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Abstract

Information Retrieval (IR), Information Extraction (IE),and Text Classification (TC) are
typically seen as related, but distinct fields. In IR the goalis to return documents relevant to a
query, in IE the goal is to return strings representing instances of a particular class or relation,
and in TC the goal is to determine to which class a test document belongs. While there are
many techniques for each of IR, IE, and TC, we argue that for a reasonable and effective subset,
the main distinction reduces to how the query and corpus are represented. We show how these
subsets of IR, IE, and TC can be transformed to each other, anduse these transformations to
explore the implicit assumptions, limitations, and relationship between example IR, IE, and
TC systems. Finally, we use these insights to build a hybrid IE system, which uses IR distance
metrics to improve the IE system’s results.

1 Introduction

Information Retrieval (IR), Information Extraction (IE),and Linear Text Classification (TC) are
typically seen as related, but distinct fields. These fields are related since they all deal with textual
information, but distinct since they have separate goals. IR systems are designed to return a ranked
list of documents related to a user’s query. IE systems are designed to return specific entities,
properties, and relationships of interest to the user. TC systems are designed to determine the most
likely class for a document. For example, if a user was interested in “Presidents of the United
States”, an IR system would return documents related to those keywords, in which they could
(hopefully) find all the U.S. presidents. Similarly, a TC system would (hopefully) determine which
particular documents in a corpus mention U.S. presidents. An IE system, on the other hand, would
(hopefully) return a list of strings containing “George Washington”, “Abraham Lincoln”, etc.

Although there is a wide variation in methods, some techniques in each field have proven
popular and effective. IR systems based on the ‘document vector’ model are effective and fairly
well understood, TC methods such as Naive Bayes or other linear models generally perform well
despite their simplicity, and IE systems that extract itemsbased on pre-specified and/or learned
patterns have been effective in a number of IE tasks. In particular, recent research into information
extraction systems (e.g. [8] [3] [30] [28] ) has shown that using fairly simple pattern-based IE
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techniques and simple linear combinations of evidence across patterns and documents can provide
efficient, effective, and scalable information extractionsystems. In this document we focus such
IR, IE, and TC systems.

From a high level, IR, IE, and TC are all performing a form of classification based on contexts,
using both local and global corpus statistics to do so. Some research in IR, IE, and TC focuses
on making a binary decision (is a doc relevant or not, is an extraction correct or not, or does a
document belong to this class or not). However, many techniques in each field also include some
estimate of the confidence of the decision, allowing an easy way to tune these systems. We take this
more general approach by viewing IR, IE, and TC systems as ranking documents, extractions, or
classes respectively, and explore the assumptions of and relations between their scoring techniques.

In this document we seek to understand and codify the relationship between the classifica-
tion/ranking metrics used by the previously mentioned document vector-based Information Re-
trieval systems, pattern-based Information Extraction systems, and Linear Text Classification sys-
tems. While the relationship between IR and Naive Bayes textclassification is well understood,
we extend it to include their relationship with pattern-based IE methods. We give simple transfor-
mations for converting between problems in IR, IE, and TC, and argue that they are all different
aspects of the same ranking problem, merely representing the corpus in different ways. We further
use these transformations to explore the inherent assumptions and relationship between example
IE and IR systems. Finally, we propose and evaluate a hybrid IE system which performs extraction
based on an underlying IE system, but uses IR term weighting and distance metrics to improve its
classification/ranking of extractions.

In this document we do not focus on where the corpus, query, patterns, etc. originate, but rather
treat them in abstract terms and focus on how these IR, IE, andTC systems compute confidences.
We also assume that the IE segmentation problem (determining which words need to be extracted
as part of the entity, property, or relation, and which wordsshould be left out) is solved externally.
This is a reasonable assumption since many effective pattern-based IE systems rely on simple
heuristics (e.g. [30]), part of speech taggers (e.g. [8]), named entity taggers (e.g. [3]), or other
natural language processing tools to perform the segmentation. Finally, although all the systems we
consider rely on a linear combination of evidence, this still covers many interesting and effective
systems. Restricting our study to linear IR, IE, and TC systems allows us to more easily discuss
their relationships and inherent assumptions.

The main contributions of this paper are as follows:

• We give simple transformations which allow us to convert IE problems or TC problems to
IR ones, and vice versa.

• We analyze the assumptions under which a typical IE and IR system produce equivalent
rankings, and leverage that to elucidate the assumptions ofeach system and the relationship
between them.

• We define a hybrid IE system, which leverages IR term weighting functions to improve the
precision/recall trade-off of a modern IE system.
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2 Background

2.1 Information Retrieval

The goal of Information Retrieval (IR) systems is to return aranked list of documents relevant to
a query. While there are a wide variety of techniques, a common and effective method for doing
this is based on the ‘document vector’ model. In this model, each document is represented as a
|V | dimensional vector (whereV = {w1, w2, ..., wn} is the set of words in the corpus) whoseith
entry is, for example, the number of times wordwi appears in the document. Queries are similarly
represented as|V | dimensional vectors, whoseith entry represents some notion of how relevant
word i is to the query. Individual document scores are computed as avector distance between the
query and document vector, and the overall query results aredocuments ranked by this score. For
example, one scoring method is the tf-idf metric defined as:

Definition 1. Let IRtf−idf (C, q, d) be a function that takes as input a corpusC, queryq, and
documentdi and returns a real-valued score fordi computed as

IRtf−idf (C, q, di) =
∑

j∈V

dij ∗ qj ∗ log
N

nj

(1)

whereV is the set of words in the corpus,qj is the number of times word j appears in the query,
dij is the number of times wordj appears in documentdi, N is the total number of documents in
the corpus, andnj is the total number of documents containing wordj. For two documentsdi and
dj, if IRtf−idf (C, q, di) > IRtf−idf (C, q, dj) thendi is a better match for the query thandj.

In this case, the document vectors are constructed by simplycounting word frequencies, and
the query vector is constructed assuming that wordj’s relevance isqj ∗ log N

nj
. This word relevance

is designed to model the word’s prevalence in the query, modified by how rare it is within the
corpus.

2.2 Text Classification

In Text Classification (TC), the goal is to predict to which class unseen texts belong. For example,
classifying an incoming email as spam/not spam, predictingwhich newsgroup an article was posted
to, or predicting which news articles a user will find interesting. TC is typically viewed as a
standard machine learning problem, and as such, there are a wide number of available techniques.
Linear techniques such as Naive Bayes and Support Vector Machines have proven quite effective,
and so we focus on linear systems in this work.

