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ABSTRACT
Previous work on data stream management systems has en-
abled sophisticated tools for continuous, low latency stream
processing. These tools are useful in many application
domains including computer system monitoring and net-
work monitoring. In most monitoring applications, how-
ever, when an abnormal event occurs, an administrator
must manually examine the current state and the history
of the system to understand what happened and diagnose
the problem.

To facilitate this process, we propose a new technique
that automatically compares events on streams and identi-
fies past events similar to newly detected events. With our
technique, an administrator is shown not only an alert but
also past alerts that resemble the current situation. At the
heart of our technique is a new similarity measure geared
specifically toward the continuous monitoring domain. In
this domain, interesting events typically correspond to ab-
normal situations. Two events are thus most alike when the
same monitored objects record similar abnormal values. We
show that existing similarity measures do not work well in
this environment and we develop a new measure, the Con-
text Distance Measure (CDM), geared specifically toward
the monitoring domain. Through experiments with a real
dataset from the PlanetLab overlay network, we show that
CDM outperforms existing techniques by producing more
accurate rankings of similar past events.

1. INTRODUCTION
Exploiting and managing large systems (e.g., computer

networks, overlay networks, clusters of computers, grids) re-
quires the ability to monitor these systems continuously [20,
33, 38]. Continuous monitoring enables an administrator to
assess the health of a system, be notified when abnormal
conditions occur, and diagnose problems. System monitor-
ing, however, raises important data management challenges.

In monitoring applications, a set of data sources contin-
uously produces information about the monitored system:
e.g., network monitors produce information about network
traffic [17]; computer system monitors periodically relay in-
formation about the state of servers [33]. This information is
processed continuously in near real-time by either a general-
purpose [1, 2, 13, 21, 34] or a domain-specific [29, 33, 40] en-
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gine that typically provides real-time data visualization [40]
and event detection (e.g., intrusions, failures, overload, and
other anomalies) functionality [1, 2, 13, 21, 29, 34, 40].

When a serious event is detected, the administrator must
usually diagnose and fix (or otherwise handle) the prob-
lem, which can be difficult. Some domain specific tools
support this task by performing automatic anomaly iden-
tification and classification [17, 29, 30]. However, when an
event cannot automatically be categorized, an administrator
must manually view [33], replay [17], or otherwise query [35]
historical data to understand the cause of the problem. Be-
cause historical data is large, this process can be slow and
difficult [25].

To improve this manual event investigation process, we
propose to extend a general-purpose data stream manage-
ment system (such as [1, 2, 13, 21, 34]) with the capability to
automatically identify and extract for each newly detected
event, similar events that occurred in the past. In the ab-
sence of a domain specific anomaly identification and clas-
sification tool, our general-purpose mechanism can help an
administrator understand a new event by examining simi-
lar past events. For example, when a server suddenly be-
comes overloaded, our approach can automatically identify
earlier overload events, where the same set of processes were
hogging the same resources (cpu, memory, or network band-
width). If a recent patch causes an application to experience
severe memory leaks, our approach will help the administra-
tor quickly identify this problem.

Automatic identification and extraction of similar past
events raises two important challenges. First, the attributes
of an event are often insufficient to fully describe the event.
Frequently, a fraction of what constitutes the state of the
world at the moment when the event occurred is also rele-
vant to the event. In the above example, the set of processes
running on the server are relevant to the overload event. We
thus need a mechanism for the administrator to define such
context of interest for an event. Second, we need to define
an appropriate measure for computing event similarity. The
measure should compare not only the events themselves but
also their contexts. It should rank events in a manner that
places the most useful events for a system administrator on
top of the list. In previous work, we defined the notion of
an event and its context [8]. In this paper, we focus on the
latter problem of comparing these events and contexts.

In particular, we study the applicability of existing simi-
larity measures including the Jaccard coefficient, the Earth
Mover’s Distance (EMD) [39], and the Match-And-Compare



distance (MAC) [28] to the problem of comparing events
on streams in a manner that supports monitoring applica-
tions. We show that these traditional measures often do
not produce the desired results, and we introduce a new
measure, the Context Distance Measure (CDM), that does.
CDM builds on traditional distance measures, but it com-
bines and extends them in a manner that meets the needs of
monitoring applications. CDM is based on the observation
that administrators are typically interested in entities that
exhibit abnormal values. CDM thus favors past events that
contain the same entities with similar abnormal values.

Through experiments with over 3,000 real events that oc-
curred on the PlanetLab [37] overlay network (which spans
hundreds of machines across the globe), we show that, for
the monitoring domain, CDM outperforms existing distance
measures ranking past events in a manner that more closely
matches the needs of a system administrator. We also show
that user-defined event contexts are effective at constrain-
ing the search for similar past events to only those events
relevant to the user’s interest: with our approach, two users
interested in the same event but from different perspectives
are often shown completely disjoint sets of past events.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our model and problem statement. In
Section 3, we describe and discuss existing similarity mea-
sures and present CDM. We evaluate the performance of
traditional distance measures and our approach on the Plan-
etLab workload in Section 4. We present related work in
Section 5, and conclude in Section 6.

2. EVENTS AND CONTEXT
In this section, we review and refine the notion of an event

and event context as introduced in our previous work [8].
We also define the problem of comparing events and their
contexts.

2.1 Event
In our model, an event is a tuple in a stream that takes

the form: (eid, timestamp, a1, . . ., an), where eid is an
attribute that uniquely identifies the event, timestamp is the
time when the event occurred, and a1, . . ., an are the other
attributes of the event. Our definition of an event is thus
broad. Almost any tuple in any stream can be considered an
event as long as it takes the form specified above. Typically,
events are output tuples produced by continuous queries (we
call these queries event-queries [8]).

Our system does not know nor care that tuples in a stream
correspond to events until the stream is connected to our
special Similarity Recall operator (described below). At that
point, the user specifies which attributes of the stream cor-
respond to the event identifier and timestamp.

Figure 1 shows examples of “server overload events”. Each
tuple in the table corresponds to one event. Each event in-
cludes a unique identifier (eid), the identifier of the over-
loaded server (sid), and the time when the overload oc-
curred (timestamp).

2.2 Event Context
The attributes of an event describe its main properties

and usually suffice for a human observer to uniquely identify
the event. For example, for a server overload event, the
server identifier (sid) and timestamp suffice for the user to
distinguish between different server overload events.

eid timestamp sid

1 3:20pm 13
2 3:25pm 23
3 4:05pm 123
4 5:53pm 13
5 7:29pm 3

Figure 1: Example of server overload events. eid is the event
identifier, timestamp is the time when the event occurred.
sid identifies the overloaded server.

ASPECT 1: Overall resource utilization
eid timestamp cpu memory network

1 3:20pm 0.98 0.96 0.4

ASPECT 2: Per-process resource utilization
eid timestamp pname cpu memory network

1 3:20pm P1 0.03 0.01 0.07
1 3:20pm P2 0.25 0.20 0.30
1 3:20pm P3 0.65 0.70 0.03
1 3:20pm P4 0.05 0.05 0.00

Figure 2: Sample context for a server overload event with
eid = 1. The context has two aspects. Each aspect is a
relation.

To understand and diagnose an event, however, a user
typically needs to see a significant amount of additional in-
formation about the state of the system at the moment when
the event occurred. We call this state the context of the
event. For example, when a server overload occurs, a user
may be interested in seeing the exact resource utilization on
the overloaded server along with the set of running processes
and their respective resource utilization.

Because each overload event is associated with a set of
processes running on the overloaded server, this informa-
tion cannot be captured by extending the list of attributes
of the event itself. Instead, the event is obtained with ad-
ditional continuous queries that join the event stream with
other streams and relations. We call these queries context-
queries to distinguish them from event-queries [8]. For each
event, the output of each context-query is a relation that
forms one aspect of the event context. Figure 2 shows an
example of a context for a server overload event. This con-
text includes the two aspects that we described above: the
overall resource utilization and the list of processes running
on the overloaded server.

