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Abstract

One of the fundamental problems of autonomous naviga-
tion in real-world outdoor environments is that of predicting terrain
traversability. Typical approaches to this problem involve the use of
vision-based and terrain-contact based features. The vision-based ap-
proaches have the advantage of long-range sensing, however they are
prone to changes in lighting conditions and offer at best an indirect mea-
sure of traversability. The contact-based approaches are more direct,
however they can only sense within the physical footprint of the robot.
We present an approach that predicts terrain traversability by correlating
visual appearance of terrains with associated contact-based properties as
the robot traverses the terrain. Specifically, we use an approach wherein
the predictions from a contact-only based classifier are used to re-train
a visual feature-based classifier. Experimental results on hitherto unob-
served terrains show that this approach improves the performance of the
visual feature-based classifier while providing long-range predictions.

1 Introduction

Autonomous navigation in unstructured outdoor environments is a fundamental and chal-
lenging problem in Robotics. In this problem, a robotic vehicle senses the world and at-
tempts to identify surroundings which provide the maximum affordance [1] in reaching
the goal. A key aspect of this problem is the ability to predict the traversability of terrains
encountered in various environments and act accordingly. Predicting terrain traversability
involves identification of regions in the world which are most suitable for onward journey
of the robot and forms a crucial component of path-planning approaches in applications
[15]. In order to identify such regions, we need to identify obstacles (so that they can be
routed around) and desirable regions in obstacle-free areas (so that they can be preferen-
tially used). In this report, we focus on the latter and present a robotic platform which
predicts terrain traversability from sensor data.
Typical approaches to this problem involve the use of vision-based [3, 4, 5, 6] and terrain-
contact based sensor [11, 12, 13, 14] data. The former use cameras (monocular and stereo)
fitted on the robot to obtain images of the terrain. These images are then processed and
labeled with desirability values. In order to use this prediction information, the camera(s)



Figure 1: Terrains encountered by the robot. Each row represents a terrain(top to bottom
- road,grass,concrete,gravel. Notice the effect of lighting changes on terrain
appearance.

must be calibrated with the ground-plane reference of the robot. Typically, this reference
plane is assumed to be the one that passes through the base of each wheel of the robot.
Depending on the ruggedness of the terrain, this assumption may not be correct. Also,
the lighting conditions in outdoor environments contain a large dynamic range which af-
fects appearance – a patch of grass in shade can very well look like a patch of dark soil.
Therefore, it is very important to use color-constancy based features for the prediction to be
invariant to lighting. Another important aspect is the change of appearance with distance.
Because of perspective imaging, two terrain patches of same size can occupy two very dif-
ferent sized areas in the image depending on their distance from the camera. This affects
their appearance and therefore a good prediction system must take this distance from cam-
era into account. Many of the approaches deal with the prediction problem by treating it
as an instance of image classification. However, as [1] point out, the mapping from a clas-
sification label (E.g.tree,grass,rock) to the underlying traversability they afford can
be quite non-uniform and hard to define. A better idea would be to model the traversability
explicitly while using prior knowledge provided by the classification-label approaches.



Visual features offer at best an indirect estimate of the traversability and even the best
approaches are prone to changes in lighting conditions. An alternative is to use contact-
based sensors such as accelerometers, gyroscopes and IMUs (Inertial Measurement Units).
These measure properties such as acceleration, pitch, roll etc. They are quite sensitive
to even minor variations in the terrain and therefore afford greater prediction accuracy.
Typically, features are extracted from the data and used to characterize terrains, typically
using terrain classes. However, the data from these sensors can be quite noisy which can
impede good classification. More significantly, these features cannot be used for prediction
as the sensing range of the contact-based approaches is limited to the extents of the robot
(unlike cameras which can provide long range data measurements).
The advantages and the limitations of vision and contact-based approaches therefore sug-
gest a fusion approach wherein the robot uses synchronized sensor data from both (and in
general, multiple [16]) modalities. In this approach, the visual features can be correlated
with accelerometric features and used to build a model which predicts traversability more
robustly than either of the two approaches. We present one such approach and demonstrate
its effectiveness using experimental results on a robotic platform equipped with visual and
accelerometric sensors.
The rest of the report is structured as follows: We explore the design space of outdoor
traversability prediction in Section 2. In Section 3, we describe our terrain traversability
system formally while specifying the associated implications and assumptions. In Section
4, we describe the robotic system built for traversability prediction and various experi-
ments to assess the prediction performance. We conclude with a discussion on alternative
approaches and avenues for future work in Section 5.