These linear Text Classification techniques are similar to many IR techniques in that both treat
words as independent features. These linear TC techniques differ from standard IR techniques
in that they typically use much more training data. IR typically assumes either no training data
or a few of the top examples tagged as relevant/not relevant by a user (referred to as ‘relevance
feedback’.) Rather than focusing on making a decision, TextClassification can be seen as ranking
classes based on how well they match a test document.
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We now consider a Naive Bayes text classifier as an example TC system. The Naive Bayes
model has been shown to work well for a large number of text classification tasks. The model
assumes that the probability of seeing a particular word depends only on the class, and is inde-
pendent of all other words. Even though this word independence assumption clearly does not hold
for natural language text, this model has achieved good results in practice. Additionally, although
the Naive Bayes model generally tends to produce highly polarized probabilities, it also tends to
preserve the relative ordering between classes. As noted in[6], this is sufficient for accurate results.

The basic scoring metric for a Naive Bayes classifier is givenin Definition 2. For optimal
performance, a document is assigned to the class maximizingthis score.

Definition 2. For a documentd and classci, the likelihood thatd is in classci is computed as

LTCNaive−Bayes(d, ci) = P (ci)
∏

1≤j≤|V |

P (wj|ci)
dj (2)

whereP (ci) is the prior probability of classci, P (wj|ci) is the probability that wordj appears in
classi, anddj is the number of times wordj appears in documentd. For two classesc1 andc2 if
LTCNaive−Bayes(d, c1) > LTCNaive−Bayes(d, c2) thend is more likely to be a member of classc1

thanc2.

If we setP (wj|ci) =
nj+1

n+|V |
wherenj is the number of times wordj appears in all documents of

classi, andn is the total number of words in all documents of classi, then this is the multinomial
Naive Bayes model as given in [16] and [18]. We refer the reader to those for a more in-depth
discussion and analysis of Naive Bayes text classifiers.

2.3 Information Extraction

Information Extraction (IE) systems are focused at a much finer granularity than IR or TC. Rather
than returning documents, IE systems return strings representing instances of a desired class or
relation. While there are a wide variety of techniques of varying effectiveness and complexity,
systems that extract based on learned or pre-specified patterns have been shown to be simple and
effective. We focus on these pattern based systems.

Generally speaking, a pattern is an alternating sequence oftokens (literal words, phrases, char-
acters, etc.) and slots (placeholders for items to be extracted, possibly including part of speech,
type, etc. constraints). For example, in the pattern “cities such as<PN>” the words ‘cities’,
‘such’, and ‘as’ are the tokens, and ‘<PN>’ is the slot, constrained to be a proper noun. A pattern
matching a sentence requires two things. Firstly, the sentence must contain substrings matching
the pattern tokens, in the same order as in the pattern. Secondly, the substrings matching the tokens
must be separated by words/phrases matching the constraints on the slots. When these conditions
are met, the tuple of words/phrases matching the slots is extracted. For example, the pattern above
would match the sentence ‘I like cities such as New York.’ andextract ‘New York’ from it. Differ-
ent pattern-based IE systems may define the notion of a token differently (e.g. KnowItAll [8] uses
string literals whereas Snowball [3] uses more complex termvectors), and may place different con-
straints on the slots (e.g. KnowItAll uses a simple part of speech tagger whereas Snowball uses a
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named entity recognizer.) We assume that the constraints onthe slots, as well as the surrounding
tokens, handle the segmentation problem. Furthermore, forthis work we assume an abstract set of
patterns and instead focus on how these systems estimate their confidence in each extraction.

For the early Message Understanding Conference (MUC) tasks, the goal was to extract every
occurrence in every document in isolation. However, we focus on more recent systems such as
Snowball [3], KnowItAll [8], and NOMEN [30], which have dropped this requirement. Instead,
they allow extractions to be missed in particular documentsas long as they are found in others.
These systems determine the confidence of an extraction by combining evidence across multiple
documents.

From a high level, pattern based IE systems operate in two stages: candidate generation and
confidence estimation. They first search the corpus for matches to their patterns and create a set
of candidate extractions. They then compute the confidence of each extraction based on which
patterns matched, how well the patterns matched, and/or howoften the patterns matched. While
there are some interesting techniques for improving the efficiency of the candidate generation
process (e.g. [1]), in this work we are mainly interested in the confidence estimation techniques.
As a concrete example, NOMEN and Snowball assume that patterns extract items independently,
and so use a Noisy-Or function to compute extraction confidence.

Definition 3. Let IEnoisy−or(C, r, e) be a function that takes as input a corpusC, class or relation
r, and candidate extractione and returns a real-valued score fore computed as

IEnoisy−or(C, r, e) = 1−
∏

p∈P

(1− Pr(p))npe (3)

whereP is a set of patterns indicative of class/relationr, Pr(p) is an estimate of the probability
that patternp extracts a correct instance, andnpe indicates how many times patternp extractse
from the corpus.

This scoring technique assumes that the incorrect extractions for one pattern are independent
of the incorrect extractions for other patterns. The Noisy-Or function computes the probability that
an extraction is correct based on how likely it is that all patterns extracted it incorrectly. NOMEN
and Snowball restrictnpe to be a binary value, but this is not a necessary requirement.While the
results generated by this method tend to be polarized towards one, in practice they provide a way
for ranking the extractions. This allows the system to distinguish more likely extractions from less
likely ones, providing a reasonable way to trade precision and recall.

Although it uses a different scoring function, this extraction method is similar in spirit to Know-
ItAll, AutoSlog [22], and similar systems that use pre-specified patterns. Additionally, KnowItAll
observed that domain independent patterns can reliably extract a wide variety of classes and rela-
tions, and that the confidence for these patterns remains consistent across a variety of classes. So
while this definition may seem to make idealistic assumptions, these assumptions are not unrealis-
tic. In practice, the patterns and corresponding confidences are often learned iteratively based on
some seed patterns/examples, but in this work we treat this as an abstract process. We can treat
these iterative pattern learning techniques as a pre-processing step, or alternatively, the confidence
estimation ideas presented below can be used as part of an iterative, pattern learning process.
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In this work we are focusing on pattern-based systems which rely on a linear combination of
evidence. We chose to study these types of systems instead ofmore complex, nonlinear ones using,
for example, HMMs [9] or CRFs [17], since these pattern-based systems are simpler, require less
training data, and scale to large data sets more efficiently.