More precisely, an aspect is a relation containing tuples of
the form: (eid, timestamp, c1, . . ., cn), where eid and
timestamp are the identifier and timestamp of the event,
and c1, . . . , cn are the attributes of the tuples in this aspect.
We keep both the event identifier and timestamp to ensure
that all tuples in streams have a timestamp.

2.3 Query Model
Our system is based on the Borealis [2] distributed stream

processing engine. As such, users express queries with boxes-
and-arrow diagrams where boxes correspond to stream pro-
cessing operators and arrows denote streams. The output
of event and context queries is connected to a new operator
that we call Similarity Recall [8]. For each event and its con-
text, the Similarity Recall operator queries the historical log
to extract a set of top-k most similar past events. In this



paper, however, the exact query model is inconsequential.
We focus only on the similarity computation performed by
the Similarity Recall operator.

2.4 Problem Statement
In this paper, we address the problem of designing, imple-

menting, and evaluating a new measure, CDM, that enables
a Similarity Recall operator to compute the distance be-
tween two events and their contexts. Similarity Recall uses
this measure to compare and rank past events.

CDM is designed to operate on complex objects: it takes
as input two sets of relations: i.e., the contexts of the two
events being compared. It outputs a positive real num-
ber which reflects the distance between the contexts. More
specifically:

CDM : S × S →R+

where S is a set of relations.
Our goal is for CDM to reflect a notion of event distance

that is useful for monitoring applications. In particular, our
goal is for CDM to have the following three properties:

1. Entity similarity. If the aspects of two different
event contexts contain the same entities (i.e., tuples
with the same keys), the contexts are similar and the
distance between these contexts should be small.

2. Value similarity. If the aspects of two different event
contexts contain entities with similar attribute-values,
the contexts are similar and the distance between these
contexts should be small.

3. Prioritizing entities with abnormal values.
When comparing event contexts, entities with abnor-
mal values should be prioritized over other entities.

Indeed, in monitoring applications, when an event oc-
curs, if an aspect of the context of that event contains
entities with abnormal attribute values, these entities
are most interesting to the administrator. For exam-
ple, in Figure 2, processes P3 and P2 from Aspect 2

use a large fraction of all system resources and are thus
more interesting than processes P1 and P4.

Overall design goal. Taken together, the above three
properties define the requirement for CDM: for each newly
detected event, CDM should identify as most similar those
past events where the same entities appear with similarly
abnormal attribute-values.

To the best of our knowledge, existing similarity and dis-
tance measures satisfy only properties 1 and 2. They have
no notion of normal or abnormal attribute values. CDM is
the only distance measure that satisfies all three properties
and achieves our overall design goal.

Given this design goal, for the event shown in Figure 2,
CDM should produce a ranked list of past events where the
overall CPU and memory utilization were abnormally high
and where:

1. processes P3 and P2 were hogging most of these re-
sources.

2. process P3 was using a large fraction of system re-
sources.

3. process P2 was using a large fraction of system re-
sources.

4. processes P3 and/or P2 were responsible for using a
significant fraction of resources other than CPU and
memory.

5. a small set of processes other than P3 and P2 was using
most system resources.

6. any other condition holds.
This example illustrates well the type of ranking that we

wish to achieve. In this example, P3 is prioritized over P2

because, in the newly detected event (shown in Figure 2),
the attribute values of P3 are more abnormal.

3. CONTEXT DISTANCE MEASURE
Comparing the contexts of two events requires comparing

two sets of relations. Because no existing metric is designed
for comparing such sets of sets of multidimensional objects,
we cannot apply an existing metric directly. Instead, we
propose a new measure, CDM, that integrates, combines,
and extends different metrics in a manner that satisfies all
three of the above properties. In this section, we present
CDM by building it bottom-up: we first describe distance
functions for comparing individual entities within an aspect
(Section 3.1), then aspects within a context (Section 3.2),
and finally entire contexts (Section 3.3).

In the previous section, we defined the overall desired
properties for CDM. In this section, we translate these glob-
ally desirable properties into specific properties for compar-
ing two entities in an aspect or two aspects of a context.
We present these properties as we describe the correspond-
ing distance measures.

3.1 Comparing Entities
In the past years, there has been significant work in the

area of ranking query results and top-k queries [10, 12, 14,
16, 22, 31]. As a result, a large number of distance functions
have evolved for measuring how close two tuples are from
each other. In this section, we discuss the applicability of
these different functions to our problem.

For queries over continuous-valued real attributes, com-
monly used distance functions use vector p-norms [10], de-

fined as: ||x||p =
“ P

i |xi|p
” 1

p
, p ≥ 1. Given a p-norm

||.||, the distance D between two tuples q and t is defined
as D||.||(q, t) = ||q − t||. Commonly used p-norms include
sum (||q − t||1 =

Pn
i=1 |qi − ti|) and Euclidean distance

(||q − t||2 =
pPn

i=1(qi − ti)2).
To support arbitrary attribute types, some systems [11,

31] define separate scoring functions for individual attributes
and measure the distance between tuples as a (possibly
weighted) sum of attribute-value scores. For example, for
a query requesting a list of cheap restaurants near a hotel,
a scoring function may compute the weighted sum of the
restaurant’s price and distance from the given hotel. The
weights enable the user to indicate a stronger preference for
either cheaper or closer restaurants.

For categorical attributes, another commonly-used tech-
nique adapts the well-known Cosine Similarity metric from
Information Retrieval [7] by treating each tuple as a small
document and by computing the TF-IDF weights of all the
attribute values in the tuple, where TF represents the fre-
quency of a value in a tuple and IDF its inverse document
frequency. Agrawal et al. propose an extended metric, called
IDF Similarity [3], that works for both categorical and nu-
merical data.



In our case, tuples contain a mix of numerical and categor-
ical attributes. Therefore both IDF Similarity and p-norm
are good candidates for capturing the distance between tu-
ples. Because it would be difficult and cumbersome for a
system administrator to define other scoring functions or
assign weights to individual attributes, we do not investi-
gate such techniques. We thus focus our study on the IDF
Similarity metric and the Euclidean distance, a represen-
tative of the family of functions based on p-norms. When
comparing tuples, their eids and timestamps are ignored as
they correspond to tuple meta-data.

Because the domain of different attributes can be signif-
icantly different, we normalize all values before computing
the distance between tuples: we divide all values by the
maximum value measured for the given attribute.

Additionally, instead of distances, IDF Similarity pro-
duces similarity values. We sometimes need to convert these
similarity values into distances to use them with similarity
measures for entire aspects (as we discuss next). To perform
this conversion, different functions are possible. We use
a simple inverse hyperbolic secant function1, which nicely
spreads the values across the entire range. Tuples that are
either very similar or very different get assigned values close
to 0 and 1 respectively. The other tuples get spread over
the entire range. We also found this conversion function to
perform well in our experiments.

An important advantage of IDF Similarity over Euclidean
distance is that abnormal values are given more weight,
which matches well our goal of prioritizing entities with ab-
normal attribute values. On the other hand, IDF Similarity
does poorly as soon as the numeric values of some attributes
are even moderately distant: the similarity function quickly
goes to zero failing to distinguish between nearby and very
distant values. We experiment with both metrics in Sec-
tion 4.2 where we show that, in our context, IDF Similarity
is insufficient for capturing abnormality in an event context
and does not outperform the simpler and computationally
lighter Euclidean distance metric.

Even though Euclidean distance performs better than IDF
Similarity, it does not have all our desired properties as a
distance measure. For example, assume that process P1 is
using 25% of CPU and considered as abnormal. Two past
CPU usages of P1 are fetched: 1% and 70% each. In Eu-
clidean space, clearly 1% usage is about 2 times closer to
25% than 70% usage. However, 70% usage is more interest-
ing than 1% usage because it is an abnormal value and just
more severe than 25%. One key observation is that all ab-
normal values are either below or above a certain threshold
in many cases. Sometimes they are even extreme as illus-
trated in the example thus the difference in Euclidean space
fails to capture the closeness in abnormality. Another obser-
vation is that abnormal values are infrequent than normal
values. IDF Similarity also catches this but it fails to deal
with the first observation. Thus, the distribution is dense in
normal region and sparse in abnormal region. From the ob-
servations, we can say that given two values are far if many
samples lie between them and close if there are few samples
no matter how far they are apart in Euclidean space. This
successfully captures the closeness in abnormality which Eu-
clidean distance can’t. From different perspective, this idea
is exactly the same as the simplest row estimation tech-

1f(x) = ln
1+
√

1−x2

x

nique of modern database for range query. To rest of the
paper, we call this measure as the Histogram distance be-
cause the approximation can be easily computed by using
histogram. Another advantage is that it is computationally
cheaper than IDF Similarity while it is more suitable for our
context. We further discuss the implementation issues of the
Histogram distance in Section 3.2.2.2. We also explore the
Histogram distance as well in Section 4.2 and show that it
outperforms Euclidean distance.

