C r̀ if e1 e2 e3 : σ

L-While
impl ; t;C r̀ e1 : bytej impl ; t;C r̀ e2 : σ2 impl .xtype(t, short) = bytei

impl ; t;C r̀ while e1 e2 : bytei

L-Value
D; Ψ ẁ w1 : σ1 D; Ψ; Γ r̀ w2 : σ2

D; Ψ; Γ r̀ w1w2 : σ1σ2

L-ValueEmpty

D; Ψ r̀ · : ·

L-Sub
D;C r̀ e : σ1 D ` σ1 ≤ σ2

D;C r̀ e : σ2

Figure 15: Static Semantics for the Low-Level Language

28

Heap Typing

Ht-Ax

D; Ψ ` · : ·

Ht-Inf
D; Ψ ` H : Ψ′ D; Ψ; · r̀ v : σ

D; Ψ ` H, ` 7→ v, α : Ψ′, ` : σ, α

Alignment Subtyping

Alst-Off
o1 ≡ o2 mod a

` [a, o1] ≤ [a, o2]

Alst-Base
a1 = a2 × k

` [a1, o] ≤ [a2, o]

Alst-Trans
` α1 ≤ α2 ` α2 ≤ α3

` α1 ≤ α3

Physical Subtyping

St-Unroll
impl .xtype(t, N) = σ

impl ; t ` ptrα(N) ≤ ptrα(σ)

St-Roll
impl .xtype(t, N) = σ

impl ; t ` ptrα(σ) ≤ ptrα(N)

St-Ptr
` α1 ≤ α2

D ` ptrα1
(σ1σ2) ≤ ptrα2

(σ1)

St-Pad
size(impl , σ) = i

impl ; t ` σ ≤ pad[i]

St-PadAdd

impl ; t ` pad[i]pad[j] ≤ pad[i + j]

St-Refl

D ` σ ≤ σ

St-Seq

D ` σ1 ≤ σ2 D ` σ3 ≤ σ4

D ` σ1σ3 ≤ σ2σ4

St-Trans
D ` σ1 ≤ σ2 D ` σ2 ≤ σ3

D ` σ1 ≤ σ3

Value Typing

Lw-Byte

D; Ψ ẁ b : byte

Lw-Lbl
Ψ(`) = σ1σ2, [a, o] i = size(impl , σ1)

impl ; t; Ψ ẁ `+i : ptr[a,o+i](σ2)

Lw-Uninit1

D; Ψ ẁ uninit : byte

Lw-Uninit2
impl .ptr size = i

impl ; t; Ψ ẁ uniniti : ptrα(σ)

Figure 16: Auxiliary Relations

If size(impl , σ) = k then we can derive

2 impl ; t; Ψ; · ẁ uninitk : σ

If σ is one of (byte,ptrα(σ)), this is immediate from Lw-Uninit1 and Lw-Uninit2. For pad[i] we can use Lw-

Uninit1, St-Pad, and St-PadAdd k times. Plugging (1,2) into L-Value yields the desired conclusion. Finally,
if σ is ptrα(N), we can use Lw-Uninit2 to derive impl ; t; Ψ; · r̀ uniniti : ptrα(σ) where impl .xtype(t, N) = σ,
then use St-Roll and L-Sub to assign type ptrα(N) to uniniti.

Lemma 9 (Constant-Size Subtyping)
If D ` σ1 ≤ σ2 then size(impl , σ1) = size(impl , σ2).

Proof: By induction on the assumed subtyping derivation, by cases on the last rule used.

• St-Roll, St-Unroll, St-Ptr: Two pointers have the same size.

• St-Pad: size(impl , σ) = size(impl ,pad[i]) = i.

29

H-Short

t; Γ r̀ i : short;>

H-Long

t; Γ r̀ d : long;>

H-New

t; Γ r̀ new τ : τ∗;>

H-Var{R,L}
Γ(x) = τ

t; Γ r̀ x : τ ;>
t; Γ l̀ x : τ ;>

H-Assn
t; Γ l̀ e1 : τ ;S1 t; Γ r̀ e2 : τ ;S2

t; Γ r̀ e1 = e2 : τ ;S1 ∧ S2

H-FetchR
N{. . . τ f . . .} ∈ t t; Γ r̀ e : N ;S

t; Γ r̀ e.f : τ ;S

H-FetchL
N{. . . τ f . . .} ∈ t t; Γ l̀ e : N ;S

t; Γ l̀ e.f : τ ;S

H-Seq

t; Γ r̀ e1 : τ ′;S1 t; Γ r̀ e2 : τ ;S2

t; Γ r̀ e1; e2 : τ ;S1 ∧ S2

H-Deref{R,L}
t; Γ r̀ e : τ∗;S

t; Γ r̀ ∗(τ∗)(e) : τ ;S
t; Γ l̀ ∗(τ∗)(e) : τ ;S

H-Cast
t; Γ r̀ e : τ∗;S

t; Γ r̀ (τ ′∗)e : τ ′∗;S ∧ subtype(xtype(t, τ∗), xtype(t, τ ′∗))

H-Faddr
N{. . . τ ′ f . . .} ∈ t t; Γ r̀ e : N∗;S

t; Γ r̀ (τ∗)(&e → f) : τ∗;S ∧ ∃σ1, σ2, a, o . xtype(t, N∗) = ptr[a,o](σ1σ2)
∧ subtype(t, ptr[a,o+offset(t,f)](σ2), xtype(t, τ∗))
∧ offset(t, f) = size(σ1)

H-If
t; Γ r̀ e1 : long;S1 t; Γ r̀ e2 : τ ;S2 t; Γ r̀ e3 : τ ;S3

t; Γ r̀ if e1 e2 e3 : τ ;S1 ∧ S2 ∧ S3

H-While
t; Γ r̀ e1 : long;S1 t; Γ r̀ e2 : τ ;S2

t; Γ r̀ while e1 e2 : short; S1 ∧ S2

H-Decl
t; Γ, x : τ1 r̀ e : τ2;S
t; Γ r̀ τ1 x; e : τ2;S

Figure 17: Static semantics for high level language

• St-PadAdd: Immediate.

• St-Refl: Immediate.

• St-Seq: By induction, size(impl , σ1) = size(impl , σ2) and size(impl , σ3) = size(impl , σ4). It follows that
size(impl , σ1) + size(impl , σ3) = size(impl , σ2) + size(impl , σ4).

• St-Trans: By induction twice, size(impl , σ1) = size(impl , σ2) = size(impl , σ3).

Lemma 10 (Value-Type Size)

1. If impl ; t; Ψ ẁ w : σ then size(impl , w) = size(impl , σ).

2. If impl ; t; Ψ; Γ r̀ w : σ then size(impl , w) = size(impl , σ).

Proof:

1. By inspection of the assumed typing derivation:

30

• Lw-Byte: size(impl , b) = size(impl ,byte) = 1.

• Lw-Lbl: size(impl , `+i) = size(impl ,ptrα(σ2)) = impl .ptr size.

• Lw-Uninit1: size(impl , uninit) = size(impl ,byte) = 1.

• Lw-Uninit2: size(impl , uniniti) = size(impl ,ptrα(σ)) = impl .ptr size = i.

2. By induction on the assumed typing derivation, by cases on the last rule used (all but 3 are impossible):

• L-ValueEmpty: trivial; both sizes are 0.

• L-Value: we have impl ; t; Ψ; Γ r̀ w1w2 : σ1σ2 where inversion gives impl ; t; Ψ ẁ w1 : σ1 and
impl ; t; Ψ; Γ r̀ w2 : σ2. Part (1) of the theorem gives size(impl , w1) = size(impl , σ1). The
induction hypothesis gives size(impl , w2) = size(impl , σ2). It follows that size(impl , w1w2) =
size(impl , σ1σ2).

• L-Sub: Follows from induction and the Constant-Size Subtyping Lemma.

Lemma 11 (Sequence Typing)

1. If D;C r̀ w1 : σ1 and D;C r̀ w2 : σ2, then D;C r̀ w1w2 : σ1σ2.

2. If D;C r̀ w1 : σ1, . . . , D;C r̀ wn : σn, then D;C r̀ w1 . . . wn : σ1 . . . σn.

Proof:

1. By induction on the derivation of D;C r̀ w1 : σ1, by cases on the last rule used (all but 3 are
impossible):

• L-ValueEmpty: trivial; the second assumption is what we need.

• L-Value: Then w1 = wawb and induction (applied to wb and w2) and L-Value suffice.

• L-Sub: By inversion D;C r̀ w1 : σ3 and D ` σ3 ≤ σ1. So by induction D;C r̀ w1w2 : σ3σ2. So
with D ` σ3 ≤ σ1, St-Seq, St-Refl, and L-Sub we can derive D;C r̀ w1w2 : σ1σ2.

2. By induction on n. Cases n = 0 and n = 1 are trivial. For n > 1, use induction and part(1).

Lemma 12 (Subtyping Partition)
If D ` σ1 ≤ σ21 . . . σ2n, then ∃σ11, . . . , σ1n such that σ1 = σ11 . . . σ1n and for all 1 ≤ i ≤ n, D ` σ1i ≤ σ2i.

Proof: By induction on the assumed subtyping derivation, by cases on the last rule used:

• St-Roll, St-Unroll, St-Ptr, St-Pad, St-PadAdd: Immediate because n = 1 so σ1 = σ11.

• St-Refl: Trivial, let σ1i = σ2i.

• St-Seq: Follows from two invocations of the induction hypothesis and the union of the partitions they
prove exist.

• St-Trans: Follows from two invocations of the induction hypothesis and composing the partitions they
prove exist.

Lemma 13 (Subtyping Split)
If D ` σ3 ≤ σ1σ2, then there exists σ′1 and σ′2 such that σ3 = σ′1σ

′
2, D ` σ′1 ≤ σ1, and D ` σ′2 ≤ σ2.

Proof: Let σ1 = σ11 . . . σ1n and σ2 = σ21 . . . σ2m. Then by the Subtyping Partition Lemma, there exist
σ11, . . . , σ1n, σ21, . . . σ2m such that σ3 = σ11 . . . σ1nσ21 . . . σ2m, D ` σ11 ≤ σ11, . . . D ` σ1n ≤ σ1n, D `
σ21 ≤ σ21, . . .D ` σ2m ≤ σ2m. So letting σ′1 = σ11 . . . σ1n (respectively σ′2 = σ21 . . . σ2m), we can use n
(respectively m) uses of St-Seq and St-Trans to derive what we need.

