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Abstract

Information Retrieval (IR), Information Extraction (IEdnd Text Classification (TC) are
typically seen as related, but distinct fields. In IR the gedb return documents relevant to a
query, in IE the goal is to return strings representing imség of a particular class or relation,
and in TC the goal is to determine to which class a test docutmeglongs. While there are
many techniques for each of IR, IE, and TC, we argue that feaagnable and effective subset,
the main distinction reduces to how the query and corpusgmesented. We show how these
subsets of IR, IE, and TC can be transformed to each othemsathese transformations to
explore the implicit assumptions, limitations, and redaship between example IR, IE, and
TC systems. Finally, we use these insights to build a hyliigyistem, which uses IR distance
metrics to improve the |IE system'’s results.

1 Introduction

Information Retrieval (IR), Information Extraction (IEand Linear Text Classification (TC) are
typically seen as related, but distinct fields. These fietdg@lated since they all deal with textual
information, but distinct since they have separate go&syistems are designed to return a ranked
list of documents related to a user’s query. IE systems asggded to return specific entities,
properties, and relationships of interest to the user. T8Iesys are designed to determine the most
likely class for a document. For example, if a user was irsteid in “Presidents of the United
States”, an IR system would return documents related toetfkegwords, in which they could
(hopefully) find all the U.S. presidents. Similarly, a TC ®ma would (hopefully) determine which
particular documents in a corpus mention U.S. presidenmtdEAsystem, on the other hand, would
(hopefully) return a list of strings containing “George \Wasyton”, “Abraham Lincoln”, etc.
Although there is a wide variation in methods, some techesqun each field have proven
popular and effective. IR systems based on the ‘documenibrvenodel are effective and fairly
well understood, TC methods such as Naive Bayes or otharlimedels generally perform well
despite their simplicity, and IE systems that extract itdrased on pre-specified and/or learned
patterns have been effective in a number of IE tasks. Inqudati, recent research into information
extraction systems (e.g. [8] [3] [30] [28] ) has shown thaihgdairly simple pattern-based IE
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techniques and simple linear combinations of evidencesagratterns and documents can provide
efficient, effective, and scalable information extractgystems. In this document we focus such
IR, IE, and TC systems.

From a high level, IR, IE, and TC are all performing a form adsdification based on contexts,
using both local and global corpus statistics to do so. Sasearch in IR, IE, and TC focuses
on making a binary decision (is a doc relevant or not, is amaekibn correct or not, or does a
document belong to this class or not). However, many teclesdn each field also include some
estimate of the confidence of the decision, allowing an easgytwtune these systems. We take this
more general approach by viewing IR, IE, and TC systems dsmgmocuments, extractions, or
classes respectively, and explore the assumptions of &ttbres between their scoring techniques.

In this document we seek to understand and codify the relstiip between the classifica-
tion/ranking metrics used by the previously mentioned doent vector-based Information Re-
trieval systems, pattern-based Information Extracticsteys, and Linear Text Classification sys-
tems. While the relationship between IR and Naive Bayesdissification is well understood,
we extend it to include their relationship with pattern-d$E methods. We give simple transfor-
mations for converting between problems in IR, IE, and T argue that they are all different
aspects of the same ranking problem, merely representengdipus in different ways. We further
use these transformations to explore the inherent assangpéind relationship between example
IE and IR systems. Finally, we propose and evaluate a hyBrgy$tem which performs extraction
based on an underlying IE system, but uses IR term weightidglestance metrics to improve its
classification/ranking of extractions.

In this document we do not focus on where the corpus, quettgnpa, etc. originate, but rather
treat them in abstract terms and focus on how these IR, IET@nslystems compute confidences.
We also assume that the IE segmentation problem (detergwviiich words need to be extracted
as part of the entity, property, or relation, and which wastsuld be left out) is solved externally.
This is a reasonable assumption since many effective pai@sed IE systems rely on simple
heuristics (e.g. [30]), part of speech taggers (e.g. [&)ned entity taggers (e.g. [3]), or other
natural language processing tools to perform the segmentaitinally, although all the systems we
consider rely on a linear combination of evidence, thid stivers many interesting and effective
systems. Restricting our study to linear IR, IE, and TC systallows us to more easily discuss
their relationships and inherent assumptions.

The main contributions of this paper are as follows:

e We give simple transformations which allow us to convert lalgpems or TC problems to
IR ones, and vice versa.

e We analyze the assumptions under which a typical IE and IResygroduce equivalent
rankings, and leverage that to elucidate the assumptioeaadt system and the relationship
between them.

e We define a hybrid IE system, which leverages IR term weigjtiimctions to improve the
precision/recall trade-off of a modern IE system.



2 Background

2.1 Information Retrieval

The goal of Information Retrieval (IR) systems is to retummaaked list of documents relevant to
a query. While there are a wide variety of techniques, a comaral effective method for doing
this is based on the ‘document vector’ model. In this modathedocument is represented as a
|V| dimensional vector (wher€& = {w;, w,, ..., w,} is the set of words in the corpus) whoik
entry is, for example, the number of times wardappears in the document. Queries are similarly
represented ad/| dimensional vectors, whoséh entry represents some notion of how relevant
word is to the query. Individual document scores are computedvast@ar distance between the
guery and document vector, and the overall query resultd@aments ranked by this score. For
example, one scoring method is the tf-idf metric defined as:

Definition 1. Let I R4 (C, ¢, d) be a function that takes as input a corpG$ queryg, and
documentl; and returns a real-valued score fdf computed as

N
IRtf—idf(Ca q,d;) = Z dj * q; x log 1)

n.
JjEV J

whereV is the set of words in the corpug; is the number of times word j appears in the query,
d;; is the number of times worflappears in document;, N is the total number of documents in
the corpus, ana; is the total number of documents containing werdror two documents; and

d;, iF IR r—iqr(C,q,d;) > IRis_iqr(C, q,d;) thend; is a better match for the query thaf;.

In this case, the document vectors are constructed by sioquigting word frequencies, and
the query vector is constructed assuming that wisdelevance ig; * log nﬂ This word relevance
J
is designed to model the word’s prevalence in the query, fireatlby how rare it is within the
corpus.

2.2 Text Classification

In Text Classification (TC), the goal is to predict to whichsd unseen texts belong. For example,
classifying an incoming email as spam/not spam, predietinigh newsgroup an article was posted
to, or predicting which news articles a user will find inteéneg. TC is typically viewed as a
standard machine learning problem, and as such, there aieanwmber of available techniques.
Linear techniques such as Naive Bayes and Support VectohiMes have proven quite effective,
and so we focus on linear systems in this work.