3 Exploring the Relationship between IR, IE, and TC

On the surface the techniques for IR, IE, and TC appear to be quite different. However, we now
argue that they are fundamentally similar – they just model the corpus and query in different ways.

From a high level, they all attempt to use contextual information to estimate the confidence
that each item is correct. Specifically, these IR systems usequery, document, and corpus word
counts to return more relevant documents before less relevant ones, these IE systems use which,
how often, and how well patterns match extractions to distinguish more likely extractions from
less likely ones, and these TC systems use document, class, and corpus word counts to determine
how likely each class is for a test document. While IE and TC systems ultimately decide whether
an extraction is correct or which class the document belongsto, by ranking items based on their
confidences, we provide a much finer-grained control for thisdecision.

In the following sections, we formalize this high level similarity by showing that these subsets
of IR, IE, and TC are all computationally equivalent. To do so, we show a set of simple transfor-
mations which convert a problemX in IR, IE, or TC to a problemY in either of the other two,
such that solvingY produces results equivalent to those ofX.

3.1 Transforming IR problems to IE Problems

We first show that, through a simple transformation of the corpus and query, a pattern-based IE
system can generate the same ranking of documents as an IR system.

The main idea behind this is to transform the IR notions of a corpus, vocabulary, and query
into the IE notions of a corpus, patterns, and pattern confidences. To do so, we build an extractable
term corresponding to each document in the corpus. We then construct a new corpus and populate
it with ‘sentences’ of the form ‘w doc.id’, for each wordw in every document in the original
corpus. Finally, to retrieve the relevant documents we extract document ids from this new corpus,
using ‘querytermi <X>’ as the patterns. Under this transformation, the IR notion of a document
becomes analogous to the IE notion of a potential extraction, and the IR notion of a keyword
becomes analogous to the IE notion of an extraction pattern.

Algorithm 1 lists pseudocode for this transformation. Notethat although it uses a particular
pattern confidence function on line 23 and a particular IE scoring function on line 4, alternatives
may be used without affecting the basic transformation.

One interesting application of this transformation is thatit allows us to explore the nature and
inherent assumptions these algorithms make. For example, by determining assumptions such that
IEnoisy−or ranks documents in the same order as IR, we gain some insight on whatIRtf−idf is
computing and how it works. Using the reduction in Algorithm1, including the particular pattern
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Algorithm 1 Pseudocode transforming an IR problem into an IE problem
1: function COMPUTEIRASIE(C:corpus, q:query, d:document)
2: C ′ ← ConvertIRCorpus(C)
3: P← ConvertQueryToPatterns(C,q)
4: return IEnoisy−or(C ′, P, d)
5: end function

6: function CONVERTIRCORPUS(C)
7: C ′ ← ∅
8: for all doc ∈ C do
9: doc′ ← ∅

10: for all word ∈ doc do
11: newSentence← ‘word doc.id .’
12: doc′ ← doc′

⋃
{newSentence}

13: end for
14: C ′ ← C ′

⋃
{doc′}

15: end for
16: return C ′

17: end function

18: function CONVERTQUERYTOPATTERNS(C,q)
19: P ← ∅
20: for all word ∈ q do
21: pi ← ‘word <X> .’
22: P ← P

⋃
{pi}

23: Pr(pi)←
Nqi−n

qi
i

Nqi

24: end for
25: return P
26: end function

confidence on line 23, we can show thatIEnoisy−or ranks documents in the same order asIRtf−idf .
More formally:

Theorem 3.1. For a given IR corpusC, queryQ, and documentsd1 and d2, if C ′ and P are
respectively the corresponding IE corpus and set of patterns generated by Algorithm 1, and if we

estimate the pattern confidence asPr(pi) =
Nqi−n

qi
i

Nqi
, then

IRtf−idf (C, Q, d1) > IRtf−idf (C, Q, d2)⇔ IEnoisy−or(C
′, P, d1.id) > IEnoisy−or(C

′, P, d2.id)
(4)

The proof results from substituting the terms into Equation1. It is listed in full in Appendix A.
From the proof we can make an interesting observation. We cansee that the tf-idf IR system

from Definition 1 effectively ranks the documents in a Noisy-Or fashion, estimating the individual
word probabilities as a specific function of how prevalent the word is in the corpus and the query.
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Again, this reduction is not limited to just showing thatIRtf−idf can be reduced toIEnoisy−or.
By weighting the pattern confidences on line 23 of Algorithm 1differently, we can reduce a variety
of IR scoring functions to a variety of IE ones. However, not all such reductions are possible; the IE
pattern confidence function may limit which IR systems can bereduced to it. For example, using a
Noisy-Or combination of probabilities as inIEnoisy−or causes the individual pattern confidences
to be weighted aslog 1

1−Pr(pj)
(equation 6 in Appendix A). However, sincePr(pi) ∈ [0, 1], all of

these weights are constrained to be non-negative. While this restriction holds forIRtf−idf (since
qi log N

ni
≥ 0), it is not guaranteed for all IR systems.

So although this reduction is more general, for an arbitraryIR system to be reduced to and
solved by an IE system, the IE evidence combination functionmust be expressive enough to allow
it. Reductions where this is not possible describe, at leastin a weak way, some properties and
limitations of the corresponding IE or IR systems. Thus, while the Noisy-Or evidence combination
method has been shown to work well, it is not as general as it could be, since it effectively includes
no negative evidence.

3.2 Transforming IE problems to IR Problems

We now show a transformation which allows us to perform the classification/confidence estimation
step of IE using IR methods. Specifically, we show how an IR system can be used to rank potential
extractions by decreasing confidences.

The main idea mirrors the transformation in Section 3.1. Instead of creating an extractable
term for every document, we create a new document for every potential extraction. We populate
each extraction’s document using the patterns it appears with, generate a query vector weighted
according to pattern confidence, and score each extraction based on how well its corresponding
document matched the query. Algorithm 2 lists pseudocode for this. Again, although it uses
a particular query weighting function on line 4 and a particular IR scoring function on line 23,
alternatives may be used without affecting the basic transformation.

This transformation has the IE patternsP play the role of the vocabularyV for an IR system,
and the pattern confidences dictate the query terms and weights. Thus, it effectively reverses the
ideas and operations from the previous transformation.