31

Lemma 14 (Typing Partition)
If D;C r̀ w : σ1 . . . σn, then ∃w1, . . . , wn such that w = w1 . . . wn and for all 1 ≤ i ≤ n, D;C r̀ wi : σi.

Proof: By induction on the assumed typing derivation, by cases on the last rule used (all but 3 are impos-
sible):

1. L-ValueEmpty: trivial because n = 0.

2. L-Value: Then w = w1w2, D; Ψ ẁ w1 : σ1 follows from inversion, and the other results follow from
inversion and induction.

3. L-Sub: Then by inversion there exists σ′1 . . . σ′m such that D;C r̀ w : σ′1 . . . σ′m and D ` σ′1 . . . σ′m ≤
σ1 . . . σn. So by induction there exists w′

1, . . . , w
′
m such that w = w′

1 . . . w′
m and 1 ≤ i ≤ m, D;C r̀ w′

i :
σ′i. And by the Subtyping Partition Lemma, there exist σ′1, . . . , σ

′
n such that σ′1 . . . σ′m = σ′1 . . . σ′n and

for all 1 ≤ i ≤ n, D ` σ′i ≤ σi. Therefore, we can use the σ′i . . . σ′j that is σ′k and the corresponding
w′

i . . . w′
j and use the Sequence Typing Lemma to conclude D;C r̀ w′

i . . . w′
j : σ′k and then L-Sub to

conclude D;C r̀ w′
i . . . w′

j : σk. So letting w′
i . . . w′

j = wk suffices.

Lemma 15 (Value Split)

1. If D;C r̀ w : σ1σ2, then ∃w1, w2 such that w = w1w2, D;C r̀ w1 : σ1, and D;C r̀ w2 : σ2.

2. If D;C r̀ w : σ1σ2σ3, then ∃w1, w2, w3 such that w = w1w2w3, D;C r̀ w1 : σ1, D;C r̀ w2 : σ2, and
D;C r̀ w3 : σ3.

Proof:

1. Let σ1 = σ11 . . . σ1n and σ2 = σ21 . . . σ2m. Then by the Typing Partition Lemma there exists
w11, . . . , w1n, w21, . . . , w2m such that w = w11 . . . w1nw21 . . . w2m and D;C r̀ w11 : σ11, . . . , D;C r̀

w1n : σ1n, D;C r̀ w21 : σ21, . . . D;C r̀ w2m : σ2m. So letting w1 = w11 . . . w1n and w2 = w21 . . . w2m,
two uses of the Sequence Typing Lemma provide what we need.

2. Letting σ′2 = σ2σ3, part 1 ensures there exist w1 and w′
2 such that w = w1w

′
2, D;C r̀ w1 : σ1,

and D;C r̀ w′
2 : σ′2. Applying part 1 again to the last conclusion provides D;C r̀ w2 : σ2 and

D;C r̀ w3 : σ3. (Note we can extend this to n by a trivial induction should we need it).

Non-Lemma: (Type-Split) If D;C r̀ w1w2 : σ, then ∃σ1, σ2 such that σ = σ1σ2, D;C r̀ w1 : σ1, and
D;C r̀ w2 : σ2.
Non-Proof: This is FALSE. Let w1 = uninit2, w2 = uninit2 and σ = ptrα(·) when the size of pointers is 4.

Lemma 16 (Value-Type Split) If

impl ; t;C r̀ w1w2 : σ1σ2

size(impl , w1) = size(impl , σ1)

then

impl ; t;C r̀ w1 : σ1

impl ; t;C r̀ w2 : σ2

Proof: If w1 = ·, then σ1 = · and the results follow from L-ValueEmpty and the assumption. So assume
w1 6= · and proceed by induction on the assumed typing derivation, by cases on the last rule applied (all but
2 are impossible):

• L-Value: By inversion and the assumptions, w1 = w11w12, σ1 = σ11σ12,

1 impl ; t; Ψ ẁ w11 : σ11

32

2 impl ; t; Ψ; · r̀ w12w2 : σ12σ2

From the assumption, we know size(impl , w11w12) = size(impl , σ11σ12). By the Value-Type Size
Lemma, we have size(impl , w11) = size(impl , σ11). It follows that

3 size(impl , w12) = size(impl , σ12)

From (2,3), the induction hypothesis yields

4 impl ; t; Ψ; · r̀ w12 : σ12

5 impl ; t; Ψ; · r̀ w2 : σ2

Plugging (1,4) into L-Value gives impl ; t; Ψ; · r̀ w11w12 : σ11σ12, which, together with (5), gives the
desired conclusion.

• L-Sub: By inversion there exists a σ3 such that D;C r̀ w1w2 : σ3 and D ` σ3 ≤ σ1σ2. So by
the Subtyping Split Lemma, there exists σ′1 and σ′2 such that σ3 = σ′1σ

′
2, D ` σ′1 ≤ σ1, and D `

σ′2 ≤ σ2. By the Constant-Size Subtyping Lemma size(impl , σ′1) = size(impl , σ1), so the assumption
size(impl , w1) = size(impl , σ1) ensures size(impl , w′

1) = size(impl , σ′1). So by induction impl ; t;C r̀

w1 : σ′1 and impl ; t;C r̀ w2 : σ′2. So with one use of L-Sub each, we can derive impl ; t;C r̀ w1 : σ1 and
impl ; t;C r̀ w2 : σ2.

Lemma 17 (Subsequence Replacement)

1. If D;C r̀ w1w2 : σ1σ2 and D;C r̀ w2 : σ2 and D;C r̀ w3 : σ2 then D;C r̀ w1w3 : σ1σ2.

2. If D;C r̀ w1w2 : σ1σ2 and D;C r̀ w1 : σ1 and D;C r̀ w3 : σ1 then D;C r̀ w3w2 : σ1σ2.

Proof: Follows from the Value Split and Sequence Typing Lemmas.

Lemma 18 (Alignment Subtyping Reflexivity)
For all [a, o], we can derive ` [a, o] ≤ [a, o].

Proof: Can be derived with either Alst-Off (o ≡ o mod a) or Alst-Base (a = a× 1).

Lemma 19 (Alignment Subtyping Form)
If ` [a, o + i] ≤ α then ∃a′, o′ such that α = [a′, o′ + i].

Proof: By induction on the assumed derivation.

Lemma 20 (Alignment Addition)
` [a, o] ≤ [a′, o′] if and only if ` [a, o + k] ≤ [a′, o′ + k].

Proof: Both directions proceed by induction on the assumed derivation, using the fact that o ≡ o′ mod a
iff o + k ≡ o′ + k mod a.

Lemma 21 (Subtyping Type Form)

• If impl ; t ` σ′ ≤ ptrα(σ) then ∃σ′′, α′ such that σ′ = ptrα′(σ σ′′) or σ′ = ptrα′(N) where impl .xtype(t, N) =
σ σ′′, and ` α′ ≤ α.

• If impl ; t ` σ′ ≤ ptrα(N) and impl .xtype(t, N) = σ then ∃σ′′, α′ such that σ′ = ptrα′(σ σ′′) or
σ′ = ptrα′(N ′) where impl .xtype(t, N ′) = σ σ′′, and ` α′ ≤ α.

Proof: By simultaneous induction on the assumed subtyping derivations, by cases on the last rule used.
The cases St-Pad and St-PadAdd cannot occur.

33

• St-Roll: σ′ = ptrα(N) and inversion gives impl .xtype(t, N) = σ. We satisfy the property with σ′′ = ·
and α′ = α.

• St-Unroll: σ′ = ptrα(σ σ′′) where inversion gives impl .xtype(t, N) = σ. We satisfy the property with
σ′′ = · and α′ = α.

• St-Ptr: Follows from inspection and inversion.

• St-Refl: Immediate, with α′ = α, N ′ = N , and σ′′ = ·.

• St-Seq: We have impl ; t ` σ1σ3 ≤ σ2σ4. It must be the case that either σ1 = σ2 = · or σ3 = σ4 = ·,
because pointer types cannot be broken into subsequences. The property follows by induction.

• St-Trans: We have impl ; t ` σ1 ≤ σ3 where inverting gives impl ; t ` σ1 ≤ σ2 and impl ; t ` σ2 ≤ σ3.
There are two possibilities for σ3:

1. σ3 = ptrα(N) where impl .xtype(t, N) = σ′. By induction on the second subderivation, we get
either

– σ2 = ptrα′(σ′σ′′), where ` α′ ≤ α. By induction on the first subderivation, we have either
σ1 = ptrα′′(σ′σ′′σ′′′) or σ1 = ptrα′′(N ′) where impl .xtype(t, N ′) = σ′σ′′σ′′′ and ` α′′ ≤ α′,
and by Alst-Trans, ` α′′ ≤ α, which is what we want.

– σ2 = ptrα′(N ′) where impl .xtype(t, N ′) = σ′σ′′ and ` α′ ≤ α. By induction on the first sub-
derivation, we have either σ1 = ptrα′′(σ′σ′′σ′′′) or σ1 = ptrα′′(N) where impl .xtype(t, N) =
σ′σ′′σ′′′ and ` α′′ ≤ α′, and by Alst-Trans, ` α′′ ≤ α, which is what we want.

2. σ3 = ptrα(σ′). Proceeds exactly as above.

Lemma 22 (Canonical Forms)

1. If D; Ψ; · r̀ w : · then w = ·.

2. If D; Ψ; · r̀ w : byte then w = b or w = uninit.

3. If D; Ψ; · r̀ w : bytek then w = w1 . . . wk where wi = b or wi = uninit for i ∈ {1, . . . , k}.

4. • If impl ; t; Ψ; · r̀ w : ptrα(σ1) then ∃σ0, σ2 s.t. either

– w = uniniti where impl .ptr size = i.
– w = `+i and α = [a, o + i] and Ψ(`) = σ0σ1σ2, α

′ where ` α′ ≤ [a, o] and size(impl , σ0) = i.

• If impl ; t; Ψ; · r̀ w : ptrα(N) where impl .xtype(t, N) = σ1, then ∃σ0, σ2 s.t. either

– w = uniniti where impl .ptr size = i.
– w = `+i and α = [a, o + i] and Ψ(`) = σ0σ1σ2, α

′ where ` α′ ≤ [a, o] and size(impl , σ0) = i.

Proof:

1. By induction on the typing derivation. Last rule applied is either L-ValueEmpty or L-Sub. The former
follows immediately. If the latter, the only subtype of · is ·, so the property follows form induction.

2. By induction on the derivation. Last rule applied is either L-Value or L-Sub. In the former case, by
inversion we have D; Ψ; · ẁ w : byte. Only the Lw-Byte or Lw-Uninit1 can apply, meaning either w = b
or w = uninit. In the latter case, byte has no subtypes other than itself, so the property follows from
induction.