These linear Text Classification techniques are similaraoyriR techniques in that both treat
words as independent features. These linear TC techniqties fdom standard IR techniques
in that they typically use much more training data. IR typicassumes either no training data
or a few of the top examples tagged as relevant/not relevaiat liser (referred to as ‘relevance
feedback’.) Rather than focusing on making a decision, Téassification can be seen as ranking
classes based on how well they match a test document.
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We now consider a Naive Bayes text classifier as an exampley$ters. The Naive Bayes
model has been shown to work well for a large number of texdsifecation tasks. The model
assumes that the probability of seeing a particular worceddp only on the class, and is inde-
pendent of all other words. Even though this word independ@ssumption clearly does not hold
for natural language text, this model has achieved goodtsaisupractice. Additionally, although
the Naive Bayes model generally tends to produce highlyrizald probabilities, it also tends to
preserve the relative ordering between classes. As no{égl ithis is sufficient for accurate results.

The basic scoring metric for a Naive Bayes classifier is giveBefinition 2. For optimal
performance, a document is assigned to the class maxintizimgcore.

Definition 2. For a document! and class:;, the likelihood thatl is in classc; is computed as

LTCNaive—Bayes<d7 Ci) - P(Cl) H P(U)J‘|Ci)dj (2)

1<V

whereP(c;) is the prior probability of class;, P(w,|c;) is the probability that word appears in
classi, andd; is the number of times wordappears in document For two classes; andc; if
LTC Naive—Bayes(d, ¢1) > LTC Naive—Bayes(d, c2) thend is more likely to be a member of class
thanc,.

If we setP(w;|¢;) = :i—ﬁ/l‘ wheren; is the number of times worglappears in all documents of
classi, andn is the total number of words in all documents of clasthen this is the multinomial
Naive Bayes model as given in [16] and [18]. We refer the reanléhose for a more in-depth

discussion and analysis of Naive Bayes text classifiers.

2.3 Information Extraction

Information Extraction (IE) systems are focused at a mudadr fgnanularity than IR or TC. Rather
than returning documents, IE systems return strings reptex) instances of a desired class or
relation. While there are a wide variety of techniques ofyuay effectiveness and complexity,
systems that extract based on learned or pre-specifiedmmatiave been shown to be simple and
effective. We focus on these pattern based systems.

Generally speaking, a pattern is an alternating sequentokens (literal words, phrases, char-
acters, etc.) and slots (placeholders for items to be eeapossibly including part of speech,
type, etc. constraints). For example, in the pattern “sisech as<PN>" the words ‘cities’,
‘such’, and ‘as’ are the tokens, andPN>’ is the slot, constrained to be a proper noun. A pattern
matching a sentence requires two things. Firstly, the seetenust contain substrings matching
the pattern tokens, in the same order as in the pattern. 8bgtime substrings matching the tokens
must be separated by words/phrases matching the constoairihe slots. When these conditions
are met, the tuple of words/phrases matching the slots ia@etd. For example, the pattern above
would match the sentence ‘I like cities such as New York. extlact ‘New York’ from it. Differ-
ent pattern-based IE systems may define the notion of a takereatly (e.g. KnowltAll [8] uses
string literals whereas Snowball [3] uses more complex tegntors), and may place different con-
straints on the slots (e.g. KnowltAll uses a simple part @fesih tagger whereas Snowball uses a
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named entity recognizer.) We assume that the constraintiseoslots, as well as the surrounding
tokens, handle the segmentation problem. Furthermoréhi®work we assume an abstract set of
patterns and instead focus on how these systems estimatedh&dence in each extraction.

For the early Message Understanding Conference (MUC) tas&gyoal was to extract every
occurrence in every document in isolation. However, we $oon more recent systems such as
Snowball [3], KnowltAll [8], and NOMEN [30], which have drged this requirement. Instead,
they allow extractions to be missed in particular documastéong as they are found in others.
These systems determine the confidence of an extractionrbpioong evidence across multiple
documents.

From a high level, pattern based IE systems operate in tvgestacandidate generation and
confidence estimation. They first search the corpus for neatth their patterns and create a set
of candidate extractions. They then compute the confideheaah extraction based on which
patterns matched, how well the patterns matched, and/ordfi@n the patterns matched. While
there are some interesting techniques for improving theieffcy of the candidate generation
process (e.g. [1]), in this work we are mainly interestedhi@ tonfidence estimation techniques.
As a concrete example, NOMEN and Snowball assume that pattetract items independently,
and so use a Noisy-Or function to compute extraction confiden

Definition 3. Let! E,,.;sy,—or(C, r, €) be a function that takes as input a corpsclass or relation
r, and candidate extractiomand returns a real-valued score fercomputed as

IEpgisy—or(C,1ye) =1 = [ [ (1 = Pr(p))™ 3)

peEP

whereP is a set of patterns indicative of class/relationPr(p) is an estimate of the probability
that patternp extracts a correct instance, ang, indicates how many times patteprextractse
from the corpus.

This scoring technique assumes that the incorrect extragfior one pattern are independent
of the incorrect extractions for other patterns. The NaBrnyfunction computes the probability that
an extraction is correct based on how likely it is that alt@ats extracted it incorrectly. NOMEN
and Snowball restrict,. to be a binary value, but this is not a necessary requirenwhtle the
results generated by this method tend to be polarized t@\a@md, in practice they provide a way
for ranking the extractions. This allows the system to digtiish more likely extractions from less
likely ones, providing a reasonable way to trade precisimhracall.

Although it uses a different scoring function, this extrantmethod is similar in spirit to Know-
ItAll, AutoSlog [22], and similar systems that use pre-gped patterns. Additionally, KnowltAll
observed that domain independent patterns can reliabtgebd wide variety of classes and rela-
tions, and that the confidence for these patterns remairgstent across a variety of classes. So
while this definition may seem to make idealistic assumjtitimese assumptions are not unrealis-
tic. In practice, the patterns and corresponding confideace often learned iteratively based on
some seed patterns/examples, but in this work we treat shésrabstract process. We can treat
these iterative pattern learning techniques as a pre-psotg step, or alternatively, the confidence
estimation ideas presented below can be used as part ofativiée pattern learning process.
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In this work we are focusing on pattern-based systems wtalshan a linear combination of
evidence. We chose to study these types of systems insteamrefcomplex, nonlinear ones using,
for example, HMMs [9] or CRFs [17], since these pattern-dasestems are simpler, require less
training data, and scale to large data sets more efficiently.

