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Abstract

Grammar-based compression algorithms infer context-free grammars to represent the input
data. The grammar is then transformed into a symbol stream and finally encoded in binary.
We explore the utility of grammar-based compression of DNA sequences. We strive to optimize
the three stages of grammar-based compression to work optimally for DNA. DNA is notoriously
hard to compress, and ultimately, our algorithm fails to achieve better compression than the
best competitor.

1 Introduction

Grammar-based compression methods have shown success for many different types of data. The
central idea behind these methods is to use a context-free grammar to represent the input text.
Grammars can capture repetitions occurring far apart in the data. This is a limitation on sliding
window or block sorting algorithms, such as LZ77 or bzip2.

Compression of DNA sequences is a notoriously hard problem. DNA contains only four sym-
bols, and so can be represented by two bits per symbol. It is very hard to beat the bound of two
bits per symbol. However, DNA is also known to have long repetitions that a compressor could
hope to capture. Furthermore, DNA has a unique kind of repetition, because it contains both
exact matches and reverse complement matches.

We explore the effectiveness of grammar-based compression on DNA sequences. We exploit
the different types of repetition in DNA by modifying a successful grammar inference algorithm.
We then endeavor to maximize our gain in the next two stages of grammar compression: symbol
stream encoding and binary encoding. Finally, we return to the grammar inference portion of the
algorithm and improve the grammar by quantifying the efficiency of the rules. After striving to
optimize each stage of our compression algorithm, we conclude that grammar-based compression
does not work well on DNA sequences.

1.1 Grammar compression

Grammar-based compression starts by inferring the context-free grammar to represent the string.
The resulting grammar is encoded as a symbol stream, which is then converted to binary (see
Figure 1). Each step affects the final size of the compressed file.

Grammar inference takes as input the string to be compressed and infers a grammar to repre-
sent that string. The language of the grammar is the one unique input string. Grammar encoding
takes as input a grammar and produces a symbol stream. The entropy coder transforms the
symbol stream into a bit stream. The decoder then proceeds backwards, first transforming the
bit stream into a symbol stream, then converting the symbol stream into the grammar, and finally
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Figure 1: Overview of grammar compression

decoding the grammar by interpreting the right hand side of the start rule to produce the original
data.

1.2 Our contributions

We modify a successful grammar inference algorithm, Sequitur [21, 22], to work better on DNA
sequences. We then present several different techniques for grammar encoding, ranging from very
simple methods to more complicated pointer-based methods. All skew the data in some way to
make arithmetic coding more attractive. Lastly, we implement a custom arithmetic coder for the
entropy coder, specifically designed to work well with our symbol stream. After evaluating our
algorithm, we explore improvements to the grammar to make it more efficient.

2 Background

In this section we describe Sequitur, a compression algorithm that infers a context-free grammar.
Sequitur is the starting point for our work, so we devote some time to fully explaining the algo-
rithm. We also discuss other grammar-based algorithms and describe related work in compression
of DNA sequences.

2.1 Sequitur

Sequitur, created by Nevill-Manning and Witten in 1997 [21, 22], is an on-line linear-time algo-
rithm that infers a context-free grammar to losslessly represent the input. The language of the
grammar consists of one string, the uncompressed text. The grammar represents both local and
nonlocal repetition without restrictions on space or time.

Sequitur discovers the grammar incrementally by maintaining two invariants, digram unique-
ness and rule utility. Digram uniqueness requires that no pair of adjacent symbols appears more
than once in the grammar. As the algorithm reads in the data, it checks each new digram against
a digram table of all current digrams. The first time a digram is repeated, Sequitur forms a new
rule with the digram as the right-hand side. Thereafter, when the same digram appears, it is
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replaced by a symbol representing the rule. Rule utility requires that each rule is used at least
twice (except for the start rule). The algorithm maintains a count of rule usage. If a rule’s count
falls to 1, which may happen while satisfying digram uniqueness, that rule is eliminated. Its one
location is replaced by its right-hand side.

For example, consider the string acgtcgacgt, which is the DNA analogue of the string used
in the original Sequitur papers [21, 22]. (Usually, DNA is represented with capital letters, but
because we need the upper-case symbols to describe the grammar, we will use the lower-case
{a, c, t, g} throughout this paper.) The algorithm reads in the data, placing the input characters
on the right hand side of the start rule, and storing the digrams in the digram table. After the
first five symbols, the grammar looks like

S → acgtc

while the table contains the digrams {ac, cg, gt, tc}. The next symbol, g, forms the digram cg,
which is already in the table. Thus Sequitur creates a new rule:

S → acgtcg ⇒ S → aAtA

A → cg

Now the digram table contains {aA,At, tA, cg}. Reading the next two symbols ac causes no
invariant violations, so ac is appended to the start rule and the digram table becomes {aA, At,
tA, cg, Aa, ac}. The following symbol, g, again forms the digram cg, which is already the right
hand side of a rule.

S → aAtAacg ⇒ S → aAtAaA

A → cg A → cg

Observe that replacing cg with the rule A causes a violation of digram uniqueness; aA appears
twice. Sequitur creates a new rule:

S → aAtAaA ⇒ S → BtAB
A → cg A → cg

B → aA

The final symbol t causes another new rule formation:

S → BtABt ⇒ S → CAC
A → cg A → cg
B → aA B → aA

C → Bt

Notice that B now appears only once on the right hand side of rules. This is a violation of rule
utility, so the algorithm eliminates B.