As before, this transformation allows us to explore the nature and inherent assumptions of
these algorithms. Using the particular reduction and weighting scheme as given in Algorithm 2,
we can show that theIRtf−idf function will order extractions in decreasing order of the confidence
computed byIEnoisy−or. More formally:

Theorem 3.2.For a given corpusC, set of patterns and corresponding confidencesP , and extrac-
tionsex1 andex2, if we construct the corpusC ′ and queryQ with term weights as in Algorithm 2,
and assume that each pattern matches at least one extraction, then

IEnoisy−or(C, P, ex1) > IEnoisy−or(C, P, ex2)⇔ IRtf−idf (C ′, Q, d1) > IRtf−idf (C
′, Q, d2)

whered1 andd2 are the constructed documents corresponding toex1 andex2 respectively.

The proof is similar to that of Theorem 3.1. It follows from simple substitutions into equations 3
and 1, and is given fully in Appendix B.
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Algorithm 2 Pseudocode transforming an IE problem into an IR problem
1: function COMPUTEIEASIR(C:corpus, P:patterns, e:extraction)
2: C ′=ConvertIECorpus(C, P)
3: Q=ConstructQuery(P, C’)
4: return IRtf−idf (C ′, Q, e)
5: end function

6: function CONVERTIECORPUS(C, P)
7: C ′ ← ∅, V ← P ⊲ Let P define the ‘words’ (vocabulary) ofC ′

8: for all Sentencess ∈ C do
9: for all pi ∈ P do

10: if pi matchess and extractse then
11: Appendpi to the document namede (creating and adding it toC ′ if necessary)
12: end if
13: end for
14: end for
15: return C ′

16: end function

17: function CONSTRUCTQUERY(P, C ′)
18: Q← ∅
19: for all pi ∈ P do
20: Let E be the number of distinct extractions
21: Let ei be the number of distinct extractions matchingpi

22: Q← Q
⋃
{pi}

23: qi ←
log(1−Pr(pi))

log
ei
E

24: end for
25: return Q
26: end function

It is important to note that, although this transformation appears to require a specific set of
patterns, it can easily considerall potential patterns by simply choosing pattern confidences which
only select the relevant ones. For example, starting with a set of patternsP , we can easily expand
this set toP ′ by including all sequences of up tok words. Then simply settingPr(pi) = 0 for all
patternspi 6∈ P would produce identical results. We used a pre-specified setof patterns since it
captures the important aspects of the reduction and simplifies the notation.

3.3 Transforming between TC problems and IR problems

The relationship between Information Retrieval and Text Classification is fairly well understood.
For example, [15] and [13] discuss and analyze some aspects of their similarity. In the interest of
conserving space, we informally sketch a transformation for converting IR to TC and vice versa,
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and rely on those sketches and the previous research to describe their relationship.
To transform a TC problem to an IR one, we create a new corpus consisting of one document

per class. These class documents are created by simply concatenating all examples of the class.
Classifying a test document can be performed by using appropriate word weights and looking at the
order in which those ‘documents’ are retrieved. The most topdocument returned will correspond
to the most likely class, the next to the second most likely class, etc.

To transform an IR problem to a TC one, we can view each document in the corpus as defining
a class. By weighing the terms appropriately, creating a ‘test document’q from the query, and
ordering the newly created ‘classes’ by how likelyq is to belong to each, we can compute results
equivalent to an IR system.

Just as before, limitations on the set of legal weights for particular IE or TC systems limit
which can be reduced to each other. For example, theIRtf−idf weighting scheme cannot be
reduced toLTCNaive−Bayes, since all theIRtf−idf terms take the form:log N

ni
≥ 0, whereas all

theLTCNaive−Bayes terms take the form:log P (wj|ci) ≤ 0.
However, as an interesting side note, if we instead considerthe compliment version of Naive

Bayes (i.e. findingargminP (ci) instead ofargmaxP (ci)), then there are probabilities such that
IRtf−idf can be reduced toLTCNaive−Bayes and vice versa. Namely, if we assumeP (wj|ci) =
n

cij

j

N
cij wherecij is the number of times wordj appears in classi (documenti, from the transformation

outlined above), then we see computing the maximum tf-idf score for a document is equivalent to
computing the minimum compliment class. The proof is similar to that of Theorem 3.1, and is left
as an exercise to the reader.

Thus, in a way, the given tf-idf metric is finding the documents that are not unlikely, rather
than the documents that are likely. This similar to an observation in [12], which demonstrated that
the compliment version of a Naive Bayes text classifier can significantly outperform the standard
version. While the probability estimates here are different, they behave similarly. Namely, the
rarer the word, and the more frequently it occurs in a class (document in the IR case), the more
likely it makes that class (document). We believe that the relationship betweenIRtf−idf and
the complimentLTCNaive−Bayes and the surprisingly good performance of both is an interesting
correlation.

3.4 Comparing the Systems

Given the transformations above, we see that IR, IE, and TC are all just different representations
of the corpus. Using these transformations we see that the IRnotion of a document, the TC notion
of a class, and the IE notion of an extraction are all analogous. Similarly, we see that the contexts
– the set of IE patternsP or the vocabularyV of IR and TC – are also analogous.

Thus, we observe the subset of IR, IE, and TC systems that we are concerned with vary along
four dimensions:

1. Textual Objects - what is being returned? Is it Documents (for IR), Classes (for TC), or
Extractions (for IE).

2. Contexts - what is the basic set of context (vocabulary) for the textual objects? How many
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are there, and how long are they? Typically, it is a large number words or a much smaller
number of patterns, but it may contain additional information such as part of speech tags,
named entity tags, etc.

3. Object Context Weights - For a given textual object, how related is each context?

4. Context Confidence Weights - How much does each context indicate the desired query/class/relation?

Of note is that individual techniques within Information Retrieval, Linear Text Classification,
or pattern-based Information Extraction are simply variations along all but the first of these same
dimensions. For example, IR methods can use some prior knowledge (relevance feedback tech-
niques), there are many variations on what vocabulary to use(eliminate stopwords, stem words,
etc.), and there are a wide number of techniques for weighting the document (context) and query
vectors. The transformations above show that subsets of IR,IE, and TC are related, and simply
variations along on one additional dimension.