3 Exploring the Relationship between IR, IE, and TC

On the surface the techniques for IR, IE, and TC appear to lie different. However, we now
argue that they are fundamentally similar — they just mdgeldorpus and query in different ways.

From a high level, they all attempt to use contextual infarorato estimate the confidence
that each item is correct. Specifically, these IR systemsgusey, document, and corpus word
counts to return more relevant documents before less ri@rges, these IE systems use which,
how often, and how well patterns match extractions to digtish more likely extractions from
less likely ones, and these TC systems use document, ctabspgous word counts to determine
how likely each class is for a test document. While IE and T§&eys ultimately decide whether
an extraction is correct or which class the document belomgby ranking items based on their
confidences, we provide a much finer-grained control fordieisision.

In the following sections, we formalize this high level siamity by showing that these subsets
of IR, IE, and TC are all computationally equivalent. To dowe show a set of simple transfor-
mations which convert a proble in IR, IE, or TC to a problent” in either of the other two,
such that solving” produces results equivalent to thoseXof

3.1 Transforming IR problems to IE Problems

We first show that, through a simple transformation of thegpasrand query, a pattern-based IE
system can generate the same ranking of documents as antédrisys

The main idea behind this is to transform the IR notions of ges, vocabulary, and query
into the IE notions of a corpus, patterns, and pattern condiee To do so, we build an extractable
term corresponding to each document in the corpus. We thestremt a new corpus and populate
it with ‘sentences’ of the form doc.id’, for each wordw in every document in the original
corpus. Finally, to retrieve the relevant documents weaettlocument ids from this new corpus,
using ‘queryterm; <X>' as the patterns. Under this transformation, the IR notiba document
becomes analogous to the IE notion of a potential extracton the IR notion of a keyword
becomes analogous to the IE notion of an extraction pattern.

Algorithm 1 lists pseudocode for this transformation. Nttat although it uses a particular
pattern confidence function on line 23 and a particular IEisgdfunction on line 4, alternatives
may be used without affecting the basic transformation.

One interesting application of this transformation is tihailows us to explore the nature and
inherent assumptions these algorithms make. For examplgetermining assumptions such that
IE,isy—or ranks documents in the same order as IR, we gain some ingigithat/ R, ;_;4 is
computing and how it works. Using the reduction in Algoritdmincluding the particular pattern



Algorithm 1 Pseudocode transforming an IR problem into an IE problem
1: function ComPUTEIRASIE(C:corpus, g:query, d:document)
2: C" «— ConvertIRCorpus(C)
3 P «— ConvertQueryToPatterns(C,q)
4: return I E,,,;s—or(C’, P, d)
5: end function

6: function CONVERTIRCORPUZLC)

7. C' 10

8: for all doc € Cdo

9: doc’ ()
10: for all word € doc do

11: newSentence < ‘word doc.id
12: doc" «— doc' | J {newSentence}
13: end for

14: C" — C"|J{doc'}

15: end for
16: return C’
17: end function

18: function CONVERTQUERYTOPATTERNS(C,Q)

190 P10

20: for all word € qdo
21: pi < ‘word <X>.
22: P—PrU{p}
23: Pr(p;) « %

24: end for
25; return P
26: end function

confidence on line 23, we can show th#t,,.;s,—,. ranks documentsinthe same ordef &5;_; ;.
More formally:

Theorem 3.1. For a given IR corpus”, query @, and documentd; and d,, if C’ and P are
respectively the corresponding IE corpus and set of pastgenerated by Algorithm 1, and if we

estimate the pattern confidence Bs(p;) = = q],iv_:gz , then

IRtf—idf<C7 Qu dl) > IRtf—idf<Cu Q7 d2) g IEnoisy—or<C/7 P, dlld) > IEnoisy—or<C/7 P, dgld)
(4)

The proof results from substituting the terms into Equatfioit is listed in full in Appendix A.

From the proof we can make an interesting observation. Wesearthat the tf-idf IR system
from Definition 1 effectively ranks the documents in a No@yfashion, estimating the individual
word probabilities as a specific function of how prevalertword is in the corpus and the query.
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Again, this reduction is not limited to just showing thag,;_,;; can be reduced tbE,,;sy—or-

By weighting the pattern confidences on line 23 of Algorithihifferently, we can reduce a variety
of IR scoring functions to a variety of IE ones. However, nbsach reductions are possible; the IE
pattern confidence function may limit which IR systems candaleiced to it. For example, using a
Noisy-Or combination of probabilities as IF,,,;s,—,» Causes the individual pattern confidences
to be weighted abg —5— PT (equatlon 6 in Appendix A). However, singe-(p;) € [0, 1], all of
these welghts are constramed to be non-negative. Whaeaéistriction holds fol R,;_,4 (since

qi log £ > 0), itis not guaranteed for all IR systems.

So although this reduction is more general, for an arbiti&\system to be reduced to and
solved by an IE system, the IE evidence combination funatiost be expressive enough to allow
it. Reductions where this is not possible describe, at leaatweak way, some properties and
limitations of the corresponding IE or IR systems. Thus,letthe Noisy-Or evidence combination
method has been shown to work well, it is not as general asiltidee, since it effectively includes
no negative evidence.

3.2 Transforming IE problems to IR Problems

We now show a transformation which allows us to perform tlassification/confidence estimation
step of IE using IR methods. Specifically, we show how an IResysan be used to rank potential
extractions by decreasing confidences.

The main idea mirrors the transformation in Section 3.1.tdad of creating an extractable
term for every document, we create a new document for evetgnpial extraction. We populate
each extraction’s document using the patterns it appedls generate a query vector weighted
according to pattern confidence, and score each extracéisadoon how well its corresponding
document matched the query. Algorithm 2 lists pseudocodéhis. Again, although it uses
a particular query weighting function on line 4 and a patacdR scoring function on line 23,
alternatives may be used without affecting the basic tanstion.

This transformation has the IE patterRlay the role of the vocabulary for an IR system,
and the pattern confidences dictate the query terms and tgeighus, it effectively reverses the
ideas and operations from the previous transformation.