S → CAC ⇒ S → CAC
A → cg A → cg
B → aA C → aAt
C → Bt

There are no more symbols or invariant violations, so this is the final grammar returned by
Sequitur.
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Sequitur does not find the smallest context-free grammar to represent the string. That task
is NP-hard, as shown by Lehman [17, 18], who closely followed work done by Storer [27]. Nor
is the grammar close in size to those returned by the best approximation algorithms. Lehman
showed that there is a pathological input on which Sequitur will be an Ω(n

1
3 ) approximation to

the smallest grammar. He also showed that on all grammars, Sequitur will do no worse than
an O((n/ log n)

3
4 ) approximation. This compares unfavorably with Lehman’s method, which has

worst-case approximation ratio O(log3 n), and also is worse than some other more practical imple-
mentations. Further work by Charikar et al. [6] found an O(log(n/g∗)) approximation algorithm,
where g∗ is the size of the smallest grammar. However, as Lehman notes, the focus of data
compression algorithms is different than the focus of approximation algorithms; the latter looks
for the smallest possible grammar size, regardless of computational cost, while the former tries
to find the smallest possible compressed data while using a reasonable amount of computational
resources. Approximation algorithms focus on worst-case analysis, often on pathological input,
while data compression algorithms are concerned with compressing real data. Furthermore, the
smallest grammar size does not necessarily lead to the smallest compressed file.

Kieffer and Yang [13] also showed that Sequitur is not universal, that is, it is not equal to
entropy in the limit under some model. This is because it is possible for Sequitur to have two
different rules that generate the same string. Consider for example

A → ac

B → gt

C → AB

D → aEt

E → cg

(Assume this is a small piece of the grammar, and the invariants are satisfied elsewhere.) The
string generated by the rule C, denoted 〈C〉, and the string generated by D are the same: 〈C〉 =
〈D〉 = acgt. In order for Sequitur to be universal, its grammars must be irreducible, and in order
for the grammars to be irreducible, this type of repetition must be eliminated. We will refer to
this change as the Kieffer-Yang improvement.

2.2 Other grammar-based methods

There are several other grammar-based compression methods. Larsson and Moffat [16] propose an
off-line algorithm called Re-Pair that infers a dictionary off-line by recursively creating phrases for
the most frequently occurring digrams. It then transmits the dictionary along with the compressed
stream for on-line decoding. Another off-line algorithm by Bentley and McIlroy [4] replaces long
repetitions with an offset and length. It is not efficient for short string repeats. However, it does
have lower main memory requirements than either Sequitur or Re-Pair, because it uses block
sizes to control the size of the longest string found.

Another type of grammar-based method for compression uses derivation trees [5, 12]. A
derivation tree specifies how a grammar produces a particular string. This method assumes that
the grammar is known to both the encoder and decoder, and that the language of the grammar
contains all possible input strings to the encoder. The algorithm then encodes the derivation tree
with respect to the grammar for the given input string.

Much work has been done on grammar inference [9, 26, 15, 28]. Typically, these methods try
to infer a grammar for a set of strings, a problem that has wide applicability in natural language
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processing. The strings might be positive or negative examples for the grammar. The metric
for a good grammar is one that recognizes strings in the language and rejects those not in the
language. The methods are similar to those used by Sequitur, though the aim of the algorithms
is clearly very different.

Finally, Kieffer and Yang [13] have developed a framework of provable properties for good
compression of context-free grammars, as discussed above. Yang et al. [14] then developed
an algorithm for estimating DNA sequence entropy that satisfied the properties and also took
advantage of reverse complements. The algorithm runs in linear time through a complicated use
of suffix trees. This yielded impressive entropy results, though the grammar was not actually sent
through an entropy encoder, and thus the practical compression results remain unknown.

2.3 DNA compression

DNA is notoriously hard to compress [19, 14]. In 1994, Grumbach and Tahi [11] showed that
many common compression algorithms do not work well on DNA sequences, and introduced their
own method, biocompress-2. Biocompress-2 searches for “palindromes,” or reverse complements,
within an LZ77-style window [29, 30]. The result is then arithmetically encoded. Grumbach and
Tahi achieved only 10.24% compression on average. Their corpus became the standard by which
DNA compression algorithms are measured, and we use this corpus in our results section.

Loewenstern and Yianilos [19] created an entropy estimator and compressor called CDNA that
tries to capture inexact matches in DNA by creating a set of experts and then weighting these
through the Expectation Maximization algorithm. The data are segmented and the predictor is
trained on the data minus the segment to be tested. This training is repeated for each segment
and the result is the cross-validation of all the iterations. The on-line version of this algorithm
would train the experts on everything to the left of the current nucleotide to predict its value.
However, this method was never implemented and its mathematical behavior was left to future
work. Furthermore, this algorithm takes more than linear time, which is unacceptable for large
DNA sequences.

Apostolico and Lonardi [3] developed an off-line method of textual substitution that finds
good substrings to compress and represents them via Lempel-Ziv style pointers [29, 30]. They
applied their method to DNA sequences [2]. However, in their results section, they compare the
compressed result with the original size of the file in bytes, rather than its size when represented
with two bits per symbol (which is the minimum necessary to represent DNA without any com-
pression). When this oversight is taken into account, the compression is small, and sometimes
the algorithm expands the file beyond two bits per symbol.