3. By induction on the type derivation, by cases on the last rule used. If the last rule is L-Value, we have
w = ww′ and inversion gives D; Ψ ẁ w : byte and D; Ψ; · r̀ w′ : bytek−1. By induction, the property
holds for the latter derivation. By part (2) of the theorem, the property holds for the former derivation.
If the last rule applied is L-Sub, the property holds by induction, since bytei has no subtypes other
than itself.

34

4. By simultaneous induction on the assumed typing derivations, by cases on the last rule applied. Re-
flexivity of alignment subtyping (Lemma 18) is used implicitly. There are only two possibilities:

• L-Value: There are two sub-cases:

– Assume D; Ψ; · r̀ w : ptrα(σ1) Inversion gives D; Ψ; · ẁ w : ptrα(σ1). Quick inspection
reveals that only the rules Lw-Lbl or Lw-Uninit2 can lead to this conclusion. In the latter case,
clearly w = uniniti. In the former case, inversion yields the desired result, with σ2 = · and
α = [a, o + i] and α′ = [a, o].

– Assume D; Ψ; · r̀ w : ptr[a,o+i](N), where impl .xtype(t, N) = σ1. Vacuous; cannot be derived
via L-Value.

• L-Sub: There are two sub-cases:

– Assume D; Ψ; · r̀ w : ptrα(σ1). Inversion gives D; Ψ; · r̀ w : σ and D ` σ ≤ ptrα(σ1). By the
Subtyping Type Form Lemma, σ is one of
∗ ptrα′(N) where impl .xtype(t, N) = σ1σk for some σk, and ` α′ ≤ α. Applying the IH to

D; Ψ; · r̀ w : ptrα′(N) we get that either w = uniniti or w = `+i and α′ = [a, o + i] and
Ψ(`) = σ0σ1σkσ2, α

′′ where ` α′′ ≤ [a, o] and size(impl , σ0) = i.
It remains to be shown that α is of the form [a′, o′ + i] and ` α′′ ≤ [a′, o′]. We know
` [a, o + i] ≤ α. By the Alignment Subtyping Form Lemma, α = [a′, o′ + i] for some a′

and o′. By the Alignment Addition Lemma, ` [a, o] ≤ [a′, o′]. We also know ` α′′ ≤ [a, o],
so by Alst-Trans, ` α′′ ≤ [a′, o′], as desired.

∗ ptrα(σ1σk) for some σk. Proceeds like the above case.
– Assume D; Ψ; · r̀ w : ptrα(N), where impl .xtype(t, N) = σ1. Similar to the above case.

Lemma 23 (Context Reordering)
If D; Γ, x1 : τ1, x2 : τ2 r̀ e : σ then D; Γ, x2 : τ2, x1 : τ1 r̀ e : σ.

Proof: Straightforward induction.

Lemma 24 (Substitution Preserves Types)
Suppose impl .xtype(t, τ) = σ2, impl .align(t, τ) = α, impl ; t; Ψ; Γ r̀ e2 : σ2, and impl ; t; Ψ; Γ l̀ e2 : σ2, α.

1. If impl ; t; Ψ; Γ, x : τ r̀ e1 : σ1, then impl ; t; Ψ; Γ r̀ e1{e2/x} : σ1.

2. If impl ; t; Ψ; Γ, x : τ l̀ e1 : σ1, α, then impl ; t; Ψ; Γ l̀ e1{e2/x} : σ1, α.

Proof: By simultaneous induction the assumed typing derivations, by cases on the last rule used.

• L-Short, L-Long, L-New, L-ValueEmpty, L-Value: trivial because substitution and x are irrelevant.

• L-VarR: We assume impl ; t; Ψ; Γ, x : τ r̀ y : σ1 and it follows that impl .xtype(t, τ) = σ1. If x = y then
σ1 = σ2 and y{e2/x} = e2, and so impl ; t; Ψ; Γ r̀ e2 : σ1 by assumption, as desired. If x 6= y, then
y{e2/x} = y and we can drop x from the context and still derive impl ; t; Ψ; Γ r̀ y : σ1.

• L-VarL: We assume impl ; t; Ψ; Γ, x : τ l̀ y : σ1, α and it follows that impl .xtype(t, τ) = σ1 and
impl .align(t, τ) = α. If x = y then σ1 = σ2 and y{e2/x} = e2, and so impl ; t; Ψ; Γ l̀ e2 : σ1, α
by assumption, as desired. If x 6= y, then y{e2/x} = y and we can drop x from the context and still
derive impl ; t; Ψ; Γ l̀ y : σ1, α.

• L-Assn: We assume impl ; t; Ψ; Γ, x : τ r̀ e = e′ : σ1. By inversion and induction (once for left-typing
and once for right-typing),

1 impl ; t; Γ l̀ e{e2/x} : σ1, α

2 impl ; t; Γ r̀ e′{e2/x} : σ1

35

The desired property follows from an application of L-Assn to these facts and from the definition of
substitution.

• L-FetchL: Follows from inversion, induction, and an application of L-FetchL.

• L-FetchR: Follows from inversion, induction, and an application of L-FetchR.

• L-Deref{L,R}: Inversion, induction, and an application of L-Deref{L,R}.

• L-Cast: Inversion, induction, and an application of L-Cast.

• L-FAddr: Inversion, induction, and an application of L-FAddr.

• L-Seq: Inversion, induction applied to each subexpression, and plugging the results into L-Seq.

• L-If: Similar to L-Seq.

• L-While: Similar to L-Seq.

• L-Decl: We assume impl ; t; Γ, x : τ r̀ τ ′ y; e : σ1. By inversion, impl ; t; Γ, x : τ, y : τ ′ r̀ e : σ1. By the
Context Reordering Lemma, impl ; t; Γ, y : τ ′, x : τ r̀ e : σ1. By Weakening, impl ; t; Γ, y : τ ′ r̀ e2 : σ2.
By induction, impl ; t; Γ, y : τ ′ r̀ e{e2/x} : σ1. By D-Decl, impl ; t; Γ r̀ τ ′ y; e{e2/x} : σ1.

• L-Sub: Inversion, induction, and an application of L-Sub.

Lemma 25 (Subject Reduction)
Suppose impl is a sensible implementation. If

impl ; t; Ψ; · r̀ e : σ (or impl ; t; Ψ; · l̀ e : σ, α)
impl ; t ` H; e r→ H ′; e′ (or impl ; t ` H; e l→ H ′; e′)
impl ; t; Ψ ` H : Ψ

then there exists Ψ′, extending Ψ, such that

impl ; t; Ψ′; · r̀ e′ : σ (or impl ; t; Ψ′; · l̀ e′ : σ, α)
impl ; t; Ψ′ ` H ′ : Ψ′

Proof: Proof proceeds by induction on the assumed typing derivation. The only inductive case is L-Sub.
We assume Ψ = Ψ′ and H = H ′ unless otherwise stated.

• L-Var{L,R}, L-ValueEmpty, L-Value: Vacuous; variables and values cannot step.

• L-Cast: The step must have been derived by D-Cast and the result follows from inversion.

• L-Short: The step must have been derived by D-Short and we have e′ = b where impl .xlit(s) = b.
From L-Short, σ = bytei. Because impl is sensible (clause 2), we know size(impl , b) = i. We can apply
Lw-Byte and L-Value i times to derive impl ; t; Ψ; · r̀ e′ : σ.

• L-Long: Similar to L-Short, where the step was derived by D-Long.

• L-Seq: The step was derived using D-Seq and the result follows from inversion.

• L-If: The step was derived using D-IfT or D-IfF and the result follows from inversion.

• L-While: The step was derived using D-While and we have impl ; t; Ψ; · r̀ while e1 e2 : bytei and e′ =
if e1 (e2;while e1 e2) s. Inversion gives

1 impl ; t; Ψ; · r̀ e1 : bytej

2 impl ; t; Ψ; · r̀ e2 : σ2

36

3 impl .xtype(t, short) = bytei

From the assumed typing and (2), L-Seq gives

4 impl ; t; Ψ; · r̀ (e2;while e1 e2) : bytei

From L-Short, we have

5 impl ; t; Ψ; · r̀ s : bytei

Plugging (1,4,5) into L-If yields impl ; t; Ψ; · r̀ e′ : bytei.

• L-New: The step was derived using D-New. We assume impl ; t; Ψ; · r̀ new τ : ptrα(σ) and have e′ = `+0
and H ′ = H, ` 7→ uniniti, α. Let Ψ′ = Ψ, ` : σ, α, so

1 Ψ′(`) = σ, α

From the side conditions of the assumed reduction, we have

2 impl .xtype(t, τ) = σ

3 size(impl , σ) = i

4 impl .align(t, τ) = α

Note that the α and σ here are the same as those mentioned in the assumption, from inversion on
L-New. From (1,3), Lw-Lbl followed by L-Value give impl ; t; Ψ′; · r̀ e′ : ptrα(σ), which satisfies the first
part of the claim.

To satisfy the second part of the claim, we first apply the Heap Weakening Lemma to the third
assumption to get

5 impl ; t; Ψ′ ` H : Ψ

From (3) and the Uninit Type Lemma, we have

6 impl ; t; Ψ′; · r̀ uniniti : σ (6)

Plugging (5,6) into the Ht-Inf rule yields impl ; t; Ψ′ ` H ′ : Ψ′.

• L-Decl: The step was derived using D-Decl. We assume impl ; t; Ψ; · r̀ τ x; e : σ1, and we have
e′ = e{∗(τ∗)(`+0)/x} and H ′ = H, ` 7→ uniniti, α, where the side conditions of the assumed reduction
give

1 impl .xtype(t, τ) = σ

2 impl .align(t, τ) = α

By inversion on the assumed typing, we have

3 impl ; t; Ψ; ·, x : τ r̀ e : σ1

Let Ψ′ = Ψ, ` : σ, α, so

4 Ψ′(`) = σ, α

Because the implementation is sensible (clause 5), we know impl .access(impl .align(t, τ), size(impl , impl .xtype(t, τ))).
In other words, using (1,2),

5 impl .access(α, size(impl , σ))

37

With (1,4,5), we can perform the following forward derivation:

Ψ′(`) = σ, α

impl ; t; Ψ′; · ẁ `+0 : ptrα(σ)
impl ; t; Ψ′; · r̀ · : ·

impl ; t; Ψ′; · r̀ `+0 : ptrα(σ)
impl .xtype(t, τ) = σ impl .access(α, size(impl , σ))

impl ; t; Ψ′; · r̀ ∗(τ∗)(`+0) : σ

Notice that under the same assumptions, we can also derive impl ; t; Ψ′; · l̀ ∗(τ∗)(`+0) : σ, α. (L-DerefR

and L-DerefL have identical hypotheses.) With this, we can apply Substitution Preserves Types Lemma
to the above conclusion and (1,2,3) to get impl ; t; Ψ; · r̀ e′ : σ1. The demonstration of the second part
of the claim is identical to the D-New case.