As before, this transformation allows us to explore the refand inherent assumptions of
these algorithms. Using the particular reduction and winighscheme as given in Algorithm 2,
we can show that theR,;_;4 function will order extractions in decreasing order of tio@fidence
computed by E,,i5,—o. More formally:

Theorem 3.2.For a given corpug’, set of patterns and corresponding confidenBeand extrac-
tionsex; andex,, if we construct the corpus’” and query with term weights as in Algorithm 2,
and assume that each pattern matches at least one extrattiem

IEnoisy—or<C7 P7 61’1) > IEnoisy—0T<Cu P7 633'2) g IRtf—idf (C/a Qu dl) > IRtf—idf(C/7 Qu d2)
whered; andd, are the constructed documents correspondingitoand ez, respectively.

The proof is similar to that of Theorem 3.1. It follows fronmgdle substitutions into equations 3
and 1, and is given fully in Appendix B.



Algorithm 2 Pseudocode transforming an IE problem into an IR problem
1: function CompPUTEIEASIR(C:corpus, P:patterns, e:extraction)
2: C'=ConvertlECorpus(C, P)
3 @=ConstructQuery(P, C")
4: return IR, ;4 (C’, Q, €)
5: end function

6: function CONVERTIECORPULC, P)

7 C'—0,V—P > Let P define the ‘words’ (vocabulary) af’
8: for all Sentences € Cdo

9 forall p; € Pdo

10: if p; matches; and extracts then

11: Appendp; to the document named(creating and adding it t6” if necessary)
12: end if

13: end for

14: end for
15: return C’
16: end function

17: function CONSTRUCTQUERY(P, C")

18: Q0

19: forall p; € P do

20: Let £ be the number of distinct extractions

21: Let ¢; be the number of distinct extractions matchjng
22: Q — QU{p:}

23 g ls=Prp))

log %
24: end for
25: return @)
26: end function

It is important to note that, although this transformatigpears to require a specific set of
patterns, it can easily considalt potential patterns by simply choosing pattern confidendashw
only select the relevant ones. For example, starting witkt @spatterns”, we can easily expand
this set toP’ by including all sequences of up towords. Then simply setting’r(p;) = 0 for all
patternsp; ¢ P would produce identical results. We used a pre-specifiedfsghtterns since it
captures the important aspects of the reduction and simplifie notation.

3.3 Transforming between TC problems and IR problems

The relationship between Information Retrieval and TexsSification is fairly well understood.
For example, [15] and [13] discuss and analyze some aspkttitsiosimilarity. In the interest of
conserving space, we informally sketch a transformatisrcémverting IR to TC and vice versa,
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and rely on those sketches and the previous research talmetuweir relationship.

To transform a TC problem to an IR one, we create a new corpasisting of one document
per class. These class documents are created by simplyteaatiag all examples of the class.
Classifying a test document can be performed by using apiptepvord weights and looking at the
order in which those ‘documents’ are retrieved. The mostdopument returned will correspond
to the most likely class, the next to the second most likedgg| etc.

To transform an IR problem to a TC one, we can view each doctumeine corpus as defining
a class. By weighing the terms appropriately, creating st ‘ttocumentq from the query, and
ordering the newly created ‘classes’ by how likglys to belong to each, we can compute results
equivalent to an IR system.

Just as before, limitations on the set of legal weights fatigalar IE or TC systems limit
which can be reduced to each other. For example,/thg_;q weighting scheme cannot be
reduced taLT'C' naive—Bayes, Since all thel R,;_,4s terms take the formlog > 0, whereas all
the LT'C Ngive—Bayes t€rmMs take the formlog P(w;|c;) < 0.

However, as an interesting side note, if we instead consisecompliment version of Naive
Bayes (i.e. findingirgminP(¢;) instead ofargmax P(c;)), then there are probabilities such that
IRtf .ar can be reduced t87'C yaive—payes @nd vice versa. Namely, if we assumgw;|c;) =

+=i7 Wherec;; is the number of times worglappears in clasgdocument, from the transformation
outlined above), then we see computing the maximum tf-idfesfor a document is equivalent to
computing the minimum compliment class. The proof is sintitethat of Theorem 3.1, and is left
as an exercise to the reader.

Thus, in a way, the given tf-idf metric is finding the docuntetitat are not unlikely, rather
than the documents that are likely. This similar to an olestgom in [12], which demonstrated that
the compliment version of a Naive Bayes text classifier cgniBcantly outperform the standard
version. While the probability estimates here are differéimey behave similarly. Namely, the
rarer the word, and the more frequently it occurs in a clasgijchent in the IR case), the more
likely it makes that class (document). We believe that tHati@nship between R;;_;;; and
the complimentLT'C' ygive—Bayes and the surprisingly good performance of both is an intergst
correlation.

3.4 Comparing the Systems

Given the transformations above, we see that IR, IE, and EGkhjust different representations
of the corpus. Using these transformations we see that tiefi@n of a document, the TC notion
of a class, and the IE notion of an extraction are all analeg&imilarly, we see that the contexts
—the set of IE pattern® or the vocabulary” of IR and TC — are also analogous.

Thus, we observe the subset of IR, IE, and TC systems thateveoaicerned with vary along
four dimensions:

1. Textual Objects - what is being returned? Is it DocumefusIR), Classes (for TC), or
Extractions (for IE).

2. Contexts - what is the basic set of context (vocabulanyjie textual objects? How many
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are there, and how long are they? Typically, it is a large neimiords or a much smaller
number of patterns, but it may contain additional inforraatsuch as part of speech tags,
named entity tags, etc.

3. Object Context Weights - For a given textual object, holatesl is each context?
4. Context Confidence Weights - How much does each contexttathe desired query/class/relation?

Of note is that individual techniques within InformationtReval, Linear Text Classification,
or pattern-based Information Extraction are simply vaoiag along all but the first of these same
dimensions. For example, IR methods can use some prior lednsl (relevance feedback tech-
niques), there are many variations on what vocabulary to(elgainate stopwords, stem words,
etc.), and there are a wide number of techniques for weightie document (context) and query
vectors. The transformations above show that subsets dEIRand TC are related, and simply
variations along on one additional dimension.