2 Related Work

The approaches for predict terrain traversability fall broadly into three categories. The
first category is based on visual-features. In these approaches, vision sensors collect im-
age data which is processed for delineating traversable regions in images. One class of
these approaches views the problem as one of obstacle detection and usually consider all
(detected) obstacle-free to be equivalent. These approaches use visual appearance features
from images and 3 − D characterization of the terrains (shape,extents) to model obstacles
(or their absence). Early work in this area used apriori characterization of the environments
[5, 10] but these work well when the terrain is constrained and the apriori characteriza-
tions can be used with relatively little modification. Some of the approaches augment the
monocular image-based models [8] with terrain analysis from stereo data. This approach
is quite popular, especially for off-road traversability prediction and planetary exploration
[10]. Another set of approaches use the notion of learning the traversability using neural-
networks [7], reinforcement-learning [9] and unsupervised-learning [1]. The work in [1]
is interesting as it imposes no restrictions on the terrain model. Instead, the problem is
posed as one of affordance. The robot attempts to characterize this affordance by the con-
sequences of its traversal in the world and modifies the affordance appropriately. Another
class of visual-feature based approaches focus on the differences between obstacle-free re-
gions. The approach presented in the report squarely belongs to this category. Most of
these approaches assume that the obstacles have been filtered out or are insignificant. The
defining characteristic of these approaches is that they seek to impose a ranking among
obstacle-free regions. This ranking can be propagated to higher-level functions of the robot
for path planning [17]. This approach eliminates the need for modeling peculiarities of the
training data in learning approaches and provides a more flexible characterization that goes
beyond a discretized , class-based description of traversable regions.
The second category of approaches aim to characterize the terrain by its contact-based



properties such as acceleration, jitter, pitch and roll. These properties are measured using
a variety of sensors such as gyroscopes, IMUs, MSBs [11, 12, 13, 14]. The mapping to
traversability is typically done using the learning approaches described above. While these
methods provide the most direct method of characterizing terrains, the sensor data is often
noisy and tends to make learning difficult.
The third category contains methods which employ both visual and contact-based methods
in tandem for prediction. [2] use a LIDAR and stereo camera to detect obstacle regions.
Another approach [17] propagates a load-bearing surface model into the world ahead using
long-range stereo data and a surface deformation model. The approach in [18] estimates
the height of vegetative surface and the underlying terrain model using multiple Markov
random field models. This work is probably the closest in spirit to the approach presented
in this report.

3 Terrain Traversability Prediction System

Our strategy is as follows: Training data is collected by allowing the robot to traverse dif-
ferent kinds of environments E. One such environment is shown in Figure 2. The visual
features as viewed from a particular position P (t) are associated with accelerometric fea-
tures of areas traversed subsequently P ′(t

′), producing sensor feature pairs. These feature
vectors are shown as vertical striped bars in Figure 2. The sensor feature pairs are tagged
with traversability labels. The tagged feature pairs are used to create a traversability map-
ping F . In Figure 2, we assume that this is already available to us. Using this mapping, the
robot learns to associate visual features (as viewed from a particular location in a possibly
new environment) to predict the associated accelerometric features and concurrently, the
traversability labeling (LP(t) in Figure 2).
A robot capable of performing this task of predicting terrain traversability imposes certain
fundamental requirements:

• The robot’s cameras need to be calibrated – extrinsically and intrinsically – so
that the association between visual and accelerometric features can be captured
properly.

• The odometric, visual and accelerometric sensor streams must be synchronized
appropriately to enable the association mentioned above.

• The robot’s dimensions need to be known in order to determine its footprint in
camera images.

• The visual and accelerometric features must be chosen carefully so as to sustain a
good prediction capability in the system.

To make the problem tractable, we make certain assumptions, the primary among which
are as follows:

• No negative obstacles: We assume that there are no obstacles which can poten-
tially damage the robot such as ditches, tall obstructions, cliffs etc. We distinguish
negative obstacles from other obstacles in that the latter do not pose a threat to the
continuing functionality of the robot.

• Flat ground-plane : As mentioned before, we define the area of operation for the
robot to be a flat 2 − D surface. In the absence of negative obstacles, this is a
reasonable assumption to make. In addition, it enables us to easily capture the as-
sociation between visual features and the corresponding accelerometric features,
thanks to the calibration of camera – extrinsic and intrinsic.