• L-FetchL: The step was derived using D-FetchL; we assume impl ; t; Ψ; · l̀ ∗(τ1∗)(`+j).f : σ2, [a, o + j′]
and have e′ = ∗(τ∗)(`+(j + j′)) where

1 impl .offset(t, f) = j′

By inversion we obtain

2 impl ; t; Ψ; · l̀ ∗(τ1∗)(`+j) : σ1σ2σ3, [a, o]
3 impl .offset(t, f) = size(impl , σ1)
4 N{. . . τ f . . .} ∈ t

5 impl .xtype(t, τ) = σ2

6 impl .align(t, N) = [aN , oN]
7 ` [a, o] ≤ [aN , oN]

Inverting (2) (note this is a left-typing so there is no subsumption) gives

8 impl ; t; Ψ; · r̀ `+j : ptr[a,o](σ1σ2σ3σ4)

Canonical Forms gives

9 Ψ(`) = σ0σ1σ2σ3σ4σ5, [a′, o′]
10 size(impl , σ0) = j

11 o = o′′ + j

12 ` [a′, o′] ≤ [a, o′′]

From (1,3), we have j′ = size(impl , σ1). From this and (10), it follows that j + j′ = size(impl , σ0σ1).
Plugging this along with (9) into Lw-Lbl, and the result into L-Value, gives

13 impl ; t; Ψ; · r̀ `+(j + j′) : ptr[a′,o′+j+j′](σ2σ3σ4σ5)

From the Alignment Addition Lemma on (12), we get ` [a′, o′ + j + j′] ≤ [a, o′′ + j + j′]. Plugging
this into St-Ptr, we get impl ; t ` ptr[a′,o′+j+j′](σ2σ3σ4σ5) ≤ ptr[a,o′′+j+j′](σ2σ3σ4σ5). Plugging this
and (13) into L-Sub, we get

14 impl ; t; Ψ; · r̀ `+(j + j′) : ptr[a,o′′+j+j′](σ2σ3σ4σ5).

It remains to be shown that impl .access([a, o′′ + j + j′], size(impl , σ2)). This, plugged into L-DerefL

together with (5,14) would yield impl ; t; Ψ; · l̀ ∗(τ∗)(`+(j + j′)) : σ2, [a, o′′ + j + j′], as desired.
To prove this, suppose impl .align(t, τ) = α. By clause (1) of sane implementations we have impl .access(α, σ2).
By clause (3) of sane implementations, we have ` [aN , oN + j′] ≤ α (where [aN , oN] is the alignment
of N as established in (7)). By clause (5) of sane implementations, we then have impl .access([aN , oN +
j′], size(impl , σ2)). From (7) and the Alignment Addition Lemma, we get ` [a, o + j′] ≤ [aN , oN + j′],
which, with (11), can be rewritten as ` [a, o′′ + j + j′] ≤ [aN , oN + j′]. Again, by clause (5) of sane
implementations, we have impl .access([a, o′′ + j + j′], size(impl , σ2)), which concludes the proof case.

38

• L-FetchR: The step was derived using D-Fetch, so we assume impl ; t; Ψ; · r̀ w1w2w3.f : σ2 and e′ = w2.
The step side condition gives

1 impl .offset(t, f) = size(impl , w1)

2 size(impl , σ2) = size(impl , w2)

By inversion on the assumed typing we have

3 impl ; t; Ψ; · r̀ w1w2w3 : σ1σ2σ3

4 impl .offset(t, f) = size(impl , σ1)

Note that the metavariable σ2 is bound to the same type sequence in both the step side condition and
inversion on the assumed typing, because impl .xtype(t, τ) = σ2 is given by both.

Applying the Value-Type Split Lemma to (1,3) gives

5 impl ; t; Ψ; · r̀ w2w3 : σ2σ3

Applying the Value-Type Split Lemma to (2,5) yields impl ; t; Ψ; · r̀ w2 : σ2.

• L-FAddr: The step was derived using D-FAddr; we assume impl ; t; Ψ; · r̀ (τ∗)&`+j→f : ptr[a,o2](σ2)
and e′ = `+(j + impl .offset(t, f)). By inversion on the assumed typing, we get

1 impl ; t; Ψ; · r̀ `+j : ptr[a,o1](σ1σ2)

2 impl .offset(t, f) = size(impl , σ1)

3 o2 = o1 + impl .offset(t, f) = o1 + size(impl , σ1)

Canonical Forms gives

4 Ψ(`) = σ0σ1σ2σ3, [a′, o′0]

5 o1 = o0 + j

6 j = size(impl , σ0)

7 ` [a′, o′0] ≤ [a, o0]

Adding j to both sides of (2) and making use of (6), we obtain j + impl .offset(t, f) = size(impl , σ0σ1).
We can plug this fact along with (4) into Lw-Lbl to get

impl ; t; Ψ; · r̀ `+(j + impl .offset(t, f)) : ptr[a′,o′
0+j+impl.offset(t,f)](σ2σ3)

By the Alignment Addition Lemma on (7), ` [a′, o′0 + j + impl .offset(t, f)] ≤ [a, o0 + j + impl .offset(t, f)].
Plugging this into St-Aln1 and the result into L-Sub, we get

impl ; t; Ψ; · r̀ `+(j + impl .offset(t, f)) : ptr[a,o0+j+impl.offset(t,f)](σ2σ3)

Notice however, by way of (3,5), that o2 = o1 + impl .offset(t, f) = o0 + j + impl .offset(t, f), so we get

impl ; t; Ψ; · r̀ `+(j + impl .offset(t, f)) : ptr[a,o2](σ2σ3)

A final application of L-Sub to this and impl ; t ` ptr[a,o2](σ2σ3) ≤ ptr[a,o2](σ2) (derivable via St-Ptr)
yields the desired result.

• L-DerefL: Vacuous; no primitive step rule can apply.

• L-DerefR: The step was derived using D-Deref. We assume impl ; t; Ψ; · r̀ ∗(τ∗)(`+j) : σ1 and e′ = w2.
By inversion on L-DerefR, we obtain

39

1 impl ; t; Ψ; · r̀ `+j : ptrα(σ1σ2)

2 impl .xtype(t, τ) = σ1

The D-Deref side condition gives

3 H(`) = w1w2w3, [a′, o′]

4 size(impl , w1) = j

5 impl .xtype(t, τ) = σ1

6 size(impl , w2) = size(impl , σ1) = k

7 impl .access([a′, o′ + j], k)

From (1), Canonical Forms gives

8 Ψ(`) = σ0σ1σ2σ3, [a′, o′]

9 j = size(impl , σ0)

10 α = [a, o + i]

11 ` [a′, o′] ≤ [a, o]

From the assumption impl ; t; Ψ ` H : Ψ and (8), the Heap Canonical Forms Lemma gives impl ; t; Ψ; · r̀

w1w2w3 : σ0σ1σ2σ3. Since size(impl , w1) = size(impl , σ0) = j (by (4,9)), the Value-Type Split Lemma
gives impl ; t; Ψ; · r̀ w2w3 : σ1σ2σ3. Since size(impl , w2) = size(impl , σ1) (by (6)), the same lemma
gives impl ; t; Ψ; · r̀ w2 : σ1, as desired.

• L-Assn: The step must have been derived using D-Assn. We assume impl ; t; Ψ; · r̀ ∗(τ∗)(`+j) = w : σ1

and e′ = w, where H(`) = w1w2w3, [a, o]. By inversion on L-Assn, we get impl ; t; Ψ; · r̀ w : σ1, which
satisfies the first part of the claim.

Identically to the L-FetchR case, we use the Canonical Forms, Heap Canonical Forms, and Value-
Type Size Lemmas to establish that impl ; t; Ψ; · r̀ w2 : σ1 and Ψ(`) = σ0σ1σ2σ3, [a, o]. Using the
Subsequence Replacement and Value-Type Split Lemmas, we get impl ; t; Ψ; · r̀ w1ww2 : σ0σ1σ2σ3.
Plug this and the assumption impl ; t; Ψ ` H : Ψ into Ht-Inf to obtain impl ; t; Ψ ` H ′ : Ψ′, where
Ψ′ = Ψ, ` 7→ Ψ(`). Using Weakening, we obtain impl ; t; Ψ′ ` H ′ : Ψ′, as desired.

• L-Sub: Follows from inversion, induction, and an application of L-Sub.

Lemma 26 (Replacement)

• If D; Ψ; · r̀ R[e]r : σ, then ∃σ′ s.t. D; Ψ; · r̀ e : σ′ and if D; Ψ; · r̀ e′ : σ′ then D; Ψ; · r̀ R[e′]r : σ.

• If D; Ψ; · l̀ L[e]r : σ, α, then ∃σ′ s.t. D; Ψ; · r̀ e : σ′ and if D; Ψ; · r̀ e′ : σ′ then D; Ψ; · l̀ L[e′]r : σ, α.

• If D; Ψ; · r̀ R[e]l : σ, then ∃σ′ s.t. D; Ψ; · l̀ e : σ′, α and if D; Ψ; · l̀ e′ : σ′, α then D; Ψ; · r̀ R[e′]l : σ.

• If D; Ψ; · l̀ L[e]l : σ, α, then ∃σ′ s.t. D; Ψ; · l̀ e : σ′, α and if D; Ψ; · l̀ e′ : σ′, α then D; Ψ; · l̀ L[e′]l : σ, α.

Proof: Proof proceeds by simultaneous structural induction on R and L, by cases on their top-level syntactic
form. In the base cases we have R = [·]R or L = [·]L and the property follows immediately. All inductive
cases follow directly from the inductive hypothesis and typing rules. For example, consider the case when
R = (L = e2). We assume D; Ψ; · r̀ L[e]r = e2 : σ and proceed by cases on the last rule applied in order to
reach this conclusion. All but two are impossible:

• L-Assn: By inversion we get

1 D; Ψ; · l̀ L[e]r : σ, α

2 D; Ψ; · r̀ e2 : σ

40

By induction hypothesis on (1) we have that there exists a σ′ s.t. D; Ψ; · r̀ e : σ′, and also that
D; Ψ; · l̀ L[e′]r : σ, α. Plugging this along with (2) into L-Assn, we get D; Ψ; · r̀ L[e′]r = e2 : σ, which is
the same as D; Ψ; · r̀ R[e′]r : σ.