3.2 Comparing Aspects
Comparing two aspects involves comparing two relations.

In this section, we first present traditional distance measures
for comparing sets of objects and discuss why applying these
measures directly does not achieve our three desired proper-
ties. We then present our measure, ADM, which builds on
existing techniques, but combines and uses them in a way
that meets our goals.

Throughout the section, we use Figure 3 as running exam-
ple. The Figure shows five aspects. Aspect Q is the aspect
of the newly detected event from Figure 2. This aspect
includes two processes P2 and P3 with abnormally high re-
source utilization levels; P3 having more abnormal resource
utilization levels than P2. Aspects T1 and T2 each contain
one of these processes. Looking only at the attribute val-
ues, T2 should be closer to Q than T1. Based on property 3,
however, the distance between Q and T1 should be smaller
because T1 contains the more abnormal of the two processes.
Aspect T3 is less similar than both T1 and T2 because the
abnormal processes it includes are different from the ones in
Q. Finally, aspect T4 is the least similar of the four. Even
though it contains two processes, P1 and P4, that perfectly
match those in Q, these processes use only little resources,
their attribute values are within the normal range.

3.2.1 Traditional Distance Measures
Jaccard Similarity Coefficient

Many traditional (multi)set-similarity metrics assume
that the elements of the (multi)set come from a flat domain.
As such, they are only applicable when comparing set mem-
berships. The commonly used Jaccard similarity coefficient
is one such example. For two sets Q and T , their Jaccard
coefficient is given by:

JACC(Q, T ) =
|Q ∩ T |
|Q ∪ T |

The Jaccard similarity coefficient thus only measures the
amount of overlap in the two sets being compared. In our
case, this information is insufficient, as it does not consider
the attribute values of the tuples in the sets. For the aspects
from Figure 3, this metric identifies aspects T4 followed by
T3 as the two most similar of the four past aspects. This is
exactly the reverse of what we would like.

Hausdorff Distance
The Hausdorff distance [27] is a set-comparison metric

that takes the distance between individual points into ac-
count. Informally, given the minimum distance between
each element in the first set and some element in the second
set, the Hausdorff distance between the sets is the maximum
of these minimum distances. Because it is asymmetric, it is
common to take maximum of the two distances from each
set and makes it symmetric.



ASPECT Q: Aspect of the newly detected event
eid timestamp pname cpu memory network

4653 3:20pm P1 0.03 0.01 0.07
4653 3:20pm P2 0.25 0.20 0.30
4653 3:20pm P3 0.65 0.70 0.03
4653 3:20pm P4 0.05 0.05 0.00

ASPECT T1: Aspect of past event 1
eid timestamp pname cpu memory network

1001 6:24am P3 0.70 0.75 0.08
1001 6:24am P5 0.05 0.05 0.00

ASPECT T2: Aspect of past event 2
eid timestamp pname cpu memory network

2357 8:00am P2 0.27 0.22 0.32
2357 8:00am P5 0.05 0.05 0.00

ASPECT T3: Aspect of past event 3
eid timestamp pname cpu memory network

2653 10:52am P1 0.04 0.02 0.06
2653 10:52am P4 0.05 0.05 0.03
2653 10:52am P6 0.25 0.20 0.30
2653 10:52am P7 0.65 0.70 0.03

ASPECT T4: Aspect of past event 4
eid timestamp pname cpu memory network

3988 1:03pm P1 0.03 0.01 0.07
3988 1:03pm P4 0.05 0.05 0.00

Figure 3: Examples of five aspects. Based on our desired
properties, given the query aspect Q, aspect T1 should be
ranked first, followed by T2, T3, and finally T4.

This metric thus captures our second desired property
(value similarity). Because entity identifiers are included
in the distance computation it also somewhat captures our
first property (entity similarity). This metric, however, does
not capture our third desired property. In our example, T3
has the smallest Hausdorff distance from Q, just because
tuples have very similar values. However, entities in T3 con-
taining abnormal values are different from those in Q and
that property is not captured. Additionally, with the Haus-
dorff distance, a single outlier may significantly impact the
distance between two aspects.

Cartesian Product
A näıve approach for comparing two relations in a manner

that captures the distance between all tuples is to simply
compute the sum of the distances between all pairs of tuples
and normalize by the product of the relation cardinalities.
We call this näıve metric, the Cartesian product distance
(CART). For two relations Q and T :

CART(Q, T ) =

P
q∈Q

P
t∈T dist(q, t)

|Q| · |T |
As we show in Section 4.2, this metric, however, is ineffec-

tive at capturing similarity between aspects as soon as the
points in the aspect all not all clustered together.

Match And Compare Distance
The Match And Compare (or MAC) distance [28] mea-

sures the similarity between two sets of objects more accu-

rately than the above techniques. MAC has been introduced
to quantify the error in approximate answers produced by
a database and is thus designed specifically for comparing
relations. Instead of computing the distance between all
pairs of tuples in the two relations, MAC first matches tu-
ples between the two sets. MAC then computes the distance
between the sets by taking into account both the distance
between individually matched tuples and the cardinality of
the different matches.

More specifically, given two multisets Q = {q1, . . . , qn}
and T = {t1, . . . , tm} that represent the two relations, MAC
first matches elements of the two sets by computing a min-
imum cost edge cover of the bipartite graph formed by the
relations. Given this match, the distance between the rela-
tions is then given by the following expression, where C is
the set of edges in the minimum cost edge cover, and d1 and
d2 are the number of edges incident to qi and tj respectively.

MACl,m(Q, T ) =
X

(qi,ti)∈C

multl(qi, tj) ∗ dist[q]m(qi, tj)

where

mult(qi, tj) = max(1, max(d1, d2)− 1)

dist[q](qi, tj) =

(
dist(qi, tj), if max(d1, d2) = 1

dist(qi, tj) + q, otherwise

l, m, and q are configurable parameters of the MAC dis-
tance that adjust the penalty when multiple tuples match
with the same nearby tuple.

Because MAC is much more accurate than a näıve met-
ric such as Cartesian Product, it is a good candidate for
our aspect distance measure. The only limitation of MAC
is that it does not satisfy property 3: it does not capture
how normal or abnormal different attribute values are. In
our example, MAC ranks T3 as the closest aspect to Q. It
also ranks T4 above T2 and T1. Finally, MAC has three
configurable parameters, thus requiring careful tuning.

Earth Mover’s Distance
The Earth Mover’s Distance (EMD) [39] is a metric orig-

inally introduced for content-based image retrieval and suc-
cessfully used in multimedia databases [6].

EMD takes as input two sets(or signatures) Q =
{(q1, wq1), . . . , (qm, wqm)} and T = {(t1, wt1), . . . ,
(tn, wtn)} and a matrix D = [dij ], where each dij is the
distance between qi and tj . EMD computes the distance
between Q and T as the minimum amount of work to be
done to fill the “holes” represented by points in T with the
“mounds of earth” represented by the points in Q. EMD
achieves this goal by solving the following linear program-
ming problem. Find a flow F = [fij ], with fij the flow
between qi and tj that minimizes:

WORK(Q, T, F ) =

mX
i=1

nX
j=1

dijfif

subject to ensuring that all flows are positive and they do not
move more earth or try to fill more holes than is available.
EMD is then defined as the work normalized by the total
flow.