Finally we observe that the transformations above not oldyvaus to explore the relationship
between IR, IE, and TC, they also allow us to pick and choopedis from each. For example,
using the reduction defined in Algorithm 2 we can build a hgBE/IR system that extracts items
based on patterns, but ranks the extractions based on IRastypnimetrics. Since IR weighting
techniques can account for data sparsity, we believe theyehp with data sparsity problems in
IE. In the next section we explore some of these possilslitie

4 Experiments

4.1 Setup

Having explored the relationship between these subsetR,0fd, and TC, we now seek ways
of leveraging this insight. In this section we demonstrat using term weighting techniques
from IR can improve the precision/recall trade off of the NahEntity Recognition and Relation
Extraction tasks of an existing IE system.

As motivation, we first observe that many of these patteseddE systems (e.g. [8], [3],
[23]) rely on a relatively small number of high-precisiortigans (i.e.|P| << |V]). While these
patterns tend to extract correct items, they also tend t@eixa large number of items only once
or twice. For these rare items it is difficult to verify whethtbey are correct but uncommon, or
whether they were extracted due to syntactic anomalies.byeinly matching based on high-
precision patterns, these methods implicitly discard gdaamount of useful data: all other con-
textual information about the extraction. While these tiddal contexts may not reliably extract
items, they capture how the extraction “behaves” in the eerjWe can use these contexts to raise
or lower the confidence in an extraction based on how simédahextraction is to others.

The problem of determining similarity based on weak contakinformation has long been
studied in Information Retrieval. IR systems have effextiechniques to manage and model a
large amount of loosely related data (i.e. the words in a dwsu). IR techniques for combining
evidence from across words, across documents, and fromarede feedback mechanisms are
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fairly well understood. Additionally, these techniquesé&aeen shown to scale quite well to larger
vocabularies and larger numbers of documents. So ratherdbiacocting a notion of similarity,
we leverage our observations and the reduction from Se&idrio use IR scoring techniques to
compute the extraction’s confidence.

We implemented a hybrid IE system that extracts items usimgagbitrary) underlying IE
system, but ranks them using IR term-weighting techniques their full set of contexts. For
these experiments we use KnowltAll [8] as the underlying y&tem, but ideas easily apply to
other IE systems.

We tested hybrid systems based on two common IR weightingtifums: the simple tf-idf
function used in Definition 1 and OkapiBM 25 term weighting function, which was introduced
by Robertson et. al. [25] in TREC-3 and has been quite sutdessce. We denote our hybrid
systems using these algorithms &s,;_;;; andlEpy9s respectively. TheBM25 similarity
metric is defined as

BM25(d Z (k1 + 1) * dy; (ks +1)*q; (r+0.5)/(R—r-+0.5)
ki((1 —=0) 4+ bxdl/adl) +d;; ks + q; (n—r+05)/(N—n—R+r+0.5)
)

Where N is the number of documents in the corpuss the number containing term) R is the
number of documents known to be relevants the number of relevant documents containing
J, d;; andg; are the frequency of termin the document and query respectively,is the docu-
ment lengthadl is the average document length, andb, andks are tuning parameters. For all
experiments we sét; = 3, b = 1, andks = 0.

We adapt this weighting scheme directly to our problem bygshe reduction described in
Section 3.2. Namely, we build a suitable corpus by creatiapaument’ for each extraction using
a ‘vocabulary’ of all contexts of the extraction. We constrthe “query” documents by borrow-
ing the IR notion of pseudo-relevance feedback; we assuméofh (most frequently extracted)
extractions are correct and simply aggregate them. Forybees based ohR;;_;q, d;; is the
context count for the test extraction, apdis the number of times the context appeared with the
top extractions. Since we assume the top extractions areatpwe use them, just as many IR
systems do, to determine andr for the I E z,05 hybrid system.

There are two important features of these hybrid systenstitauld be noted. First of all, using
this pseudo-relevance feedback technique requires nti@ulihand-tagged data, so it maintains
the unsupervised/self-supervised nature of the undeylifinsystem (if present). Secondly, since
the hybrid systems are based on these IR techniques theytdequore any negative examples,
but instead leverage corpus statistics.

We tested this hybrid system on two typical IE tasks: NameiitfzRecognition and Relation
Extraction.

4.2 Named Entity Recognition

Named Entity Recognition (NER) is the task of finding strisgecifying instances of a particular
class (e.g. Cities, Astronauts, Fruits, etc.). KnowltA] performs named entity recognition by
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searching the web using a set of domain-independent hypgaytarns identified by Hearst[11]
and evaluating them using corpus statistics. For examplént instances of the class City, it
first queries a search engine to find websites containingytherlym patterns (e.g. “cities such as
<X>", " <X> and other cities”, etc.) After downloading these web pagekfeding the relevant
sentences, it uses a simple part-of-speech tagger to séfmextraction.

The principle technique KnowltAll uses to evaluate exi@ts is based on the Turney’s PMI-
IR algorithm [29]. To evaluate a particular extractigrKnowltAll uses search engine statistics to
compute the Pointwise Mutual Information(PMI) betweeand every extraction patteg € P.

It calculates the PMI a®M I (p;,e) = % whereHits(p; + e) is the number of web pages
containing both the extraction and the pattern &hds(e) is the number of web pages containing
the extractiore. KnowltAll automatically finds thresholds for theg&\/ I scores, uses them as
features in a Naive Bayes classifier, and uses that claswfieompute the final confidence in
the extraction. See [8] for a more detailed description. ¥errto this as ‘Baseline-PMI’ in the
experiments. For these NER experiments, we also use a sesiomgler baseline inspired by [4].
To compute confidence, it assumes all extractions are ¢paed estimates the confidenceeas
the total number of times was extracted. We refer to this metric as ‘Baseline-Num Emxtthe
experiments.

For these experiments we tested our system on three cl&@isies, Countries, and Films. For
each class, we made a test set by sampling 1000 extractiomsdrprevious run of KnowltAll
and hand tagging them as correct/incorrect. We used thersezg KnowltAll found matching
each pattern, and we simulated having a larger corpus/sebriexts by adding all sentences
mentioning an extraction from the top 50 web pages for eattaetion! We ignored case and
replaced a few basic types (e.g. numbers) with canonicatseptations, but otherwise performed
no word stemming or other modifications to the sentencess Yikelded about 350 sentences per
extraction.

We defined the set of contexts as any three words around aactgtr. l.e. we use a 4-
gram model for the contexts of each extraction. For exantplke,sentence “l love Paris in the
springtime” would produce the contexts ‘I loveX> in’, ‘love <X> in the’, and <X> in the
spring’ for Paris. In total there were 1,054,668 distinchiaxts, and an average of 931.8 total
contexts/extraction. For our hybrid system, we used the b8trfrequently extracted items for
each class as the pseudo-relevance feedback items.