• L-Sub: Follows from inversion, induction, and an application of L-Sub.

All other cases follow an identical pattern.

Lemma 27 (Preservation) If

impl ; t; Ψ; · r̀ e : σ (or impl ; t; Ψ; · l̀ e : σ, α)
impl ; t; Ψ ` H : Ψ
impl ; t ` H; e → H ′; e′

then there exist Ψ′, extending Ψ, such that

impl ; t; Ψ′; · r̀ e′ : σ (or impl ; t; Ψ′; · l̀ e′ : σ, α)
impl ; t; Ψ′ ` H ′ : Ψ′

Proof: Since it is a right-expression, e is of the form R[e0]r or R[e0]l. Consider the former case. It must
be the case that the step is of the form impl ; t ` R[e0]r → R[e′0]r (the D-StepR rule) which can only happen
under condition impl ; t ` e0

r→ e′0. Then:

• Replacement on the assumed typing derivation gives ∃σ′ s.t. impl ; t; Ψ; · r̀ e0 : σ′.

• Subject Reduction gives ∃Ψ′ extending Ψ such that impl ; t; Ψ′; · r̀ e′0 : σ′.

• Weakening gives impl ; t; Ψ′; · r̀ R[e0]r : σ.

• Replacement gives impl ; t; Ψ′; · r̀ R[e′0]r : σ.

The case when e is of the form R[e0]l proceeds similarly, using the D-StepL rule instead.

Lemma 28 (Progress)
Suppose impl ; t; Ψ ` H : Ψ and impl is a sensible implementation.

• If impl ; t; Ψ; · r̀ e : σ then one of the following is true:

– e is of the form w – an r-value.

– e is legally stuck on impl and t.

– e can step. I.e., there exist R, e1, e2, and H ′, such that

∗ e = R[e1]r and impl ; t ` H; e1
r→ H ′; e2, or

∗ e = R[e1]l and impl ; t ` H; e1
l→ H ′; e2

• If impl ; t; Ψ; · l̀ e : σ, α then one of the following is true:

– e is of the form ∗(τ∗)(`+i) – an l-value.

– e is legally stuck on impl and t.

– e can step. I.e., there exist L, e1, e2, and H ′, such that

∗ e = L[e1]r and impl ; t ` H; e1
r→ H ′; e2, or

∗ e = L[e1]l and impl ; t ` H; e1
l→ H ′; e2

41

Proof: Proof proceeds by simultaneous induction on the assumed typing derivations, by cases on the last
rule used. In the cases where the induction hypothesis applies to a subexpression, there are three cases to
consider: (a) the subexpression is a value, (b) the subexpression is legally stuck, or (c) the subexpression
can take a step. In case (b), the subexpression is a context (L or R) whose left- or right-hole is plugged by
a legally stuck expression. In each case, we can show that the outer expression is also legally stuck. Take
for example the outer expression e = ∗(τ∗)(e′). If the subexpression e′ = R[rstuck]r, let R′ = ∗(τ∗)(R).
Then, e = R′[rstuck]r, which is legally stuck. The cases for left-contexts and left-holes are analogous. In
case (c), the induction hypothesis says that the subexpression e′ is a context whose hole is plugged by an
expression e1 that can take a primitive step to an expression e2. In each case, we can build a context that,
when plugged with e1, equals the outer expression e; it follows that e can take a step. Take for example
e = ∗(τ∗)(e′). If e′ = R[e1]r and impl ; t ` H; e1

r→ H ′; e2, we take R′ = ∗(τ∗)(R). Then e = R′[e1]r, which
can take a step. The cases for left-contexts and left-holes are analogous. In the rest of the proof, whenever
we apply the induction hypothesis, we consider only the case when the subexpression is a value. The other
two cases follow the consistent pattern explained above. We assume H = H ′ unless otherwise stated.

• L-Short: We assume impl ; t; Ψ; · r̀ s : bytei. Take R = [·]R, e1 = s, e2 = bi, and D-Short applies.

• L-Long: Analogous to L-Short, where D-Long applies.

• L-Var{L,R}: Holds vacuously as variables cannot type-check in an empty Γ.

• L-FetchR: We assume impl ; t; Ψ; · r̀ e.f : σ2 where inversion gives

1 impl ; t; Ψ; · r̀ e : σ1σ2σ3

2 impl .offset(t, f) = size(impl , σ1)

3 N{. . . τ f . . .} ∈ t

4 impl .xtype(t, τ) = σ2

We apply the IH to (1) and consider the case when e is a value, that is e = w. The Value Split Lemma
gives

5 e = w1w2w3

such that impl ; t; Ψ; · r̀ wj : σj for j ∈ {1, 2, 3}. The Value-Type Size Lemma gives

6 size(impl , σ1) = size(impl , w1)

7 size(impl , σ2) = size(impl , w2)

From (2,6) we have

8 impl .offset(t, f) = size(impl , w1)

(3,4,5,7) allow a step impl ; t ` H; e r→ H ′;w2 via the D-Fetch rule. Thus, we satisfy the third require-
ment of the theorem with R = [·]R.f , e1 = e and e2 = w2.

• L-FetchL: We assume impl ; t; Ψ; · l̀ e.f : σ2, [a, o + o′] where inversion gives

1 impl ; t; Ψ; · l̀ e : σ1σ2σ3, [a, o]

2 N{. . . τ f . . .} ∈ t

We apply the IH to (1) and consider the case when e is an l-value, i.e. e = ∗(τ1∗)(`+i). (2) is a sufficient
condition for e.f to take a primitive step via the D-FetchL rule. We satisfy the third requirement of
the theorem with R = [·]L.f , e1 = e and e2 = ∗(τ∗)(`+(i + impl .offset(t, f))).

• L-DerefR: We assume impl ; t; Ψ; · r̀ ∗(τ∗)(e) : σ. Inverting, we get

42

1 impl ; t; Ψ; · r̀ e : ptrα(σσ2)

2 impl .xtype(t, τ) = σ

3 impl .access(α, size(impl , σ))

We apply the IH to (1) and consider the case when e is a value.

Canonical Forms gives e = w = uniniti or e = w = `+i. In the former case, we have an expression
of form ∗(τ∗)(uniniti), which is legally stuck so we are done. In the latter case, Canonical Forms also
gives

4 Ψ(`) = σ0σσ2, [a′, o′]

5 α = [a, o + i]

6 size(impl , σ0) = i

7 ` [a′, o′] ≤ [a, o]

Heap Canonical Forms on (4) gives

8 H(`) = w′, [a′, o′]

9 impl ; t; Ψ; · r̀ w′ : σ0σσ2

Value Split on (8) gives w′ = w0w1w2 where

10 impl ; t; Ψ; · r̀ w0 : σ0

11 impl ; t; Ψ; · r̀ w1 : σ

Value-Type Size on (10,11) gives

12 size(impl , w0) = size(impl , σ0) = i (from (6))

13 size(impl , w1) = size(impl , σ)

From (3,7), the Alignment Addition Lemma, and clause 5 of sensible implementations, we get

14 impl .access([a′, o′ + i], size(impl , σ))

Notice that (2,8,12,13,14) form sufficient conditions for H;w to take a right-step to H;w1 under rule
D-Deref, so we satisfy the third requirement of the theorem with R = [·]R, e1 = ∗(τ∗)(`+i), and e2 = w1.

• L-DerefL: We assume impl ; t; Ψ; · l̀ ∗(τ∗)(e) : σ1, α and by inversion we get impl ; t; Ψ; · r̀ e : ptrα(σ1σ2).
We apply the IH to this and consider the case when e is a value. Canonical Forms says that e = uninitk

or e = `+i. In the former case, ∗(τ∗)(uninitk) is legally stuck and we are done. In the latter case,
∗(τ∗)(`+i) is an l-value.

• L-New: The totality of impl .xtype, impl .ptr size, and impl .align give sufficient conditions to step.

• L-Assn: We assume impl ; t; Ψ; · r̀ e1 = e2 : σ where by inversion we have

1 impl ; t; Ψ; · l̀ e1 : σ, α

2 impl ; t; Ψ; · r̀ e2 : σ

By induction on (1,2), we have several cases to consider:

– e1 is legally stuck. In this case we can show that e1 = e2 is legally stuck, as explained in the proof
prelude.

– e1 is an l-value and e2 is legally stuck. Then we can show that e1 = e2 is legally stuck as explained
in the prelude.

43

– e1 is an l-value and e2 can take a step. Then we can show that e1 = e2 can take a step, as
explained in the proof prelude.

– e1 is an l-value (e1 = ∗(τ∗)(`+i)) and e2 is a value (e2 = w′′). Inversion on (1) (L-DerefL) gives

3 impl ; t; Ψ; · r̀ `+i : ptr[a,o+i](σσ2)

4 impl .xtype(t, τ) = σ

5 impl .access([a, o + i], size(impl , σ))

Canonical Forms on (3) yields

6 Ψ(`) = σ0σσ2σ3, [a′, o′]
7 ` [a′, o′] ≤ [a, o]
8 size(impl , σ0) = i

Heap Canonical Forms on (6) gives

9 H(`) = w′, [a′, o′]
10 impl ; t; Ψ; · r̀ w′ : σ0σσ2σ3

The Value Split Lemma on (10) gives

11 w′ = w0w1w2w3

12 impl ; t; Ψ; · r̀ w1 : σ

13 impl ; t; Ψ; · r̀ w0 : σ0

The Value-Type Size Lemma on (12,13) gives

14 size(impl , w1) = size(impl , σ)
15 size(impl , w0) = size(impl , σ0) = i (by (8))

From (7) and the Alignment Addition Lemma, we get ` [a′, o′ + i] ≤ [a, o + i]. From this and (5),
clause 5 of implementation sensibility gives

16 impl .access([a′, o′ + i], size(impl , σ))

(9,11,14,15,16) form sufficient conditions for e1 = e2 to take a step via rule D-Assn. We satisfy the
third part of the theorem with R = [·]R, H ′ = H, ` 7→ w0w

′′w2w3, where ∗(τ∗)(`+i) = w′′ steps to
w′′.

– e1 can step. Then we can show that e1 = e2 can step as explained in the prelude.

• L-Cast: Supposing the subexpression is a value, D-Cast applies.