• The traversability labeling LP(t) is restricted to represent what we define as ter-
rain classes: grass,gravel,concrete,road (see Figure 1). Therefore,
LP(t) ∈ {1, 2, 3, 4}.

• The accelerometric and visual properties are a function of the discretization
parameters(step-size in each direction). Also, these properties are considered at
the approximate locations of the wheels present on the front axle of the robot. We
assume that these properties do not change within the physical extents occupied by
the robot – an assumption which holds fairly well except at the inter-terrain-class
boundaries and highly undulating terrains.

• The accelerometric features for a fixed pair of viewing and viewed positions e.g.
(P(t),P ′(t

′)) above are deemed repeatable, i.e multiple traversals of the same
position produce the same accelerometric readings.

Figure 2: An illustration of the terrain traversability system. The robot is in an environment
E at a position marked P (t). Refer to Section 3 for notation. The visual features are
correlated via F with the accelerometric features (both shown as vertical bars) to arrive at
a labeling for the patch shaded in green.

We now describe the problem formally:
A typical environment E ∈ E (See Figure 2) traversed by a robot is usually represented by
a 3−D coordinate system. For the purposes of the problem, however, we consider a 2−D
projection of this coordinate system, which is reasonable if we assume that the robot does
not “fly off the projection plane”. Let OE be the origin of this latter coordinate system. Let
P(t) (yellow square in Figure 2) be the position of the robot w.r.t OE at time t1. The robot
has a stereo camera attached to it. Assume a 2 − D discretization CP(t) corresponding to
the camera’s left eye field of view, i.e each grid cell CP(t)(i, j) (filled in as a green patch in
Figure 2) corresponds to a location referenced as P ′ w.r.t OE . Each grid cell is associated
with a set of visual properties VP(t) (i, j). Note that these properties are defined relative to

1We ignore the physical extents of the robot for the time being and reduce its location to a point
in E



robot’s current position. As the robot moves forward, it traverses positions viewed in the
camera’s field of view from a previous location. Specifically, let P ′(t

′) be the position of
the robot at time t′ (t′ > t) such that P ′(t

′)
= CP(t) (i, j), i.e it is visible from an earlier

location P(t). Let A
P′(t′) be the accelerometric properties measured at P ′(t

′). Define a
traversability labeling LP(t) over CP(t) where LP(t) (i, j) ∈ R. Define a traversability
mapping F such that :

F : {VP(t)(P ′(t
′)
),A

P′(t′)} → LP(t) (1)

Assume that the robot is now in a hitherto unseen environment E ′ at position P ′′(t
′′) at

time t′′. Define the coordinate systems and discretization grid as before. Assume a perfect2

traversability labeling L
perf

P′′(t′′) exists. The problem of predicting terrain traversability
is to estimate A

P′′′(t′′′) for all locations P ′′′(t
′′′) as seen from P ′′(t

′′) and use F to find a
labeling L

P′′(t′′) such that :

g(L
P′′(t′′) ,L

perf
P′′(t′′)) = 0 (2)

where g(R2, R2) → R is an error function that measures the discrepancy between the ideal
labeling and one that is produced using the mapping function.
Special cases of the above model arise when vision and accelerometric features are used by
themselves. Let us assume that only vision features are available. Equation 1 becomes :

FV : {VP(t)(P ′(t
′)
)} → LP(t) (3)

In this case, the problem of predicting terrain traversability does not involve any estimation
of A

P′′′(t′′′) . Instead, for all locations P ′′′(t
′′′) as seen from P ′′(t

′′) , we use Equation 3 to
find a labeling L

P′′(t′′) with the same property as given in Equation 2.
Similarly, when only accelerometric features are available, the traversability mapping func-
tion becomes :

FA : {AP(t)(P ′(t
′)
)} → LP(t) (4)

An alternative definition of the traversability mapping is :

FA : {AP(t)(P(t))} → LP(t) (5)

This is reasonable since we can measure the accelerometric properties at a particular po-
sition P(t) (i.e directly beneath the robot) whereas the same cannot be done for visual
features. However, for consistent evaluation, we use the mapping from Equation 4.
We model the learning of traversability mapping functions (e.g. Equation 1) as a multi-
class classification problem, i.e. F from Equations 2, 3, 4 is considered to be a function
learnt by the classifier. For our experiments, we use the Adaboost classifier [28]. Adaboost
is a popular classifier for solving two-class classification problems and provides robust
class predictions sans over-fitting. Suppose the training data-set has N labeled samples
D = {(x1, t1), . . . (xN , tN )} where tj is the label of feature vector xj , j = 1, . . .N and
xj ∈ {1, 2, . . .K}. A simple extension of Adaboost for problems with K classes can be