Figures 1, 2, and 3 show the precision-recall curves for e&tie three classes. Using either
of these IR techniques to leverage the extra contextualrnmdtion clearly helps, especially for the
Film and City classes. For the Film case in particular, bidth;_;;s andIE g5 nearly double
the recall at 90% precision, or cut the error rate by 2/3 at 38é4all. The improvements are less
well defined for extracting Countries, but this is unsurpgssince the total set of countries is so
small, and many of the errors ‘behave’ like countries tekyug.g. ‘Puerto Rico’, ‘USSR’, or
‘Members of the European Union’).

1This uses the same number of search engine queries as cagihaiPMI| between an extraction and four patterns.
Thus, we are not using more queries than the baseline Kndindistem, so our proposed method is no less efficient
than KnowltAll in terms of search engine queries. This is @amant, since search engine query limits were the
bottleneck in KnowltAll.
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There are three main reasons for the improved performané&'gf ;;; andlE gy95. Firstly,
in the Film and City classes there are a large number of itettracted only once. For these rare
extractions, any additional contextual information helpsermine how city-like/film-like they are,
which allows the system to increase/decrease confidenbe iextraction appropriately.

Secondly, the additional data helps detect type errors.ekample, given the phrase “Films
such as George Lucas’s epic masterpiece ‘Star Wars’ ”, thewhtAll patterns will extract
‘George Lucas’ as the name of a film. The additional contekt&eorge Lucas’ will demon-
strate that he is not very movie-like, and will thus decrelsesystem’s confidence that he is a
film.

Finally, the third source of improvements is in detectingraentation errors. KnowltAll de-
termines the boundaries of the extraction based on a papedch tagger. While this typically
works well, with film names like ‘Dumb and Dumber’ or ‘So | M&d an Axe Murderer’, it in-
correctly extracts ‘Dumb’ and ‘So | Married’. For these edtion errors, their contexts include a
large number of occurrences ef X> and Dumber ... or<X> an Axe Murderer’, which are not
typical contexts for movie titles. Thus, their collectiooiscontexts looks un-film-like, correctly
causing both hybrid systems to decrease those confidences.

4.3 Relation Extraction

Relation Extraction (RE) is similar to Named Entity Recdgmi, but instead of extracting a single
instance of a class, its goal is to extract two or more estifiat have a particular relationship to
each other. For example, we may wish to find mayors with thairesponding cities, or discover
which companies acquired other companies. For patteraebHs systems, the main difference
between RE and NER is that RE has more than one slot in thempatte

For these experiments we tested four relations: MayorOfdaCity), CeoOf(CEO, Com-
pany), Acquired(Company, Company), and MergedWith(Camp&ompany). For the MayorOf
and CeoOf relations, their first argument is bound to one 6fitbwn cities/companies. To pro-
vide an interesting mix, 50 of the cities/companies werdyf@ommon ¢ 100, 000 search engine
hits) and 50 were fairly rare<{ 10, 000 hits). The Acquired and MergedWith relations had neither
argument bound.

For these experiments we performed a better head-to-heagartsson between the baseline
and hybrid systems by forcing them to use the same corpustdrsees. We built this corpus by
searching the web for sentences containing the name of tgore (and one of the bound argu-
ments where applicable.) We ended up with 15,355 senteceaining ‘ceo’ or ‘chief executive
officer’ plus one of the 100 company names, 57,265 senteracgaining ‘mayor’ plus one of the
100 city names, 904,326 sentences containing the word il@gacquisition’, or ‘acquired’, and
927,296 sentences containing the word ‘merge’, ‘mergermerged’.

The underlying IE system for these experiments was Knowltiith the pattern-learning
module turned on. It works by using a set of domain indepeneetnaction patterns (e.g<X>
is the <REL> of <Y>’, ‘<Y>'s <REL> <X>’) to bootstrap a set of seeds, uses those seeds
to find relationship specific patterns, and then extractastbased on those patterns. The learned
patterns were constrained to have at most 5 tokens betweeaiotis, and at most 3 to the right/left.
It additionally merged company names that differ only in aeyé& corporation identifier (e.g.
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‘Microsoft’ vs. ‘Microsoft Corp.’), or mayor/ceo extradns that match both the person’s last name
and the city/company name. As such, we modified our hybritegsys to merge the corresponding
contexts similarly.

In this case, we defined the set of contextsftal;_;;; and/E 95 as all sequences of up to
20 tokens between the arguments, and any sequence of up topisds and one non-stopword
to the left or right of the extraction. Other than that, théhg system performs exactly as in the
NER case above. From the sentences described above, threré3%e334 distinct contexts and an
average of 62.4 total contexts per extraction.

We generated Precision-Recall curves for each of the oglaticomparing the baseline PMI
scoring metric with the/ E';y_;4y andIEgyo5 hybrid systems (Figures 4-7). Since there were
such a large number of extractions, we estimated the poedisi hand-tagging a random sample of
extractions at various confidence levels and extrapol&tgtgprecision to the entire set. This caused
a few visual inconsistencies in the graphs. In realitytatté methods have the same absolute recall
(number of correct extractions), but in the graphs, the waglestimate a slightly different number
of correct extractions. The reason they are different is wuthe differences in the randomly
selected samples used to estimate the precision. We atgdrgsample sufficiently large sets to
provide an accurate comparison, but the small differeneesed these minor differences in the
estimated recall.

For the relations with one argument bound (MayorOf and Cea®é¢ [ F 5,05 hybrid system
does a much better job of separating the correct extractronsthe incorrect ones than either the
baseline o £;;_;4 hybrid system. It especially shines in distinguishing agsirtems extracted
only one or two times. For the MayorOf relation, the baseigstem makes some early mistakes
by extracting “Lord” as the mayor from the phrases “Lord Mayd Dublin”, “Lord Mayor of
Manchester”, etc. BotdE 05 andlE, ;4 have lower confidences in these extractions for
two reasons. First, in these cases ‘Lord’ always appea®ddflayor’, so unlike true mayors,
these extractions do not benefit from appearing in any otbedgontexts. The second reason
is that “Lord Mayor” is often preceded by ‘the’, whereas attmayor names do not typically
occur in the phrase ‘theperson name mayor of <city>'. The I Eg)05 hybrid system does
not have as impressive results with the CeoOf relationghipsince the baseline is so high, it is
difficult to improve it significantly. However, it is still mvides a better ranking for the infrequent
extractions, and so outperforms the baseline at highetdeferecall. Furthermore, it provides
a finer distinction amongst extractions, so allows a finairggd trade-off between precision and
recall.