• L-FAddr: We assume impl ; t; Ψ; · r̀ (τ∗)&e→f : ptr[a,o1+impl.offset(t,f)](σ2) where by inversion we have
impl ; t; Ψ; · r̀ e : ptra,o1

(σ1σ2). We apply the IH to the latter and consider the case when e is a value.
Canonical Forms gives that either e = uniniti, in which case (τ∗)&uniniti→f is legally stuck and we
are done. Otherwise, e = `+i and the expression can step via D-FAddr.

• L-Seq: We assume impl ; t; Ψ; · r̀ e1; e2 : σ where inversion gives impl ; t; Ψ; · r̀ e1 : σ′. Applying the IH
to this, if e1 is a value then e1; e2 can step by the D-Seq rule.

• L-Decl: The totality of impl .xtype, impl .ptr size, and impl .align give sufficient conditions to step.

• L-If: We assume impl ; t; Ψ; · r̀ if e1 e2 e3 : σ, where inversion gives impl ; t; Ψ; · r̀ e1 : bytei. By
induction, if e1 is a value, Canonical Forms gives e1 = w1 . . . wi where each wi can be either a b
or uninit. If ∃i s.t. wi = uninit, then the expression is legally stuck and we are done. Otherwise
e1 = b1 . . . bi, which is a a sufficient condition for (if e1 e2 e3) to step by D-IfT or D-IfF.

• L-While: D-While applies.

• L-Value, L-ValueEmpty: The expression in question is already a value.

44

• L-Sub: Falls out of the induction hypothesis.

Theorem 29 (Type Soundness) Let (→∗) be the reflexive transitive closure of the transition relation
(→). Then, if

1. impl ; t; ·; · r̀ e : σ

2. impl ; t ` ·; e →∗ H ′; e′

then H ′; e′ is not illegally stuck on impl and t.

Proof: Proof proceeds by induction on the length of the step sequence. In the case of 0 steps, Progress tells
us that ·; e is not illegally stuck. In the case of n steps, by induction we have impl ; t ` ·; e →n−1 H ′′; e′′ and
H ′′; e′′ not illegally stuck. Preservation tells us that if impl ; t ` H ′′; e′′ → H ′; e′, the type of e′′ is preserved
in the step to e′. It follows from Progress that H ′; e′ is not illegally stuck.

A.3.2 Implementation Dependencies

Theorem 30 (Constraint Satisfaction)

• If t; Γ r̀ e : τ ;S and impl is sensible and impl |= S and impl .xtype(t, τ) = σ, then impl ; t; ·; Γ r̀ e : σ.

• If t; Γ l̀ e : τ ;S and impl is sensible and impl |= S and impl .xtype(t, τ) = σ and impl .align(t, τ) = α,
then impl ; t; ·; Γ l̀ e : σ, α′ and ` α′ ≤ α.

Proof: Proof proceeds by simultaneous induction on the assumed typing derivations, by cases on the last
rule used. Reflexivity of alignment subtyping (Lemma 18) is used implicitly.

• H-Short: We assume t; Γ r̀ s : short;>. By clause 2 of the definition of a sensible implementation,
impl .xtype(t, short) = bytei. From this, impl ; t; ·; Γ r̀ s : bytei via L-Short.

• H-Long: Similar to H-Short.

• H-New: We assume t; Γ r̀ new τ : τ∗;>. Because impl is sensible (clause 4), we know impl .xtype(t, τ∗) =
ptrα(σ) where impl .xtype(t, τ) = σ and impl .align(t, τ) = α. We can plug the latter two facts into
L-New to obtain impl ; t; ·; Γ r̀ new τ : ptrα(σ).

• H-VarR: We assume t; Γ r̀ x : τ ;> and Γ(x) = τ . Plug this along with impl .xtype(t, τ) = σ into L-VarR

to reach the desired conclusion.

• H-VarL: Assume t; Γ l̀ x : τ ;> and Γ(x) = τ . Plug this along with impl .xtype(t, τ) = σ and
impl .align(t, τ) = α into L-VarL to reach the desired conclusion.

• H-Assn: We assume t; Γ r̀ e1 = e2 : τ ;S1 ∧ S2, where inversion gives t; Γ l̀ e1 : τ ;S1 and t; Γ r̀ e2 : τ ;S2.
Because impl |= S1 ∧ S2, we know by model definition that impl |= S1 and impl |= S2. Induction
on the left subderivation gives impl ; t; ·; Γ l̀ e1 : σ, α where σ = impl .xtype(t, τ). Induction on the
right subderivation gives impl ; t; ·; Γ r̀ e2 : σ. Plugging these derivations into L-Assn yields the desired
conclusion.

• H-FetchR: We assume t; Γ r̀ e.f : τ ;S where inversion gives

1 N{. . . τ f . . .} ∈ t

2 t; Γ r̀ e : N ;S

By induction on (2) (with the assumption that impl |= S), we get

3 impl ; t; ·; Γ r̀ e : σ

45

4 impl .xtype(t, N) = σ

Because impl is sensible (clause 3), under assumption (1), we have

5 impl .xtype(t, N) = σ1σ2σ3

6 impl .xtype(t, τ) = σ2

7 size(impl , σ1) = impl .offset(t, f)

It follows from (3,5) that

8 impl ; t; ·; Γ r̀ e : σ1σ2σ3

Plugging (1,6,7,8) into L-FetchR, we obtain impl ; t; ·; Γ r̀ e.f : σ2, as desired.

• H-FetchL: We assume t; Γ l̀ e.f : τ ;S with impl .xtype(t, τ) = σ and impl .align(t, τ) = [a, o]. Inversion
gives

1 N{. . . τ f . . .} ∈ t

2 t; Γ l̀ e : N ;S

By induction on (2) (under the assumption that impl |= S), we get

3 impl ; t; ·; Γ l̀ e : σ′, [a′, o′]

4 impl .xtype(t, N) = σ′

5 impl .align(t, N) = [a′′, o′′]

6 ` [a′, o′] ≤ [a′′, o′′]

By clause 3 of implementation sensibility, we get

7 σ′ = σ1σ σ3

8 size(impl , σ1) = impl .offset(t, f)

9 ` [a′′, o′′ + impl .offset(t, f)] ≤ [a, o]

Plugging (1,3,5,6,8) along with the assumption impl .xtype(t, τ) = σ into L-FetchL yields

10 impl ; t; ·; Γ l̀ e.f : σ2, [a′, o′ + impl .offset(t, f)]

From (6) and the Alignment Addition Lemma we get ` [a′, o′ + impl .offset(t, f)] ≤ [a′′, o′′ + impl .offset(t, f)].
Plugging this and (9) into Alst-Trans we get ` [a′, o′ + impl .offset(t, f)] ≤ [a, o]. This and (10) form
the desired conclusion.

• H-Seq: Similar to H-Assn.

• H-DerefR: We assume t; Γ r̀ ∗(τ∗)(e) : τ ;S and inversion gives t; Γ r̀ e : τ∗;S. By induction,

1 impl ; t; ·; Γ r̀ e : σ

2 σ = impl .xtype(t, τ∗)

Because impl is sensible (clause 4), we know

3 σ = ptrα(σ′)

4 impl .xtype(t, τ) = σ′

5 impl .access(α, size(impl , σ′))

From (1,3), we get

46

6 impl ; t; ·; Γ r̀ e : ptrα(σ′)

Plugging (4,5,6) into L-DerefR, we get impl ; t; ·; Γ r̀ e : σ′, which, together with (4), forms our desired
conclusion.

• H-DerefL: Similar to H-DerefR.

• H-Cast: We assume t; Γ r̀ (τ∗)e : τ∗;S, where S = S′ ∧ subtype(t, xtype(t, τ ′∗), xtype(t, τ∗)), where by
inversion we obtain

1 t; Γ r̀ e : τ ′∗;S′

Because impl |= S, from the definition of |= we get

2 impl |= S′

Applying the induction hypothesis to (1,2), we get

3 impl ; t; ·; Γ r̀ e : σ′

4 impl .xtype(t, τ ′∗) = σ′

Interpreting S under impl , we get

5 impl ; t ` σ′ ≤ σ

where σ = impl .xtype(t, τ∗). Plugging (3,5) into L-Sub, we get

6 impl ; t; ·; Γ r̀ e : σ

From (6) and clause 4 of the definition of sensible implementations, we know σ = ptrα(σ′′) where
impl .xtype(t, τ) = σ′′. Plugging (5) into L-Cast, we get impl ; t; ·; Γ r̀ (τ∗)e : ptrα(σ′′), as desired.

• H-Faddr: We assume t; Γ r̀ (τ∗)&e→f : τ∗;S, where

S = S′ ∧ ∃σ1, σ2, a, o . xtype(t, N∗) = ptr[a,o](σ1σ2)
∧ subtype(t, ptr[a,o+offset(t,f)](σ2), xtype(t, τ∗))
∧ offset(t, f) = size(σ1)

Interpreting this constraint under impl , and by clause 4 of the definition of sensible implementation,
we obtain that there exist σ1, σ2, a, o, such that

1 impl .align(t, N) = [a, o]

2 impl .xtype(t, N∗) = ptr[a,o](σ1σ2)

3 impl .xtype(t, τ∗) = ptrα(σ)

4 impl ; t ` ptr[a,o+impl.offset(t,f)](σ2) ≤ ptrα(σ)

5 impl .offset(t, f) = size(impl , σ1)

By inversion,

6 t; Γ r̀ e : N∗;S′

By definition of the models relation,

7 impl |= S′

By induction on (6,7), we obtain impl ; t; ·; Γ r̀ e : σ′ and impl .xtype(t, N∗) = σ′. From these two facts
and (1,2), we obtain

47

8 impl ; t; ·; Γ r̀ e : ptr[a,o](σ1σ2)

We can plug (5,8) into L-FAddr to derive impl ; t; ·; Γ r̀ (τ∗)&e→f : ptr[a,o+impl.offset(t,f)](σ2). Plugging
this and (4) into L-Sub, we obtain impl ; t; ·; Γ r̀ (τ∗)&e→f : ptrα(σ) (recall that ptrα(σ) = xtype(t, τ∗),
from (3)), as desired.

• H-If: Similar to H-Assn.

• H-While: Similar to H-Assn.

• H-Decl: We assume t; Γ r̀ τ1 x; e : τ2;S, where inversion gives t; Γ, x : τ1 r̀ e : τ2;S. By induction,
impl ; t; ·; Γ, x : τ1 r̀ e : σ where impl .xtype(t, τ2) = σ. Plugging these facts into L-Decl, we derive
impl ; t; ·; Γ r̀ τ1 x; e : σ, as desired.

Corollary 31 (Semi-Portability)
If t; · r̀ e : τ ;S and impl is sensible and impl |= S, then ·; e is not illegally stuck on implementation impl
and declarations t.