2According to a reasonable metric of perfection.



obtained by training K two-class classifiers C1, C2 . . . CK . We split the training data into
two disjoint sets S1 and S2

3 (S1 ∪ S2 = D) where S1 contains all the samples belonging
to terrain class i 4and S2 contains the rest of the data-set. These two sets are considered as
two classes for training Ci, i.e for j = 1, 2 . . .N :

tnew
j =

{
−1 if tj /∈ Ci

+1 otherwise (6)

Let θi be the parameters of the trained Ci. Given a test feature vector x, it produces a
real-valued confidence lxCi

where −1 ≤ lxCi
≤ 1. x is labeled with the class tx such that :

tx = arg max
i

lxCi
(7)

where i = 1, 2 . . .K.
We can also obtain a probability distribution over multiple classes by the softmax transfor-
mation.

P (ωi|x) ∝ exp (−kl(x; θi)) (8)

where k is a parameter that controls the shape of the distribution and l(x; θi) = lxCi
.

The predicted class is determined in the same manner as Equation 7. Note also that we can
consider θ = {θi, i = 1 . . .K} as a parameterization of mapping functions F in Equations
2, 3, 4.
Let P vis(ωi|x), P acc(ωi|x) be the predictions for using only visual and accelerometric
features respectively. A simple way of combining these predictions is :

P combined(ωi|x) = P vis(ωi|x)P acc(ωi|x) (9)
where ωi takes the values of different terrain-classes.
Equation 9 implicitly assumes that all terrain classes contribute equally to the result. Also,
it does not take into account the differing performance rates with visual and accelerometric
features. Therefore, we derive a sensor fusion method that takes these factors into account.
Note that Equation 9 provides a terrain-class conditional likelihood whose value forms
part of the prediction process. To incorporate prior knowledge about the performance on
different terrain classes itself, we model their posterior distribution.

P (ωtrue
i |x) =

∑

m=vis,acc

∑

j

P (ωtrue
i |ωest

j , m, x)P (ωest
j |m, x)P (m|x) (10)

where P (ωtrue
i |x) is the true posterior distribution for x, P (ωtrue

i |ωest
j , m, x) encodes

performance of the classifier for a fixed m and P (m|x) denotes an importance weighing
factor per sensor modality. For simplicity, we set P (m|x) = c, 0 ≤ c ≤ 1 where c is a
fixed constant to indicate the fact that we give equal importance to all the sensors. In our
case c = 1

2 . We have :

P (ωtrue
i |x) ∝ P (ωtrue

i |m = vis, x) + P (ωtrue
i |m = acc, x) (11)

3Samples belonging to these sets are labeled −1 and +1 respectively
4Class i will henceforth be referred to interchangeably as ωi.



Table 1: Features extracted per channel
Feature-code Description

v1 Expected value of feature
v2 Expected standard deviation
v3 Entropy
v4 Bin centers from histogram (5 bins)

P (ωtrue
i |x) ∝

∑

j

P (ωtrue
i |ωest

j , m = vis, x)

︸ ︷︷ ︸

A

P (ωest
j |m = vis, x)

︸ ︷︷ ︸

B

+
∑

j

P (ωtrue
i |ωest

j , m = acc, x)P (ωest
j |m = acc, x) (12)

The term denoted by A in Equation 12 can be written as :

P (ωtrue
i |ωest

j , m = vis, x) =
P (ωtrue

i , ωest
j |x)

∑

k P (ωtrue
k , ωest

j |x)
(13)

The ωest
j is introduced so as to factor the effect of mislabelings into the prediction mecha-

nism. The estimates seem coupled in the sense estimating P (ωtrue
i |x) requires estimation

of P (ωtrue
k |x) ∀k ∈ {1, . . .K}. However, we can obtain an estimate for this from the con-

fusion matrix corresponding to visual features. (E.g. Table 4). Let this confusion matrix
be M = [mpq], 1 ≤ p, q ≤ K. We note that mpq = P (ωtrue

p , ωest
q |x). Therefore,

P (ωtrue
i |ωest

j , m = vis, x) =

[
mij

∑

k mkj

]

(14)

The term B in Equation 12 is the normal prediction (c.f. Equation 8). Therefore, the
fusion strategy in Equation 12 helps bias the normal prediction with prior knowledge. We
perform a similar computation when m = acc for accelerometric features and combine
them as shown in Equation 12.
In the next section, we describe different experiments that examine the performance of the
prediction system with various combinations of sensor data, data fusion strategies and their
impact on overall prediction.