Finally we observe that the transformations above not only allow us to explore the relationship
between IR, IE, and TC, they also allow us to pick and choose aspects from each. For example,
using the reduction defined in Algorithm 2 we can build a hybrid IE/IR system that extracts items
based on patterns, but ranks the extractions based on IR similarity metrics. Since IR weighting
techniques can account for data sparsity, we believe they can help with data sparsity problems in
IE. In the next section we explore some of these possibilities.

4 Experiments

4.1 Setup

Having explored the relationship between these subsets of IR, IE, and TC, we now seek ways
of leveraging this insight. In this section we demonstrate that using term weighting techniques
from IR can improve the precision/recall trade off of the Named Entity Recognition and Relation
Extraction tasks of an existing IE system.

As motivation, we first observe that many of these pattern-based IE systems (e.g. [8], [3],
[23]) rely on a relatively small number of high-precision patterns (i.e.|P | << |V |). While these
patterns tend to extract correct items, they also tend to extract a large number of items only once
or twice. For these rare items it is difficult to verify whether they are correct but uncommon, or
whether they were extracted due to syntactic anomalies. Yetby only matching based on high-
precision patterns, these methods implicitly discard a large amount of useful data: all other con-
textual information about the extraction. While these additional contexts may not reliably extract
items, they capture how the extraction “behaves” in the corpus. We can use these contexts to raise
or lower the confidence in an extraction based on how similar each extraction is to others.

The problem of determining similarity based on weak contextual information has long been
studied in Information Retrieval. IR systems have effective techniques to manage and model a
large amount of loosely related data (i.e. the words in a document). IR techniques for combining
evidence from across words, across documents, and from relevance feedback mechanisms are
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fairly well understood. Additionally, these techniques have been shown to scale quite well to larger
vocabularies and larger numbers of documents. So rather than concocting a notion of similarity,
we leverage our observations and the reduction from Section3.2 to use IR scoring techniques to
compute the extraction’s confidence.

We implemented a hybrid IE system that extracts items using an (arbitrary) underlying IE
system, but ranks them using IR term-weighting techniques over their full set of contexts. For
these experiments we use KnowItAll [8] as the underlying IE system, but ideas easily apply to
other IE systems.

We tested hybrid systems based on two common IR weighting functions: the simple tf-idf
function used in Definition 1 and Okapi’sBM25 term weighting function, which was introduced
by Robertson et. al. [25] in TREC-3 and has been quite successful since. We denote our hybrid
systems using these algorithms asIEtf−idf andIEBM25 respectively. TheBM25 similarity
metric is defined as

BM25(di) =
∑

j∈Q

(k1 + 1) ∗ dij

k1((1− b) + b ∗ dl/adl) + dij

(k3 + 1) ∗ qj

k3 + qj

log
(r + 0.5)/(R− r + 0.5)

(n− r + 0.5)/(N − n− R + r + 0.5)

(5)

WhereN is the number of documents in the corpus,n is the number containing termj, R is the
number of documents known to be relevant,r is the number of relevant documents containing
j, dij andqi are the frequency of termj in the document and query respectively,dl is the docu-
ment length,adl is the average document length, andk1, b, andk3 are tuning parameters. For all
experiments we setk1 = 3, b = 1, andk3 = 0.

We adapt this weighting scheme directly to our problem by using the reduction described in
Section 3.2. Namely, we build a suitable corpus by creating a‘document’ for each extraction using
a ‘vocabulary’ of all contexts of the extraction. We construct the “query” documents by borrow-
ing the IR notion of pseudo-relevance feedback; we assume the top (most frequently extracted)
extractions are correct and simply aggregate them. For the system based onIRtf−idf , dij is the
context count for the test extraction, andqj is the number of times the context appeared with the
top extractions. Since we assume the top extractions are correct, we use them, just as many IR
systems do, to determineR andr for theIEBM25 hybrid system.

There are two important features of these hybrid systems that should be noted. First of all, using
this pseudo-relevance feedback technique requires no additional hand-tagged data, so it maintains
the unsupervised/self-supervised nature of the underlying IE system (if present). Secondly, since
the hybrid systems are based on these IR techniques they do not require any negative examples,
but instead leverage corpus statistics.

We tested this hybrid system on two typical IE tasks: Named Entity Recognition and Relation
Extraction.

4.2 Named Entity Recognition

Named Entity Recognition (NER) is the task of finding stringsspecifying instances of a particular
class (e.g. Cities, Astronauts, Fruits, etc.). KnowItAll [8] performs named entity recognition by
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searching the web using a set of domain-independent hyponympatterns identified by Hearst[11]
and evaluating them using corpus statistics. For example, to find instances of the class City, it
first queries a search engine to find websites containing the hyponym patterns (e.g. “cities such as
<X>”, “ <X> and other cities”, etc.) After downloading these web pages and finding the relevant
sentences, it uses a simple part-of-speech tagger to segment the extraction.

The principle technique KnowItAll uses to evaluate extractions is based on the Turney’s PMI-
IR algorithm [29]. To evaluate a particular extractione, KnowItAll uses search engine statistics to
compute the Pointwise Mutual Information(PMI) betweene and every extraction patternpi ∈ P .
It calculates the PMI asPMI(pi, e) = |Hits(pi+e)|

|Hits(e)|
, whereHits(pi + e) is the number of web pages

containing both the extraction and the pattern andHits(e) is the number of web pages containing
the extractione. KnowItAll automatically finds thresholds for thesePMI scores, uses them as
features in a Naive Bayes classifier, and uses that classifierto compute the final confidence in
the extraction. See [8] for a more detailed description. We refer to this as ‘Baseline-PMI’ in the
experiments. For these NER experiments, we also use a second, simpler baseline inspired by [4].
To compute confidence, it assumes all extractions are correct, and estimates the confidence ofe as
the total number of timese was extracted. We refer to this metric as ‘Baseline-Num Extr’ in the
experiments.

For these experiments we tested our system on three classes:Cities, Countries, and Films. For
each class, we made a test set by sampling 1000 extractions from a previous run of KnowItAll
and hand tagging them as correct/incorrect. We used the sentences KnowItAll found matching
each pattern, and we simulated having a larger corpus/set ofcontexts by adding all sentences
mentioning an extraction from the top 50 web pages for each extraction.1 We ignored case and
replaced a few basic types (e.g. numbers) with canonical representations, but otherwise performed
no word stemming or other modifications to the sentences. This yielded about 350 sentences per
extraction.