In 1999, Chen and Li created GenCompress [7], which uses approximate matching to find both
reverse complements and inexact matches. They achieved much better results than biocompress−
2. The authors further improved their algorithm by creating PatternHunter for homology search
[20], which led to DNACompress [8]. PatternHunter finds exact and inexact matches in DNA, with
both forward matching and reverse complement matching. DNACompress works by first running
PatternHunter on the data, which creates a list of homologous regions sorted from highest to
lowest score. The score is based on user-weighted parameters such as base matches and the size
of gaps in the homologous region. DNACompress processes items on the list until the score of the
top item is less than some pre-defined threshold. Processing consists of replacing the repeated
regions with a triple defining the length and starting positions of the repeat, followed by a series
of triples defining edit operations (for inexact matches). The algorithm is off-line; PatternHunter
is proprietary software; and the asymptotic time complexity is not discussed in either paper.
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However, it runs quickly in practice and DNACompress appears to be the best DNA compression
algorithm at the present time.

2.4 Adaptive arithmetic coding

We use adaptive arithmetic coding extensively in our implementation of grammars for DNA
compression. Arithmetic coding was created independently by Pasco [24] and Rissanen [25] in
1976. Essentially, each symbol is mapped to a unique subinterval in the unit interval [0, 1) using
the probability distribution of the data. The width of the interval equals the probability of the
string. Thus, a symbol that is likely to occur will have a large interval and a short unique tag
indicating that interval, whereas an unlikely symbol will have a small interval and it will take
more bits to represent a tag within that interval. Arithmetic coding is most useful when there is
a skewed probability distribution, because high probability symbols will map to bigger intervals
and can thus be represented by shorter tags. Often arithmetic coding is employed as a last step
in data compression, after processing has created the desired skew.

One inefficiency in this method is that both the encoder and the decoder need to know the
probability distribution. Adaptive arithmetic coding solves this by updating the probability dis-
tribution as symbols are sent. When a new symbol occurs that does not exist in the current
distribution, an escape symbol is sent, followed by some fixed code known to both the encoder
and decoder. The new symbol is then added to the probability distribution. Thus, the escape
symbol also has a place in the probability distribution; if there are many new symbols, the cost
of encoding the escape symbol will be small.

3 Grammar inference

We created a modified version of Sequitur called DNASequitur. Our main contribution is to
improve Sequitur to work better on DNA sequences. DNA sequences contain structure and
repetitions, so Sequitur might be expected to work well on this data. However, the Nevill-Manning
version does not fare well on the standard corpus. One reason might be that there is additional
structure in DNA that Sequitur cannot take advantage of, namely the reverse complements.

DNA sequences are made up of four nucleotide bases, a, c, t, and g. These in turn form
chemical bonds with each other, so that a bonds with t and c bonds with g. Since DNA consists
of two strands linked in together in a double helix, the second strand maps to the first in reverse
complement order. Here are some properties of the reverse complement:

• The complement of a is t and vice-versa: a′ = t and t′ = a. Similarly, c′ = g and g′ = c.

• The reverse complement of two strings x and y satisfies: (xy)′ = y′x′.

• The reverse complement of the reverse complement of a string w is the original string:
(w′)′ = w.

For example, (cat)′ = atg.
We added an invariant to Sequitur to exploit this hidden structure of DNA. In addition

to digram uniqueness and rule utility, our enhanced version also mandates reverse complement
uniqueness and utility. When a digram is stored in the digram table, its reverse complement
is also implicitly stored. When either an exact match or a reverse complement match is seen
subsequently, a rule is formed; in the first case, the right-hand side is the original digram, and
in the second case, the right-hand side is the reverse complement. The digram and its reverse
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complement are replaced in the grammar with the nonterminal representing the rule. If the rule
is A, the reverse complement is denoted A′. A′ is considered to be an instance of rule A for rule
utility purposes. A is eliminated when it appears only once on the right hand side of rules in the
grammar, either as the original or the reverse complement. If both A and A′ appear on the right
hand side, then A is used twice and would not be eliminated.

For example, if A → x, then A′ → x′, and the complement of the string derivation of rule A
is equal to the string derivation of the complement: 〈A〉′ = 〈A′〉. Concretely, if A → cDt, then A′

is implicitly defined as A′ → aD′g.
Let’s look at our original example with this new invariant. We start with the string acgtcgacgt.

The algorithm reads in the data, placing the input characters on the right hand side of the
start rule, and storing both the digrams and their reverse complements in the digram table.
Consequently, there is a match much earlier. The first three symbols, acg, result in a digram
table of {ac, cg} and, implicitly, {gt}, because (ac)′ = gt and cg is its own reverse complement.
The next symbol, t, results in a violation of digram uniqueness and a new rule is formed:

S → acgt ⇒ S → AA′

A → ac

Now the digram table (plus implicit complements) contains {AA′, ac, gt}, because AA′ is its own
reverse complement. Reading the next three symbols cga causes no invariant violations, so cga
is appended to the start rule and the digram table and implicit complements become {AA′, ac,
gt, A′c, gA, cg, ga, tc}. The following symbol, c, again forms the digram ac, which is already the
right hand side of a rule.

S → AA′cgac ⇒ S → AA′cgA
A → ac A → ac

The replacement causes a digram uniqueness violation; the digram gA is implicitly in the table
because (A′c)′ = gA.

S → AA′cgA ⇒ S → ABB′

A → ac A → ac
B → A′c

The digram table and implicit reverse complements now contain {AB,B′A′, BB′, ac, gt, A′c, gA}.
The next symbol, g, does not violate any invariants. The final symbol, t, forms the digram gt,
which corresponds to A′.