EMD(Q, T ) =

Pm
i=1

Pn
j=1 dijfifPm

i=1

Pn
j=1 fif

In our case, the qi’s and tj ’s are tuples in the relations,



all weights w are equal to one, and the distances dij are the
distances between individual tuples with the two aspects.
Setting weights to one means that we equally treat all tuples
in each aspect and EMD will find the minimum cost pairs
between two aspects.

Similar to MAC, EMD is another good candidate for our
aspect distance measure. EMD has the same limitation as
MAC: it does not satisfy property 3. In our example, EMD
ranks T4 highest and T3 second. In contrast to MAC, EMD
itself has no configurable parameters, making it easier to
use.

In Section 4.2, we experimentally compare the perfor-
mance of the above functions in our application domain
and find that MAC and its variants outperform the other
schemes because it takes into account the cost of all map-
pings from querying aspect to the other aspect.

3.2.2 Aspect Distance Measure (ADM)
We now present our new measure, called Aspect Dis-

tance Measure (ADM) for comparing aspects. In general,
ADM uses three techniques: ValueFilter, AttributeWeight,
and TupleWeight. In addition, we present the KeyFilter,
an extension of ADM. KeyFilter further improves the qual-
ity of results where the identity of monitored object is cru-
cial. Because we find that, in our application domain, Nor-
malized MAC(NMAC, see Section 3.2.2.3) outperforms the
other measures (see Section 4.2), ADM uses NMAC. In
this section, we first describe the filtering technique to il-
lustrate overall structure of ADM. Then, we describe At-
tributeWeight and TupleWeight and conclude by describing
NMAC, how we pick MAC parameters and normalize the
distance using TupleWeights.

3.2.2.1 ValueFilter and KeyFilter.
To achieve property 3, ADM penalizes aspects that do

not contain entities with abnormal attribute values (we call
this the ValueFilter technique). To enforce this penalty, in-
stead of using a scalar distance value, ADM represents the
distance as a 3-dimensional vector.

Given two aspects Q and T, where Q is the aspect corre-
sponding to the newly detected event, ADM computes their
distance as follows:

Q′ = ValueFilter(Q, X)

T ′ = ValueFilter(T, X)

ADM(Q, T ) =

(NMAC(Q′, T ′), NMAC(Q′, T ), NMAC(Q, T ))

where function ValueFilter(R,X), extracts all tuples
from relation R having at least one abnormal attribute value
as defined by the vector X. More formally, the ValueFilter

function is defined as follows:

ValueFilter(R, X) = {r ∈ R | ∃i ri > xi for xi ∈ X}

The abnormality vector X is set to select only unusual
values. The choice of X is based on a histogram of the his-
torical data2. The administrator only sets the percentile of
data that should be considered abnormal. This threshold
is the only tunable parameter in our technique, but tuning

2Today, all major database management systems already
maintain histograms over their data. Our approach simply
exploits the existence of these histograms.

this parameter should be natural to an administrator accus-
tomed to monitoring the system.

Note that ADM is asymmetric because it is based on an
asymmetric distance, MAC: ADM(R1,R2) 6= ADM(R2,R1).

For performance reasons, instead of computing all ele-
ments in the vector, ADM computes only the left-most pos-
sible element and sets all other elements to ∞. We consider
that it is possible to compute MAC(R1,R2) only when both
relations contain at least one tuple.

The comparison semantics of the ADM distance are then
as follows:

ADM(Q, T1) < ADM(Q, T2) ⇐⇒
∃i, ∀j ADM(Q, T1)[i] < ADM(Q, T2)[i]

∧ (j < i =⇒ ADM(Q, T1)[j] = ADM(Q, T2)[j])

Thus, two ADM vectors are compared in lexicographic or-
der.

In some environment, like system or network monitoring,
the identity of abnormal entity is much more crucial than
just similarity in values as elaborated in property 3. For ex-
ample, if a process is constantly using lots of resources, only
past events which the same process is hogging resources are
interesting. To satisfy this requirement, ADM can be ex-
tended by a technique called KeyFilter. KeyFilter(R1,R2)

is a function which extracts all tuples from relation R2 that
have the same key as some tuple in R1. The extended ADM
with KeyFilter, KADM, computes the distance between
two aspects Q and T as follows:

Q′ = ValueFilter(Q, X)

T ′ = ValueFilter(T, X)

KADM(Q, T )[0] = NMAC(Q′, KeyFilter(Q′, T ′))

KADM(Q, T )[i] = ADM(Q, T )[i− 1] where 1 ≤ i ≤ 3

Thus, KADM returns a 4-dimensional vector. The differ-
ence is that it has one extra dimension which represents
the distance between abnormal tuples of common key val-
ues. The lower three dimensions are identical to ADM. The
comparison semantics of distance vector is intact. In Sec-
tion 4.2.4, we show that the extended ADM(KADM) outper-
forms in considered application domain but we emphasize
that KeyFilter is just an extension of ADM and only ex-
pected to be used where the identity of abnormal entity is
the most concern. To the rest of this section, we use KADM
in the examples because the identity is important in dis-
cussed application domain.

In our example, only the third element of the ADM(Q,
T4) vector has a value other than ∞ because T4 contains
no entities with abnormal attribute-values (i.e., T ′′ = ∅ and
T ′ = ∅). In contrast, the second element of ADM(Q, T3) has
a value other than ∞ as T3 contains entities with abnormal
attribute values, but these entities are different from those in
Q (i.e., T ′′ = ∅ but T ′ 6= ∅). For ADM(Q, T1) and ADM(Q,
T2), their first element is set to a value other than ∞ (since
T ′′ 6= ∅). Additionally, in the distance computations for T1,
T2, and T3 the processes P1, P4, and P5 are filtered because
they only contain uninteresting values. These entities do not
affect any of the distance computations, which is desirable
because they should not affect the final ranking of these
similar past events.

3.2.2.2 AttributeWeight and TupleWeight.
In addition to the above ValueFilter and KeyFilter tech-

niques, ADM also modifies MAC to take into account the



importance of different attributes in a tuple (we call this
the AttributeWeight technique) and different tuples in an
aspect (we call this the TupleWeight technique). Indeed,
tuples that pass the ValueFilter may still have ordinary val-
ues for some of their attributes. To ensure that abnormal
values are always prioritized over normal ones, ADM puts a
heavier weight on the abnormal values when computing the
distance between tuples.

For example, let’s imagine a newly detected event with an
aspect S similar to those shown in Figure 3, and two past
events with their respective aspects U1 and U2. Let’s assume
that S contains a process P with 60% CPU utilization and a
10Kbps network bandwidth utilization. U1 and U2 also con-
tain P. However, in U1, P uses 30% CPU and 8Kbps network
bandwidth but in U2, P uses 70% CPU and 30Kbps network
bandwidth. Using our techniques so far, U1 would be ranked
as closer to S. However, we are more interested in U2 because
in this aspect the CPU utilization of P is more similar and
the CPU utilization was more abnormal than the network
bandwidth utilization in S. To capture this requirement, the
distance for each attribute should not be treated equally but
weighted according to the abnormality observed in the value
of that attribute in the newly detected event. This is the
role of the AttributeWeight.

We compute the abnormality for an attribute value as
follows. Given, DA, a database of all past aspects A, the
abnormality of a value v for attribute c is defined as:

AbnormalityDA.c
(v) =

|{t ∈ DA|t.c ≤ v}|
|DA|

The abnormality of a value v is thus simply the fraction of
tuples in past aspects that contain values below v. The ab-
normality of a value can easily be computed approximately
using a histogram and standard catalog information. For
better accuracy in both abnormality and Histogram dis-
tance, it is good to keep a small extra histogram which only
covers the range above the abnormality threshold because
the range is likely to be covered by only the rightmost(or
leftmost) one or two buckets.

Dynamically weighing attribute distances based on the
abnormality of their values helps capture the importance
of certain attributes, but it does not help solve conflicts
between tuples in an aspect. If a tuple contains multiple
abnormal values, it is more important than a tuple with
fewer abnormal values. Also, a tuple with multiple barely
abnormal values is less important than a tuple with a sin-
gle extremely unusual value. Certain tuples in the query
aspect should thus be given more weight than others. To
achieve this goal, we define a weight of tuple weight, called
TupleWeight, equal to the average abnormality of the values
in the tuple. The key may be included in the TupleWeight

if the presence of an entity is interesting. Otherwise, it is
excluded.