4 Experiments

In order to evaluate the performance of the mapping functions and the predictive capa-
bilities they provide, we used a robotic platform for conducting experiments (see Figure
3). The base robot is a Pioneer-2 AT ActivMedia [21] outfitted with SICK laser range
finder and a wheel-tick odometer which runs at 10 Hz. A Bumblebee color stereo camera
functions as the vision sensor [22] and provides images at around 2 fps 6. Accelerome-
try is read from a Multi-Sensor Board (MSB) developed at Intel Research, Seattle [23],

5For consistency, the means were ranked by the number of samples closest to each mean
6The low fps is related to software issues. In isolation, the camera provides a 15 fps frame-rate



Table 2: Vision-based features
Feature Number of features

v1 − v4 features - R,G,B channels 24
k-means on RGB values 5 (k = 3) 9

k-means on color constancy features - R
B

, G
B

18
v1 − v4 features - Hue,Saturation, Intensity channels 24

k-means on HSV values(k = 3) 9
DOOG texture features [20] 30

Figure 3: The robot platform built for data-collection and experiments. 1 = Bumblebee
stereo camera, 2 = HP iPAQ PDA, 3 = SICK laser range-finder, 4 = MSB, 5 = Pioneer 2 AT
robot

which functions as the accelerometry sensor. This board provides information on many
sensor channels including barometric pressure, light frequencies, sound and acceleration.
However, we use just the accelerometric readings along the canonical X, Y, Z axes for
our experiments. The robot was tele-operated using a Logitech Wireless Rumblepad joy-
stick [24]. A LinuxCertified LC-2000 laptop [25] runs the associated software for the
robot. The different sensors and devices attached to the robot (odometer, laser range finder,
joystick) are connected to the laptop via a USB interface. Because of the limitation on
the number of USB devices supported on the machine, the MSB is run via software on a
HP iPAQ PDA [26]. The software controls for the robot are provided via the CARMEN
[27] program. The data collected by CARMEN includes information from odometry, laser
range-finder,stereo image pair from the camera and the associated disparity image – all of
which are time-stamped. These time-stamps are used to synchronize with the MSB data
collected via the iPAQ.
Using this setup, we collected sensor data on 26 runs covering 4 different kinds of terrains
– road, grass, concrete, gravel , under widely varying environmental condi-
tions (see Figure 1). Each run consisted of collecting sensor data from the robot platform as
the robot moved in the environment. The odometer provided location information relative
to the starting position. The stereo camera simultaneously captured color images and these
were associated with the odometric position. The accelerometric data collected from the
iPAQ was synchronized with odometry and camera images using time-stamp information.
Subsequently, feature extraction was performed on the visual data and accelerometric data.
In our experiments, we made the assumption that the ground plane is located a distance
equal to the (known) height of the robot passing through its wheels. Using the camera



calibration information, we overlay a virtual discretized grid on the ground plane (blue grid
in Figure 2). The origin of the grid is adjusted to lie within the visual range of the camera
on the robot. The discretized grid is then projected onto the camera images. Visual features
are extracted from all the grid cells (patches). The relative odometry of the robot is also
projected onto the image so that we can identify the grid occupied by the robot (filled green
patch in Figure 2)7.
We extract two kinds of visual features from each patch. The first kind operates on channels
of image representations, in our case from RGB and HSV space. For each channel, we
obtain a histogram whose bins correspond to the possible values of the channel. We used
10 bins in the range 0−1. The histogram is normalized to obtain a probability distribution.
We then compute the following features on the channel values for each patch: (i) expected
value of channel (ii) expected standard deviation (iii) entropy (iv) 5-bin histogram centres
– A 5 bin histogram of the channel values in the patch is obtained and the corresponding
bin centres are used . We refer to these features as v1 − v4 features (see Table 1). The
second kind of features are extracted over multiple channels and typically represent global
properties of the patch. We also perform k-means clustering on RGB, HSV features and
normalized color space – R

B
, G

B
(see Table 2). The latter features are quite popular in

color-constancy studies [19].
We extract accelerometric features from a patch which contain the projected footprint of
the robot and associate them with the visual features from that patch. The accelerometric
features are based on Fourier-frequency analysis of the sensor data from the MSB.
To summarize, we consider each patch containing the footprint of the robot, extract visual
and associated accelerometric features as described above and finally label the features with
the appropriate terrain class viz. road, grass, concrete, gravel.