S → ABB′gt ⇒ S → ABB′A′

A → ac A → ac
B → A′c B → A′c

Notice that B′A′ is already implicitly in the digram table as the reverse complement of AB. This
is a violation of digram uniqueness, and the grammar becomes:

S → ABB′A′ ⇒ S → CC ′

A → ac A → ac
B → A′c B → A′c

C → AB
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B now violates rule utility, since it appears only once on the right hand side. The final grammar
is:

S → CC ′ ⇒ S → CC ′

A → ac A → ac
B → A′c C → AA′c
C → AB

A comparison of the grammars inferred by the original Sequitur on DNA data and those
inferred by this version shows that this version results in smaller grammar sizes [10].

4 Grammar Encoding

There are several different ways to encode the grammar. We implemented three versions: one
which is very simple, and two that take advantage of LZ77 ideas [29, 30] to make the symbol
stream smaller and easier to transform into a bit stream.

4.1 Simple symbol stream

A very simple encoding technique is to send the right hand side of each rule, separated by a
special symbol.

S → CC ′

A → ac ⇒ CC ′#ac#AA′c
C → AA′c

The symbol stream is easy to encode and decode and takes linear time to produce. However, the
stream does not result in good compression. The length of the symbol stream is simply too large.

4.2 LZ77-style symbol stream

A better method is to use a pointer to make the stream smaller. The basic idea is to send the
right hand side of the start rule. When a rule is encountered for the first time, its right hand side
is sent. The second time a rule is encountered, a tuple is sent that indicates where the rule starts,
how long it is, and if this occurrence is a complement. Thereafter, when the rule is encountered,
the rule number is sent, along with the “ ’ ” symbol if it’s a complement.

We implemented two different flavors of encoders. Our first version sends a quadruple the
second time a rule is encountered. The quadruple (r, o, l, k) represents the rule number r that the
new rule comes from, the offset o within the rule, the length l, and whether this occurrence is a
complement k.

For example, consider our previous grammar:

S → CC ′

A → ac
C → AA′c

We start out by sending the right hand side of S: CC ′. C is the first appearance of the rule so we
send its right hand side:AA′c. A is the first appearance of the rule so we send its right hand side:
ac. Thus, the first symbols sent are ac. Next, we process A′, which is the second appearance of
A. This is a quadruple. A came from rule C, but rule C doesn’t exist yet. The lowest parent rule
that already exists is the start rule, or rule 0. We send (0, 0, 2, 1): the rule is 0, the offset within
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the rule is 0, the length of the rule is 2, and this occurrence is a complement. The last symbol in
rule C is c, so we send that to the stream.

The symbol stream so far is ac(0, 0, 2, 1)c and we’ve processed the first appearance of C. The
next symbol is the second appearance of rule C. We send a quadruple (0, 0, 3, 1) representing that
C starts in rule 0 at offset 0, has length 3, and this occurrence is a complement. The final symbol
stream is ac(0, 0, 2, 1)c(0, 0, 3, 1).

The decoder adds symbols to the right hand side of the start rule until it encounters a quadru-
ple; then it creates the rule and continues. In this example, the decoder creates S → ac. It
encounters the quadruple and creates a new rule A → ac, then replaces the repeat where the rule
starts with A and the quadruple with A′ (since the quadruple indicated it was a complement).
Now the grammar looks like:

S → ac(0, 0, 2, 1) ⇒ S → AA′

A → ac

The next symbol is c and is added to the right hand side of the start rule. The final grammar is:

S → AA′c(0, 0, 3, 1) ⇒ S → CC ′

A → ac A → ac
C → AA′c

If there were subsequent appearances of A or C, they would be sent with their label (i.e., A, A′,
C, or C ′).

Because the parent rule is often the start rule, the size of the offset within the rule grows with
the size of the right hand side of the start rule. The actual offset shows no discernible pattern;
even when the right hand side of the start rule is big, the offset could be close to the beginning
(very small), or it could be close to the end of the right hand side (very big). The size gets as big
as tens of thousands of symbols, meaning it can take > 14 bits to encode the offset. This led us
to try another method.

4.3 Marker method

In an early paper, Nevill-Manning, Witten, and Maulsby [23] describe in detail a marker method
for encoding the symbol stream, which we modified slightly. When a new rule is encountered, a
marker symbol is sent, and then the right hand side of the rule is sent. The second time the rule
is encountered, a triple (o, l, k) is sent, corresponding to the offset o, the length l, and whether
this occurrence is a complement k.

Our symbol stream will look very similar to before: ##ac(1, 2, 1)c(0, 3, 1). However, the
offsets mean something different; they refer to the marker symbols that have not been processed.

The decoder reads the input ## and stores these as pointers in the grammar. After reading
ac, the decoder’s grammar looks like

S → ##ac,

though the ## symbols represent pointers. The first triple refers to offset 1; for the decoder, this
is the index of the pointer in the grammar. There are two pointers currently in the grammar, so
1 refers to the second one.

S → ##ac(1, 2, 1) ⇒ S → #AA′

A → ac
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Now there is only one pointer in the grammar. It would not be possible for a subsequent triple to
have any offset other than 0. The next symbol transmitted is c, which is appended to the right
hand side of the start rule. Finally, the last triple causes another rule formation:

S → #AA′c(0, 3, 1) ⇒ S → CC ′

A → ac A → ac
C → AA′c

If, after this beginning of the symbol stream, a marker symbol and a triple appeared, the offset
of the marker would be 0, because there would be only one pointer represented in the grammar.