TupleWeight(q) =

P|q|
i=1 Abnormality(qi)

|q|
In our example, when using Euclidean distance with regu-

lar MAC, the distance between Q and T2 is smaller than the
distance between Q and T1. However, T1 should be closer
to Q because P3 has significantly higher CPU and memory
usage and has thus more abnormal values than P2. Thanks
to TupleWeight, ADM correctly considers T1 closer to Q be-

cause P3 is given a higher TupleWeight.

3.2.2.3 Normalized MAC with TupleWeight.
AttributeWeight can be naturally embedded in computing

distance between each attribute in tuple so we don’t discuss
how to apply it in ADM computation in detail. Original
MAC distance has three parameters(l, m, q). Even though
they make the measure flexible, they are just adding another
complexity in our context. Thus, we end up with static
parameters of l = 0, m = 1, q = 0 for ADM from following
reasons. In ADM, we don’t care about whether an element
is matched multiple times in the other set because our top
concern is only the best 1:1 matches of abnormal tuples.
Thus, we set the multiplicity parameters l, q to 0. Along the
same reasoning, m is set to 1.

Even with the chosen parameters, original MAC is still
sensitive to the number of tuples in each set because it sim-
ply adds up all the distances among tuples in compared
sets. Another problem is that the final distance is an ar-
bitrary number which introduces another complication in
CDM computation. On the other hand, EMD produces the
average cost of flows between two sets. By doing so, EMD
returns a normalized value between 0 and 1 if the weight
and cost are normalized. By inspired EMD, we add normal-
ization term to the MAC to address both the sensitivity of
number of tuples and the distance in arbitrary range. In
Section 4.2, we show that the normalized MAC with chosen
parameters outperforms the regular MAC with different pa-
rameters. The final normalized MAC with TupleWeight is
following:

NMAC(Q, T ) =

P
(q,t)∈EC dist(q, t) · TupleWeight(q)P

(q,t)∈EC TupleWeight(q)

where EC is a minimum cost edge cover of bipartite graph
constructed over Q and T . To the rest of the paper, we refer
this normalized MAC as NMAC.

In summary, ADM uses several techniques to (1) identify
and isolate tuples that are significant for the comparison
of two aspects and (2) put emphasize on those tuples and
those attributes that contain more abnormal values in the
newly detected event. The complexity of the resulting ADM
measure is equal to the complexity of MAC. Additionally,
thanks to the ValueFilter and KeyFilter techniques, ADM
runs the modified version of MAC only on a small subset of
all tuples in the original aspects.

3.3 Comparing Contexts
The Aspect Distance Measure, ADM, presented above is

the core of our approach; it captures the key properties that
we wish to achieve when comparing the contexts of two
events. Event contexts, however, comprise more than one
aspect. To compare event contexts, we thus need a way to
combine the distance measures for individual aspects.

The Context Distance Measure (CDM) performs this
task. Given two contexts C = {Q1, Q2, . . . , Qn} and D =
{T1, . . . , Tn}, where Qi is an aspect of C and Tj is an aspect
of D:

CDM(C, D) =

Pn
i=1 ADM(Qi, Ti)

n

CDM is thus simply the average distance between the as-
pects of the two contexts. When computing this average, we



ignore all values set to ∞ as soon as one vector has a value
other than ∞ for a given element.

The resulting distance is thus also a 3D vector(or 4D
vector if it is extended by KeyFilter), which has the nice
property that similarly to ADM, CDM naturally prioritizes
event contexts comprising aspects with abnormal entities,
especially if these same entities appear in the context of the
newly detected event.

4. EVALUATION
In this section, we evaluate the performance of traditional

measures and CDM for computing the distance between
event contexts in monitoring applications.

4.1 Experimental Setup
We perform all our experiments on a real dataset from

the computer-system monitoring domain. As example mon-
itored system, we use the PlanetLab [37] overlay network.
PlanetLab is a planetary-scale overlay network with over 700
machines at over 300 institutions around the globe. Plan-
etLab serves as a testbed for networking and distributed
systems research.

PlanetLab is continuously monitored by two services
called CoMon [18] and CoTop [19]. The CoMon service mon-
itors each server in the overlay network and collects various
runtime statistics such as average process queue length, net-
work bandwidth, CPU utilization, and vmstat. The CoTop
service monitors individual slices running on each server and
collects their resource utilization. Each slice corresponds to
one virtual machine that runs the processes belonging to
one researcher. These virtual machines provide isolation
between researchers. CoTop and CoMon poll all machines
every 5 minutes. In our experiments, we use CoMon and
CoTop data collected between October 2006 and December
2006.

From the CoMon log, we extracted 20,000 system overload
events using the following selection predicates: (load1 >
load5) ∧ (load5 > 50) ∧ (load5 > 2× load1D), where load1,
load5, and load1D denote the average load over the last
minute, 5 minutes, and 1 day respectively. The first pred-
icate enables us to capture actual load spikes. The second
predicate filters out inherently lightly loaded nodes. The
number 50 is arbitrarily chosen based on sample queries from
the CoMon web site. It is 10 times higher than the number
provided in sample queries that select lightly loaded nodes.
We find that only 0.8% of data has a value higher than this
threshold. These two predicates, however, are insufficient
to identify overload events because several PlanetLab nodes
are very popular and are thus constantly overloaded. To
eliminate these nodes, we add the last predicate.

4.2 ADM
In this section, we evaluate the performance of traditional

measures and ADM for computing the distance between in-
dividual aspects.

There are many potential aspects that can be associated
with system overload events. In this experiment, we use an
aspect analogous to the one presented in the examples from
Figures 2 and 3. This aspect shows the resource consump-
tion of slices running on the overloaded server.

To extract these aspects, we take the CoTop log entry
for the overloaded server at the time when the overload oc-
curs. Because there are multiple concurrent active slices on

a server at any time, a single CoTop log entry consists of
multiple tuples, one tuple per slice. In our experiments, the
resulting aspects contain between 1 and 53 tuples. Each tu-
ple includes the unique slice identifier, and various resource
utilization statistics. We select only the upstream and down-
stream network bandwidth utilization and the CPU utiliza-
tion to avoid the curse of dimensionality [9] and speed up
the evaluation process.

To better control and understand the data used in our
experiments, we classify the 20,000 extracted aspects into
ten different categories based on important aspect proper-
ties: e.g., aspects where a single slice uses-up most sys-
tem resources, aspects where multiple slices use moderate
to high amounts of resources, etc. Because we operate on
sample load information, some samples indicate overall sys-
tem overload but fail to capture the actual overload activity.
We ignore these events in our evaluation and focus on the
remaining 3,000 events. Ignoring such events actually im-
proves the performance of traditional similarity measures by
filtering out past events that may appear similar but do not
contain any abnormally behaving entities.

4.2.1 Performance of Traditional Measures
The goal of the first experiment is to evaluate the ap-

plicability of traditional set-similarity measures for ranking
aspects in the order required by monitoring applications.
We only evaluate the measures that take the distance be-
tween individual elements in the set into account (i.e., Haus-
dorff distance, MAC, EMD, and the näıve Cartesian prod-
uct). For the underlying distance function, we compare Eu-
clidean distance, IDF Similarity (transformed into a distance
through the hyperbolic secant function) and Histogram dis-
tance3. The goal of this experiment is only to identify and
eliminate the measures that are clearly unsuitable. For the
other measures, we refine our evaluation further in the fol-
lowing section.

We evaluate the measures using the following technique
(based on [24]): we hand pick 20 triples of the form (Q, T1,

T2). For each triple, we use our desired properties to deter-
mine whether T1 or T2 should be closer to Q. We only pick
clear-cut cases, similar to the examples in Figure 3. We then
compute the distance between Q and T1 and Q and T2 using
each measure. We count how many times the computed
distances agree with our manual order.