We defined the set of contexts as any three words around an extraction. I.e. we use a 4-
gram model for the contexts of each extraction. For example,the sentence “I love Paris in the
springtime” would produce the contexts ‘I love<X> in’, ‘love <X> in the’, and ‘<X> in the
spring’ for Paris. In total there were 1,054,668 distinct contexts, and an average of 931.8 total
contexts/extraction. For our hybrid system, we used the 10 most frequently extracted items for
each class as the pseudo-relevance feedback items.

Figures 1, 2, and 3 show the precision-recall curves for eachof the three classes. Using either
of these IR techniques to leverage the extra contextual information clearly helps, especially for the
Film and City classes. For the Film case in particular, bothIEtf−idf andIEBM25 nearly double
the recall at 90% precision, or cut the error rate by 2/3 at 50%recall. The improvements are less
well defined for extracting Countries, but this is unsurprising since the total set of countries is so
small, and many of the errors ‘behave’ like countries textually (e.g. ‘Puerto Rico’, ‘USSR’, or
‘Members of the European Union’).

1This uses the same number of search engine queries as computing the PMI between an extraction and four patterns.
Thus, we are not using more queries than the baseline KnowItAll system, so our proposed method is no less efficient
than KnowItAll in terms of search engine queries. This is important, since search engine query limits were the
bottleneck in KnowItAll.
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Figure 1: P-R curve for extracting Cities
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Figure 2: P-R curve for extracting Countries
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Figure 3: P-R curve for extracting Films
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There are three main reasons for the improved performance ofIEtf−idf andIEBM25. Firstly,
in the Film and City classes there are a large number of items extracted only once. For these rare
extractions, any additional contextual information helpsdetermine how city-like/film-like they are,
which allows the system to increase/decrease confidence in the extraction appropriately.

Secondly, the additional data helps detect type errors. Forexample, given the phrase “Films
such as George Lucas’s epic masterpiece ‘Star Wars’ ”, the KnowItAll patterns will extract
‘George Lucas’ as the name of a film. The additional contexts of ‘George Lucas’ will demon-
strate that he is not very movie-like, and will thus decreasethe system’s confidence that he is a
film.

Finally, the third source of improvements is in detecting segmentation errors. KnowItAll de-
termines the boundaries of the extraction based on a part-of-speech tagger. While this typically
works well, with film names like ‘Dumb and Dumber’ or ‘So I Married an Axe Murderer’, it in-
correctly extracts ‘Dumb’ and ‘So I Married’. For these extraction errors, their contexts include a
large number of occurrences of ‘<X> and Dumber ...’ or ‘<X> an Axe Murderer’, which are not
typical contexts for movie titles. Thus, their collectionsof contexts looks un-film-like, correctly
causing both hybrid systems to decrease those confidences.

4.3 Relation Extraction

Relation Extraction (RE) is similar to Named Entity Recognition, but instead of extracting a single
instance of a class, its goal is to extract two or more entities that have a particular relationship to
each other. For example, we may wish to find mayors with their corresponding cities, or discover
which companies acquired other companies. For pattern-based IE systems, the main difference
between RE and NER is that RE has more than one slot in the pattern.

For these experiments we tested four relations: MayorOf(Mayor, City), CeoOf(CEO, Com-
pany), Acquired(Company, Company), and MergedWith(Company, Company). For the MayorOf
and CeoOf relations, their first argument is bound to one of 100 known cities/companies. To pro-
vide an interesting mix, 50 of the cities/companies were fairly common (> 100, 000 search engine
hits) and 50 were fairly rare (< 10, 000 hits). The Acquired and MergedWith relations had neither
argument bound.

For these experiments we performed a better head-to-head comparison between the baseline
and hybrid systems by forcing them to use the same corpus of sentences. We built this corpus by
searching the web for sentences containing the name of the relation (and one of the bound argu-
ments where applicable.) We ended up with 15,355 sentences containing ‘ceo’ or ‘chief executive
officer’ plus one of the 100 company names, 57,265 sentences containing ‘mayor’ plus one of the
100 city names, 904,326 sentences containing the word ‘acquire’, ‘acquisition’, or ‘acquired’, and
927,296 sentences containing the word ‘merge’, ‘merger’, or ‘merged’.

The underlying IE system for these experiments was KnowItAll with the pattern-learning
module turned on. It works by using a set of domain independent extraction patterns (e.g. ‘<X>
is the<REL> of <Y>’, ‘ <Y>’s <REL> <X>’) to bootstrap a set of seeds, uses those seeds
to find relationship specific patterns, and then extracts items based on those patterns. The learned
patterns were constrained to have at most 5 tokens between the slots, and at most 3 to the right/left.
It additionally merged company names that differ only in a generic corporation identifier (e.g.
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‘Microsoft’ vs. ‘Microsoft Corp.’), or mayor/ceo extractions that match both the person’s last name
and the city/company name. As such, we modified our hybrid systems to merge the corresponding
contexts similarly.

In this case, we defined the set of contexts forIEtf−idf andIEBM25 as all sequences of up to
20 tokens between the arguments, and any sequence of up to 19 stopwords and one non-stopword
to the left or right of the extraction. Other than that, the hybrid system performs exactly as in the
NER case above. From the sentences described above, there were 635,334 distinct contexts and an
average of 62.4 total contexts per extraction.

We generated Precision-Recall curves for each of the relations, comparing the baseline PMI
scoring metric with theIEtf−idf andIEBM25 hybrid systems (Figures 4-7). Since there were
such a large number of extractions, we estimated the precision by hand-tagging a random sample of
extractions at various confidence levels and extrapolated that precision to the entire set. This caused
a few visual inconsistencies in the graphs. In reality, all three methods have the same absolute recall
(number of correct extractions), but in the graphs, the methods estimate a slightly different number
of correct extractions. The reason they are different is dueto the differences in the randomly
selected samples used to estimate the precision. We attempted to sample sufficiently large sets to
provide an accurate comparison, but the small differences caused these minor differences in the
estimated recall.