Definition 32 (Cast-Free Expressions)
An expression e is cast-free if

1. (τ∗)e′ does not occur in e.

2. If (τ∗)&e′→f occurs in e and N{. . . τ ′ f . . .} ∈ t then τ = τ ′.

Theorem 33 (Cast-Free Sufficiency)

• If t; Γ r̀ e : τ ;S, impl .xtype(t, τ) = σ, and e is cast-free, then for any sensible implementation impl,
impl ; t; ·; Γ r̀ e : σ.

• If t; Γ l̀ e : τ ;S, impl .xtype(t, τ) = σ, impl .align(t, τ) = α, and e is cast-free, then for any sensible
implementation impl, impl ; t; ·; Γ l̀ e : σ, α′ and ` α′ ≤ α.

Proof: The proof is similar to that of the Constraint Satisfaction theorem, by simultaneous induction on
the assumed typing derivations. Notice that the only cases that yield constraints are those for H-Cast and
H-Faddr. The rest of the cases are either trivial or follow from the definition of a sensible implementation;
the corresponding proofs proceed identically as in Constraint Satisfaction. Moreover, the H-Cast case cannot
occur, ruled out by the first cast-free requirement. The only remaining interesting case is that for H-Faddr.
We assume t; Γ r̀ (τ∗)&e→f : τ∗;S where inversion gives

1 t; Γ r̀ e : N∗;S′

2 N{. . . τ f . . .} ∈ t

(Note that the types match as required by assumption (2).) By induction on (1), we obtain

3 impl ; t; ·; Γ r̀ e : ptr[a,o](σ)

where impl .xtype(t, N∗) = ptr[a,o](σ). By implementation sensibility clause 4, impl .xtype(t, N) = σ. By
sensibility clause 3, we have

4 σ = σ1σ2σ3

5 impl .offset(t, f) = size(impl , σ1)

6 impl .xtype(t, τ) = σ2

Plugging (3) into L-Sub with St-Ptr, we get

7 impl ; t; ·; Γ r̀ e : ptr[a,o](σ1σ2)

Plugging (5,7) into L-FAddr yields impl ; t; ·; Γ r̀ (τ∗)&e→f : ptr[a,o+impl.offset(t,f)](σ2) as desired.
It is important to note that this proof does not rely at all on constraints (we do not assume impl |= S)

and that the sensibility of impl suffices.

48

A.3.3 Array Extension

Figure 18 shows how the syntax and semantics can be augmented with C-like arrays. First, we augment
implementations (see Section A.1) with a new component (val : b → N) which interprets a sequence of bytes
into a number in an implementation-prescribed manner. We now show how the definitions, lemmas, and
theorems in Section A.3 can be extended for arrays.

Extended Definition 34 (Sensible Implementations)
We add two array-related sensibility clauses:

6. ∀τ, t.∃a, k, o. impl .align(t, τ) = [a, o] and impl .xtype(t, τ) = σ and size(impl , σ) = k × a.

7. ∀τ∃α, σ. impl .xtype(t, τ∗ω) = ptrω
α(σ) and impl .xtype(t, τ) = σ and impl .align(t, τ) = α.

Extended Definition 35 (Legal Stuck State)
We extend the syntax for stuck expressions which can appear in right-holes.

rstuck ::= . . .
| new τ [w1 uninit w2]
| new τ [b] if impl .val(b) < 0
| &((τ∗ω)(uniniti))[e]
| &((τ∗ω)(`+i))[w1 uninit w2]
| &((τ∗ω)(`+i))[b] if the first 4 hypotheses of D-ArrElt hold but not the 5th

Extended Lemma 36 (Uninit Type)
(No additions.)

Proof: Consider the inductive case, when σ = σσ′ and size(impl , σ′) = j and by induction, impl ; t; Ψ; · r̀

uninitj : σ′. If size(impl , σ) = k and σ ∈ {ptrω
α(σ′′),ptrω

α(N)} then we can derive impl ; t; Ψ ẁ uninitk : σ by
Lw-UninitArr. We can plug this and impl ; t; Ψ; · r̀ uninitj : σ′ into L-Value to achieve the desired result.

Extended Lemma 37 (Constant-Size Subtyping)
(No additions.)

Proof: In the array subtyping cases (St-RollArr, St-UnrollArr, St-Arr), two array pointers have the same
size (given in Figure 18).

Extended Lemma 38 (Value-Type Size)
(No additions.)

Proof:

• Lw-UninitArr: size(impl , uniniti) = size(impl ,ptrω
α(σ)) = impl .ptr size = i.

• Lw-LblArr: size(impl , `+0) = size(impl ,ptrω
α(σ)) = impl .ptr size.

Extended Lemma 39 (Subtyping Partition)
(No additions.)

Proof: The array subtyping cases (St-RollArr, St-UnrollArr, St-Arr) follow immediately because n = 1 so
σ1 = σ11.

Extended Lemma 40 (Subtyping Type Form)

• If impl ; t ` σ′ ≤ ptrω
α(σ) then ∃α′, i such that σ′ = ptrω

α′(σi) or σ′ = ptrω
α′(N) where impl .xtype(t, N) =

σi, and ` α′ ≤ α.

49

• If impl ; t ` σ′ ≤ ptrω
α(N) and impl .xtype(t, N) = σ then ∃α′, i such that σ′ = ptrω

α′(σi) or σ′ =
ptrω

α′(N ′) where impl .xtype(t, N ′) = σi, and ` α′ ≤ α.

Proof: By simultaneous induction on the assumed typing derivations, by cases on the last rule used. The
cases St-Pad, St-PadAdd, St-Ptr, St-Roll, and St-Unroll cannot occur.

• St-Arr: Follows from inspection and inversion.

• St-UnrollArr: Follows from inspection and inversion, with α′ = α.

• St-RollArr: Follows from inspection and inversion, with α′ = α and i = 1.

• St-Refl: Immediate, with α′ = α, N = N ′, and i = 1.

• St-Seq: We have impl ; t ` σ1σ3 ≤ σ2σ4. It must be the case that either σ1 = σ2 = · or σ3 = σ4 = ·,
since array types cannot be broken into subsequences. The property then follows form induction.

• St-Trans: We have impl ; t ` σ1 ≤ σ3 where inversion gives impl ; t ` σ1 ≤ σ2 and impl ; t ` σ2 ≤ σ3.
There are two possibilities for σ3:

1. σ3 = ptrω
α(N) where impl .xtype(t, N) = σ. By induction on the second subderivation, we have

either

– σ2 = ptrω
α′(σj) where ` α′ ≤ α. By induction on the first subderivation, we have either

σ1 = ptrω
α′′(σj×k) or σ1 = ptrω

α′′(N ′) where impl .xtype(t, N ′) = σj and ` α′′ ≤ α′. By
Alst-Trans, ` α′′ ≤ α, as required.

– σ2 = ptrω
α′(N ′) where impl .xtype(t, N ′) = σ and ` α′ ≤ α. By induction on the first

subderivation, we have either σ1 = ptrω
α′′(σj) or σ1 = ptrω

α′′(N ′) where impl .xtype(t, N ′) =
σj . By Alst-Trans, ` α′′ ≤ α, as required.

2. σ3 = ptrω
α(σ′). Similar to the above case.

Extended Lemma 41 (Canonical Forms)

• If impl ; t; Ψ; · r̀ w : ptrω
α(σ) then either

– w = uniniti where impl .ptr size = i.

– w = `+0 and ∃j, σ′, α′ such that Ψ(`) = σj , α′ where ` α′ ≤ α.

• If impl ; t; Ψ; · r̀ w : ptrω
α(N) and impl .xtype(t, N) = σ, then either

– w = uniniti where impl .ptr size = i.

– w = `+0 and ∃j, σ′, α′ such that Ψ(`) = σj , α′ where ` α′ ≤ α.

Proof: By simultaneous induction on the assumed derivations, by cases on the last rule applied. All but
two are impossible. Reflexivity of the alignment subtype relation is used implicitly (Lemma 18).

• L-Value: There are two cases:

– Assume impl ; t; Ψ; · r̀ w : ptrω
α(σ1). By inversion we get impl ; t; Ψ ẁ w : ptrω

α(σ1). Quick inspection
reveals that this conclusion could have only been reached by Lw-UninitArr or Lw-LblArr. In the
former case, w = uniniti where i = impl .ptr size, and in the latter case, w = `+0 where by inversion
Ψ(`) = σj , α′ with α′ = α.

– Assume impl ; t; Ψ; · r̀ w : ptrω
α(N), where impl .xtype(t, N) = σ1. Vacuous; cannot be derived via

L-Val.

• L-Sub: There are two cases:

50

– Assume impl ; t; Ψ; · r̀ w : ptrω
α(σ). By inversion we get impl ; t; Ψ; · r̀ w : σ′′ and impl ; t ` σ′′ ≤

ptrω
α(σ). By the Subtyping Type Form Lemma, σ′′ is one of

∗ ptrω
α′(σi) where ` α′ ≤ α. Applying the IH to impl ; t; Ψ; · r̀ w : ptrω

α′(σi), we get that either
w = uninitk or w = `+0 where Ψ(`) = σi×j , α′′ and ` α′′ ≤ α′. Plugging ` α′′ ≤ α′ and
` α′ ≤ α into Alst-Trans we get ` α′′ ≤ α, as required.

∗ ptrω
α′(N) where impl .xtype(t, N) = σ and ` α′ ≤ α. By induction and an application of

Alst-Trans, like the above case.

– Assume impl ; t; Ψ; · r̀ w : ptrω
α(N), where impl .xtype(t, N) = σ. Similar to the above case.

Extended Lemma 42 (Subject Reduction)
(No additions.)

Proof:

• L-NewArr:
impl .xtype(t, τ) = σ impl .align(t, τ) = α impl ; t; Ψ; · r̀ b : σ′ impl .xtype(t, long) = σ′

impl ; t; Ψ; · r̀ new τ [b] : ptrω
α(σ)

The assumed step rule is

impl ; t ` H; new τ [b] r→ H, ` 7→ uniniti×j , α; `+0 if ` 6∈ Dom(H)
impl .xtype(t, τ) = σ
size(impl , σ) = i
impl .align(t, τ) = α

impl .val(b) = j ≥ 0

We have H ′ = H, ` 7→ uniniti×j , α. Let Ψ′ = Ψ, ` 7→ σj , α, so Ψ′(`) = σj , α. Plugging this into
Lw-LblArr, and the result into L-Value, yields impl ; t; Ψ′; · r̀ `+0 : ptrω

α(σ), which satisfies the first part
of the claim.