The results, presented in Table 1, show that Cartesian
product is clearly inappropriate as it agrees with our manual
ranking only 25% of the time or less. The problem is that
many aspects are relatively large (leading to large values in
the denominator), but they contain mostly similar, ordinary
values (causing the numerator to be small). This causes
Cartesian product distances to all be close to zero.

The Hausdorff distance, MAC, and EMD agree with our
manual ranking at least 50% of the time when using the Eu-
clidean distance for comparing tuples. We thus investigate
these three measures further below.

Using IDF Similarity instead of Euclidean distance does
not improve the quality of the results as expected, except
for EMD. One observed reason why IDF Similarity does not
help is that, for numeric values, the similarity between two
tuples drops too quickly as their attribute values become

3Per each numeric attribute in aspect, we constructed a his-
togram of 5 buckets over the values greater than the Value-
Filter threshold.



CART Hausdorff MAC EMD

IDF similarity
no key factor 10%(2) 55%(11) 45%(9) 80%(16)

with key factor 20%(4) 40%(8) 40%(8) 55%(11)

Euclidean distance
no key factor 25%(5) 60%(12) 50%(10) 70%(14)

with key factor 30%(6) 70%(14) 60%(12) 55%(11)

Histogram distance
no key factor 40%(8) 55%(11) 60%(12) 75%(15)

with key factor 45%(9) 65%(13) 70%(14) 75%(15)

Table 1: Initial evaluation of traditional measures (and simple variants) against a selected set of 20 test-cases. For each
measure, we show the fraction of time (and number of test-cases) where the measure agrees with our manual ranking. For
MAC, the table shows the best-case parameter setting (l = 1, m = 1, q = 0). The results show that Cartesian product and
IDF Similarity are not well suited for our application domain.

different. To a human observer, the values are still similar,
while the IDF Similarity is already almost zero. Because, in
a monitoring environment, a significant fraction of data is
numerical, the Euclidean distance is thus more appropriate
as a measure of distance between tuples. We further investi-
gated outstanding performance of EMD with IDF Similarity
and found that it was just a coincidence. IDF Similarity be-
tween two values is weighted by the infrequency of querying
value. For example, (0, 0) is less similar than (5, 0) because
5 is less frequent than 0 in our data set. Thus, if a tuple
contains infrequent values, having close corresponding val-
ues would result in greater similarity. It is desirable property
of IDF Similarity for tuples whose values are highly abnor-
mal thus interesting. However, this property is also applied
to the tuples of relatively high values but they are consid-
ered as normal. We observed that it is not the similarity
between abnormal tuples but similarity between such nor-
mal tuples with relatively high values that led the correct
results. In fact, the similarity between abnormal tuples were
often reversed in our tests because of the sensitivity of IDF
Similarity discussed before. Thus, even though the results
were correct, they were not from our expected behavior but
from such corresponding tuples by chance.

One hypothesis why the results for the Hausdorff and
MAC measures are not better than 60% is that these mea-
sures do not put any special weight on tuples that corre-
spond to the same entity. Of course, the key attribute is
taken into account in the distance computation, but it is
not given any special weight. We thus try a simple variant
of these traditional distance measures. Instead of embed-
ding difference of key attribute in distance, we multiply the
distance of other attributes excluding the key attribute by a
key factor of (1.0 − e−distance). The results, also presented
in Table 1, show that with the Euclidean distance, the key
factor improves (or at least does not hurt) performance for
all measures.

Lastly, we also showed the results of histogram distance
in Table 1. Overall, it shows comparable performance to
Euclidean distance and works well with all measures unlike
IDF similarity and even with key factor.

In the next experiment, we investigate these different mea-
sures more deeply, but we only study the candidates that
showed reasonable performance. We thus rule out the Carte-
sian product and the IDF similarity.

4.2.2 Benefits of ValueFilter
In this section and the next one, we demonstrate the

performance of ADM by separately demonstrating the im-
pact of its different components and an extension: Val-
ueFilter, TupleWeight, AttributeWeight and KeyFilter(the

latter three are always applied along with ValueFilter).
As discussed in Section 3.2.2, the first key idea of ADM

is to filter out all entities in an aspect that do not have any
abnormal attribute values (ValueFilter). Indeed, we noticed
that the vast majority of the data in practice is normal and
this normal data generates sheer noise in the distance com-
putations. By filtering out the normal uninteresting data,
we should get more accurate distances.

To demonstrate the effectiveness of the ValueFilter, we use
the following approach. We first randomly pick 20 aspects
from each one of our 10 categories. This gives us a list of 200
past aspects with different interesting properties. We then
pick 2 query aspects (different from the 200 past aspects)
from each one of our categories, for a total of 20 query as-
pects. For each query, we ensure that at least 6 past aspects
come from the same server and are thus likely to be highly
similar. For the ValueFilter, we set a reasonable threshold
for all attributes, ensuring that 10% of all values pass the
filter. We apply the filter to all aspects before measuring
their distances.

For each query, we perform the following experiment.
First, we use each measure (and each variant of each mea-
sure) to sort the 200 aspects in ascending order of distance
to the query aspect. We then select the top-3 results from
each list and union them together to produce a single list.
All three authors separately manually rank the resulting list
to create the “ideally” ranked list. The list is ranked in a
manner that follows our desired properties. Finally, we com-
pute the distance between the ideal ranking and the ranking
produced by each measure. To compute this distance, we
use the distance function proposed by Nie et al. [36]. In the
rest of the paper, we use this as a standard metric to quan-
tify the quality of each measure. With this metric, lower
values indicate that a measure is better as it means that it
produced a ranking closer to the ideal one.

We perform the above experiment on the traditional set-
similarity measures based on Euclidean and Histogram dis-
tance (with and without the key factor) and also on the
same measures but after filtering out all normal values (i.e.,
with ValueFilter). Figure 4 shows the results. The bars
show the overall average distance for all queries and all
three manually ranked lists. MAC1 is regular MAC with
parameters from the previous experiment and MAC2 is with
l = 0, m = 1, q = 0 as illustrated in Section 3.2.2.3. NMAC
is normalized MAC but the all TupleWeights are set to 1
so that all tuples are equally handled and this is assumed
when NMAC is not used with TupleWeight. Clearly, for
each measure, filtering out normal values significantly im-
proves the quality of the final ranking. In this experiment,
the standard deviations are between 0.10 and 0.28. These
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Figure 4: Average distance w.r.t manually ranked list. Filtering out normal values significantly improves results for all measures.
Histogram distance outperforms Euclidean distance and key factor does not improve quality of the results when it is used with ValueFilter.

high variances indicate that none of the metrics precisely
captures our desired priorities.

In Figure 4, one can easily notice that the Histogram dis-
tance performs better than Euclidean distance because the
latter often fails to catch the closeness in abnormality when
one of the comparing value is extreme.

Key factor introduced in previous section improves the re-
sults without ValueFilter. The exceptions are EMD, Haus-
dorff and NMAC distance with Euclidean distance. One
observed reason is that a tuple which contains abnormal
values with non-matching key introduces more significant
cost in distance computation than its non-key factor coun-
terpart. Recall that EMD and NMAC, in our setting, the
distance between two aspects are divided by the number of
mappings. By the key factor, the distances of non-matching
abnormal tuples get several order of magnitude higher value
than matching tuples according to their distances. In the
end, the presence of such tuple results in inversion in final
ranking. The same argument holds for Hausdorff distance;
the minimum distance is likely to be dominated by those
non-matching abnormal tuples where current minimum dis-
tance is between matching tuples. Histogram distance is less
susceptible to this problem because, at least, histogram dis-
tance can handle the distance between two abnormal values
where Euclidean distance may end up with a huge distance.

Interestingly, the key factor impairs results when it com-
bined with ValueFilter because now non-matching abnor-
mal tuples which barely pass through the ValueFilter take
significant portion in distance unless the comparing aspect
have tuples close to them. (Recall that the key factor would

reduce the distance at least by half). However, we can’t
assume that there always exists such a tuple. Without Val-
ueFilter, such a tuple can be mapped to the closest normal
tuple and only incurs small costs. The results show that
simply incorporating tuple keys in distance computation suf-
fices to ensure that similar aspects with similar entities are
ranked higher. Because attribute-values are normalized to
fall in the range [0,1], the impact of a matching key is signif-
icant: if the key matches for two tuples, the distance for the
key attribute is 0; and it is 1 otherwise. Given that we are
now comparing only small sets where all tuples are poten-
tially interesting, adding the key factor biases the distance
too much for aspects with the same entities, even when their
values differ.