For the relations with one argument bound (MayorOf and CeoOf), theIEBM25 hybrid system
does a much better job of separating the correct extractionsfrom the incorrect ones than either the
baseline orIEtf−idf hybrid system. It especially shines in distinguishing amongst items extracted
only one or two times. For the MayorOf relation, the baselinesystem makes some early mistakes
by extracting “Lord” as the mayor from the phrases “Lord Mayor of Dublin”, “Lord Mayor of
Manchester”, etc. BothIEBM25 andIEtf−idf have lower confidences in these extractions for
two reasons. First, in these cases ‘Lord’ always appears before ‘Mayor’, so unlike true mayors,
these extractions do not benefit from appearing in any other good contexts. The second reason
is that “Lord Mayor” is often preceded by ‘the’, whereas actual mayor names do not typically
occur in the phrase ‘the<person name> mayor of<city>’. The IEBM25 hybrid system does
not have as impressive results with the CeoOf relationship,but since the baseline is so high, it is
difficult to improve it significantly. However, it is still provides a better ranking for the infrequent
extractions, and so outperforms the baseline at higher levels of recall. Furthermore, it provides
a finer distinction amongst extractions, so allows a finer-grained trade-off between precision and
recall.

TheIEtf−idf , on the other hand, performs worse than the baseline for the CeoOf relation. This
is mainly due to the heuristic we used for merging ceo names. We attempted to group mayors and
ceos by last name (e.g. so that ‘Bill Gates’, ‘William Gates’, ‘William H. Gates’ are all considered
the same). However, for incorrect extractions such as “Peoplesoft CEO Blew Merger Deal”, we
would use any sentence mentioning ‘Peoplesoft’ and ‘Deal’ as evidence for ‘Blew Merger Deal’
being the name of a ceo of Peoplesoft. TheIEtf−idf hybrid system does not normalize for the
number of mentions, so this incorrect name matching heuristic generated a large amount of evi-
dence for this incorrect extraction. Yet in spite of this, preliminary experiments showed that simple
normalization techniques tended to favor infrequently extracted items, and so tended to generate
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worse results. As the experiments show,IEBM25 appears to provide a good method of both
normalizing and effectively using frequency data.

For the unbound relations (Acquisition and MergedWith), the baselines were significantly
lower. The reasons for this are that a) the data is significantly sparser (about 3/4 of the items
are only extracted once or twice), and b) there is much more ambiguity in the extractions, since
neither term is known to be of the correct class. We matched corporation names by only ignoring
generic corporation identifiers (e.g. corp, inc, company, etc.), and so theIEtf−idf hybrid did not
have the problems given above. As a result it performed significantly better.

Since the baseline system only considered ‘good’ patterns,it made a number of incorrect ex-
tractions by ignoring wider contextual evidence. For example, the baseline system is fairly confi-
dent that CNOOC acquired Unocal. However, its evidence comes from a large number of sentences
like ‘...likely to block CNOOC’s acquisition of Unocal’ or ‘The proposed acquisition of UNOCAL
by CNOOC...’ Relatedly, since it uses a simple proper noun recognizer, it is not able to determine
that the types of objects are correct. For example, it cannotdistinguish that ‘Hospital Acquired In-
fection’ is discussing diseases, not corporations. While theIEBM25 andIEtf−idf hybrid systems
do not have this type information explicitly, they make use of the surrounding context to give those
types of extractions less weight.

Just as in the bound argument case and the Named Entity Recognition experiments, these
systems tend to better distinguish between correct and incorrect items, especially for items that
are rarely extracted.

5 Related Work

There is clearly a large body of related work in Information Retrieval, Information Extraction, and
Text Classification. However, since our experiments focus on IE, we will touch briefly on related
work in IR and TC, and focus mainly on related work in IE.

Information Retrieval has been studied since the early daysof computer science. Since it is
such a fundamental and useful problem many techniques have been studied, ranging from sim-
ple boolean keyword matching and probabilistic models based on binary word presence/absence
information [24], to more complex systems based on languagemodeling [21], probabilistic net-
works [5], or hyperlink structure [20]. However, despite their simplicity, techniques combining
term and inverse document frequencies have proven to be bothefficient and effective. While we
chose two particular variants in our experiments, they are but two members of a much larger family
of tf-idf term weighting functions.

Similarly, there is a large body of related work in Text Classification. Of particular relevance
to this work are [15], which discusses the relationship between Naive Bayes and IR, and [12],
which demonstrated that IR weighting and preprocessing techniques can significantly improve
the performance of a Naive Bayes classifier. Additionally, [13] uses similarities between text
classifiers based on the Naive Bayes model and on a tf-idf document vector distance based model.
Through analysis of their similarities, they propose probabilistic tf-idf classifier and show that it
leverages the benefits of both.

Our experiments are most closely related to unsupervised techniques in Information Extraction.
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The ideas we propose are complimentary to previous work in pattern learning, since we focus
on how extraction confidence is computed, and treat pattern definitions and learning as external
processes. Thus, the idea of computing confidence based on IRtechniques can “plug in” to a wide
variety of pattern-based IE techniques and potentially provide similar benefits.

Our results are probably best compliment systems such as KnowItAll [8], Snowball [3], URES [26],
and NOMEN [30] which attempt unsupervised extraction from large corpora. While the four sys-
tems use different notions of patterns (strings, IR-style term vectors, regular expressions, and string
with wild cards respectively), they all compute extractionconfidence as some function of how of-
ten, how many, and how well thepositivepatterns match. As we argued before, this implicitly
discards information about the extractions. Although we only showed the benefits of using this
information in the KnowItAllsystem, we believe it should extend to these other systems just as
easily.

Unlike those systems, and similar to our experiments, Basilisk [28] scores each extraction based
on all patterns it occurs with. Although it uses a particularheuristic which they demonstrate to be
effective, whereas we advocate borrowing from IR, the two are similar in spirit. In [10] Hasegawa
et. al. attempt to find relationships between pairs of named entities, by clustering based on context.
Our experiments, on the other hand, sought to verify the existence of a specified relationship.
Recent work by Paşca et. al. [19] extracted over one millionfacts (name, year of birth pairs)
from the web. [19] made heavy use of distributional similarity, using it to determine their patterns,
verify extractions, and score them. In their work, they score patterns and extractions based on the
best single word matches, whereas our experiments requiredfull phrase matching. Their system,
as well as Snowball, URES, NOMEN, and others generalize muchbetter since they do not require
strict phrase matching. However, these systems also face the problem of distinguishing between
“X’s completed merger with Y” and “X’s failed merger with Y”.For our experiments, we chose
to favor specificity over this type of generality, but conceptually the ideas presented here can be
adapted to these more general patterns and associated systems.