4.1 Evaluating predictions on traversed paths

As a baseline set of experiments, we evaluated the performance only on terrain patches
traversed by the robot. For these experiments, the labeled data was split randomly and 70%
was used for training while the rest was used for evaluating the prediction performance.

4.1.1 Uniform lighting conditions

Table 3: Confusion Matrices for terrains - Uniform Lighting conditions (RD - road, GR -
grass, CO - concrete, GV - gravel).

Visual

RD GR CO GV
RD 99.9401 0.0599 0 0
GR 0 99.3674 0 0.6326
CO 0 0 98.5877 1.4123
GV 0.0155 0 0.1864 99.7980

Accelerometric

RD GR CO GV
RD 100.0 0 0 0
GR 0 99.0438 4.0972 3.2873
CO 25.6610 0.3629 73.5614 0.4147
GV 1.4043 0.1404 0 98.4553

Uniform lighting conditions refer to the fact that the data was collected in the absence of
7Strictly speaking, it should be grids occupied by the front wheels of the robot. We consider the

single patch corresponding to left front wheel in the report without loss of generality.



bright sunlight. Table 3 shows the confusion matrices when using visual features and
accelerometric features. The high accuracies reflect the suitability of visual features, at
least as a baseline set for prediction (see also Figure 4). The accelerometric labeling is
also quite accurate. However, some of the terrains patches have incorrect predictions. This
happens when the terrains share contact-based properties, e.g. a well-paved road and
concrete surface can ’feel’ quite similar to the robot (row 3 of Table 3).

4.1.2 Nonuniform lighting conditions

Table 4: Confusion Matrices for terrains - Nonuniform Lighting conditions (RD - road,
GR - grass, CO - concrete, GV - gravel).

Visual

RD GR CO GV
RD 85.521100 0.059700 2.128100 12.291200
GR 0.054100 96.661900 0.000000 3.284000
CO 3.673600 0.000000 76.362100 19.964200
GV 1.465100 4.213500 0.463000 93.858400

Accelerometric

RD GR CO GV
RD 91.139200 0.642600 6.504400 1.713700
GR 1.064000 93.868300 0.577100 4.490500
CO 2.416700 0.430600 96.583300 0.569400
GV 0.634500 4.012500 0.111600 95.241500

Combined

RD GR CO GV
RD 91.695600 0.077100 5.086700 3.140700
GR 0.000000 99.095200 0.000000 0.904800
CO 0.859100 0.000000 98.739100 0.401800
GV 0.135500 4.384500 0.023600 95.456400

Next, we relax the above assumption and evaluate the performance without any lighting-
condition based constraint on the data. We also examine the effect of combining the pre-
dictions of visual and accelerometric classifiers. Table 4 shows the effect of large dynamic
range in lighting typical of outdoor scenes (c.f. Table 3). Note however that the ac-
celerometry performance remains unchanged. This invariance to lighting conditions makes
contact-based sensors attractive from the viewpoint of prediction (Figure 5). Even when
they are combined in a simple fashion such as that given by Equation 9, the prediction
results are quite superior (see Table 4) to visual features or accelerometric features alone,
highlighting the advantages of a correlation-based approach.

4.1.3 Evaluating sensor fusion strategies

Table 5: Confusion Matrices for terrains - Combining visual and accelerometric classifiers
and using prior information (RD - road, GR - grass, CO - concrete, GV - gravel).

Combined (with prior info)

RD GR CO GV
RD 93.237000 0.115600 4.238900 2.408500
GR 0.036200 99.475200 0.000000 0.488600
CO 0.872900 0.000000 99.043900 0.083100
GV 0.277000 4.761600 0.064800 94.896600

We use the combination strategy presented in Equation 12. The results are presented
in Table 5. While the improvement is marginal, this could be due to the already high



Figure 4: Images from the robot during a test run and the corresponding visual (column
2) and accelerometric (column 3) predictions on the path taken later by the robot. Terrain
is indicated by color (green=grass, cyan=gravel, red =road). Notice that both visual
and accelerometric features work well in this case.

prediction accuracies seen in Table 4. The strategy’s effect might be more visible when a
large number of terrain classes are present – a possibility we do not address in this report.
It is worthwhile to mention that in the above set of experiments, we have considered only
those patches on the discretized grid which contain the physical footprint of the robot for a
given position P(t), i.e we consider a subset of CP(t) for evaluation purposes. In the next
set of experiments, we relax this assumption and consider the complete discretization grid
CP(t) for each odometric position of the robot.