Now let’s turn to the effectiveness of ValueFilter. Val-
ueFilter performs better than vanilla measures in all com-
binations except MAC2 and Hausdorff distance based on
Histogram distance with key factor. Because of key factor
and Histogram distance, non-matching less abnormal tuple
introduce far distance between two aspects if there are only
highly abnormal tuples in comparing aspects. Without fil-
tering, the impact of such mapping is attenuated by either
normalized by large number of cheap mappings or having the
closest normal tuples. However, in MAC2 and Hausdorff,
unlike Normalized MAC or EMD, there is no such mecha-
nism to reduce the impact of such non-interesting mapping.

Finally, the figure shows that NMAC based on Histogram
distance with ValueFilter clearly outperforms the other mea-
sures. Thus, we further investigate techniques to improve
NMAC in following sections.
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To sum up, we evaluated and investigated the effectiveness
of key factor as well as ValueFilter. The intuition behind
key factor is interesting but the benefit of ValueFilter is
too attractive. One may argue that our key factor setting
is simply too strong but it is too cumbersome to tune it
whenever you deploy a new query. Thus, we rule out key
factor in following experiments. We also rule out Euclidean
distance because histogram distance outperforms in every
case. All experiment data is based on histogram distance.

4.2.3 Benefits of AttributeWeight and TupleWeight
In this section, we demonstrate the benefits of the other

components of ADM. ADM puts more weight on both ab-
normal attribute-values(AttributeWeight) and tuples con-
taining such attribute values (TupleWeight) when comput-
ing the distance between aspects.

To evaluate the performance of AttributeWeight, Tu-
pleWeight and ADM, we run the same experiments over
the same aspects pool and query set in previous section
with all of these variants based on both NMAC and its base
measure MAC2. Again, all of the authors manually ranked
the union of top-3 results from all variants and computed
distance. In this and following sections, we analyze each
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variation in detail based on this result. As in previous sec-
tion, Y-axis of all figures are the distance to the manually
ranked “ideal” list. However, the numbers can’t be directly
compared with those in previous section because they are
generated by different data set. The results analyzed in this
section and Section 4.2.4 are based on NMAC. We show the
difference between NMAC and its base measure MAC2 in
Section 4.2.5.

Figure 5 shows the CDF of distance of list generated by
each technique with respect to manually ranked “ideal” list.
The distances to the manually ranked “ideal” lists at 25%,
50% and 75% percentile from each technique is shown in
Figure 6. We set ValueFilter without no weights as a base-
line. TupleWeight plays significant role in enhancing the
quality because it directly participates in NMAC computa-
tion. One can easily notice that distribution is always on
the left side of the baseline. AttributeWeight also helps in
improving quality but sometimes ends up with completely
different results where TupleWeight must be considered for
correct ranking. By applying all three techniques together,
ADM shows the best average behavior and the distribution
is either close or better than TupleWeight.

To measure the improvement in performance more accu-
rately and elaborate the difference in ADM and the baseline,
NMAC with ValueFilter, we perform a larger-scale experi-
ment. We choose 167 query aspects from our categories (we
intended to select 20 from each category, but came up with
167 due to discrepancies in the sizes of the clusters). For
each one of the 167 queries, we extract the top 50 most sim-
ilar past aspects (which seems likely to be way above the
maximum number of results an administrator will examine)
out of the complete list of 3,000 past aspects.

Figure 7 shows the average rank displacement in the top-k
results produced when using NMAC with ValueFilter com-
pared with ADM. The y-axis shows the value of the standard
displacement metric [24], where values closer to zero indi-
cate that two ranks are more similar. Higher values indicate
larger differences between ranked lists. The figure shows
the displacement distance for different percentiles. Inter-
estingly, for about half the queries, there is little difference
between the two ranked lists. However, for the other 50%
of the queries, the difference is significant, with the top 25%
of queries resulting in widely different ranked lists.
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Figure 9: The distance w.r.t manually ranked list at 25%,
50%, and 75% percentile. KeyFilter alone doesn’t improve the
results compared to ADM with only ValueFilter. However, with
AttributeWeight and TupleWeight technique, KADM achieves
the best average behavior in our data set.

4.2.4 Extended ADM with KeyFilter
In this section, we evaluate the effectiveness of KeyFil-

ter extension to ADM and compare with regular ADM. The
extended ADM(KADM) strictly enforces that past aspects
containing the same abnormal entities appear before aspects
containing different abnormal entities, even if in the former
case, the other attribute-values are less similar. Addition-
ally, because the presence of such entities significantly in-
creases the important of a past aspect, KADM ignores all
other entities when computing the distance between such an
aspect and the query aspect.

Figure 8 shows the CDF of distances of list produced by
each technique with respect to manually ranked “ideal” list.
The distances to the manually ranked “ideal” lists at 25%,
50% and 75% percentile from each technique is shown in Fig-
ure 9. The distance appeared in the figures are compatible
to the numbers in previous section because both are based
on the same data set.

KeyFilter alone does not significantly enhance the quality
of results as both distributions of filters intertwine. How-
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Figure 10: Average rank displacement of top-k results
produced by ADM w.r.t. KADM. For more than 50%
queries, the result is widely different.
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Figure 11: The distance w.r.t manually ranked list at
25%, 50%, and 75% percentile. Normalization improves re-
sults when it is used in ADM. However, it produces identical
results to non-normalized MAC when it is used in KADM.

ever, with AttributeWeight and TupleWeight altogether,
KADM outperforms ADM on average in our data set where
identity of abnormal entity is important.

Figure 10 shows the average rank displacement of top-k
results of ADM with respect to KADM. Because KADM
strictly prioritizes past aspects which have identical abnor-
mal entities to querying aspect, the results are radically dif-
ferent from the results of ADM in majority of queries.

4.2.5 Effectiveness of normalization in MAC
As a last evaluation for ADM, we further investigate the

effect of normalization in MAC. We used NMAC and its
base measure MAC2 to compute ADM and KADM . Fig-
ure 11 shows that the distance to the ideal list at 25%, 50%
and 75% percentile. For ADM, NMAC clearly outperforms
MAC2; the distance at each percentile is lower than MAC2.
However, they produce identical results when they are used
in KADM. The result is partly because of the MAC and
partly because of KeyFilter. MAC always consider edge
cover but the cardinality of edge cover is bounded by the
number of abnormal tuples in querying aspects, N . Because
KeyFilter filters out tuples from a past aspect based on the
key values of abnormal tuples in querying aspect, the cardi-
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Figure 12: Average rank displacement of top-k results
produced by ADM with MAC2 w.r.t. ADM. As soon as
clear cases running out, the results quickly become different.

nality of filtered aspect is at most N . As long as the filtered
past aspect is not empty, the edge cover between two as-
pects always exactly contains N edges. In other words, the
normalized term is always constant, sum of TupleWeights of
querying aspect, if the KeyFiltered aspect is not empty. In
this case, it is identical to MAC2. Thus, the result shown in
Figure 11 just tell us that there are sufficiently many past
aspects which have at least one abnormal entity having the
same key value.

In large scale, we observed that the average top-k dis-
placement for KADM is 0 until k went beyond 100 which is
less meaningful in practice. Instead, we show the displace-
ment for ADM in Figure 12. There exist some clear cases
where both measures produce identical ranking. However,
as soon as they are running out, the two measures start
to produce widely different ranking and the displacement
quickly diverges.

4.3 CDM
In this section, we evaluate the impact of using contexts

composed of different aspects when identifying similar past
events. We show that for the same set of queries, if the user
defines different contexts, the system returns a different set
of top-k most similar past events.