The offset is limited in size. Both the encoder and decoder know how many marker symbols
have been sent and how many have been already spoken for by other rules. In practice, it can get
as big as the number of rules in the grammar, or in the thousands (> 10 bits). When a new rule
is encountered, its right hand side is sent and its absolute number is recorded within the rule.
The second time the rule is encountered, the offset is calculated based on this absolute number
and what marker symbols have already been taken care of.

Although we would expect the second method to have better overall compression, it does not.
Perhaps the savings in the offset size is wiped out by the addition of a marker symbol per rule.
Since there are thousands of rules, this would be an additional thousands of symbols. The custom
arithmetic coders, discussed below, could be expected to deal well with this kind of skewed data.
However, the first method has an advantage because of the prevalence of r = 0 and l = 2 in the
quadruple.

5 Binary encoding of symbol streams

In order to maximize compression, we developed a custom adaptive arithmetic coder for the
symbol stream. The compressed file has two bit streams embedded within it - the regular symbol
stream, entropy encoded with the custom arithmetic coder, and a prefix- and fixed size-based bit
stream for encoding the tuples.

5.1 Custom arithmetic coder

In the arithmetic coder, the symbols that start out with frequency are a, c, t, g, # for the alternate
symbol stream, and a few other special symbols, discussed below. The coder is adaptive, in that
the special symbols all start out with the same frequency and all rules start out with zero frequency.
As symbols are encountered, their frequency is increased by 10. When triples or quadruples are
encountered, an escape symbol is sent and they are written to the second bit stream. That rule
and its complement are added to the symbol table for the arithmetic coder. Since complements
occur with less frequency than regular matches, we add a frequency of 8 for the regular version
of the rule and 2 for its complement.

We allow symbols in the arithmetic coder that have zero frequency. That is, many times a rule
only appears twice in the grammar, so its label will never appear in the symbol stream. However,
it is often still cost-efficient to encode that rule as its right-hand side plus a tuple encoding. This
becomes clear below when we discuss the cost measure. There does seem to be an inefficiency
in the arithmetic coder, since rules are added to the symbol table with nonzero frequency when
their quadruple appears in the stream. We tried sending a special escape symbol so the decoder
would know not to add that symbol to the table, but it was more costly than the original version.
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5.2 Tuple coder

The triples and quadruples are encoded in a very similar manner. First of all, length 2 and rule
0 appear over 90% of the time. We exploited the power of the arithmetic coder by using different
escape symbols for these special tuples. When the tuple is rule 0, length 2, and not a complement,
we send “[” as the escape symbol; when it is rule 0, length 2, and a complement we send “$”;
and when it is anything else we send “%”. Then most of the time, the only thing left to encode
is the offset. In both cases, we use a fixed-size code for the offset that is limited by how big the
offset can be. For triples, this is ultimately limited by the number of rules in the grammar; for
quadruples, it’s limited by the size of the right hand side of the start rule.

In the infrequent case that the rule is not 0 or the length is not 2, we have to encode the other
members of the tuple. For the quadruple, the rule number is usually 0 (even when the length is
not 2), so we send 0 for rule 0, and 1 followed by dlog2(P − 1)e bits for any other rule, where P
is the number of rules seen so far. (We actually send blog2(P − 1)c if the rule number is in the
lower half of the maximum range; this saves us a bit half of the time. We employ this same trick
on the offsets as well).

For both the triple and quadruple, we send a γ-code for the length. A γ-code is a special
type of prefix code that grows larger with the size of the number it’s encoding. To encode n, we
calculate n + 1, then send m 0’s, where m + 1 is the number of bits required to write n + 1 in
binary. We then append the binary representation of n + 1. The decoder reads m 0’s and knows
to read the next m + 1 bits to get n.

n γ-code
0 1
1 010
2 011
3 00100
4 00101

...
In general, for small numbers the γ-code takes few bits. The vast majority of lengths are < 5;

when the length isn’t equal to 2, it’s usually equal to 3. In the case of the triple, the smallest
length is 3, since the special symbols cover the cases when the length is 2. We use the γ-code to
describe n = (length − 3). Thus, in a triple, if the length was 3, the γ-code would send 1; if it
was 4, the γ-code would send 010. In a quadruple, it’s not known if the length is 2, so we use the
γ-code to describe (length− 2).

6 Basic Results

In this section we present some basic results. For our test files, we use the DNA corpus first
presented in [11] and available on the web at [1]. The corpus includes the complete genomes
of two mitochondries (MIPACGA, MPOMTCG), two chloroplasts (CHNTXX, MPOCPCG), and
the complete sequence of chromosome III of yeast (YSCCHRIII); five human genes (HUMGHCSA,
HUMHBB, HUMHDABCD, HUMDYSTROP, HUMHPRTB); and the complete genomes of two
viruses (VACCG, HEHCMVCG). In order to conserve space, the tables in this section will focus on
MIPACGA, MPOCPCG, HUMHHCSA, HUMDYSTROP, and VACCG. Full results are available
in the appendix.

Recall that our DNASequitur algorithm uses reverse complements when inferring the grammar.
Table 1 compares the original Sequitur to DNASequitur on the five DNA sequences. The number
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of productions is the number of rules formed; the length of the right hand side is the sum of all
the right hand sides of the rules; the longest repeat is the longest rule formed; and the maximum
number of repeats is the number of repeats for the rule that appeared the most in the grammar.
On all files, the number of productions is smaller for DNASequitur, leading to a smaller right-
hand side. DNASequitur also creates a larger longest repeat and a higher value for the maximum
number of repeats. These two factors explain why DNASequitur produces smaller files than the
original Sequitur.