ThelE,,_,q4, on the other hand, performs worse than the baseline for ¢l®C€relation. This
is mainly due to the heuristic we used for merging ceo namesattémpted to group mayors and
ceos by last name (e.g. so that ‘Bill Gates’, ‘William Gaté@/illiam H. Gates’ are all considered
the same). However, for incorrect extractions such as “Rsoft CEO Blew Merger Deal”, we
would use any sentence mentioning ‘Peoplesoft’ and ‘Deakwddence for ‘Blew Merger Deal’
being the name of a ceo of Peoplesoft. The,,;_,;; hybrid system does not normalize for the
number of mentions, so this incorrect name matching hecigenerated a large amount of evi-
dence for this incorrect extraction. Yet in spite of thiglpminary experiments showed that simple
normalization techniques tended to favor infrequentlyaoted items, and so tended to generate

16



— 1
0.95 0.95
0.9 - 0.9
0.85 | . 0.85
-5 0.8 s 0.8 1
é 0.75 % 0.75 4
a 0.7 @ 0.7
0.65 | 0.65
0.6 | —®—Baseline - PMI 06 |
——TF-IDF
0.55 | Bz 0.55
0.5 ; ; ; 05 ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 0 100 200 300 400 500 600 700
Est. Correct Extractions Est. Correct Extractions
Figure 4: Precision/Recall for CeoOf(CEO, Figure 5: Precision/Recall for Mayo-
Company) rOf(Mayor,City)
1 1
09 0.9
038 0.8
A
< 0.6 s 0.6 -
805 G 051
S 04 & 04
03 0.3
0.2 ||—¢—Baseline - PMI 0.2
——TF-IDF 04
011 BM25 :
0 ‘ ‘ ‘ ‘ 0 ; ; ; ;
0 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000
Est. Correct Extractions Est. Correct Extractions
Figure 6: Precision/Recall for Ac- Figure 7: Precision/Recall for Merged-
quired(Company,Company) With(Company,Company)

17



worse results. As the experiments shaul;z,05 appears to provide a good method of both
normalizing and effectively using frequency data.

For the unbound relations (Acquisition and MergedWith)e thaselines were significantly
lower. The reasons for this are that a) the data is signifigasparser (about 3/4 of the items
are only extracted once or twice), and b) there is much morgiguity in the extractions, since
neither term is known to be of the correct class. We matchegocation names by only ignoring
generic corporation identifiers (e.g. corp, inc, compaty,)eand so thd E;;_;4s hybrid did not
have the problems given above. As a result it performed Sagmitly better.

Since the baseline system only considered ‘good’ pattérnsade a number of incorrect ex-
tractions by ignoring wider contextual evidence. For exlanihe baseline system is fairly confi-
dent that CNOOC acquired Unocal. However, its evidence sdmen a large number of sentences
like “...likely to block CNOOC's acquisition of Unocal’ oiThe proposed acquisition of UNOCAL
by CNOOC... Relatedly, since it uses a simple proper nogngaizer, it is not able to determine
that the types of objects are correct. For example, it cadistinguish that ‘Hospital Acquired In-
fection’ is discussing diseases, not corporations. Whée £ z,/05 andIE,;_,4 hybrid systems
do not have this type information explicitly, they make ug¢&he surrounding context to give those
types of extractions less weight.

Just as in the bound argument case and the Named Entity RBongexperiments, these
systems tend to better distinguish between correct andrecoitems, especially for items that
are rarely extracted.

5 Related Work

There is clearly a large body of related work in Informatiogtieval, Information Extraction, and
Text Classification. However, since our experiments foaussy we will touch briefly on related
work in IR and TC, and focus mainly on related work in IE.

Information Retrieval has been studied since the early ddy®mputer science. Since it is
such a fundamental and useful problem many techniques ree $tudied, ranging from sim-
ple boolean keyword matching and probabilistic models tasebinary word presence/absence
information [24], to more complex systems based on langumagéeling [21], probabilistic net-
works [5], or hyperlink structure [20]. However, despiteethsimplicity, techniques combining
term and inverse document frequencies have proven to bedfiitlent and effective. While we
chose two particular variants in our experiments, they atévieo members of a much larger family
of tf-idf term weighting functions.

Similarly, there is a large body of related work in Text Cléisation. Of particular relevance
to this work are [15], which discusses the relationship leetavNaive Bayes and IR, and [12],
which demonstrated that IR weighting and preprocessingnigaes can significantly improve
the performance of a Naive Bayes classifier. Additionallg3][uses similarities between text
classifiers based on the Naive Bayes model and on a tf-idfrdentivector distance based model.
Through analysis of their similarities, they propose ptabstic tf-idf classifier and show that it
leverages the benefits of both.

Our experiments are most closely related to unsupervisguhigues in Information Extraction.

18



The ideas we propose are complimentary to previous work ttepalearning, since we focus
on how extraction confidence is computed, and treat pattefiniions and learning as external
processes. Thus, the idea of computing confidence basedtechRiques can “plug in” to a wide
variety of pattern-based IE techniques and potentiallyipiesimilar benefits.

Our results are probably best compliment systems such ask&lb[8], Snowball [3], URES [26],
and NOMEN [30] which attempt unsupervised extraction framyé corpora. While the four sys-
tems use different notions of patterns (strings, IR-stgtentvectors, regular expressions, and string
with wild cards respectively), they all compute extractmmnfidence as some function of how of-
ten, how many, and how well thgositivepatterns match. As we argued before, this implicitly
discards information about the extractions. Although wé @mowed the benefits of using this
information in the KnowltAllsystem, we believe it shouldterd to these other systems just as
easily.