To satisfy the second part of the claim, we first apply the Heap Weakening Lemma to the third
assumption to get

1 impl ; t; Ψ′ ` H : Ψ

From the third step side condition and the Uninit Type Lemma, we have impl ; t; Ψ′; · r̀ uniniti : σ.
From the Sequence Typing Lemma applied j times, we have impl ; t; Ψ′; · r̀ uniniti×j : σj . Plugging this
and (1) into Ht-Inf we obtain impl ; t; Ψ′ ` H ′ : Ψ′, as desired.

• L-ArrElt:

impl ; t;C r̀ `+i : ptrω
[a,o](σ)

impl .xtype(t, τ) = σ size(impl , σ) = k × a impl ; t;C r̀ b : σ′ impl .xtype(t, long) = σ′

impl ; t;C r̀ &((τ∗ω)(`+i))[b] : ptr[a,o](σ)

The assumed step rule is

impl ; ts ` H; &((τ∗ω)(`+i))[b] r→ H; `+(i + j × k) if impl .xtype(t, τ) = σ
size(impl , σ) = j

impl .val(b) = k
H(`) = w,α′

0 ≤ (i + j × k) < size(impl , w)

Applying the Canonical Forms Lemma to the first typing hypothesis, we learn that i = 0 and

1 Ψ(`) = σh, [a′, o′] for some h

2 ` [a′, o′] ≤ [a, o]

51

Applying the Heap Canonical Forms Lemma to (1), we get

3 H(`) = w,α′

4 impl ; t; Ψ; · r̀ w : σh

Applying the Value-Type Size Lemma to (4), we have

5 size(impl , w) = size(impl , σh)

From this and the last side condition in the assumed reduction we get

6 j × k < size(impl , σh)

It must be the case then that we can write σh as σkσg (since size(impl , σ) = j, according to the second
side condition in the reduction) where g > 0. Using (1), we can write Ψ(`) = σkσg, [a′, o′] and we
naturally have size(impl , σk) = k× size(impl , σ) = k× j. Plugging these two facts into Lw-Lbl and the
result into L-Value, we get

7 impl ; t; Ψ; · r̀ `+(j × k) : ptr[a′,o′+j×k](σ
g)g

Using the Alignment Addition Lemma, we can conclude

8 ` [a′, o′ + j × k] ≤ [a, o + j × k]

From the third hypothesis of the typing assumption, we know j = size(impl , σ) = a × k′ for some k′.
This means that j = 0 mod a. With this, using Alst-Off, we can conclude ` [a, o + j × k] ≤ [a, o].
Plugging this and (8) into Alst-Trans, we get ` [a′, o′ + j × k] ≤ [a, o]. Plugging this into St-Ptr we
get impl ; t ` ptr[a′,o′+j×k](σ

g) ≤ ptr[a,o](σ). Plugging this along with (7) into L-Sub yields impl ; t; Ψ; · r̀

`+(j × k) : ptr[a,o](σ), as desired.

Extended Lemma 43 (Progress)
(No additions.)

Proof:

• L-NewArr:
impl .xtype(t, τ) = σ impl .align(t, τ) = α impl ; t;C r̀ e : σ′ impl .xtype(t, long) = σ′

impl ; t;C r̀ new τ [e] : ptrω
α(σ)

We apply the IH to impl ; t;C r̀ e : σ′ and consider the case when e is a value. Clause 2 of implementa-
tion sensibility gives that σ′ = bytei. Canonical Forms gives that either e = w1 uninit w2 or e = b. In
the former case, new τ [e] is legally stuck. In the latter case, if impl .val(b) < 0, then new τ [e] is again
legally stuck. Otherwise it can take a step via rule D-NewArr.

• L-ArrElt:

impl ; t;C r̀ e1 : ptrω
[a,o](σ)

impl .xtype(t, τ) = σ size(impl , σ) = k × a impl ; t;C r̀ e2 : σ′ impl .xtype(t, long) = σ′

impl ; t;C r̀ &((τ∗ω)(e1))[e2] : ptr[a,o](σ)

We apply the IH to impl ; t;C r̀ e1 : ptrω
[a,o](σ) and impl ; t;C r̀ e2 : σ′ and consider the case when both

e1 and e2 are values. Canonical Forms on the former gives that either e1 = uninitk0 or e1 = `+0 with
Ψ(`) = σk1 , α′ where ` α′ ≤ [a, o]. In the former case, &((τ∗ω)(e1))[e2] is legally stuck. Suppose the
latter case occurs.

Clause 2 of implementation sensibility yields σ′ = bytek2 . Canonical Forms gives either e2 = w1 uninit w2

or e2 = b. In the former case, &((τ∗ω)(e1))[e2] is legally stuck. In the latter case, if impl .val(b) < 0,
&((τ∗ω)(e1))[e2] is again legally stuck. Suppose then that impl .val(b) = k for k ≥ 0.

Heap Canonical Forms on Ψ(`) = σk1 , α′ gives H(`) = w,α′. Suppose that i + size(impl , σ) × k ≥
size(impl , w). Then &((τ∗ω)(e1))[e2] is legally stuck. Otherwise, H(`) = w,α′ and i+size(impl , σ)×k <
size(impl , w) give sufficient conditions to take a step via D-ArrElt.

52

Extended Lemma 44 (Constraint Satisfaction)
(No additions.)

Proof:

• H-NewArr:
t; Γ r̀ e : long;S

t; Γ r̀ new τ [e] : τ∗ω;S

By induction on t; Γ r̀ e : long;S we get impl ; t; ·; Γ r̀ e : σ′ where impl .xtype(t, long) = σ′. Plug-
ging these two facts along with impl .xtype(t, τ) = σ and impl .align(t, τ) = α into L-NewArr yields
impl ; t; ·; Γ r̀ new τ [e] : ptrω

α(σ). From clause 7 of implementation sensibility, we get impl .xtype(t, τ∗ω) =
ptrω

α(σ), as desired.

• H-ArrElt:
t; Γ r̀ e1 : τ∗ω;S1 t; Γ r̀ e2 : long;S2

t; Γ r̀ &((τ∗ω)(e1))[e2] : τ∗;S1 ∧ S2

We know impl |= S1 ∧ S2 so by definition of (|=) we have impl |= S1 and impl |= S2. Using this,
we can apply the induction hypothesis to the two subderivations, and use clause 7 of implementation
sensibility to obtain

1 impl ; t; ·; Γ r̀ e1 : ptrω
[a,o](σ)

2 impl .xtype(t, τ) = σ

3 impl .align(t, τ) = [a, o]

4 impl ; t; ·; Γ r̀ e2 : σ′

5 impl .xtype(t, long) = σ′

From clause 6 of implementation sensibility we learn

6 size(impl , σ) = k × a for some k

From clause 4 of implementation sensibility we have

7 impl .xtype(t, τ∗) = ptr[a,o](σ)

Plugging (1,2,4,5,6) into L-ArrElt yields impl ; t; ·; Γ r̀ &((τ∗ω)(e1))[e2] : ptrω
[a,o](σ), which together

with (7), gives the desired conclusion.

B Differences Between Report and Paper

This technical report broadly extends the paper with the same title in the following ways:

• The full safety proof is given in Appendix A.

• Section 1.3, ommitted from the paper, contains additional discussion regarding the contributions of
the work.

• Section 2 contains two additional motivating examples.

• The language given in the report contains one additional syntactic form for “while” loops.

• Section 3.6 contains additional discussion regarding the difference between left- and right-typings in
the high-level semantics and the cast-like syntax on the dereference operator.

• Figures 6 (physical subtyping) and 7 (high-level semantics) are complete. The paper omits a subtyping
rule for padding from the former and most rules from the latter.

53

• Section 3.7 contains additional discussion regarding the low-level type system.

• Section 4 contains a detailed discussion of the array extension, and other extensions which are ommitted
from the paper: read-only pointers, byte skipping, and recursive subtyping.

54

New Syntax
τ ::= . . . | τ∗ω

e ::= . . . | new τ [e] | &((τ∗ω)(e))[e]
R ::= . . . | new τ [R] | &((τ∗ω)(R))[e] | &((τ∗ω)(`+i))[R]
σ ::= . . . | ptrω

α(σ) | ptrω
α(N)

New Dynamic Rules

(D-NewArr) impl ; t ` H; new τ [b] r→ H, ` 7→ uniniti×j , α; `+0
if ` 6∈ Dom(H)

impl .xtype(t, τ) = σ
size(impl , σ) = i
impl .align(t, τ) = α

impl .val(b) = j ≥ 0
(D-ArrElt) impl ; ts ` H; &((τ∗ω)(`+i))[b] r→ H; `+(i + j × k)

if impl .xtype(t, τ) = σ
size(impl , σ) = j

impl .val(b) = k
H(`) = w,α
0 ≤ (i + j × k) < size(impl , w)

New High-Level Typing

H-NewArr
t; Γ r̀ e : long;S

t; Γ r̀ new τ [e] : τ∗ω;S

H-ArrElt
t; Γ r̀ e1 : τ∗ω;S1 t; Γ r̀ e2 : long;S2

t; Γ r̀ &((τ∗ω)(e1))[e2] : τ∗;S1 ∧ S2

New Subtyping

St-Arr
` α1 ≤ α2

impl ; t ` ptrω
α1

(σi) ≤ ptrω
α2

(σ)

St-UnrollArr
impl .xtype(t, N) = σ

impl ; t ` ptrω
α(N) ≤ ptrω

α(σ)

St-RollArr
impl .xtype(t, N) = σ

impl ; t ` ptrω
α(σ) ≤ ptrω

α(N)

New Low-Level Typing

L-NewArr
impl .xtype(t, τ) = σ impl .align(t, τ) = α impl ; t;C r̀ e : σ′ impl .xtype(t, long) = σ′

impl ; t;C r̀ new τ [e] : ptrω
α(σ)

L-ArrElt
impl ; t;C r̀ e1 : ptrω

[a,o](σ)
impl .xtype(t, τ) = σ size(impl , σ) = k × a impl ; t;C r̀ e2 : σ′ impl .xtype(t, long) = σ′

impl ; t;C r̀ &((τ∗ω)(e1))[e2] : ptr[a,o](σ)

Lw-UninitArr
impl .ptr size = i

impl ; t; Ψ ẁ uniniti : ptrω
α(σ)

Lw-LblArr
Ψ(`) = σi, α

impl ; t; Ψ ẁ `+0 : ptrω
α(σ)

New Size Function Case

size(impl , σ) = impl .ptr size if σ ∈ {ptrω
α(σ),ptrω

α(N)}

Figure 18: Array Syntax and Semantics

55