4.2 Evaluating predictions on untraversed patches

The previous set of experiments were primarily concerned with determining the suitability
of visual and accelerometric features wherein the evaluation was done over labeled patches
traversed by the robot. We now consider the more realistic scenario of a hitherto unseen
environment (i.e. not traversed by the robot) and examine the prediction performance for
the same.



Figure 5: Images from the robot during a test run and the corresponding visual (column 2)
and accelerometric (column 3) predictions on the path taken later by the robot. Terrain is
indicated by color (green=grass, cyan=gravel, red =road, gray =concrete). Notice
that many of the visual predictions are incorrect because of the large dynamic lighting
range. This does not affect accelerometry which gives perfect prediction.

4.2.1 Determining desirable regions of traversability from visual features

Instead of a naive extension of the previous section’s approach, i.e visual-feature based
predcition for each patch in the grid, we consider an alternate approach. Let us consider a
situation where the manner of collecting training data is relevant. For instance, the training
data could consist of runs which lead to a goal. If the straight line path between starting
position and the goal is desirable at all points along itself, the robot would have been
guided down that route. However, the path to the goal might be circuitous because of
environmental constraints and therefore the path need not be straight. At each point in the
path, we can determine the straight line direction to the goal and the current heading of the
robot. These lines can be projected onto the images taken from the current position. Image
patches can be taken w.r.t these lines to identify ’desirable’ and ’non-desirable’ patches.
Patches collected in this fashion can then be used to train classifiers to identify ’desirable’
regions.
Let us consider a situation where we have images and p = 3 patches in every image
identified as ’desirable’ by the method mentioned above. By extracting suitable features,
we can determine other such regions in the image and ’grow’ the desirable patches into



Figure 6: Procedure for extending pre-determined desirable regions to rest of image.

regions which can be labeled ’desirable’. We use the following procedure:

1. Typically we are interested in desirable regions similar in appearance to the 3
designated patches (Figure 6(b)). The appearance properties of regions further
away from the robot can be different from those nearer to it and therefore, we
crop the top portion of the image corresponding to regions closer to horizon w.r.t
robot’s current position. (Figure 6(a))

2. Extract the following features from each pixel of the image: Red channel value,
Green channel value - g, Blue channel value - b, Hue channel value, Color channel
ratio : g

b
, pixel’s row, pixel’s column8.

3. Perform k-means clustering on the feature vectors. We use k = 10. (Figure 6(c))
4. Identify clusters which intersect with the 3 desirable patches and mark them

desirable. (Figure 6(d))
5. Extract features as in (2) above from all the clusters and compute the mean feature

vector.
6. Compute the Euclidean distance between the feature vector from the desirable

clusters and the remaining clusters. (Figure 6(e))
7. Choose a threshold and merge the clusters closest in distance to the desirable

clusters to obtain all the desirable regions in the image. (Figure 6(f)).

While this method works well in general, it occasionally fails when image regions are
saturated or the desirable patches have a large dynamic range in appearance. It must be
mentioned that advanced color-constancy methods exist which can handle some of these
issues but even these typically do not compensate the full range of lighting conditions such
as those seen in Figures 1.

8Including the pixel’s row and column as features enforces spatial consistency on desirable re-
gions.



4.2.2 Using accelerometric predictions to improve visual classifier predictions

(a) Image at t = 0 (b) Visual labeling (be-
fore retraining)

(c) Accelerometry label-
ing

(d) Example Im-
age 1 at t > 0

(e) Visual labeling
after re-training

(f) Example Im-
age 2 at t > 0

(g) Visual labeling
after re-training

Figure 7: The accelerometric predictions in (c) are used to re-train the visual classifier. The
results after re-training are shown in the second row (red=road, green = grass, cyan =
gravel, gray = concrete.