Unlike those systems, and similar to our experiments, B&428] scores each extraction based
on all patterns it occurs with. Although it uses a particdlauristic which they demonstrate to be
effective, whereas we advocate borrowing from IR, the twesamilar in spirit. In [10] Hasegawa
et. al. attempt to find relationships between pairs of naméties, by clustering based on context.
Our experiments, on the other hand, sought to verify thetemce of a specified relationship.
Recent work by Pasca et. al. [19] extracted over one milfaats (name, year of birth pairs)
from the web. [19] made heavy use of distributional similatising it to determine their patterns,
verify extractions, and score them. In their work, they sgoatterns and extractions based on the
best single word matches, whereas our experiments rediuilgghrase matching. Their system,
as well as Snowball, URES, NOMEN, and others generalize rbatfler since they do not require
strict phrase matching. However, these systems also facprtblem of distinguishing between
“X's completed merger with Y” and “X’s failed merger with Y’For our experiments, we chose
to favor specificity over this type of generality, but conteglly the ideas presented here can be
adapted to these more general patterns and associateshsyste

In [2], Agichtein and Cucerzan use both probabilistic anar&hods to estimate how difficult
the general task of extracting names and relations from cpdar corpus is, independent of the
extracting system. We instead propose using similar tegtas to compute a particular extraction’s
confidence directly.

Finally, supervised IE techniques based on techniques asidhidden Markov Models [9],
Rule Learning [27], Conditional Random Fields [17], or Wpap Induction [14] explore different
efficiency, scalability, and precision trade-offs. By femg on the simpler notion of pattern-
based extraction and leveraging IR scoring functions, weayoring techniques that can operate
efficiently at large scales and with little training data. dontrast, these methods require more
domain-specific training data and/or are more computalipeapensive. While they have been
shown to perform well, they are not the target of this work.

6 Conclusions and Future Work

In this paper we have explored the relationship betweerrmmdtion Retrieval, Information Extrac-
tion, and Text Classification. We've argued that, for anneséng subset of each (document-vector
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based IR systems, pattern-based IE systems, and lineatdssification systems), the main differ-
ence is in how they represent the query and the corpus. By ssinmple transformations between
these problems, we were able to explore the inherent assumsph a tf-idf IR system. Specif-
ically, we showed that a particular tf-idf IR system rankguaiments equivalent to a Noisy-Or
system, under certain assumptions of the probability ehtexrlevance, and we argued that the IR
tf-idf metric behaves similarly to a compliment Naive Baytsssifier.

Finally, we demonstrated some practical benefits of theserghtions. By ranking extractions
based on IR scoring metrics, we have shown that IR functiamshe used as a simple, scal-
able, unsupervised way to improve the precision/recadléraff of a pattern-based IE system. We
demonstrated that, for a variety of Named Entity classesaaratiety of relationships between en-
tities, using IR techniques to aggregate all contextuarmftion about an extraction can improve
results. These techniques worked by both boosting the aardalof infrequently extracted items,
while (relatively) lowering the confidence of incorrectiyped extractions.

There are several interesting avenues for future work. édgrdm exploring different IR
weighting techniques, we would like to examine if these teghes can benefit other IE systems
such as Snowball or NOMEN. Additionally, although our expemnts used only a small number
of positive examples, some preliminary experiments haveahstrated that using a small set of
negative examples as well can further improve performadegomatically discovering negative
examples and determining how to best use them providegimg possibilities of future research.
Lastly, exploring how ideas from IE can influence IR or TC abhlve benefits. For example, the
recently proposed URNS model [7] in IE uses redundancy terdehe, with surprising accuracy,
an estimate of the probability that each extraction is a@iri@etermining methods to appropriately
apply it to an IR system might yield interesting results.
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A Proof of Theorem 3.1

The proof results from substituting the terms into Equation
Proof.
IRy igr(C,q,dr) >IRisigr(C, q,da)

N N
Y diy gy xlog— > dyjx gy log —
IJ*QJ*Ogn' 2]*%*0gn_

% I jev J
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Sincegq; = 0 for all terms not in the query:

N
Zdlj*qj*log— >Zd2]*qj*log—

jeQ " eq
Zdlj *log— >Zd2] *log
JEQ jeQ
Zdlﬂ *log— >Zd2] *log
JeQ —J JeQ
1
2y logT > da *IOgT
JjeQ 1-— T JjeQ 1— T

Substituting the created patterns and probabilities ferqhery terms:

1 1
dyjx1 doj * log ——————
Z 1J*Og1—P(p] >Z Zj*ogl—PT( ) (6)
p;EP pjEP
Z dyj *log(1 — Pr(p,)) Z da; * log(1 — Pr(p;))
p;EP pjeEP
[Ta=Prp)® < [T - Prip))*™
p;EP pjeP
L— [T a—Pr)® >1— [T~ Prp;)™
p;EP p;EP

By construction, if wordw; appearsi;; times with document, then the sentencev; d;.id . will
appeat;; times inC’. Sod,.id will be extractedi;; times by by the patterns; <X> .’ Thus:

IE oisy—or(C', P, dy.id) >1Eppisy—or(C', P, ds.id)

This proves the= direction of Theorem 3.1. Since all the steps are reversthke< direction
follows from simply reversing the steps.

B Proof of Theorem 3.2

The proof is similar to that of Theorem 3.1. It follows fromrgile substitutions into equations 3
and 1 and some simple algebraic manipulations:

Proof.
IEnoisy—or(C, P, 6.131) >IEnoisy—or<C, P’ 6.1}'2)
1= [T = Prp)y=e >1 = TT (1= Pr(p;) e

pi€P pi€P
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Sincen,,..; is the number of times pattefi was seen with extraction;, and since the construc-
tion addsp; to documenti; once for each of those, we can simplify this notation by usheglR
form: d;; for ny,cq ;-

> " dyilog(1— Pr(p;)) <> dylog(1 — Pr(p;))
piEP pi€EP

Let £ be the number of distinct extractions, afyde the number of distinct extractions matching
patternp;. By assumptior; > 0, thus the following is equivalent and well defined:

loge;/E loge;/E
3" dilog(1 - Pr(p, S doilog(1 — Pr(p
13 log ( r(p ))log e/ <p.€P 2i log( r(p >)10g6i/E

piep 7
€; €
Z dy;q; log B < Z d2;q; log B

piEP pi€EP
E FE
E dy; * g log — > E dy; * g; log —
€ €;

pi€V piEV

Finally, we notice that for the constructed corpls the total number of documents is equal to
the total number of extractions, and the number of documents with tegme V' is juste;, the
number of distinct extractions with that pattern, then thisxactly equivalent to Definition 1.

TRy iqr(C",Q,dy) >IRys—iap (C', Q, da)

This shows the=- direction for Theorem 3.2. The-= direction is proved since each step and
substitution is reversible.
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