Table 1: Sequitur vs. DNASequitur, best in bold
Sequence Productions Length RHS Longest Repeat Max Repeats

Seq DNASeq Seq DNASeq Seq DNASeq Seq DNASeq
HUMDYSTROP 1,308 1,163 10,413 10,099 16 19 104 138

HUMGHCSA 2,288 2,200 13,270 13,111 225 346 113 174
MIPACGA 2,795 2,616 23,373 22,910 114 115 183 195
MPOCPCG 3,077 2,985 27,153 26,843 21 28 185 250

VACCG 4,480 4,373 41,303 40,654 560 560 238 287

To illustrate the differences between symbol streams, table 2 compares the lengths of the three
types of streams before and after binary encoding. The baseline length in the second column is the
number of nucleotides in the DNA sequence divided by four. This is the baseline because a DNA
sequence can be represented as a fixed code with two bits per symbol. An algorithm achieves
compression by producing a file smaller than this baseline. In order to compare fairly across
differently designed symbol streams, we ran bzip2 on the three streams to produce the binary
results. Bzip2 is a popular compressor that normally performs quite well on many different types
of data.

The simple symbol stream is larger in binary size than either the LZ77 or marker streams. It
is so simple that its binary size cannot be improved upon with tricks, and there is a large gap
between its size and the baseline. This justifies our implementation of a custom arithmetic coder,
and shows why we must be clever in encoding the symbol stream.

Table 2: Comparison of symbol streams, best in bold

Sequence Baseline Symbol stream (bytes) Bzip2 on symbol stream (bytes)
Simple LZ77-style Marker Simple LZ77-style Marker

HUMDYSTROP 9,693 40,652 41,168 38,667 14,321 13,042 13,475
HUMGHCSA 16,624 57,052 58,200 53,704 20,318 17,780 18,491
MIPACGA 25,079 98,834 99,743 93,820 34,500 31,611 32,769
MPOCPCG 30,256 117,079 117,049 110,152 40,687 37,285 38,594

VACCG 47,935 183,972 186,055 175,587 64,074 58,798 60,654

Figure 2 demonstrates why we chose to implement the marker symbol stream, which uses
triples as opposed to quadruples. In the LZ77-style symbol stream, the maximum size of the
offset grows with the size of the right-hand side of the start rule. However, there is no discernible
pattern to the offsets; even close to the final rule number encoded, offsets occur throughout the
range of possible values. The bits required to encode the offset thus grow logarithmically with
the size of the right hand side of the start rule. In contrast, the size of the offsets in the marker
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Figure 2: Offsets in the tuple symbol streams for HUMDYSTROP

symbol stream is limited throughout encoding. The figure shows the offsets together with 2b,
where b is the number of bits used to encode the offset. After a peak in the middle of encoding,
the maximum size of the offset decreases. This is because the decoder knows how many marker
symbols have been sent that do not correspond to a sent rule, and this is the maximum size of
the offset; as more rules are sent, more marker symbols are eliminated from the list of open spots.
The marker symbol stream appeared to be a good solution to the unchecked growth of offsets in
the LZ77-style method.
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Figure 3: Frequency of lengths and frequency of the special escape symbols

To justify our use of escape symbols, figure 3 shows the frequency of length 2 in the marker
method and the frequency of the special escape symbols for the LZ77-style method. The marker
method graph is the aggregate lengths of the five test files. Special symbols are used when the
length is 2, which happens over 94% of the time. The LZ77-style graph shows the percentage
frequency of the three escape symbols for the test files. (0, 2, 0) and (0, 2, 1) refer to rule 0, length
2, and complement. Together, these two represent over 90% of the cases on average. Arithmetic
coders perform well on skewed data in general, and the escape symbols help skew the frequency
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of symbols in the stream further.
Finally, table 3 shows the sizes of the compressed files for different algorithms. For this measure

we look at bits per symbol. The baseline for compression is two bits per symbol. Our methods
(labeled Marker and LZ77-style) beat Sequitur on all the files; however, we don’t compress on
four out of the five files. It is worth noting that bzip2 also doesn’t do well on the raw DNA; it
too only compresses one out of the five files. The pure arithmetic coder achieves compression on
four out of five files. DNACompress, the best known competitor, compresses all files, and does
particularly well on HUMGHCSA. When that outlier is excluded, DNACompress performs close
to, though better than, pure arithmetic coding on the DNA.

Table 3: Comparison of symbol streams (bits/symbol), best in bold
Sequence Sequitur Marker LZ77-style bzip2 arith DNACompress

HUMDYSTROP 2.34 2.20 2.20 2.18 1.95 1.91
HUMGHCSA 1.86 1.74 1.77 1.73 2.00 1.03
MIPACGA 2.16 2.10 2.10 2.12 1.88 1.86
MPOCPCG 2.13 2.07 2.07 2.12 1.87 1.67

VACCG 2.11 2.06 2.06 2.09 1.92 1.76

7 Grammar improvement

Given the sub-optimal basic results, we explored ways in which to improve our algorithm. After
exhausting methods to optimize the grammar encoding and the binary encoding of the symbol
streams, we looked for ways in which to improve the efficiency of the grammar itself.