As the previous set of experiments show, the visual feature-based predictor is sensitive to
lighting conditions while this is not the case with accelerometry. Therefore, we can use the
predictions from the accelerometry-based predictor and use them to revise the decisions of
the visual feature-based predictor, thereby improving the performance of the latter. To ver-
ify this, we performed an experiment (see Figure 7) wherein the robot initially moves some
distance. The vision-based classifier initially labels the patches traversed by the robot. In
an environment with mixed lighting conditions such as those in the figure, it does a poor job
(Figure 7(b)). In contrast, the accelerometry-based predictor is quite accurate in recogniz-
ing the terrain (Figure 7(c)). Therefore, we use these predictions to ”re-label” the traversed
patches. To perform this re-labeling, we need to first re-train the visual-feature classifier
with the patches it had previously misclassified, but now using the (accurate) labels from
accelerometry predictions. Let this data be Dre−train = {(x′

1, t
′
1), . . . (x

′
N , t′N )}. Re-

training follows the same procedure as in Section 4.1, except that existing decision stumps
(which form part of the parametric representation in Adaboost) are modified so as to re-
duce the overall empirical training error [29]. However, this method of on-line learning
requires a on-line weak learner for Adaboost. We use a decision stump for training but this
is done offline. Therefore, we re-train the visual classifier with the old training data Dold

augmented with Dre−train. We first define a distribution over the entire data :

wx =

{
α if x ∈ Dre−train

α
100 if x ∈ Dold (15)

where wx is the weight or importance of training sample x. The above distribution reflects



the intuition that the recently re-labeled data Dre−train should be modeled with greater
certainty. As the robot proceeds ahead, the parameters of re-trained visual classifier show
improved prediction (see second row in Figure 7). In general, this approach works very
well in spite of the sensor-specific limitations of visual and accelerometric classifiers.
This success of this approach depends to a large extent on the accuracy of the accelero-
metric classifier. In some cases, the classifier exhibits mislabeling which can “bleed” into
visual labeling via re-training. This is often due to the similar contact-based properties two
surfaces exhibit. In the next section, we discuss ideas for future work that address these
issues.

5 Conclusions

In this report, we have presented a system which learns the correlation between accelero-
metric and associated visual properties of terrains for predicting traversability. As the
experiments, particularly the last set demonstrate, better predictions can be obtained by
combining the best approaches from vision-only and accelerometry-only approaches in an
intelligent yet straightforward fashion. The current work has plenty of scope for improve-
ment :

• Our current model implicitly assumes that adjacent terrain patches are spatiotem-
porally independent. A better and more consistent prediction can be obtained with
smoothing.

• In our work, we have implicitly assumed absence of significant obstacles. In real-
ity, this might not be the case and therefore, stereo and laser based features could
be added to the existing set of vision-based features. Extending the model to han-
dle obstacles can be done by associating these features with the lowest measure of
traversability.

• The MSB which provides accelerometric data could be augmented with other
contact-based sensors such as gyroscopes and IMUs to enhance the correlation.

• The image data can serve as a corpus for exploring color-constancy features which
can be usefully added to current set of features.

• In order to re-train the classifier(Adaboost), the current model reuses the entire
training data along with new training input. Instead of this naive method, it would
be better to use an online-learning approach which can modify the existing set of
learnt parameters with incoming data for prediction [29].

• A continuous measure of traversability may be more appropriate in this scenario
as opposed to discrete class-based approaches. One possible approach could be
to set up a regression model between the vision-based and accelerometric features
so that given the former, the latter can be predicted for a novel terrain patch. Al-
though the feature dimensions involved are quite large (112 and 267 respectively),
dimensionality reduction techniques could be applied. Figure 8 shows plots of
the associated eigenvalues.
Another alternative could be to perform regression and dimensionality reduction
simultaneously using methods such as partial least squares regression [30]. Given
the complex nature of terrains and associated accelerometric information, the re-
gression model may perform poorly. In this case, the features can be clustered
wherein each cluster is associated with notions of ease of traversability. To ver-
ify this, we performed a preliminary experiment in clustering the dimensionality-
reduced accelerometric features. After clustering, each feature was associated
with the closest cluster. Figure 9 shows how the samples of a given terrain (x-



axis) are distributed across clusters (y-axis). The clusters tend to maximally model
a single terrain class while spanning all the terrain classes.

• As can be seen in Figure 1, the appearance of a terrain patch changes as a function
of its distance of the robot. Therefore, instead of burdening a single classifier to
learn appearance over a range of distances, we could have multiple classifiers,
each of which learns appearance for a specific distance or a much smaller range
of distances.

• Occasionally, the visual-feature classifier may perform better than the accelero-
metric classifier for a given area. For instance, if the ground underlying a grass
patch is very uneven, the accelerometric classifier tends to classify it as gravel.
Therefore, it would be useful to have a meta-predictor which adaptively enables
and disables re-training of visual-feature classifier.

(a) #Original dimensions = 112 (b) #Original dimensions = 267

Figure 8: PCA eigen-value plot for visual(left) and accelerometric(right) features. Notice
that the so-called knee of the plot is achieved at a relatively small dimension.
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