In [2], Agichtein and Cucerzan use both probabilistic and IRmethods to estimate how difficult
the general task of extracting names and relations from a particular corpus is, independent of the
extracting system. We instead propose using similar techniques to compute a particular extraction’s
confidence directly.

Finally, supervised IE techniques based on techniques suchas Hidden Markov Models [9],
Rule Learning [27], Conditional Random Fields [17], or Wrapper Induction [14] explore different
efficiency, scalability, and precision trade-offs. By focusing on the simpler notion of pattern-
based extraction and leveraging IR scoring functions, we were favoring techniques that can operate
efficiently at large scales and with little training data. Incontrast, these methods require more
domain-specific training data and/or are more computationally expensive. While they have been
shown to perform well, they are not the target of this work.

6 Conclusions and Future Work

In this paper we have explored the relationship between Information Retrieval, Information Extrac-
tion, and Text Classification. We’ve argued that, for an interesting subset of each (document-vector
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based IR systems, pattern-based IE systems, and linear textclassification systems), the main differ-
ence is in how they represent the query and the corpus. By using simple transformations between
these problems, we were able to explore the inherent assumptions in a tf-idf IR system. Specif-
ically, we showed that a particular tf-idf IR system ranks documents equivalent to a Noisy-Or
system, under certain assumptions of the probability of term relevance, and we argued that the IR
tf-idf metric behaves similarly to a compliment Naive Bayesclassifier.

Finally, we demonstrated some practical benefits of these observations. By ranking extractions
based on IR scoring metrics, we have shown that IR functions can be used as a simple, scal-
able, unsupervised way to improve the precision/recall trade-off of a pattern-based IE system. We
demonstrated that, for a variety of Named Entity classes anda variety of relationships between en-
tities, using IR techniques to aggregate all contextual information about an extraction can improve
results. These techniques worked by both boosting the confidence of infrequently extracted items,
while (relatively) lowering the confidence of incorrectly typed extractions.

There are several interesting avenues for future work. Aside from exploring different IR
weighting techniques, we would like to examine if these techniques can benefit other IE systems
such as Snowball or NOMEN. Additionally, although our experiments used only a small number
of positive examples, some preliminary experiments have demonstrated that using a small set of
negative examples as well can further improve performance.Automatically discovering negative
examples and determining how to best use them provides intriguing possibilities of future research.
Lastly, exploring how ideas from IE can influence IR or TC could have benefits. For example, the
recently proposed URNS model [7] in IE uses redundancy to determine, with surprising accuracy,
an estimate of the probability that each extraction is correct. Determining methods to appropriately
apply it to an IR system might yield interesting results.
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A Proof of Theorem 3.1

The proof results from substituting the terms into Equation1

Proof.

IRtf−idf (C, q, d1) >IRtf−idf (C, q, d2)
∑

j∈V

d1j ∗ qj ∗ log
N

nj

>
∑

j∈V

d2j ∗ qj ∗ log
N

nj
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Sinceqi = 0 for all terms not in the query:

∑

j∈Q

d1j ∗ qj ∗ log
N

nj

>
∑

j∈Q

d2j ∗ qj ∗ log
N

nj

∑

j∈Q

d1j ∗ log
N qj

n
qj

j

>
∑

j∈Q

d2j ∗ log
N qj

n
qj

j

∑

j∈Q

d1j ∗ log
1

n
qj

j

N
qj

>
∑

j∈Q

d2j ∗ log
1

n
qj

j

N
qj

∑

j∈Q

d1j ∗ log
1

1−
N

qj−n
qj
j

N
qj

>
∑

j∈Q

d2j ∗ log
1

1−
N

qj−n
qj
j

N
qj

Substituting the created patterns and probabilities for the query terms:

∑

pj∈P

d1j ∗ log
1

1− Pr(pj)
>

∑

pj∈P

d2j ∗ log
1

1− Pr(pj)
(6)

∑

pj∈P

d1j ∗ log(1− Pr(pj)) <
∑

pj∈P

d2j ∗ log(1− Pr(pj))

∏

pj∈P

(1− Pr(pj))
d1j <

∏

pj∈P

(1− Pr(pj))
d2j

1−
∏

pj∈P

(1− Pr(pj))
d1j >1−

∏

pj∈P

(1− Pr(pj))
d2j

By construction, if wordwj appearsdij times with documenti, then the sentence ‘wj di.id .’ will
appeardij times inC ′. Sodi.id will be extracteddij times by by the pattern ‘wj <X> .’ Thus:

IEnoisy−or(C
′, P, d1.id) >IEnoisy−or(C

′, P, d2.id)

This proves the⇒ direction of Theorem 3.1. Since all the steps are reversible, the⇐ direction
follows from simply reversing the steps.

B Proof of Theorem 3.2

The proof is similar to that of Theorem 3.1. It follows from simple substitutions into equations 3
and 1 and some simple algebraic manipulations:

Proof.

IEnoisy−or(C, P, ex1) >IEnoisy−or(C, P, ex2)

1−
∏

pi∈P

(1− Pr(pi))
npiex1 >1−

∏

pi∈P

(1− Pr(pi))
npiex2
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Sincenpiexj
is the number of times patternpi was seen with extractionexj , and since the construc-

tion addspi to documentdj once for each of those, we can simplify this notation by usingthe IR
form: dji for npiexj

.

∑

pi∈P

d1i log(1− Pr(pi)) <
∑

pi∈P

d2i log(1− Pr(pi))

Let E be the number of distinct extractions, andei be the number of distinct extractions matching
patternpi. By assumptionei > 0, thus the following is equivalent and well defined:

∑

pi∈P

d1i log(1− Pr(pi))
log ei/E

log ei/E
<

∑

pi∈P

d2i log(1− Pr(pi))
log ei/E

log ei/E
∑

pi∈P

d1iqi log
ei

E
<

∑

pi∈P

d2iqi log
ei

E

∑

pi∈V

d1i ∗ qi log
E

ei

>
∑

pi∈V

d2i ∗ qi log
E

ei

Finally, we notice that for the constructed corpusC ′, the total number of documents is equal to
the total number of extractionsE, and the number of documents with termpi ∈ V is justei, the
number of distinct extractions with that pattern, then thisis exactly equivalent to Definition 1.

IRtf−idf (C
′, Q, d1) >IRtf−idf (C

′, Q, d2)

This shows the⇒ direction for Theorem 3.2. The⇐ direction is proved since each step and
substitution is reversible.
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