7.1 Kieffer-Yang improvement

Kieffer and Yang suggested an improvement to Sequitur to make it universal [13]. As described
at the end of section 2.1, the improvement does not allow rules to have the same derivation.
We implemented the improvement for both exact matches and reverse complement matches. The
algorithm is the same as before, except when a rule is created, its right hand side derivation string
is put into a table. When two digrams match and a new rule is about to be created, the would-be
new rule’s derivation and its reverse complement are checked for membership in the table. If there
is a match, the new rule is not created, and the digrams are replaced with the appropriate old
rule.

This leads to some surprising results. First of all, the customized encoders assume that a
rule always appears before its complemented version. With the Kieffer-Yang improvement, this
is no longer the case. To fix it, we implement a post-pass routine that looks for complements
appearing before their original versions. Once found, the complement becomes the original; that
is, the right hand side of the rule is changed to be its complement, and all appearances of the
rule are switched to their complement. This allows the encoders to work, but results in more
complements appearing in the grammar, which in turn increases the entropy of the data stream.

Furthermore, even when we use the simple encoding method, Kieffer-Yang still does not show
much improvement over the traditional version. Table 4 shows the size of the simple symbol
stream on DNASequitur with and without the Kieffer-Yang improvement. It also compares the
sizes of the binary files after encoding with the LZ77-style symbol stream. Even without the
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Table 4: Grammar Comparison, best in bold
Sequence Simple symbol stream Binary (w/LZ77-style stream)

Original Kieffer-Yang Original Kieffer-Yang
HUMDYSTROP 40,652 40,483 10,658 10,637

HUMGHCSA 57,052 57,645 14,674 15,092
MIPACGA 98,834 98,386 26,311 26,115
MPOCPCG 117,079 116,475 31,259 31,431

VACCG 183,972 184,244 49,307 49,784

post-pass routine, the size of the Kieffer-Yang grammar is bigger on two out of five files. After
encoding, Kieffer-Yang is larger on three out of five files. Though theoretically sound, in practice
the improvement does not lead to greater compression on DNA sequences.

7.2 Cost measure improvement

We also explored an improvement of our own. We recognized that sometimes DNASequitur creates
rules that are more expensive to encode than just sending the right hand side of the rule as is.
We developed a cost measure to quantify this difference and remove rules that are inefficient.
For example, one might expect a short rule that appears infrequently would be less efficient than
simply sending the right hand side in place.

The cost measure compares the cost of using the rule with the cost of sending the right
hand side instead. In the latter case, we’re measuring the cost of replacing each instance of rule
A with its right-hand side, and adding that to the cost of replacing each instance of A′ with
the complement of the right-hand side. Both costs are dependent on the bits per symbol of
each symbol; we use an information measure to estimate this. The information also depends on
whether the symbol is a complement.

Let I(s) represent the information of symbol s, N(s) be the number of times symbol s appears
in the symbol stream, and T be the total number of symbols in the stream. Let A → x, where x
represents the right hand side of rule A, and x = x1 · · ·xn. I(x) is an estimate of how many bits
it will take to encode string x:

I(s) = − log2(N(s)/T )

I(x) =
n∑

i=1

I(xi)

Recalling the properties of the reverse complement from section 3, the cost of replacing a rule
with its right hand side is

R(A) = N(A)I(x) + N(A′)I(x′)

The cost of using the rule is the cost of sending the right hand side once, plus the cost of
encoding the tuple prefix code (including the rule marker symbol ”#” and the escape symbol),
plus the bits per symbol of using the rule thereafter. Let C be the cost of the tuple prefix code.

U(A) = I(x) + C + (N(A)− 2)I(A) + N(A′)I(A′)

or
U(A) = I(x) + C + (N(A)− 1)I(A) + (N(A′)− 1)I(A′),
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depending if the second appearance of A is a complement. The rule only appears in the symbol
stream (N(A)− 2 + N(A′)) times. The first appearance in the grammar becomes the right hand
side, and the second is taken up by the tuple.

The cost C of the tuple is the sum of cost of encoding the escape symbol and possibly the
marker symbol and the cost of encoding the prefix code. The prefix code cost is fixed, depending
only on rule number, length, complement, and most importantly, offset size. Thus this is calculated
during an earlier pre-pass, before grammar improvement. The cost of encoding the escape symbol
and marker symbol depends on the estimate of bits per symbol, which in turn depends on the
information.

The grammar improvement phase of the algorithm calculates cost from bottom-up and elimi-
nates rules if U(A) > R(A). As rules are eliminated, the number of times symbols appear changes.
We keep track of these changes in order to ensure accurate cost measurement at every point. Once
the grammar has been completely checked, it is checked again until no more rules are eliminated.
This repetition happens a constant number of times in practice.

7.3 Cost measure results, best in bold

Table 5: Original vs. Cost measure improved
Sequence Productions Length RHS Longest Repeat Max Repeats

Org Cost Org Cost Org Cost Org Cost
HUMDYSTROP 1,163 623 10,099 10,314 19 19 138 219

HUMGHCSA 2,200 1,713 13,111 13,342 346 346 174 209
MIPACGA 2,616 1,673 22,910 23,358 115 115 195 264
MPOCPCG 2,985 1,677 26,843 27,554 28 28 250 393

VACCG 4,373 1,452 40,654 42,887 560 420 287 585

Table 5 shows the differences between the original (DNASequitur) grammars and the cost
measure grammars. In some cases, close to half of the rules are removed. Only one sequences had
the longest rule removed, and all sequences increased the maximum number of repeats for any
given rule. The tradeoff shows in the increased size of the right hand side.