In this experiment, for each one of our 3,000 events, we
construct a second aspect using CoTop data. This second
aspect includes the number of processes running in each slice
and the overall memory utilization for that slice. A large
number of processes increases the probability that the slice
will use significant amounts of system resources. A high
memory utilization by one slice may negatively affect other
slices running on the same server.

We run 148 queries from the previous experiment over all
3,000 past events. The number of queries is lower than 167
because some of the queries do not have any abnormal values
in their new aspect. For all queries, we compare the overlap
in the past events returned when using either the first or the
second aspect as the context of the event. Figure 13 shows
the average, minimum, maximum overlap and standard de-
viation measured for all queries. Even when returning as
many as 50 most similar past events, the average overlap is
less than 4 events. The context of an event is thus effective
at defining what constitutes the most relevant past events
to the user.

Top-k 10 20 50

Average overlap 0.5512 1.2910 3.9918
Minimum overlap 0 0 0
Maximum overlap 10 19 35

Standard deviation 1.2316 2.3861 5.4086

Figure 13: Overlap in the top-k most similar past event
returned for the same newly detected event, but for different
contexts. Each contexts comprised a single different aspect.
Event contexts significantly impact the set of most similar
past events.

Top-k 10 20 50

Average overlap 5.8142 11.8412 29.7364
Minimum overlap 0 0 0
Maximum overlap 10 20 50

Standard deviation 2.9897 5.5898 14.7340

Figure 14: Overlap in the set of top-k most similar past event
returned for the same newly detected event, but for different
contexts. The contexts have two common aspects and one
different aspect. The overlap is higher when event contexts
are more similar, but even one different aspect frequently
causes different past events to be returned.

To further study the impact of event contexts, we repeat
the same experiment, but add two more aspects to our event
contexts. One aspect contains the day of the week and the
time of day for when the event occurred. The second aspect
contains the domain name of the overloaded server. We add
these same two new aspects to both contexts. Hence, this
time, each context has three aspects, but two of these as-
pects are shared between the contexts. Figure 14 shows the
results. The most noticeable result is the increased aver-
age overlap between the top-k results. Such an increased
overlap is expected as the event contexts also overlap. In-
terestingly, in many cases, the one distinct aspect is enough
to significantly change the past events that qualify as most
similar.

In summary, using event contexts effectively discriminates
between relevant and irrelevant past events from a user’s
perspective. CDM, based on ADM, produces past events
following an order that meets the requirements of monitor-
ing applications; and ADM clearly outperforms existing set-
similarity measures when ranking past events.

5. RELATED WORK
There exists a significant body of work on high-

performance domain specific monitoring engines [29, 33,
38, 40] and general purpose data stream management sys-
tems [1, 2, 13, 21, 34]. Both types of tools provide effective,
near real-time event detection, but do not support the sub-
sequent investigation of newly detected events. Moirae is a
general purpose continuous monitoring system that strives
to support all aspects of a monitoring application from event
detection to root cause analysis. Moirae achieves this goal
by integrating the processing of streaming data with that
of stream data archives [8]. The ability to automatically
identify similar past events is an important component of
Moirae. In previous work, we proposed an architecture that
incorporates such event matching functionality into the over-
all Moirae design [8]. In this paper, we investigated the



specific problem of devising measures to effectively compute
event similarity using their context information.

Similarity queries (e.g., similarity searching [23, 41], simi-
larity joins [4], top-k queries [10, 12, 14, 16, 22, 31], keyword
searching over relational databases [26, 32], and ranking of
query results [3]), have been extensively investigated in the
database research area. For these similarity queries, query
results heavily depend on the similarity measures applied.
Various similarity measures have been proposed. The im-
portant representatives include similarities based on item
frequency and distance function of objects. The Cosine
Similarity metric with TF-IDF [7] has been successfully
used in areas such as document searching and ranking of
database query results [3]. This measure is mostly appro-
priate to express the similarity of data objects with only
categorical attributes. The Jaccard Similarity of two sets
has been successfully used for similarity joins in Data Clean-
ing applications [5, 15]. Several distance functions such as
Minkowsky Distance, Quadratic Distance and so on [43]
are measures of image and multimedia similarity search-
ing based on vector metric space model. These distance
functions are suitable to process numerical attribute values.
The above measures, however, can not directly be used to
compare objects like database tuples with both categorical
and numerical attributes. For the latter case, Agrawal et
al., [3] proposed an extended measure, the IDF Similarity,
that works for both numerical and categorical attributes.
For distance function of vector space model, Wilson and
Martinez proposed Heterogeneous Euclidean-Overlap met-
ric(HEOM) [42] which extends the numeric value distance
functions to the heterogeneous attribute domain.

In our case, the similarity measure is more complex and
it is hierarchical with four levels, i.e., attribute value dis-
tances, tuple distances, aspect distances, and similarity of
entire event contexts. Techniques for computing the dis-
tance between sets of multidimensional objects are related
to our problem of comparing aspects. The Hausdorff dis-
tance is an efficient metric for comparing two sets in image
matching and pattern recognition [27]. The Earth Mover’s
distance(EMD) is also successfully applied as a metric to
compare multidimensional distributions for content-based
image retrieval in large multimedia databases [39]. To
reduce the computational complexity of EMD, Assent et
al., proposed an index-supported multi-step algorithm [6].
The Match And Compare(MAC) distance [28] is another
numerical measure to compute the distance between mul-
tisets for set-valued queries. For exploiting hierarchical
domain structure, the Generalized Cosine-Similarity Mea-
sure(GCSM) [24] was introduced to compute set-similarity
by using induced trees. In this paper, we explored the ap-
plicability of these measures to the problem of comparing
event contexts. Our own measures, ADM and CDM, build
on these existing techniques, but use, integrate, and extend
them in a manner that better supports the requirements of
monitoring applications.

6. CONCLUSION
Continuous monitoring plays a key role in facilitating the

administration of large systems such as clusters of servers,
computer networks, Grids, etc. In these applications, ad-
ministrators need to receive timely alerts when problems or
abnormal events occur, but they also need support for un-
derstanding and diagnosing these events. One approach for

helping administrators is to show them, with each newly de-
tected event, a small set of top-k most similar past events.
Of course, event similarity depends on what the administra-
tor defines as the interesting context of these events.

In this paper, we proposed two new measures for compar-
ing event contexts in a monitoring system. Our first mea-
sure, ADM, computes the distance between two relations,
such that relations containing the same entities with simi-
larly abnormal attribute-values are ranked closest, followed
by relations with different entities containing abnormal at-
tribute values, followed by all other relations. This measure
is particularly well suited for monitoring applications, where
detecting and inspecting abnormal behaviors is a key compo-
nent of understanding and diagnostic problems. Our second
measure, CDM, builds on ADM and enables the comparison
of contexts composed of multiple different aspects.

Using a real workload from the computer-system moni-
toring domain, we showed that ADM outperforms existing
techniques and produces a ranked list of top-k most similar
past events that matches more accurately the desired rank-
ing in monitoring applications. We also showed that CDM
is effective at exploiting context information to find those
past events most relevant to a user: i.e., specifying different
context results in seeing drastically different lists of similar
past events.

There are a few interesting future works. First, we can do
similarity matching on key attribute ranther than consider-
ing only exact matches. For example, [24] proposed to use
static semantic hierarchy in their set similarity measures. If
we can’t find any interesting past aspects for the current
aspect, we can use this technique to fetch the past aspects
where tuples with similar keys were showing similar abnor-
malities to current ones. This approach intuitively improves
the results especially when the monitored object is new in
the system thus no history has been accumulated yet. Sec-
ond, we observed that several aspects in very close patterns
appear in the results together. However, such results just
wasting invaluable top k slots. Instead, like modern search
engine, clustering aspects in common pattern and presents
them as the representative aspect as well as the size of clus-
ter would greatly improve the comprehensibility of results.
Efficient query processing technique as well as index struc-
ture for our CDM is necessity to achieve near-realtime perfo-
mance. Finally, evaluating applicability of CDM in various
application domains would be interesting.

Overall, we view this work as an important component in
building systems that support, in an integrated fashion, all
aspects of monitoring applications from near-real time event
detection to root cause problem analysis.
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