To evaluate our measure, we compare the percentage compression of the files on settings near
our baseline of U(A) > R(A). Specifically, we look at U(A) + k > R(A) : −100 ≤ k ≤ 150.
Figure 4 shows the results. The relative flatness of the curves before k = 0 is due to the fact
that negative k values amount to a penalty on removing rules. After a certain point, the cost
measure will remove no rules. On the other end of the spectrum, there are diminishing returns
after k = 100.

If our cost measure was precisely correct, we would see a maximum of percentage compression
at 0. However, this only seems to be the case for the file with the most repetition, HUMGHCSA.
The rest seem to reach maximum around k = 35. This includes VACCG, which actually shows
compression under the cost measure, a big improvement over the 3% expansion it showed origi-
nally.

In the end, our cost measure does result in smaller files on all test sequences. It’s not clear
why the maximum compression is reached at k = 35, but it is promising that the maximum is at
a consistent k across most sequences. Perhaps there is some inherent skew built in because we’re
using information, which is an optimistic estimate of bits per symbol.
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Figure 4: Evaluation of the cost measure

8 Conclusion and Future Work

We have thoroughly investigated using grammar compression for DNA sequences. Though gram-
mars are good at capturing long repetitions that occur far apart in the data, DNA does not seem
to have enough exact matches for the grammars to exploit. Even when both exact matches and
reverse complement matches are considered, there is simply not enough repetition to make up for
the expansion that using a grammar causes.

The best method for compressing DNA sequences appears to be DNACompress, which cap-
tures exact and inexact matches. Alhough DNACompress is not as elegant as Sequitur and does
not seem to have reported asymptotic running time results, it executes quickly in practice and
compresses DNA about 13 % on average.

One direction for future work is to explore the use of edit grammars for DNA sequences. Edit
grammars allow rules like A → X[editop], where editop is an edit operation on X, such as insert a
character, delete a character, or replace a character with another [6]. Sequitur could be modified
to form an edit grammar while still using the same invariants of digram uniqueness and rule
utility. If it were successful, this modification would combine an elegant and theoretically sound
algorithm with good practical results, a great goal for any algorithms researcher.
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Appendix

Sequence Size Sequitur Marker LZ77-style
CHNTXX 155,939 2.24 2.17 2.17

HEHCMVCG 229,354 2.22 2.18 2.17
HUMDYSTROP 38,770 2.34 2.20 2.20

HUMGHCSA 66,495 1.86 1.74 1.77
HUMHBB 73,308 2.20 2.11 2.11

HUMHDABCD 58,864 2.26 2.15 2.15
HUMHPRTB 56,737 2.22 2.16 2.16
MIPACGA 100,314 2.16 2.10 2.10
MPOCPCG 121,024 2.13 2.07 2.07
MPOMTCG 186,609 2.21 2.16 2.16

VACCG 191,737 2.11 2.06 2.06
YSCCHRIII 316,613 2.17 2.12 2.11

Table 6: Our results on the entire corpus: Original Sequitur, DNASequitur with the marker
method symbol stream, and DNASequitur with the LZ77-style symbol stream. Size is the number
of nucleotides in the original file; all other measurements are in bits per symbol (bps), where 2
bps is the baseline for compression. MPOCPCG is also referred to as CHMPXX; MIPACGA is
also referred to as PANMTPACGA
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Sequence M + KY L + KY M + Cost L + Cost M + KY + Cost L + KY + Cost
CHNTXX 2.19 2.19 2.15 2.12 2.19 2.17

HEHCMVCG 2.21 2.21 2.13 2.12 2.20 2.18
HUMDYSTROP 2.20 2.19 2.18 2.16 2.17 2.16

HUMGHCSA 1.79 1.82 1.76 1.75 1.81 1.81
HUMHBB 2.14 2.14 2.06 2.05 2.12 2.10

HUMHDABCD 2.17 2.18 2.14 2.12 2.18 2.16
HUMHPRTB 2.17 2.17 2.15 2.14 2.17 2.15
MIPACGA 2.09 2.08 2.08 2.06 2.07 2.06
MPOCPCG 2.08 2.08 2.05 2.02 2.07 2.05
MPOMTCG 2.22 2.22 2.14 2.12 2.22 2.20

VACCG 2.08 2.08 2.02 2.01 2.07 2.05
YSCCHRIII 2.14 2.14 2.09 2.08 2.12 2.11

Table 7: More results on the entire corpus, all use DNASequitur for the grammar inference step.
”M” stands for marker method symbol stream, ”L” stands for LZ77-style symbol stream, ”KY”
stands for Kieffer-Yang improvement, and ”Cost” stands for cost measure improvement

Sequence Our best bzip2 arith DNACompress
CHNTXX 2.12 2.18 1.96 1.61

HEHCMVCG 2.12 2.17 1.99 1.85
HUMDYSTROP 2.16 2.18 1.95 1.91

HUMGHCSA 1.75 1.73 2.00 1.03
HUMHBB 2.05 2.14 1.97 1.79

HUMHDABCD 2.12 2.07 2.00 1.80
HUMHPRTB 2.14 2.09 1.97 1.82
MIPACGA 2.06 2.12 1.88 1.86
MPOCPCG 2.02 2.12 1.87 1.67
MPOMTCG 2.12 2.17 1.98 1.89

VACCG 2.01 2.09 1.92 1.76
YSCCHRIII 2.08 2.16 1.96 -

Table 8: Results on the entire corpus for some competing compressors. For comparison, our best
version, which is the LZ77 stream after a cost measure improvement, is included. DNACompress
did not provide results for YSCCHRIII.
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